
HAL Id: hal-00397450
https://hal.science/hal-00397450

Submitted on 22 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic extraction of functional dependencies
Eric Gregoire, Richard Ostrowski, Bertrand Mazure, Lakhdar Saïs

To cite this version:
Eric Gregoire, Richard Ostrowski, Bertrand Mazure, Lakhdar Saïs. Automatic extraction of functional
dependencies. Theory and Applications of Satisfiability Testing: 7th International Conference (SAT
2004), 2005, Vancouver, Canada. pp.122-132. �hal-00397450�

https://hal.science/hal-00397450
https://hal.archives-ouvertes.fr

Automati
 extra
tion of fun
tional dependen
iesÉri
 Grégoire, Ri
hard Ostrowski, Bertrand Mazure, and Lakhdar SaïsCRIL CNRS � Université d'Artoisrue Jean Souvraz SP-18F-62307 Lens Cedex Fran
e{gregoire,ostrowski,mazure,sais}�
ril.univ-artois.frAbstra
t. In this paper, a new polynomial time te
hnique for extra
ting fun
tional de-penden
ies in Boolean formulas is proposed. It makes an original use of the well-knownBoolean
onstraint propagation te
hnique (BCP) in a new prepro
essing approa
h thatextra
ts more hidden Boolean fun
tions and dependent variables than previously pub-lished approa
hes on many
lasses of instan
es.Keywords: SAT, Boolean fun
tion, propositional reasoning and sear
h.1 Introdu
tionRe
ent impressive progress in the pra
ti
al resolution of hard and large SAT instan
es al-lows real-world problems that are en
oded in propositional
lausal normal form (CNF) tobe addressed (see e.g. [11, 7, 18℄). While there remains a strong
ompetition about buildingmore e�
ient provers dedi
ated to hard random k-SAT instan
es [6℄, there is also a realsurge of interest in implementing powerful systems that solve di�
ult large real-world SATproblems. Many ben
hmarks have been proposed and regular
ompetitions (e.g. [4, 1, 14, 15℄)are organized around these spe
i�
 SAT instan
es, whi
h are expe
ted to en
ode stru
turalknowledge, at least to some extent.Clearly, en
oding knowledge under the form of a
onjun
tion of propositional
lauses
an�atten some stru
tural knowledge that would be more apparent in more expressive proposi-tional logi
 representation formalisms, and that
ould prove useful in the resolution step [13,8℄. In this paper, a new pre-pro
essing step is proposed in the resolution of SAT instan
es,that extra
ts and exploits some stru
tural knowledge that is hidden in the CNF. The te
h-nique makes an original use of the well-known Boolean
onstraint propagation (BCP) pro
ess.Whereas BCP is traditionally used to produ
e implied and/or equivalent literals, in this pa-per it is shown how it
an be extended so that it delivers an hybrid formula made of
lausestogether with a set of equations of the form y = f(x1; : : : ; xn) where f is a standard
on-ne
tive operator among f_, ^g and where y and xi are Boolean variables of the initial SATinstan
e. These Boolean fun
tions allow us to dete
t a subset of dependent variables, that
an be exploited by SAT solvers.This paper extends in a signi�
ant way the preliminary results that were published in[12℄ in that it des
ribes a te
hnique that allows more dependent variables and hidden fun
-tional dependen
ies to be dete
ted in several
lasses of instan
es. We shall see that the setof fun
tional dependen
ies
an underlie
y
les. Unfortunately, highlighting a
tual dependentvariables taking part in these
y
les
an be time-
onsuming sin
e it
oin
ides to the problemof �nding a minimal
y
le
utset of variables in a graph, whi
h is a well-known NP-hard prob-lem. A

ordingly, e�
ient heuristi
s are explored to
ut these
y
les and deliver the so-
alleddependent variables.The paper is organized as follows. After some preliminary de�nitions, Boolean gates andtheir properties are presented. It is then shown howmore fun
tional dependen
ies than [12℄
anbe dedu
ed from the CNF, using Boolean
onstraint propagation. Then, a te
hnique allowingus to deliver a set of dependent variables is presented, allowing the sear
h spa
e to be redu
edin an exponential way. Experimental results showing the interest of the proposed approa
hare provided. Finally, promising paths for future resear
h are dis
ussed in the
on
lusion.

2 Eri
 Grégoire et al.2 Te
hni
al preliminariesLet B be a Boolean (i.e. propositional) language of formulas built in the standard way, usingusual
onne
tives (_, ^, :,), ,) and a set of propositional variables.A CNF formula � is a set (interpreted as a
onjun
tion) of
lauses, where a
lause is aset (interpreted as a disjun
tion) of literals. A literal is a positive or negated propositionalvariable. We note V(�) (resp. L(�)) the set of variables (resp. literals) o

urring in �. Aunit
lause is a
lause formed with one unique literal. A unit literal is the unique literal of aunit
lause.In addition to these usual set-based notations, we de�ne the negation of a set of literals(:fl1; : : : ; lng) as the set of the
orresponding opposite literals (f:l1; : : : ;:lng).An interpretation of a Boolean formula is an assignment of truth values ftrue; falseg toits variables. A model of a formula is an interpretation that satis�es the formula. A

ordingly,SAT
onsists in �nding a model of a CNF formula when su
h a model does exist or in provingthat su
h a model does not exist.Let
1 be a
lause
ontaining a literal a and
2 a
lause
ontaining the opposite literal:a, one resolvent of
1 and
2 is the disjun
tion of all literals of
1 and
2 less a and :a. Aresolvent is
alled tautologi
al when it
ontains opposite literals.Let us re
all here that any Boolean formula
an be translated thanks to a linear timealgorithm into CNF, equivalent with respe
t to SAT (but that
an use additional propositionalvariables). Most satis�ability
he
king algorithms operate on
lauses, where the stru
turalknowledge of the initial formulas is thus �attened. In the following, CNF formulas will berepresented as Boolean gates.3 Boolean gatesA (Boolean) gate is an expression of the form y = f(x1; : : : ; xn), where f is a standard
onne
tive among f_, ^, ,g and where y and xi are propositional literals, that is de�ned asfollows :� y = ^(x1; : : : ; xn) represents the set of
lauses fy_:x1 _ : : :_:xn;:y_x1; : : : ;:y_xng,translating the requirement that the truth value of y is determined by the
onjun
tion ofthe truth values of xi s.t. i 2 [1::n℄;� y = _(x1; : : : ; xn) represents the set of
lauses f:y _ x1 _ : : : _ xn; y _ :x1; : : : ; y _ :xng;� y =, (x1; : : : ; xn) represents the following equivalen
e
hain (also
alled bi
onditionalformula) y , x1 , : : : , xn, whi
h is equivalent to the set of
lauses fy _ x1 _ : : : _xn; y _ :x1 _ : : : _ :xn;:y _ x1 _ :x2 _ : : : _ :xn; : : : ;:y _ :x1 _ : : : _ :xn�1 _ xng.In the following, we
onsider gates of the form y = f(x1; : : : ; xn) where y is a variable orthe Boolean
onstant true, only.Indeed, any
lause
an be represented as a gate of the form true = _(x1; : : : ; xn). Moreover,a gate :y = ^(x1; : : : ; xn) (resp. :y = _(x1; : : : ; xn)) is equivalent to y = _(:x1; : : : ;:xn)(resp. y = ^(:x1; : : : ;:xn)). A

ording to the well-known property of equivalen
e
hainasserting that every equivalen
e
hain with an odd (resp. even) number of negative literals isequivalent to the
hain formed with the same literals, but all in positive (resp. ex
ept one)form, every gate of the form y =, (x1; : : : ; xn)
an always be rewritten into a gate where yis a positive literal. For example, :y =, (:x1; x2; x3) is equivalent to y =, (x1; x2; x3) and:y =, (:x1; x2;:x3) is equivalent to e.g. y =, (x1; x2;:x3).A propositional variable y (resp. x1; : : : ; xn) is an output variable (resp. are input variables)of a gate of the form y = f(x01; : : : ; x0n), where x0i 2 fxi;:xig.A propositional variable z is an output (dependent) variable of a set of gates i� z is anoutput variable of at least one gate in the set. An input (independent) variable of a set ofgates is an input variable of a gate whi
h is not an output variable of the set of gates.

Automati
 extra
tion of fun
tional dependen
ies 3A gate is satis�ed under a given Boolean interpretation i� the left and right hand sides ofthe gate are simultaneously true or false under this interpretation. An interpretation satis�esa set of gates i� ea
h gate is satis�ed under this interpretation. Su
h an interpretation is
alleda model of this set of gates.4 From CNF to gatesPra
ti
ally, we want to �nd a representation of a CNF � using gates that highlights amaximalnumber of dependent variables, in order to de
rease the a
tual
omputational
omplexity of
he
king the satis�ability of �. A
tually, we shall des
ribe a te
hnique that extra
ts gatesthat
an be dedu
ed from �, and that thus
over a subset of
lauses of �. Remaining
lausesof � will be represented as or-gates of the form true = _(x1; : : : ; xn), in order to get a uniformrepresentation.More formally, assume that a set G of gates whose
orresponding
lauses Cl(G) are logi
al
onsequen
es of a CNF �, the set �un
overed(G) of un
overed
lauses of � w.r.t. G is the setof
lauses of �nCl(G).A

ordingly, � � �un
overed(G) [Cl(G).Not trivially, we shall see that the additional
lauses Cl(G)n�
an play an important rolein further steps of dedu
tion or satis�ability
he
king.Knowing output variables
an play an important role in solving the
onsisten
y statusof a CNF formula. Indeed, the truth-value of an y output variable of a gate depends onthe truth value of the
orresponding xi input variables. The truth value of su
h outputvariables
an be obtained by propagation, and they
an be omitted by sele
tion heuristi
s ofDPLL-like algorithms [3℄. In the general
ase, knowing n0 output variables of a gate-orientedrepresentation of a CNF formula using n variables allows the size of the set of interpretationsto be investigated to de
rease from 2n to 2n�n0 . Obviously, the redu
tion in the sear
h spa
ein
reases with the number of dete
ted dependent variables.Unfortunately, to obtain su
h a redu
tion in the sear
h spa
e, one might need to addressthe following problems:� Extra
ting gates from a CNF formula
an be a time-
onsuming pro
ess in the general
ase, unless some depth-limited sear
h resour
es or heuristi

riteria are provided. Indeed,showing that y = f(x1; : : : ; xi) (where y; x1; : : : ; xi belong to �) follows from a given CNF�, is
oNP-
omplete.� when the set of dete
ted gates
ontains re
ursive de�nitions (like y = f(x; t) and x =g(y; z)), assigning truth values to the set of independent variables is not su�
ient todetermine the truth values of all the dependent ones. Handling su
h re
ursive de�nitions
oin
ides to the well-known NP-hard problem of �nding a minimal
y
le
utset in a graph.In this paper, these two
omputationally-heavy problems are addressed. The �rst oneby restri
ting dedu
tion to Boolean
onstraint propagation, only. The se
ond one by usinggraph-oriented heuristi
s.Let us �rst re
all some ne
essary de�nitions about Boolean
onstraint propagation.5 Boolean
onstraint propagation (BCP)Boolean
onstraint propagation or unit resolution, is one of the most used and useful lookaheadalgorithm for SAT.Let � be a CNF formula, BCP (�) is the CNF formula obtained by propagating all unitliterals of �. Propagating a unit literal l of �
onsists in suppressing all
lauses
 of � su
hthat l 2
 and repla
ing all
lauses
0 of � su
h that :l 2
0 by
0nf:lg. The CNF obtainedin su
h a way is equivalent to � with respe
t to satis�ability.The set of propagated unit literals of � using BCP is noted UP (�). Obviously, we havethat � � UP (�). BCP is a restri
ted form of resolution, and
an be performed in linear time.

4 Eri
 Grégoire et al.It is also
omplete for Horn formulas. In addition to its use in DPLL pro
edures, BCP is usedin many SAT solvers as a pro
essing step to dedu
e further interesting information su
h asimplied [5℄ and equivalent literals [2℄[9℄. Lo
al pro
essing based-BCP is also used to deliverpromising bran
hing variables (heuristi
 UP [10℄).In the sequel, it is shown that BCP
an be further extended, allowing more general fun
-tional dependen
ies to be extra
ted.6 BCP and fun
tional dependen
iesA
tually, BCP
an be used to dete
t hidden fun
tional dependen
ies. The main result of thepaper is the pra
ti
al exploitation of the following original property: gates
an be
omputedusing BCP only, while
he
king whether a gate is a logi
al
onsequen
e of a CNF is
oNP-
omplete in the general
ase.Property 1. Let � be a CNF formula, l 2 L(�), and
 2 � s.t. l 2
. If
nflg � :UP (� ^ l)then � � l = ^(:f
nflgg).Proof. Let
 = fl;:l1;:l2; : : : ;:lmg 2 � s.t.
nflg = f:l1;:l2; : : : ;:lmg � :UP (� ^ l).The Boolean fun
tion l = ^(:f
nflgg)
an be written as l = ^(l1; l2; : : : ; lm). To provethat � � l = ^(l1; l2; : : : ; lm), we need to show that every model of �, is also a model ofl = ^(l1; l2; : : : ; lm). Let I be a model of �, then1. l is either true in I : I is also a model of � ^ l. As f:l1;:l2; : : : ;:lmg � :UP (� ^ l), wehave fl1; l2; : : : ; lmg � UP (� ^ l), then fl1; l2; : : : ; lmg are true in I . Consequently, I isalso a model of l = ^(l1; l2; : : : ; lmgg);2. or l is false in I : as
 = fl;:l1;:l2; : : : ;:lmg 2 � then I satis�es
 = f:l1;:l2; : : : ;:lmg 2�. So, at least one the literals li; i 2 f1; : : : ;mg is true in I . Consequently, I is also amodel of l = ^(l1; l2; : : : ; lmgg)Clearly, depending on the sign of the literal l, and-gates or or-gates
an be dete
ted. For ex-ample, the and-gate :l = ^(l1; l2; : : : ; ln) is equivalent to the or-gate l = _(:l1;:l2; : : : ;:ln).Let us also note that this property
overs binary equivalen
e sin
e a = ^(b) is equivalent toa, b.A
tually, this property allows gates to be dete
ted, whi
h were not in the s
ope thete
hnique des
ribed in [12℄. Let us illustrate this by means of an example.Example 1. Let �1 � fy _ :x1 _ :x2 _ :x3;:y _ x1;:y _ x2;:y _ x3g.A

ording to [12℄, �1
an be represented by a graph where ea
h vertex represents a
lauseand where ea
h edge
orresponds to the existen
e of tautologi
al resolvent between the two
orresponding
lauses. Ea
h
onne
ted
omponent might be a gate. As we
an see the �rstfour
lauses belong to a same
onne
ted
omponent. This is a ne
essary
ondition for su
ha subset of
lauses to represent a gate. Su
h a restri
ted subset of
lauses (namely, thoseappearing in the same
onne
ted
omponent) is then
he
ked synta
ti
ally to determine if itrepresents an and/or gate. Su
h a property
an be
he
ked in polynomial time. In the aboveexample, we thus have y = ^(x1; x2; x3).Now, let us
onsider, the following example,Example 2. �2 � fy_:x1 _:x2 _:x3;:y_x1;:x1 _x4;:x4 _x2;:x2 _x5;:x4 _:x5 _x3g.Clearly, the graphi
al representation of this later example is di�erent and the above te
h-nique does not help us in dis
overing the y = ^(x1; x2; x3) gate. Indeed, the above ne
essarybut not su�
ient
ondition is not satis�ed.Now, a

ording to Property 1, both the and-gates behind Example 1 and Example 2
anbe dete
ted. Indeed, UP (�1 ^y) = fx1; x2; x3g (resp. UP (�2 ^ y) = fx1; x4; x2; x5; x3g) and

Automati
 extra
tion of fun
tional dependen
ies 59
 2 �1, (resp.
0 2 �2),
 = (y _ :x1 _ :x2 _ :x3) (resp.
0 = (y _ :x1 _ :x2 _ :x3)) su
hthat
nfyg � :UP (�1 ^ y) (resp.
0nfyg � :UP (�2 ^ y)).A

ordingly, a prepro
essing te
hnique to dis
over gates
onsists in
he
king the Property1 for any literal o

urring in �. A further step
onsists in �nding dependent variables of theoriginal formulas, as they
an be re
ognised in the dis
overed gates. A gate
learly exhibitsone dependent literal with respe
t to the inputs whi
h are
onsidered independent, as far asingle gate is
onsidered. Now, when several gates share literals, su
h a
hara
terisation ofdependent variables does not apply anymore. Indeed, forms of
y
le
an o

ur as shown inthe following example.Example 3. �3 � fx = ^(y; z); y = _(x;:t)g.Clearly, �3
ontain a
y
le. Indeed, x depends on the variables y and z, whereas y dependson the variables x and t. When a single gate is
onsidered, assigning truth values to inputvariables determines the truth value of the output, dependent, variable. As in Example 3,assigning truth values to input variables that are not output variables for other gates is notenough to determine the truth value of all involved variables. In the example, assigning truthvalues to z and t is not su�
ient to determine the truth value of x and y. However, in theexample, when we assign a truth value to an additional variable (x, whi
h is
alled a
y
le
utset variable) in the
y
le, the truth value of y is determined. A

ordingly, we need to
utsu
h a form of
y
le in order to determinate a su�
ient subset of variables that determinesthe values of all variables. Su
h a set is
alled a strong ba
kdoor in [17℄. In Example 3, thestrong ba
kdoor
orresponds to the set of fxg [fz; tg. In this
ontext, a strong ba
kdoor isthe union of the set of independent variables and of the variables of the
y
le
utset. Findingthe minimal set of variables that
uts all the
y
les in the set of gates is an NP-hard problem.This issue is investigated in the next se
tion.7 Sear
hing for dependent variablesIn the following, a graph representation of the intera
tion of gates is
onsidered. More formally,A set of gates
an be represented by a bipartite graph G = (O [I; E) as follows:� for ea
h gate we asso
iate two verti
es, the �rst one o 2 O represents the output of thegate, and the se
ond one i 2 I represents the set of its input variables. So the number ofvertex is less than 2�#gates, where #gates is the number of gates;� For ea
h gate, an edge (o; i) between the two verti
es o and i representing the left andthe right hand sides of a gate is
reated. Additional edges are
reated between o 2 O andi 2 I if one of the literals of the output variable asso
iated to the vertex o belongs to theset of input literals asso
iated to the vertex i.Finding a smallest subset V 0 of O s.t. the subgraph G0 = (V 0 [O;E0) is a
y
li
 is awell-known NP-hard problem.A
tually, any subset V 0 that makes the graph a
y
li
 is the representation of the set ofvariables, whi
h together with all the independent ones, allows all variables to be determined.When V 0 is of size
, and the set of dependent variables is of size d, then the sear
h spa
eis redu
ed from 2n to 2n�(d�
), where n is the number of variable o

urring in the originalCNF formula.We thus need to �nd a trade-o� between the size of V 0, whi
h in�uen
es the
omputational
ost to �nd it, and the expe
ted time gain in the subsequent SAT
he
king step.In the following, two heuristi
s are investigated in order to �nd a
y
le-
ut set V 0. The�rst-one is
alledMaxdegree. It
onsists in building V 0 in
rementally by sele
ting verti
es withthe highest degree �rst, until the remaining subgraph be
omes a
y
li
.The se
ond one is
alled MaxdegreeCy
le. It
onsists in building V 0 in
rementally bysele
ting �rst a vertex with the highest degree among the verti
es that belong to a
y
le. Thisheuristi
 guarantees that ea
h time a vertex is sele
ted, then at least one
y
le is
ut.

6 Eri
 Grégoire et al.In the next se
tion, extensive experimental results are presented and dis
ussed, involvingthe prepro
essing te
hnique des
ribed above. It
omputes gates and
uts
y
les when ne
essaryin order to deliver a set of dependent variables. Two strategies are explored: in the �rst one,ea
h time a gate is dis
overed, the
overed
lauses of � are suppressed; in the se
ond one,
overed
lauses are eliminated at the end of the generation of gates, only. While the �rst onedepends on the
onsidered order of propagated literals, the se
ond one is order-independent.These two strategies will be
ompared in terms of number of dis
overed gates, of the size ofthe
y
le
utsets, of dependent variables and of the �nal un
overed
lauses.8 Experimental resultsOur prepro
essing software is written in C under Linux Redhat 7.1 (available at :http://www.
ril.univ-artois.fr/�ostrowski/Binaries/llsatprepro
).All experimen-tations have been
ondu
ted on Pentium IV, 2.4 Ghz. Des
ription of the ben
hmarks
an befound on SATLib (http://www.satlib.org).We have applied both [12℄ and our proposed te
hnique on all ben
hmarks from the lastSAT
ompetition [15, 16℄,
overing e.g. model-
he
king, VLSI and planning instan
es. Com-plete results are available at :http://www.
ril.univ-artois.fr/�ostrowski/result-llsatprepro
.ps. In the follow-ing, we illustrate some typi
al ones. On ea
h
lass of instan
es, average and standard deviationresults are provided with respe
t to the
orresponding available instan
es.In Table 1, for ea
h
onsidered
lass, the results of applying both [12℄'s te
hnique and thetwo new ones des
ribed above (in the �rst one,
overed
lauses are not suppressed as soonas they are dis
overed whereas they are suppressed in the se
ond one) in terms of the meannumber of dis
overed gates (#G). The results
learly shows that our approa
h allows oneto dis
over more gates. Not surprisingly, removing
lauses
ondu
ts the number of dete
tedgates to de
rease.Family of Instan
esName (#Inst.,#V[min-Max℄,#C[min-Max℄) [12℄'ste
hnique#G Our approa
hNo
l. remov. Cl. remov.#G #G #C remov.Blo
ks (3,484[283-758℄,27423[9690-47820℄) 10[3℄ 236[134℄ 18[5℄ 271[142℄Logisti
s (8,994[116-3016℄,12706[953-50457℄) 380[265℄ 437[417℄ 169[213℄ 630[585℄Pipe (6,1642[834-2577℄,18624[6695-33270℄) 1312[679℄ 1407[697℄ 1240[639℄ 13898[9083℄Fa
ts (13,3178[2218-4315℄,48737[22539-90646℄) 713[147℄ 1601[541℄ 497[170℄ 1731[510℄Parity (30,1044[64-3176℄,3614[254-10325℄) 568[828℄ 510[594℄ 328[455℄ 663[870℄Qg (10,969[512-1331℄,33747[9685-64054℄) 310[91℄ 1828[652℄ 298[80℄ 1708[601℄Ca (7,637[26-2282℄,1835[70-6586℄) 419[547℄ 459[592℄ 414[542℄ 1233[1615℄Dp (11,1427[213-3193℄,3580[376-8308℄) 1117[856℄ 1468[1211℄ 915[812℄ 2534[2298℄Bm
2 (5,1952[316-4089℄,6908[1002-13531℄) 895[714℄ 1025[850℄ 744[623℄ 2082[1824℄Rand (6,2217[2000-2500℄,6568[5921-7401℄) 2133[236℄ 2444[381℄ 2103[252℄ 6212[692℄Ezfa
t (40,1441[193-3073℄,9169[1113-19785℄) 40[18℄ 268[127℄ 68[33℄ 68[33℄Med (3,761[341-1159℄,20154[5556-36291℄) 66[32℄ 316[162℄ 14[5℄ 319[164℄Avg-
he
ker (4,917[648-1188℄,28661[17087-40441℄) 324[105℄ 1098[375℄ 304[101℄ 1092[373℄nw/n
/fw (13,3997[2756-5074℄,15829[10886-20123℄) 89[40℄ 468[136℄ 125[38℄ 125[38℄Am (4,2011[433-4264℄,6925[1458-14751℄) 989[835℄ 772[585℄ 393[276℄ 927[625℄Cnf (2,2424[2424-2424℄,14812[14812-14812℄) 2336[0℄ 3280[0℄ 2301[6℄ 13703[149℄Table 1. #G: Number of gates dete
ted (average[standard deviation℄)In Table 2, we took the no-remove option. We explored the above two heuristi
s for
utting
y
les (Maxdregre and MaxdegreeCy
le). For ea
h
lass of instan
es, we provide the averagenumber of dete
ted dependent variables (#D), the size of the
y
le
utsets (#CS) and thesize of the dis
overed ba
kdoor (#B), and the
umulated CPU time in se
onds for dis
overinggates and
omputing these results. On some
lasses, the ba
kdoor
an be 10% of the numberof variables, only.In Table 3, the remove option was
onsidered. The number of gates is often lower thanwith the no-remove option. On the other hand, the size of the
y
le
utset is generally lowerwith the remove option.A

ordingly, no option is preferable than the other one in the general
ase. Indeed, �ndinga smaller ba
kdoor depends both on the
onsidered
lass of instan
es and the
onsideredoption.

Automati
 extra
tion of fun
tional dependen
ies 7Family of Instan
es (#V[min-Max℄) Maxdregre MaxdegreeCy
le#D #CS #B #D #CS #BBlo
ks (484[283-758℄) 38[13℄ 198[123℄ 353[215℄ 39[9℄ 197[124℄ 352[216℄Logisti
s (994[116-3016℄ 113[158℄ 245[218℄ 441[532℄ 143[164℄ 214[194℄ 410[522℄Pipe (1642[834-2577℄) 980[768℄ 265[219℄ 582[201℄ 764[449℄ 481[192℄ 798[348℄Fa
ts (3178[2218-4315℄) 738[237℄ 813[256℄ 1964[604℄ 487[124℄ 1064[362℄ 2216[623℄Parity (1044[64-3176℄) 243[388℄ 84[46℄ 573[528℄ 287[410℄ 40[21℄ 528[505℄Qg (969[512-1331℄) 303[202℄ 228[236℄ 228[236℄ 11[6℄ 521[194℄ 521[194℄Ca (637[26-2282℄) 290[434℄ 130[142℄ 344[403℄ 265[341℄ 155[206℄ 369[481℄Dp (1427[213-3193℄) 513[463℄ 451[485℄ 725[625℄ 551[496℄ 412[343℄ 686[498℄Bm
2 (1952[316-4089℄) 662[716℄ 27[22℄ 886[874℄ 660[696℄ 30[10℄ 888[893℄Rand (2217[2000-2500℄) 1777[301℄ 357[339℄ 440[343℄ 1152[134℄ 981[111℄ 1064[115℄Ezfa
t (1441[193-3073℄) 28[35℄ 66[45℄ 1370[1073℄ 55[27℄ 39[18℄ 1343[1060℄Med (761[341-1159℄) 205[102℄ 110[72℄ 110[72℄ 14[4℄ 302[157℄ 302[157℄Avg-
he
ker (917[648-1188℄) 209[357℄ 606[283℄ 606[283℄ 276[94℄ 539[187℄ 539[187℄nw/n
/fw (3997[2756-5074℄) 39[48℄ 151[47℄ 3899[854℄ 94[24℄ 96[23℄ 3844[855℄Am (2011[433-4264℄) 327[263℄ 97[68℄ 413[241℄ 298[206℄ 126[99℄ 441[287℄Cnf (2424[2424-2424℄) 472[564℄ 1801[564℄ 1953[564℄ 1170[2℄ 1103[2℄ 1255[2℄Table 2. Size of ba
kdoor with no remove optionFamily of Instan
es (#V[min-Max℄) Maxdegree MaxdegreeCy
le#D #CS #B #D #CS #BBlo
ks (484[283-758℄) 18[4℄ 0[0℄ 373[219℄ 18[4℄ 0[0℄ 373[219℄Logisti
s (994[116-3016℄ 135[147℄ 25[48℄ 419[539℄ 152[178℄ 7[13℄ 401[509℄Pipe (1642[834-2577℄) 1020[735℄ 219[215℄ 543[223℄ 956[513℄ 282[124℄ 606[283℄Fa
ts (3178[2218-4315℄) 488[127℄ 0[0℄ 2214[621℄ 488[127℄ 0[0℄ 2214[621℄Parity (1044[64-3176℄) 318[426℄ 0[0℄ 497[480℄ 318[426℄ 0[0℄ 497[480℄Qg (969[512-1331℄) 122[99℄ 138[87℄ 410[189℄ 181[60℄ 80[25℄ 351[140℄Ca (637[26-2282℄) 317[433℄ 94[113℄ 317[392℄ 302[388℄ 109[151℄ 332[434℄Dp (1427[213-3193℄) 724[643℄ 149[151℄ 513[357℄ 728[641℄ 145[143℄ 509[353℄Bm
2 (1952[316-4089℄) 680[706℄ 1[1℄ 868[883℄ 680[705℄ 1[1℄ 868[884℄Rand (2217[2000-2500℄) 1591[418℄ 495[396℄ 625[401℄ 1200[129℄ 886[102℄ 1016[111℄Ezfa
t (1441[193-3073℄) 48[23℄ 10[5℄ 1350[1064℄ 49[23℄ 9[5℄ 1349[1064℄Med (761[341-1159℄) 14[4℄ 0[0℄ 302[157℄ 14[4℄ 0[0℄ 302[157℄Avg-
he
ker (917[648-1188℄) 302[100℄ 0[0℄ 512[181℄ 302[100℄ 0[0℄ 512[181℄nw/n
/fw (3997[2756-5074℄) 73[14℄ 40[22℄ 3864[857℄ 95[24℄ 18[10℄ 3842[856℄Am (2011[433-4264℄) 367[254℄ 0[0℄ 373[239℄ 367[254℄ 0[0℄ 373[239℄Cnf (2424[2424-2424℄) 1988[12℄ 285[12℄ 437[12℄ 2210[6℄ 63[6℄ 215[6℄Table 3. Size of ba
kdoor with remove optionHowever, in most
ases, the remove option and theMaxdegreeCy
le heuristi
 lead to smallerba
kdoors.We are
urrently experimenting how su
h a promising prepro
essing step
an be grafted tothe most e�
ient SAT solvers, allowing them to fo
us dire
tly on the
riti
al variables of theinstan
es (i.e. the ba
kdoor). Let us stress that our prepro
essing step has been implementedin a non-optimized way. However, it shows really viable thanks to good obtained
omputingtime (less than 1 se
ond in most
ases), so time is omitted in di�erent tables.9 Future worksLet us here simply motivate another interesting path for future resear
h, related to the a
tualexpressiveness of dis
overed
lauses. A
tually, our gate-oriented representation of a Booleanformula exhibits additional information that
an prove powerful with respe
t to further stepsof dedu
tion or satis�ability
he
king. To illustrate this, let us
onsider Example 2 again.From the CNF �, the gate y = ^(x1; x2; x3) is extra
ted. The
lausal representation of thegate is given by fy _ :x1 _ :x2 _ :x3;:y _ x1;:y _ x2;:y _ x3g.Clearly, the additional
lauses f:y _ x2;:y _ x3g are resolvents from �, whi
h
an onlybe obtained using two and six basi
 steps of resolution, respe
tively. A

ordingly, the gaterepresentation of � involves non-trivial binary resolvents, whi
h
an ease further dedu
tionor satis�ability
he
king steps. Taking this feature into a

ount either in
lausal-based orgate-based dedu
tion of satis�ability solvers should be a promising path for future resear
h.Also, some of the dis
overed gates represent equivalen
ies (x , y), substituting equivalentliterals might lead to further redu
tions with respe
t to the number of variables.Another interesting path for future resear
h
on
erns the analysis of the obtained graphand the use of e.g. de
omposition te
hniques. To further redu
e the size of the ba
kdoor, wealso plan to study how tra
table parts of the formula (e.g. horn or horn-renommable)
an beexploited.

8 Eri
 Grégoire et al.10 Con
lusionsClearly, our experimentations results are en
ouraging. Dependent variables
an be dete
tedin a prepro
essing step at a very low
ost. Cy
les o

ur, and they
an be
ut. We are
urrentlygrafting su
h a prepro
essing te
hnique to e�
ient SAT solvers. Our preliminary experimen-tations show that this proves often bene�
ial. Moreover, we believe that the study of
y
lesand of dependent variables
an be essential in the understanding of the di�
ulty of hard SATinstan
es.11 A
knowledgementsThis work has been supported in part by the CNRS, the FEDER, the IUT de Lens and theConseil Régional du Nord/Pas-de-Calais.Referen
es1. First international
ompetition and symposium on satis�ability testing, Mar
h 1996. Beijing(China).2. L. Brisoux, L. Sais, and E. Grégoire. Re
her
he lo
ale : vers une exploitation des propriétésstru
turelles. In A
tes des Sixièmes Journées Nationales sur la Résolution Pratique des ProblèmesNP-Complets(JNPC'00), pages 243�244, Marseille, 2000.3. Martin Davis, George Logemann, and Donald Loveland. A ma
hine program for theorem proving.Journal of the Asso
iation for Computing Ma
hinery, 5:394�397, 1962.4. Se
ond Challenge on Satis�ability Testing organized by the Center for Dis
rete Mathemati
s andComputer S
ien
e of Rutgers University, 1993. http://dima
s.rutgers.edu/Challenges/.5. Olivier Dubois, Pas
al André, Ya
ine Boufkhad, and Ja
ques Carlier. Sat versus unsat. InD.S. Johnson and M.A. Tri
k, editors, Se
ond DIMACS Challenge, DIMACS Series in Dis
reteMathemati
s and Theoreti
al Computer S
ien
e, Ameri
an Mathemati
al So
iety, pages 415�436,1996.6. Olivier Dubois and Gilles Dequen. A ba
kbone-sear
h heuristi
 for e�
ient solving of hard3�sat formulae. In Pro
eedings of the Seventeenth International Joint Conferen
e on Arti�
ialIntelligen
e (IJCAI'01), volume 1, pages 248�253, Seattle, Washington (USA), August 4�10 2001.7. E. Giun
higlia, M. Maratea, A. Ta

hella, and D. Zambonin. Evaluating sear
h heuristi
s andoptimization te
hniques in propositional satis�ability. In Pro
eedings of International Joint Con-feren
e on Automated Reasoning (IJCAR'01), Siena, June 2001.8. Henry A. Kautz, David M
Allester, and Bart Selman. Exploiting variable dependen
y in lo
alsear
h. In Abstra
t appears in "Abstra
ts of the Poster Sessions of IJCAI-97", Nagoya (Japan),1997.9. Daniel Le Berre. Exploiting the real power of unit propagation lookahead. In Pro
eedings of theWorkshop on Theory and Appli
ations of Satis�ability Testing (SAT2001), Boston University,Massa
husetts, USA, June 14th-15th 2001.10. Chu Min Li and Anbulagan. Heuristi
s based on unit propagation for satis�ability problems. InPro
eedings of the Fifteenth International Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI'97),pages 366�371, Nagoya (Japan), August 1997.11. Shtri
hman Oler. Tuning sat
he
kers for bounded model
he
king. In Pro
eedings of ComputerAided Veri�
ation (CAV'00), 2000.12. Grégoire E. Mazure B. Ostrowski R. and Sais L. Re
overing and exploiting stru
tural knowledgefrom
nf formulas. In Eighth International Conferen
e on Prin
iples and Pra
ti
e of ConstraintProgramming (CP'2002), pages 185�199, Itha
a (N.Y.), 2002. LNCS 2470, Springer Verlag.13. Antoine Rauzy, Lakhdar Saïs, and Laure Brisoux. Cal
ul propositionnel : vers une extensiondu formalisme. In A
tes des Cinquièmes Journées Nationales sur la Résolution Pratique deProblèmes NP-
omplets (JNPC'99), pages 189�198, Lyon, 1999.14. Sat 2001: Workshop on theory and appli
ations of satis�ability testing, 2001.http://www.
s.washington.edu/homes/kautz/sat2001/.15. Sat 2002 : Fifth international symposium on theory and appli
ations of satis�ability testing, May2002. http://gauss.e
e
s.u
.edu/Conferen
es/SAT2002/.16. Sat 2003 : Sixth international symposium on theory and appli
ations of satis�ability testing, May2003. http://www.mrg.dist.unige.it/events/sat03/.17. Ryan Williams, Carla P. Gomez, and Bart Selman. Ba
kdoors to typi
al
ase
omplexity. In Pro-
eedings of the Eighteenth International Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI'03),pages 1173�1178, 2003.18. L. Zhang, C. Madigan, M. Moskewi
z, and S. Malik. E�
ient
on�i
t driven learning in aboolean satis�ability solver. In Pro
eedigns of ICCAD'2001, pages 279�285, San Jose, CA (USA),November 2001.

