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Automati
 extra
tion of fun
tional dependen
iesÉri
 Grégoire, Ri
hard Ostrowski, Bertrand Mazure, and Lakhdar SaïsCRIL CNRS � Université d'Artoisrue Jean Souvraz SP-18F-62307 Lens Cedex Fran
e{gregoire,ostrowski,mazure,sais}�
ril.univ-artois.frAbstra
t. In this paper, a new polynomial time te
hnique for extra
ting fun
tional de-penden
ies in Boolean formulas is proposed. It makes an original use of the well-knownBoolean 
onstraint propagation te
hnique (BCP) in a new prepro
essing approa
h thatextra
ts more hidden Boolean fun
tions and dependent variables than previously pub-lished approa
hes on many 
lasses of instan
es.Keywords: SAT, Boolean fun
tion, propositional reasoning and sear
h.1 Introdu
tionRe
ent impressive progress in the pra
ti
al resolution of hard and large SAT instan
es al-lows real-world problems that are en
oded in propositional 
lausal normal form (CNF) tobe addressed (see e.g. [11, 7, 18℄). While there remains a strong 
ompetition about buildingmore e�
ient provers dedi
ated to hard random k-SAT instan
es [6℄, there is also a realsurge of interest in implementing powerful systems that solve di�
ult large real-world SATproblems. Many ben
hmarks have been proposed and regular 
ompetitions (e.g. [4, 1, 14, 15℄)are organized around these spe
i�
 SAT instan
es, whi
h are expe
ted to en
ode stru
turalknowledge, at least to some extent.Clearly, en
oding knowledge under the form of a 
onjun
tion of propositional 
lauses 
an�atten some stru
tural knowledge that would be more apparent in more expressive proposi-tional logi
 representation formalisms, and that 
ould prove useful in the resolution step [13,8℄. In this paper, a new pre-pro
essing step is proposed in the resolution of SAT instan
es,that extra
ts and exploits some stru
tural knowledge that is hidden in the CNF. The te
h-nique makes an original use of the well-known Boolean 
onstraint propagation (BCP) pro
ess.Whereas BCP is traditionally used to produ
e implied and/or equivalent literals, in this pa-per it is shown how it 
an be extended so that it delivers an hybrid formula made of 
lausestogether with a set of equations of the form y = f(x1; : : : ; xn) where f is a standard 
on-ne
tive operator among f_, ^g and where y and xi are Boolean variables of the initial SATinstan
e. These Boolean fun
tions allow us to dete
t a subset of dependent variables, that
an be exploited by SAT solvers.This paper extends in a signi�
ant way the preliminary results that were published in[12℄ in that it des
ribes a te
hnique that allows more dependent variables and hidden fun
-tional dependen
ies to be dete
ted in several 
lasses of instan
es. We shall see that the setof fun
tional dependen
ies 
an underlie 
y
les. Unfortunately, highlighting a
tual dependentvariables taking part in these 
y
les 
an be time-
onsuming sin
e it 
oin
ides to the problemof �nding a minimal 
y
le 
utset of variables in a graph, whi
h is a well-known NP-hard prob-lem. A

ordingly, e�
ient heuristi
s are explored to 
ut these 
y
les and deliver the so-
alleddependent variables.The paper is organized as follows. After some preliminary de�nitions, Boolean gates andtheir properties are presented. It is then shown howmore fun
tional dependen
ies than [12℄ 
anbe dedu
ed from the CNF, using Boolean 
onstraint propagation. Then, a te
hnique allowingus to deliver a set of dependent variables is presented, allowing the sear
h spa
e to be redu
edin an exponential way. Experimental results showing the interest of the proposed approa
hare provided. Finally, promising paths for future resear
h are dis
ussed in the 
on
lusion.
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hni
al preliminariesLet B be a Boolean (i.e. propositional) language of formulas built in the standard way, usingusual 
onne
tives (_, ^, :, ), ,) and a set of propositional variables.A CNF formula � is a set (interpreted as a 
onjun
tion) of 
lauses, where a 
lause is aset (interpreted as a disjun
tion) of literals. A literal is a positive or negated propositionalvariable. We note V(�) (resp. L(�)) the set of variables (resp. literals) o

urring in �. Aunit 
lause is a 
lause formed with one unique literal. A unit literal is the unique literal of aunit 
lause.In addition to these usual set-based notations, we de�ne the negation of a set of literals(:fl1; : : : ; lng) as the set of the 
orresponding opposite literals (f:l1; : : : ;:lng).An interpretation of a Boolean formula is an assignment of truth values ftrue; falseg toits variables. A model of a formula is an interpretation that satis�es the formula. A

ordingly,SAT 
onsists in �nding a model of a CNF formula when su
h a model does exist or in provingthat su
h a model does not exist.Let 
1 be a 
lause 
ontaining a literal a and 
2 a 
lause 
ontaining the opposite literal:a, one resolvent of 
1 and 
2 is the disjun
tion of all literals of 
1 and 
2 less a and :a. Aresolvent is 
alled tautologi
al when it 
ontains opposite literals.Let us re
all here that any Boolean formula 
an be translated thanks to a linear timealgorithm into CNF, equivalent with respe
t to SAT (but that 
an use additional propositionalvariables). Most satis�ability 
he
king algorithms operate on 
lauses, where the stru
turalknowledge of the initial formulas is thus �attened. In the following, CNF formulas will berepresented as Boolean gates.3 Boolean gatesA (Boolean) gate is an expression of the form y = f(x1; : : : ; xn), where f is a standard
onne
tive among f_, ^, ,g and where y and xi are propositional literals, that is de�ned asfollows :� y = ^(x1; : : : ; xn) represents the set of 
lauses fy_:x1 _ : : :_:xn;:y_x1; : : : ;:y_xng,translating the requirement that the truth value of y is determined by the 
onjun
tion ofthe truth values of xi s.t. i 2 [1::n℄;� y = _(x1; : : : ; xn) represents the set of 
lauses f:y _ x1 _ : : : _ xn; y _ :x1; : : : ; y _ :xng;� y =, (x1; : : : ; xn) represents the following equivalen
e 
hain (also 
alled bi
onditionalformula) y , x1 , : : : , xn, whi
h is equivalent to the set of 
lauses fy _ x1 _ : : : _xn; y _ :x1 _ : : : _ :xn;:y _ x1 _ :x2 _ : : : _ :xn; : : : ;:y _ :x1 _ : : : _ :xn�1 _ xng.In the following, we 
onsider gates of the form y = f(x1; : : : ; xn) where y is a variable orthe Boolean 
onstant true, only.Indeed, any 
lause 
an be represented as a gate of the form true = _(x1; : : : ; xn). Moreover,a gate :y = ^(x1; : : : ; xn) (resp. :y = _(x1; : : : ; xn)) is equivalent to y = _(:x1; : : : ;:xn)(resp. y = ^(:x1; : : : ;:xn) ). A

ording to the well-known property of equivalen
e 
hainasserting that every equivalen
e 
hain with an odd (resp. even) number of negative literals isequivalent to the 
hain formed with the same literals, but all in positive (resp. ex
ept one)form, every gate of the form y =, (x1; : : : ; xn) 
an always be rewritten into a gate where yis a positive literal. For example, :y =, (:x1; x2; x3) is equivalent to y =, (x1; x2; x3) and:y =, (:x1; x2;:x3) is equivalent to e.g. y =, (x1; x2;:x3).A propositional variable y (resp. x1; : : : ; xn) is an output variable (resp. are input variables)of a gate of the form y = f(x01; : : : ; x0n), where x0i 2 fxi;:xig.A propositional variable z is an output (dependent) variable of a set of gates i� z is anoutput variable of at least one gate in the set. An input (independent) variable of a set ofgates is an input variable of a gate whi
h is not an output variable of the set of gates.
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 extra
tion of fun
tional dependen
ies 3A gate is satis�ed under a given Boolean interpretation i� the left and right hand sides ofthe gate are simultaneously true or false under this interpretation. An interpretation satis�esa set of gates i� ea
h gate is satis�ed under this interpretation. Su
h an interpretation is 
alleda model of this set of gates.4 From CNF to gatesPra
ti
ally, we want to �nd a representation of a CNF � using gates that highlights amaximalnumber of dependent variables, in order to de
rease the a
tual 
omputational 
omplexity of
he
king the satis�ability of �. A
tually, we shall des
ribe a te
hnique that extra
ts gatesthat 
an be dedu
ed from �, and that thus 
over a subset of 
lauses of �. Remaining 
lausesof � will be represented as or-gates of the form true = _(x1; : : : ; xn), in order to get a uniformrepresentation.More formally, assume that a set G of gates whose 
orresponding 
lauses Cl(G) are logi
al
onsequen
es of a CNF �, the set �un
overed(G) of un
overed 
lauses of � w.r.t. G is the setof 
lauses of �nCl(G).A

ordingly, � � �un
overed(G) [ Cl(G).Not trivially, we shall see that the additional 
lauses Cl(G)n� 
an play an important rolein further steps of dedu
tion or satis�ability 
he
king.Knowing output variables 
an play an important role in solving the 
onsisten
y statusof a CNF formula. Indeed, the truth-value of an y output variable of a gate depends onthe truth value of the 
orresponding xi input variables. The truth value of su
h outputvariables 
an be obtained by propagation, and they 
an be omitted by sele
tion heuristi
s ofDPLL-like algorithms [3℄. In the general 
ase, knowing n0 output variables of a gate-orientedrepresentation of a CNF formula using n variables allows the size of the set of interpretationsto be investigated to de
rease from 2n to 2n�n0 . Obviously, the redu
tion in the sear
h spa
ein
reases with the number of dete
ted dependent variables.Unfortunately, to obtain su
h a redu
tion in the sear
h spa
e, one might need to addressthe following problems:� Extra
ting gates from a CNF formula 
an be a time-
onsuming pro
ess in the general
ase, unless some depth-limited sear
h resour
es or heuristi
 
riteria are provided. Indeed,showing that y = f(x1; : : : ; xi) (where y; x1; : : : ; xi belong to �) follows from a given CNF�, is 
oNP-
omplete.� when the set of dete
ted gates 
ontains re
ursive de�nitions (like y = f(x; t) and x =g(y; z)), assigning truth values to the set of independent variables is not su�
ient todetermine the truth values of all the dependent ones. Handling su
h re
ursive de�nitions
oin
ides to the well-known NP-hard problem of �nding a minimal 
y
le 
utset in a graph.In this paper, these two 
omputationally-heavy problems are addressed. The �rst oneby restri
ting dedu
tion to Boolean 
onstraint propagation, only. The se
ond one by usinggraph-oriented heuristi
s.Let us �rst re
all some ne
essary de�nitions about Boolean 
onstraint propagation.5 Boolean 
onstraint propagation (BCP)Boolean 
onstraint propagation or unit resolution, is one of the most used and useful lookaheadalgorithm for SAT.Let � be a CNF formula, BCP (�) is the CNF formula obtained by propagating all unitliterals of �. Propagating a unit literal l of � 
onsists in suppressing all 
lauses 
 of � su
hthat l 2 
 and repla
ing all 
lauses 
0 of � su
h that :l 2 
0 by 
0nf:lg. The CNF obtainedin su
h a way is equivalent to � with respe
t to satis�ability.The set of propagated unit literals of � using BCP is noted UP (�). Obviously, we havethat � � UP (�). BCP is a restri
ted form of resolution, and 
an be performed in linear time.
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omplete for Horn formulas. In addition to its use in DPLL pro
edures, BCP is usedin many SAT solvers as a pro
essing step to dedu
e further interesting information su
h asimplied [5℄ and equivalent literals [2℄[9℄. Lo
al pro
essing based-BCP is also used to deliverpromising bran
hing variables (heuristi
 UP [10℄).In the sequel, it is shown that BCP 
an be further extended, allowing more general fun
-tional dependen
ies to be extra
ted.6 BCP and fun
tional dependen
iesA
tually, BCP 
an be used to dete
t hidden fun
tional dependen
ies. The main result of thepaper is the pra
ti
al exploitation of the following original property: gates 
an be 
omputedusing BCP only, while 
he
king whether a gate is a logi
al 
onsequen
e of a CNF is 
oNP-
omplete in the general 
ase.Property 1. Let � be a CNF formula, l 2 L(�), and 
 2 � s.t. l 2 
. If 
nflg � :UP (� ^ l)then � � l = ^(:f
nflgg).Proof. Let 
 = fl;:l1;:l2; : : : ;:lmg 2 � s.t. 
nflg = f:l1;:l2; : : : ;:lmg � :UP (� ^ l).The Boolean fun
tion l = ^(:f
nflgg) 
an be written as l = ^(l1; l2; : : : ; lm). To provethat � � l = ^(l1; l2; : : : ; lm), we need to show that every model of �, is also a model ofl = ^(l1; l2; : : : ; lm). Let I be a model of �, then1. l is either true in I : I is also a model of � ^ l. As f:l1;:l2; : : : ;:lmg � :UP (� ^ l), wehave fl1; l2; : : : ; lmg � UP (� ^ l), then fl1; l2; : : : ; lmg are true in I . Consequently, I isalso a model of l = ^(l1; l2; : : : ; lmgg);2. or l is false in I : as 
 = fl;:l1;:l2; : : : ;:lmg 2 � then I satis�es 
 = f:l1;:l2; : : : ;:lmg 2�. So, at least one the literals li; i 2 f1; : : : ;mg is true in I . Consequently, I is also amodel of l = ^(l1; l2; : : : ; lmgg)Clearly, depending on the sign of the literal l, and-gates or or-gates 
an be dete
ted. For ex-ample, the and-gate :l = ^(l1; l2; : : : ; ln) is equivalent to the or-gate l = _(:l1;:l2; : : : ;:ln).Let us also note that this property 
overs binary equivalen
e sin
e a = ^(b) is equivalent toa, b.A
tually, this property allows gates to be dete
ted, whi
h were not in the s
ope thete
hnique des
ribed in [12℄. Let us illustrate this by means of an example.Example 1. Let �1 � fy _ :x1 _ :x2 _ :x3;:y _ x1;:y _ x2;:y _ x3g.A

ording to [12℄, �1 
an be represented by a graph where ea
h vertex represents a 
lauseand where ea
h edge 
orresponds to the existen
e of tautologi
al resolvent between the two
orresponding 
lauses. Ea
h 
onne
ted 
omponent might be a gate. As we 
an see the �rstfour 
lauses belong to a same 
onne
ted 
omponent. This is a ne
essary 
ondition for su
ha subset of 
lauses to represent a gate. Su
h a restri
ted subset of 
lauses (namely, thoseappearing in the same 
onne
ted 
omponent) is then 
he
ked synta
ti
ally to determine if itrepresents an and/or gate. Su
h a property 
an be 
he
ked in polynomial time. In the aboveexample, we thus have y = ^(x1; x2; x3).Now, let us 
onsider, the following example,Example 2. �2 � fy_:x1 _:x2 _:x3;:y_x1;:x1 _x4;:x4 _x2;:x2 _x5;:x4 _:x5 _x3g.Clearly, the graphi
al representation of this later example is di�erent and the above te
h-nique does not help us in dis
overing the y = ^(x1; x2; x3) gate. Indeed, the above ne
essarybut not su�
ient 
ondition is not satis�ed.Now, a

ording to Property 1, both the and-gates behind Example 1 and Example 2 
anbe dete
ted. Indeed, UP (�1 ^y) = fx1; x2; x3g (resp. UP (�2 ^ y) = fx1; x4; x2; x5; x3g) and
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 2 �1, (resp. 
0 2 �2), 
 = (y _ :x1 _ :x2 _ :x3) (resp. 
0 = (y _ :x1 _ :x2 _ :x3)) su
hthat 
nfyg � :UP (�1 ^ y) (resp. 
0nfyg � :UP (�2 ^ y)).A

ordingly, a prepro
essing te
hnique to dis
over gates 
onsists in 
he
king the Property1 for any literal o

urring in �. A further step 
onsists in �nding dependent variables of theoriginal formulas, as they 
an be re
ognised in the dis
overed gates. A gate 
learly exhibitsone dependent literal with respe
t to the inputs whi
h are 
onsidered independent, as far asingle gate is 
onsidered. Now, when several gates share literals, su
h a 
hara
terisation ofdependent variables does not apply anymore. Indeed, forms of 
y
le 
an o

ur as shown inthe following example.Example 3. �3 � fx = ^(y; z); y = _(x;:t)g.Clearly, �3 
ontain a 
y
le. Indeed, x depends on the variables y and z, whereas y dependson the variables x and t. When a single gate is 
onsidered, assigning truth values to inputvariables determines the truth value of the output, dependent, variable. As in Example 3,assigning truth values to input variables that are not output variables for other gates is notenough to determine the truth value of all involved variables. In the example, assigning truthvalues to z and t is not su�
ient to determine the truth value of x and y. However, in theexample, when we assign a truth value to an additional variable (x, whi
h is 
alled a 
y
le
utset variable) in the 
y
le, the truth value of y is determined. A

ordingly, we need to 
utsu
h a form of 
y
le in order to determinate a su�
ient subset of variables that determinesthe values of all variables. Su
h a set is 
alled a strong ba
kdoor in [17℄. In Example 3, thestrong ba
kdoor 
orresponds to the set of fxg [ fz; tg. In this 
ontext, a strong ba
kdoor isthe union of the set of independent variables and of the variables of the 
y
le 
utset. Findingthe minimal set of variables that 
uts all the 
y
les in the set of gates is an NP-hard problem.This issue is investigated in the next se
tion.7 Sear
hing for dependent variablesIn the following, a graph representation of the intera
tion of gates is 
onsidered. More formally,A set of gates 
an be represented by a bipartite graph G = (O [ I; E) as follows:� for ea
h gate we asso
iate two verti
es, the �rst one o 2 O represents the output of thegate, and the se
ond one i 2 I represents the set of its input variables. So the number ofvertex is less than 2�#gates, where #gates is the number of gates;� For ea
h gate, an edge (o; i) between the two verti
es o and i representing the left andthe right hand sides of a gate is 
reated. Additional edges are 
reated between o 2 O andi 2 I if one of the literals of the output variable asso
iated to the vertex o belongs to theset of input literals asso
iated to the vertex i.Finding a smallest subset V 0 of O s.t. the subgraph G0 = (V 0 [ O;E0) is a
y
li
 is awell-known NP-hard problem.A
tually, any subset V 0 that makes the graph a
y
li
 is the representation of the set ofvariables, whi
h together with all the independent ones, allows all variables to be determined.When V 0 is of size 
, and the set of dependent variables is of size d, then the sear
h spa
eis redu
ed from 2n to 2n�(d�
), where n is the number of variable o

urring in the originalCNF formula.We thus need to �nd a trade-o� between the size of V 0, whi
h in�uen
es the 
omputational
ost to �nd it, and the expe
ted time gain in the subsequent SAT 
he
king step.In the following, two heuristi
s are investigated in order to �nd a 
y
le-
ut set V 0. The�rst-one is 
alledMaxdegree. It 
onsists in building V 0 in
rementally by sele
ting verti
es withthe highest degree �rst, until the remaining subgraph be
omes a
y
li
.The se
ond one is 
alled MaxdegreeCy
le. It 
onsists in building V 0 in
rementally bysele
ting �rst a vertex with the highest degree among the verti
es that belong to a 
y
le. Thisheuristi
 guarantees that ea
h time a vertex is sele
ted, then at least one 
y
le is 
ut.
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tion, extensive experimental results are presented and dis
ussed, involvingthe prepro
essing te
hnique des
ribed above. It 
omputes gates and 
uts 
y
les when ne
essaryin order to deliver a set of dependent variables. Two strategies are explored: in the �rst one,ea
h time a gate is dis
overed, the 
overed 
lauses of � are suppressed; in the se
ond one,
overed 
lauses are eliminated at the end of the generation of gates, only. While the �rst onedepends on the 
onsidered order of propagated literals, the se
ond one is order-independent.These two strategies will be 
ompared in terms of number of dis
overed gates, of the size ofthe 
y
le 
utsets, of dependent variables and of the �nal un
overed 
lauses.8 Experimental resultsOur prepro
essing software is written in C under Linux Redhat 7.1 (available at :http://www.
ril.univ-artois.fr/�ostrowski/Binaries/llsatprepro
).All experimen-tations have been 
ondu
ted on Pentium IV, 2.4 Ghz. Des
ription of the ben
hmarks 
an befound on SATLib (http://www.satlib.org).We have applied both [12℄ and our proposed te
hnique on all ben
hmarks from the lastSAT 
ompetition [15, 16℄, 
overing e.g. model-
he
king, VLSI and planning instan
es. Com-plete results are available at :http://www.
ril.univ-artois.fr/�ostrowski/result-llsatprepro
.ps. In the follow-ing, we illustrate some typi
al ones. On ea
h 
lass of instan
es, average and standard deviationresults are provided with respe
t to the 
orresponding available instan
es.In Table 1, for ea
h 
onsidered 
lass, the results of applying both [12℄'s te
hnique and thetwo new ones des
ribed above (in the �rst one, 
overed 
lauses are not suppressed as soonas they are dis
overed whereas they are suppressed in the se
ond one) in terms of the meannumber of dis
overed gates (#G). The results 
learly shows that our approa
h allows oneto dis
over more gates. Not surprisingly, removing 
lauses 
ondu
ts the number of dete
tedgates to de
rease.Family of Instan
esName (#Inst.,#V[min-Max℄,#C[min-Max℄) [12℄'ste
hnique#G Our approa
hNo 
l. remov. Cl. remov.#G #G #C remov.Blo
ks (3,484[283-758℄,27423[9690-47820℄) 10[3℄ 236[134℄ 18[5℄ 271[142℄Logisti
s (8,994[116-3016℄,12706[953-50457℄) 380[265℄ 437[417℄ 169[213℄ 630[585℄Pipe (6,1642[834-2577℄,18624[6695-33270℄) 1312[679℄ 1407[697℄ 1240[639℄ 13898[9083℄Fa
ts (13,3178[2218-4315℄,48737[22539-90646℄) 713[147℄ 1601[541℄ 497[170℄ 1731[510℄Parity (30,1044[64-3176℄,3614[254-10325℄) 568[828℄ 510[594℄ 328[455℄ 663[870℄Qg (10,969[512-1331℄,33747[9685-64054℄) 310[91℄ 1828[652℄ 298[80℄ 1708[601℄Ca (7,637[26-2282℄,1835[70-6586℄) 419[547℄ 459[592℄ 414[542℄ 1233[1615℄Dp (11,1427[213-3193℄,3580[376-8308℄) 1117[856℄ 1468[1211℄ 915[812℄ 2534[2298℄Bm
2 (5,1952[316-4089℄,6908[1002-13531℄) 895[714℄ 1025[850℄ 744[623℄ 2082[1824℄Rand (6,2217[2000-2500℄,6568[5921-7401℄) 2133[236℄ 2444[381℄ 2103[252℄ 6212[692℄Ezfa
t (40,1441[193-3073℄,9169[1113-19785℄) 40[18℄ 268[127℄ 68[33℄ 68[33℄Med (3,761[341-1159℄,20154[5556-36291℄) 66[32℄ 316[162℄ 14[5℄ 319[164℄Avg-
he
ker (4,917[648-1188℄,28661[17087-40441℄) 324[105℄ 1098[375℄ 304[101℄ 1092[373℄nw/n
/fw (13,3997[2756-5074℄,15829[10886-20123℄) 89[40℄ 468[136℄ 125[38℄ 125[38℄Am (4,2011[433-4264℄,6925[1458-14751℄) 989[835℄ 772[585℄ 393[276℄ 927[625℄Cnf (2,2424[2424-2424℄,14812[14812-14812℄) 2336[0℄ 3280[0℄ 2301[6℄ 13703[149℄Table 1. #G: Number of gates dete
ted (average[standard deviation℄)In Table 2, we took the no-remove option. We explored the above two heuristi
s for 
utting
y
les (Maxdregre and MaxdegreeCy
le). For ea
h 
lass of instan
es, we provide the averagenumber of dete
ted dependent variables (#D), the size of the 
y
le 
utsets (#CS) and thesize of the dis
overed ba
kdoor (#B), and the 
umulated CPU time in se
onds for dis
overinggates and 
omputing these results. On some 
lasses, the ba
kdoor 
an be 10% of the numberof variables, only.In Table 3, the remove option was 
onsidered. The number of gates is often lower thanwith the no-remove option. On the other hand, the size of the 
y
le 
utset is generally lowerwith the remove option.A

ordingly, no option is preferable than the other one in the general 
ase. Indeed, �ndinga smaller ba
kdoor depends both on the 
onsidered 
lass of instan
es and the 
onsideredoption.



Automati
 extra
tion of fun
tional dependen
ies 7Family of Instan
es (#V[min-Max℄) Maxdregre MaxdegreeCy
le#D #CS #B #D #CS #BBlo
ks (484[283-758℄) 38[13℄ 198[123℄ 353[215℄ 39[9℄ 197[124℄ 352[216℄Logisti
s (994[116-3016℄ 113[158℄ 245[218℄ 441[532℄ 143[164℄ 214[194℄ 410[522℄Pipe (1642[834-2577℄) 980[768℄ 265[219℄ 582[201℄ 764[449℄ 481[192℄ 798[348℄Fa
ts (3178[2218-4315℄) 738[237℄ 813[256℄ 1964[604℄ 487[124℄ 1064[362℄ 2216[623℄Parity (1044[64-3176℄) 243[388℄ 84[46℄ 573[528℄ 287[410℄ 40[21℄ 528[505℄Qg (969[512-1331℄) 303[202℄ 228[236℄ 228[236℄ 11[6℄ 521[194℄ 521[194℄Ca (637[26-2282℄) 290[434℄ 130[142℄ 344[403℄ 265[341℄ 155[206℄ 369[481℄Dp (1427[213-3193℄) 513[463℄ 451[485℄ 725[625℄ 551[496℄ 412[343℄ 686[498℄Bm
2 (1952[316-4089℄) 662[716℄ 27[22℄ 886[874℄ 660[696℄ 30[10℄ 888[893℄Rand (2217[2000-2500℄) 1777[301℄ 357[339℄ 440[343℄ 1152[134℄ 981[111℄ 1064[115℄Ezfa
t (1441[193-3073℄) 28[35℄ 66[45℄ 1370[1073℄ 55[27℄ 39[18℄ 1343[1060℄Med (761[341-1159℄) 205[102℄ 110[72℄ 110[72℄ 14[4℄ 302[157℄ 302[157℄Avg-
he
ker (917[648-1188℄) 209[357℄ 606[283℄ 606[283℄ 276[94℄ 539[187℄ 539[187℄nw/n
/fw (3997[2756-5074℄) 39[48℄ 151[47℄ 3899[854℄ 94[24℄ 96[23℄ 3844[855℄Am (2011[433-4264℄) 327[263℄ 97[68℄ 413[241℄ 298[206℄ 126[99℄ 441[287℄Cnf (2424[2424-2424℄) 472[564℄ 1801[564℄ 1953[564℄ 1170[2℄ 1103[2℄ 1255[2℄Table 2. Size of ba
kdoor with no remove optionFamily of Instan
es (#V[min-Max℄) Maxdegree MaxdegreeCy
le#D #CS #B #D #CS #BBlo
ks (484[283-758℄) 18[4℄ 0[0℄ 373[219℄ 18[4℄ 0[0℄ 373[219℄Logisti
s (994[116-3016℄ 135[147℄ 25[48℄ 419[539℄ 152[178℄ 7[13℄ 401[509℄Pipe (1642[834-2577℄) 1020[735℄ 219[215℄ 543[223℄ 956[513℄ 282[124℄ 606[283℄Fa
ts (3178[2218-4315℄) 488[127℄ 0[0℄ 2214[621℄ 488[127℄ 0[0℄ 2214[621℄Parity (1044[64-3176℄) 318[426℄ 0[0℄ 497[480℄ 318[426℄ 0[0℄ 497[480℄Qg (969[512-1331℄) 122[99℄ 138[87℄ 410[189℄ 181[60℄ 80[25℄ 351[140℄Ca (637[26-2282℄) 317[433℄ 94[113℄ 317[392℄ 302[388℄ 109[151℄ 332[434℄Dp (1427[213-3193℄) 724[643℄ 149[151℄ 513[357℄ 728[641℄ 145[143℄ 509[353℄Bm
2 (1952[316-4089℄) 680[706℄ 1[1℄ 868[883℄ 680[705℄ 1[1℄ 868[884℄Rand (2217[2000-2500℄) 1591[418℄ 495[396℄ 625[401℄ 1200[129℄ 886[102℄ 1016[111℄Ezfa
t (1441[193-3073℄) 48[23℄ 10[5℄ 1350[1064℄ 49[23℄ 9[5℄ 1349[1064℄Med (761[341-1159℄) 14[4℄ 0[0℄ 302[157℄ 14[4℄ 0[0℄ 302[157℄Avg-
he
ker (917[648-1188℄) 302[100℄ 0[0℄ 512[181℄ 302[100℄ 0[0℄ 512[181℄nw/n
/fw (3997[2756-5074℄) 73[14℄ 40[22℄ 3864[857℄ 95[24℄ 18[10℄ 3842[856℄Am (2011[433-4264℄) 367[254℄ 0[0℄ 373[239℄ 367[254℄ 0[0℄ 373[239℄Cnf (2424[2424-2424℄) 1988[12℄ 285[12℄ 437[12℄ 2210[6℄ 63[6℄ 215[6℄Table 3. Size of ba
kdoor with remove optionHowever, in most 
ases, the remove option and theMaxdegreeCy
le heuristi
 lead to smallerba
kdoors.We are 
urrently experimenting how su
h a promising prepro
essing step 
an be grafted tothe most e�
ient SAT solvers, allowing them to fo
us dire
tly on the 
riti
al variables of theinstan
es (i.e. the ba
kdoor). Let us stress that our prepro
essing step has been implementedin a non-optimized way. However, it shows really viable thanks to good obtained 
omputingtime (less than 1 se
ond in most 
ases), so time is omitted in di�erent tables.9 Future worksLet us here simply motivate another interesting path for future resear
h, related to the a
tualexpressiveness of dis
overed 
lauses. A
tually, our gate-oriented representation of a Booleanformula exhibits additional information that 
an prove powerful with respe
t to further stepsof dedu
tion or satis�ability 
he
king. To illustrate this, let us 
onsider Example 2 again.From the CNF �, the gate y = ^(x1; x2; x3) is extra
ted. The 
lausal representation of thegate is given by fy _ :x1 _ :x2 _ :x3;:y _ x1;:y _ x2;:y _ x3g.Clearly, the additional 
lauses f:y _ x2;:y _ x3g are resolvents from �, whi
h 
an onlybe obtained using two and six basi
 steps of resolution, respe
tively. A

ordingly, the gaterepresentation of � involves non-trivial binary resolvents, whi
h 
an ease further dedu
tionor satis�ability 
he
king steps. Taking this feature into a

ount either in 
lausal-based orgate-based dedu
tion of satis�ability solvers should be a promising path for future resear
h.Also, some of the dis
overed gates represent equivalen
ies (x , y), substituting equivalentliterals might lead to further redu
tions with respe
t to the number of variables.Another interesting path for future resear
h 
on
erns the analysis of the obtained graphand the use of e.g. de
omposition te
hniques. To further redu
e the size of the ba
kdoor, wealso plan to study how tra
table parts of the formula (e.g. horn or horn-renommable ) 
an beexploited.
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lusionsClearly, our experimentations results are en
ouraging. Dependent variables 
an be dete
tedin a prepro
essing step at a very low 
ost. Cy
les o

ur, and they 
an be 
ut. We are 
urrentlygrafting su
h a prepro
essing te
hnique to e�
ient SAT solvers. Our preliminary experimen-tations show that this proves often bene�
ial. Moreover, we believe that the study of 
y
lesand of dependent variables 
an be essential in the understanding of the di�
ulty of hard SATinstan
es.11 A
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