N

N
N

HAL

open science

Automatic extraction of functional dependencies
Eric Gregoire, Richard Ostrowski, Bertrand Mazure, Lakhdar Sais

» To cite this version:

Eric Gregoire, Richard Ostrowski, Bertrand Mazure, Lakhdar Sais. Automatic extraction of functional
dependencies. Theory and Applications of Satisfiability Testing: 7th International Conference (SAT
2004), 2005, Vancouver, Canada. pp.122-132.

hal-00397450

HAL Id: hal-00397450
https://hal.science/hal-00397450
Submitted on 22 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00397450
https://hal.archives-ouvertes.fr

Automatic extraction of functional dependencies

Eric Grégoire, Richard Ostrowski, Bertrand Mazure, and Lakhdar Sais

CRIL CNRS - Université d’Artois
rue Jean Souvraz SP-18
F-62307 Lens Cedex France

{gregoire,ostrowski,mazure,sais}@cril.univ-artois.fr

Abstract. In this paper, a new polynomial time technique for extracting functional de-
pendencies in Boolean formulas is proposed. It makes an original use of the well-known
Boolean constraint propagation technique (BCP) in a new preprocessing approach that
extracts more hidden Boolean functions and dependent variables than previously pub-
lished approaches on many classes of instances.

Keywords: SAT, Boolean function, propositional reasoning and search.

1 Introduction

Recent impressive progress in the practical resolution of hard and large SAT instances al-
lows real-world problems that are encoded in propositional clausal normal form (CNF) to
be addressed (see e.g. [11,7,18]). While there remains a strong competition about building
more efficient provers dedicated to hard random k-SAT instances [6], there is also a real
surge of interest in implementing powerful systems that solve difficult large real-world SAT
problems. Many benchmarks have been proposed and regular competitions (e.g. [4, 1, 14, 15])
are organized around these specific SAT instances, which are expected to encode structural
knowledge, at least to some extent.

Clearly, encoding knowledge under the form of a conjunction of propositional clauses can
flatten some structural knowledge that would be more apparent in more expressive proposi-
tional logic representation formalisms, and that could prove useful in the resolution step [13,
8].

In this paper, a new pre-processing step is proposed in the resolution of SAT instances,
that extracts and exploits some structural knowledge that is hidden in the CNF. The tech-
nique makes an original use of the well-known Boolean constraint propagation (BCP) process.
Whereas BCP is traditionally used to produce implied and/or equivalent literals, in this pa-
per it is shown how it can be extended so that it delivers an hybrid formula made of clauses
together with a set of equations of the form y = f(x1,...,x,) where f is a standard con-
nective operator among {V, A} and where y and z; are Boolean variables of the initial SAT
instance. These Boolean functions allow us to detect a subset of dependent variables, that
can be exploited by SAT solvers.

This paper extends in a significant way the preliminary results that were published in
[12] in that it describes a technique that allows more dependent variables and hidden func-
tional dependencies to be detected in several classes of instances. We shall see that the set
of functional dependencies can underlie cycles. Unfortunately, highlighting actual dependent
variables taking part in these cycles can be time-consuming since it coincides to the problem
of finding a minimal cycle cutset of variables in a graph, which is a well-known NP-hard prob-
lem. Accordingly, efficient heuristics are explored to cut these cycles and deliver the so-called
dependent variables.

The paper is organized as follows. After some preliminary definitions, Boolean gates and
their properties are presented. It is then shown how more functional dependencies than [12] can
be deduced from the CNF, using Boolean constraint propagation. Then, a technique allowing
us to deliver a set of dependent variables is presented, allowing the search space to be reduced
in an exponential way. Experimental results showing the interest of the proposed approach
are provided. Finally, promising paths for future research are discussed in the conclusion.

2 Eric Grégoire et al.

2 Technical preliminaries

Let B be a Boolean (i.e. propositional) language of formulas built in the standard way, using
usual connectives (V, A, =, =, <) and a set of propositional variables.

A CNF formula X is a set (interpreted as a conjunction) of clauses, where a clause is a
set (interpreted as a disjunction) of literals. A literal is a positive or negated propositional
variable. We note V(X) (resp. £(X)) the set of variables (resp. literals) occurring in X. A
unit clause is a clause formed with one unique literal. A wunit literal is the unique literal of a
unit, clause.

In addition to these usual set-based notations, we define the negation of a set of literals
(={ly,...,1,}) as the set of the corresponding opposite literals ({—ly,...,-l,}).

An interpretation of a Boolean formula is an assignment of truth values {true, false} to
its variables. A model of a formula is an interpretation that satisfies the formula. Accordingly,
SAT consists in finding a model of a CNF formula when such a model does exist or in proving
that such a model does not exist.

Let ¢; be a clause containing a literal a and ¢, a clause containing the opposite literal
—a, one resolvent of ¢y and c» is the disjunction of all literals of ¢; and ¢ less a and —a. A
resolvent is called tautological when it contains opposite literals.

Let us recall here that any Boolean formula can be translated thanks to a linear time
algorithm into CNF, equivalent with respect to SAT (but that can use additional propositional
variables). Most satisfiability checking algorithms operate on clauses, where the structural
knowledge of the initial formulas is thus flattened. In the following, CNF formulas will be
represented as Boolean gates.

3 Boolean gates

A (Boolean) gate is an expression of the form y = f(z1,...,z,), where f is a standard
connective among {V, A, <} and where y and x; are propositional literals, that is defined as
follows :

— y = A(z1,...,z,) represents the set of clauses {yV—-x V...V-z,,~yVaey,...,~yVe,},
translating the requirement that the truth value of y is determined by the conjunction of
the truth values of z; s.t. ¢ € [1..n];

— y=V(z1,...,z,) represents the set of clauses {~yVz1 V...V, yV-zy,...,yVz,};

-y =& (z1,...,2,) represents the following equivalence chain (also called biconditional
formula) y & 1 & ... & x,, which is equivalent to the set of clauses {y Vx; V...V
Ty yV oz VooV oz, oy Vo Voza VooV ox,, .o,y Voxg Ve Vo, Vo, b

In the following, we consider gates of the form y = f(x1,...,z,) where y is a variable or
the Boolean constant true, only.

Indeed, any clause can be represented as a gate of the form true = V(x1, ..., x,). Moreover,
a gate -y = A(z1,...,x,) (resp. =y = V(z1,...,2,)) is equivalent to y = V(—zy,...,"x,)
(resp. y = A(—x1,...,7x,)). According to the well-known property of equivalence chain
asserting that every equivalence chain with an odd (resp. even) number of negative literals is
equivalent to the chain formed with the same literals, but all in positive (resp. except one)
form, every gate of the form y =& (z1,...,x,) can always be rewritten into a gate where y
is a positive literal. For example, -y =< (—x1, 29, 23) is equivalent to y =& (21, x2,z3) and
-y =& (—x1, T2, 0x3) is equivalent to e.g. y =& (x1, X2, ~w3).

A propositional variable y (resp. x1, ..., x,) is an output variable (resp. are input variables)
of a gate of the form y = f(z!,...,}), where z} € {x;, ~x;}.

A propositional variable z is an output (dependent) variable of a set of gates iff z is an
output variable of at least one gate in the set. An input (independent) variable of a set of
gates is an input variable of a gate which is not an output variable of the set of gates.

Automatic extraction of functional dependencies 3

A gate is satisfied under a given Boolean interpretation iff the left and right hand sides of
the gate are simultaneously true or false under this interpretation. An interpretation satisfies
a set of gates iff each gate is satisfied under this interpretation. Such an interpretation is called
a model of this set of gates.

4 From CNF to gates

Practically, we want to find a representation of a CNF X' using gates that highlights a mazimal
number of dependent variables, in order to decrease the actual computational complexity of
checking the satisfiability of X. Actually, we shall describe a technique that extracts gates
that can be deduced from X, and that thus cover a subset of clauses of Y. Remaining clauses
of X' will be represented as or-gates of the form true = V(x1,...,x,), in order to get a uniform
representation.

More formally, assume that a set G of gates whose corresponding clauses C1(G) are logical
consequences of a CNF X, the set X, overed(q) Of uncovered clauses of X' w.r.t. GG is the set

of clauses of X\CI(QG).
Accordingly, X' = Xypcoverea(a) U CU(G).

Not trivially, we shall see that the additional clauses CI(G)\ X can play an important role
in further steps of deduction or satisfiability checking.

Knowing output variables can play an important role in solving the consistency status
of a CNF formula. Indeed, the truth-value of an y output variable of a gate depends on
the truth value of the corresponding z; input variables. The truth value of such output
variables can be obtained by propagation, and they can be omitted by selection heuristics of
DPLL-like algorithms [3]. In the general case, knowing n' output variables of a gate-oriented
representation of a CNF formula using n variables allows the size of the set of interpretations
to be investigated to decrease from 2" to gn—n’ Obviously, the reduction in the search space
increases with the number of detected dependent variables.

Unfortunately, to obtain such a reduction in the search space, one might need to address
the following problems:

— Extracting gates from a CNF formula can be a time-consuming process in the general
case, unless some depth-limited search resources or heuristic criteria are provided. Indeed,
showing that y = f(x1,...,2;) (where y,z1,...,z; belong to X)) follows from a given CNF
X, is coNP-complete.

— when the set of detected gates contains recursive definitions (like y = f(z,t) and = =
9(y, z)), assigning truth values to the set of independent variables is not sufficient to
determine the truth values of all the dependent ones. Handling such recursive definitions
coincides to the well-known NP-hard problem of finding a minimal cycle cutset in a graph.

In this paper, these two computationally-heavy problems are addressed. The first one
by restricting deduction to Boolean constraint propagation, only. The second one by using
graph-oriented heuristics.

Let us first recall some necessary definitions about Boolean constraint propagation.

5 Boolean constraint propagation (BCP)

Boolean constraint propagation or unit resolution, is one of the most used and useful lookahead
algorithm for SAT.

Let X be a CNF formula, BCP(X) is the CNF formula obtained by propagating all unit
literals of Y. Propagating a unit literal [of X consists in suppressing all clauses ¢ of X' such
that [€ ¢ and replacing all clauses ¢’ of X' such that -l € ¢’ by ¢/\{-l}. The CNF obtained
in such a way is equivalent to X' with respect to satisfiability.

The set of propagated unit literals of X using BCP is noted UP(X). Obviously, we have
that ¥ F UP(X). BCP is a restricted form of resolution, and can be performed in linear time.

4 Eric Grégoire et al.

It is also complete for Horn formulas. In addition to its use in DPLL procedures, BCP is used
in many SAT solvers as a processing step to deduce further interesting information such as
implied [5] and equivalent literals [2][9]. Local processing based-BCP is also used to deliver
promising branching variables (heuristic UP [10]).

In the sequel, it is shown that BCP can be further extended, allowing more general func-
tional dependencies to be extracted.

6 BCP and functional dependencies

Actually, BCP can be used to detect hidden functional dependencies. The main result of the
paper is the practical exploitation of the following original property: gates can be computed
using BCP only, while checking whether a gate is a logical consequence of a CNF is coNP-
complete in the general case.

Property 1. Let X be a CNF formula, I € £(X), and ¢ € X s.t. [€ c. If \{I} C -UP(X Al)
then ¥ E 1 = A(—{c\{l}}).

Proof. Let ¢ = {l,=ly,la,...,7lp} € X st \{l} = {-l1,-la,...,7l,} C 2UP(X AI).
The Boolean function | = A(—={c\{l}}) can be written as | = A(ly,ls,...,l). To prove
that X £ 1 = A(ly,l2,...,ln), we need to show that every model of X, is also a model of
I=A(1,l2,...,ln). Let I be a model of X, then

1. [is either truein I : I is also a model of X Al. As {-l;,=ls,...,~ly,} C 2UP(X AL), we
have {l1,ls,...,l,,} C UP(X Al), then {ly,ls,...,l,,} are true in I. Consequently, I is

also a model of | = A(ly,la,...,lm}});
2. orlisfalsein I :asc={l,~ly,lo,...,~l,} € X then I satisfies c = {—ly,-lo,..., "} €
X¥. So, at least one the literals l;,7 € {1,...,m} is true in I. Consequently, I is also a

model of I = A(ly, 1, ..., lm}})

Clearly, depending on the sign of the literal [, and-gates or or-gates can be detected. For ex-
ample, the and-gate =l = A(l1,l2,...,[,) is equivalent to the or-gate I = V(=ly,—ls, ..., —ly).
Let us also note that this property covers binary equivalence since a = A(b) is equivalent to
a & b.

Actually, this property allows gates to be detected, which were not in the scope the
technique described in [12]. Let us illustrate this by means of an example.

Ezample 1. Let ¥y D {yV —x1 V -xy V ~x3,~y Vxy,~yV e,y Vzs}.

According to [12], Xy can be represented by a graph where each vertex represents a clause
and where each edge corresponds to the existence of tautological resolvent between the two
corresponding clauses. Each connected component might be a gate. As we can see the first
four clauses belong to a same connected component. This is a necessary condition for such
a subset of clauses to represent a gate. Such a restricted subset of clauses (namely, those
appearing in the same connected component) is then checked syntactically to determine if it
represents an and/or gate. Such a property can be checked in polynomial time. In the above
example, we thus have y = A(xy, z2, z3).

Now, let us consider, the following example,
Ezample 2. X5 D {yV -z, V-xoV-x3, ~yVay, ~w Vg, T4V Ty, TV ITs, x4V x5 Vg).

Clearly, the graphical representation of this later example is different and the above tech-
nique does not help us in discovering the y = A(x1, 22, z3) gate. Indeed, the above necessary
but not sufficient condition is not satisfied.

Now, according to Property 1, both the and-gates behind Example 1 and Example 2 can
be detected. Indeed, UP(Xy Ay) = {x1,x2, 23} (resp. UP(X> Ay) = {x1, 24,22, 25,23}) and

Automatic extraction of functional dependencies 5

de € Xy, (resp. ¢ € X)), ¢ = (y V —x1 V —xa V —x3) (resp. ¢ = (y V -y V -y V —x3)) such
that c\{y} C “UP(X, Ay) (resp. \{y} C ~UP(X2 Ay)).

Accordingly, a preprocessing technique to discover gates consists in checking the Property
1 for any literal occurring in X. A further step consists in finding dependent variables of the
original formulas, as they can be recognised in the discovered gates. A gate clearly exhibits
one dependent literal with respect to the inputs which are considered independent, as far a
single gate is considered. Now, when several gates share literals, such a characterisation of
dependent variables does not apply anymore. Indeed, forms of cycle can occur as shown in
the following example.

Ezample 3. X3 D {z = A(y,2),y = V(x,t)}.

Clearly, X5 contain a cycle. Indeed, = depends on the variables y and z, whereas y depends
on the variables z and ¢. When a single gate is considered, assigning truth values to input
variables determines the truth value of the output, dependent, variable. As in Example 3,
assigning truth values to input variables that are not output variables for other gates is not
enough to determine the truth value of all involved variables. In the example, assigning truth
values to z and ¢ is not sufficient to determine the truth value of z and y. However, in the
example, when we assign a truth value to an additional variable (x, which is called a cycle
cutset variable) in the cycle, the truth value of y is determined. Accordingly, we need to cut
such a form of cycle in order to determinate a sufficient subset of variables that determines
the values of all variables. Such a set is called a strong backdoor in [17]. In Example 3, the
strong backdoor corresponds to the set of {z} U {z,¢}. In this context, a strong backdoor is
the union of the set of independent variables and of the variables of the cycle cutset. Finding
the minimal set of variables that cuts all the cycles in the set of gates is an NP-hard problem.
This issue is investigated in the next section.

7 Searching for dependent variables
In the following, a graph representation of the interaction of gates is considered. More formally,

A set of gates can be represented by a bipartite graph G = (O U I, E) as follows:

— for each gate we associate two vertices, the first one o € O represents the output of the
gate, and the second one i € T represents the set of its input variables. So the number of
vertex is less than 2 x #gates, where #gates is the number of gates;

— For each gate, an edge (0,7) between the two vertices o and i representing the left and
the right hand sides of a gate is created. Additional edges are created between o € O and
i € I if one of the literals of the output variable associated to the vertex o belongs to the
set, of input literals associated to the vertex i.

Finding a smallest subset V' of O s.t. the subgraph G' = (V' U O, E'") is acyclic is a
well-known NP-hard problem.

Actually, any subset V' that makes the graph acyclic is the representation of the set of
variables, which together with all the independent ones, allows all variables to be determined.
When V' is of size ¢, and the set of dependent variables is of size d, then the search space
is reduced from 2" to 2"~(@=¢) where n is the number of variable occurring in the original
CNF formula.

We thus need to find a trade-off between the size of V', which influences the computational
cost to find it, and the expected time gain in the subsequent SAT checking step.

In the following, two heuristics are investigated in order to find a cycle-cut set V'. The
first-one is called Mazdegree. It consists in building V' incrementally by selecting vertices with
the highest degree first, until the remaining subgraph becomes acyclic.

The second one is called MazdegreeCycle. Tt consists in building V' incrementally by
selecting first a vertex with the highest degree among the vertices that belong to a cycle. This
heuristic guarantees that each time a vertex is selected, then at least one cycle is cut.

6 Eric Grégoire et al.

In the next section, extensive experimental results are presented and discussed, involving
the preprocessing technique described above. It computes gates and cuts cycles when necessary
in order to deliver a set of dependent variables. Two strategies are explored: in the first one,
each time a gate is discovered, the covered clauses of X are suppressed; in the second one,
covered clauses are eliminated at the end of the generation of gates, only. While the first one
depends on the considered order of propagated literals, the second one is order-independent.
These two strategies will be compared in terms of number of discovered gates, of the size of
the cycle cutsets, of dependent variables and of the final uncovered clauses.

8 Experimental results

Our preprocessing software is written in C under Linux Redhat 7.1 (available at :
http://www.cril.univ-artois.fr/~ostrowski/Binaries/llsatpreproc). All experimen-
tations have been conducted on Pentium IV, 2.4 Ghz. Description of the benchmarks can be
found on SATLib (http://www.satlib.org).

We have applied both [12] and our proposed technique on all benchmarks from the last
SAT competition [15, 16], covering e.g. model-checking, VLSI and planning instances. Com-
plete results are available at :
http://www.cril.univ-artois.fr/~ostrowski/result-1lsatpreproc.ps. In the follow-
ing, we illustrate some typical ones. On each class of instances, average and standard deviation
results are provided with respect to the corresponding available instances.

In Table 1, for each considered class, the results of applying both [12]’s technique and the
two new ones described above (in the first one, covered clauses are not suppressed as soon
as they are discovered whereas they are suppressed in the second one) in terms of the mean
number of discovered gates (#G). The results clearly shows that our approach allows one
to discover more gates. Not surprisingly, removing clauses conducts the number of detected
gates to decrease.

Family of Instances te(['%li];sue No cl remo(\?ur apprg?c};emov
Name (#1nst.,#V[min-Max],#C[min-Max])|| /¢! za Wl G | %C remov.
Blocks (3,484[283-758],27423[9690-47820]) || 10[3] 236[134] 18[5] 271[142]
Logistics (8,994[116-3016],12706[953-50457|) || 380[265] 437[417] 169[213] | 630[585]
Pipe (6,1642[834-2577],18624[6695-33270]) || 1312[679] || 1407[697] ||1240[639]|13898[9083]
Facts (13,3178[2218-4315],48737[22539-90646]) || 713[147] || 1601[541] || 497[170]| 1731[510]
Parity (30,1044[64-3176],3614[254-10325]) || 568[828] 510[594] 328[455] | 663[870]
Qg (10,969[512-1331],33747[9685-64054]) || 310[91] 1828[652] || 298[80] | 1708[601]
Ca (7,637[26-2282],1835[70-6586]) || 419[547] 459[592] 414[542] | 1233[1615]
Dp (11,1427[213-3193],3580[376-8308]) || 1117[856] || 1468[1211] || 915[812] | 2534[2298|
Bmc2 (5,1952[316-4089],6908[1002-13531]) || 895[714] 1025[850] || 744[623] | 2082[1824]
Rand (6,2217[2000-2500],6568[5921-7401]) || 2133[236] || 2444[381] |(|2103[252]| 6212[692]
Ezfact (40,1441[193-3073],9169[1113-19785])|| 40[18] 268[127] 68[33] 68[33]
Med (3,761[341-1159],20154[5556-36291]) || 66[32] 316[162] 14[5] | 319[164]
Avg-checker (4,917[648-1188],28661[17087-40441])|| 324[105] 1098[375] || 304[101] | 1092[373]
nw/nc/fw (13,3997[2756-5074],15829[10886-20123]) || 89[40] 468[136] 125[38] | 125[38]
Am (4,2011[433-4264],6925[1458-14751]) || 989[835] 772[585] 393[276] | 927[625]
Cnf (2,2424[2424-2424],14812[14812-14812]) || 2336]0] 3280[0] 2301[6] | 13703[149]

Table 1. #G: Number of gates detected (average[standard deviation])

In Table 2, we took the no-remove option. We explored the above two heuristics for cutting
cycles (Mazxdregre and MaxdegreeCycle). For each class of instances, we provide the average
number of detected dependent variables (#D), the size of the cycle cutsets (#C'S) and the
size of the discovered backdoor (#B), and the cumulated CPU time in seconds for discovering
gates and computing these results. On some classes, the backdoor can be 10% of the number
of variables, only.

In Table 3, the remove option was considered. The number of gates is often lower than
with the no-remove option. On the other hand, the size of the cycle cutset is generally lower
with the remove option.

Accordingly, no option is preferable than the other one in the general case. Indeed, finding
a smaller backdoor depends both on the considered class of instances and the considered
option.

Automatic extraction of functional dependencies 7

Family of Instances (#V[min-Max])|| ., M%zcd’;g”e 4B £D M “‘;‘Zgo”gecyde B
Blocks (184[283-758])|| 38[13] | 108[123] | 353[215] || 39[0] | T07[124] | 352[216]
Logistics (994[116-3016]|| 113(158] | 245[218] | 441532 || 143[164] | 214[194] | 410[522]
Pipe (1642[834-2577]) || 980[768] | 265[219] | 582[201] || 764[449] | 481[192] | 798[348]|
Facts (3178[2218-4315) || 738[237| | 813[256] | 1964[604] || 487[124] |1064[362]| 2216[623]
Parity (1044[64-3176])|| 243(388] | 84[46] | 573[528] || 287[410] | 40[21] | 528[505]
Qg (969[512-1331])|| 303[202] | 228[236] | 228(236] || 11[6] .| 521[194] | 521[194]
Ca (637[26-2282])|| 290[434] | 130[142] | 344[103] || 265[341] | 155[206] | 369[481]
Dp (1427[213-3193]) || 513[463] | 451[485] | 725[625] || 551[496] | 412[343] | 686[498]
Bmc2 (1952(316-4089]) || 662[716] | 27[22] | 886[874] || 660[696] | 30[10] | 888[893]
Rand (2217[2000-2500]) ||1777[301]| 357[339] | 440[343] ||1152[134]| 981[111] | 1064[115]
Eafact (1441[193-3073])|| 28(35] | 66[45] |1370[1073]|| 55[27] | 39[18] |1343[1060]
Med (761[341-1159))|| 205[102] | 110[72] | 110[72] || 14[4] |302(157] | 302[157]
Avg-checker (917[648-1188])|| 200[357] | 606[283] | 606[283] || 276[094] | 539[187] | 539[187]
nw/nc/fw (3997[2756-5074])|| 39[48] | 151[47] |3899[854] || 94[24] | 96[23] |3844[855]
Am (2011[433-4264]) || 327[263] | 97[68] | 413[241] || 208[206] | 126]99] | 441[287]
Cnf (2424[2424-2424)) || 172[564] |1801[564]| 1953]564] || 1170[2] | 1108[2] | 1255[2]

Table 2. Size of backdoor with no remove option

Family of Instances (#V[min-Max]) #D M;émgegqree #B #DMamtﬁ%ge Cycle#B
Blocks (484]283-758) || 18[4] 0[0] | 373[219 18[4] O[0] | 373[219]
Logistics (994[116-3016]|| 135[147] | 25[48] | 419[539] || 152[178] | 7[13] | 401[509]
Pipe (1642[834-2577]) || 1020[735][219[215] | 543[223] || 956[513] |282[124]| 606[283]
Facts (3178[2218-4315]) || 488[127] | 0[0] |2214[621] || 488[127] | o0[0] | 2214[621]
Parity (1044[64-3176])|| 318[426] | 0[0] | 497[480] || 318[426] | o[0] | 497[480]
Qg (969[512-1331]) || 122[99] | 138[87] | 410[189] || 181[60] | 80[25] | 351[140]
Ca (637[26-2282]) || 317[433] | 94[113] | 317[392] || 302[388] |109[151]| 332[434]
Dp (1427[213-3193]) || 724[643] |149[151]| 513[357] || 728[641] [145[143]| 509[353]
Bmc2 (1952[316-4089]) || 680[706] | 1[1] | 868[883] || 680[705] | 1[1] | 868[884]
Rand (2217[2000-2500]) |[1591[418]|495[396]| 625[401] ||1200[129]|886[102]| 1016[111]
Ezfact (1441[193-3073])|| 48[23] | 10[5] |1350[1064]|| 49[23] 9[5] |1349[1064]
Med (761[341-1159])|| 14[4] o[0] | 302[157] || 14[4] o[o] | 302[157]
Avg-checker (917[648-1188])|| 302[100] | o[0] | 512[181] || 302[100] | oO[0] | 512[181]
nw/nc/fw (3997[2756-5074])|| 73[14] | 40[22] | 3864[857] || 95[24] | 18[10] | 3842[856]
Am (2011[433-4264]) || 367[254] | 0[0] | 373[239] || 367[254] | o[0] | 373[239]
Cnf (2424[2424-2424]) || 1988[12] | 285[12] | 437[12] || 2210[6] | 63[6] 215[6]

Table 3. Size of backdoor with remove option

However, in most cases, the remove option and the MazdegreeCycle heuristic lead to smaller
backdoors.

We are currently experimenting how such a promising preprocessing step can be grafted to
the most efficient SAT solvers, allowing them to focus directly on the critical variables of the
instances (i.e. the backdoor). Let us stress that our preprocessing step has been implemented
in a non-optimized way. However, it shows really viable thanks to good obtained computing
time (less than 1 second in most cases), so time is omitted in different tables.

9 Future works

Let us here simply motivate another interesting path for future research, related to the actual
expressiveness of discovered clauses. Actually, our gate-oriented representation of a Boolean
formula exhibits additional information that can prove powerful with respect to further steps
of deduction or satisfiability checking. To illustrate this, let us consider Example 2 again.
From the CNF X, the gate y = A(z1, 22, x3) is extracted. The clausal representation of the
gate is given by {y V -z V —za V mx3, -y V 21,y V 22, —y V 23 }.

Clearly, the additional clauses {—y V z2,—y V 23} are resolvents from X', which can only
be obtained using two and six basic steps of resolution, respectively. Accordingly, the gate
representation of Y involves non-trivial binary resolvents, which can ease further deduction
or satisfiability checking steps. Taking this feature into account either in clausal-based or
gate-based deduction of satisfiability solvers should be a promising path for future research.
Also, some of the discovered gates represent equivalencies (z < y), substituting equivalent
literals might lead to further reductions with respect to the number of variables.

Another interesting path for future research concerns the analysis of the obtained graph
and the use of e.g. decomposition techniques. To further reduce the size of the backdoor, we
also plan to study how tractable parts of the formula (e.g. horn or horn-renommable) can be
exploited.

8 Eric Grégoire et al.

10 Conclusions

Clearly, our experimentations results are encouraging. Dependent variables can be detected
in a preprocessing step at a very low cost. Cycles occur, and they can be cut. We are currently
grafting such a preprocessing technique to efficient SAT solvers. Our preliminary experimen-
tations show that this proves often beneficial. Moreover, we believe that the study of cycles
and of dependent variables can be essential in the understanding of the difficulty of hard SAT
instances.

11 Acknowledgements

This work has been supported in part by the CNRS, the FEDER, the IUT de Lens and the
Conseil Régional du Nord/Pas-de-Calais.

References

1. First international competition and symposium on satisfiability testing, March 1996. Beijing
China).

2. £ Bris)oux, L. Sais, and E. Grégoire. Recherche locale : vers une exploitation des propriétés
structurelles. In Actes des Siziéemes Journées Nationales sur la Résolution Pratique des Problémes
NP-Complets(JNPC’00), pages 243-244, Marseille, 2000.

3. Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.
Journal of the Association for Computing Machinery, 5:394-397, 1962.

4. Second Challenge on Satisfiability Testing organized by the Center for Discrete Mathematics and
Computer Science of Rutgers University, 1993. http://dimacs.rutgers.edu/Challenges/.

5. Olivier Dubois, Pascal André, Yacine Boufkhad, and Jacques Carlier. Sat versus unsat. In
D.S. Johnson and M.A. Trick, editors, Second DIMACS Challenge, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, American Mathematical Society, pages 415-436,
1996.

6. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving of hard
3-sat formulae. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI’01), volume 1, pages 248-253, Seattle, Washington (USA), August 4-10 2001.

7. E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating search heuristics and
optimization techniques in propositional satisfiability. In Proceedings of International Joint Con-
ference on Automated Reasoning (IJCAR’01), Siena, June 2001.

8. Henry A. Kautz, David McAllester, and Bart Selman. Exploiting variable dependency in local
search. In Abstract appears in "Abstracts of the Poster Sessions of IJCAI-97", Nagoya (Japan),
1997.

9. Daniel Le Berre. Exploiting the real power of unit propagation lookahead. In Proceedings of the
Workshop on Theory and Applications of Satisfiability Testing (SAT2001), Boston University,
Massachusetts, USA, June 14th-15th 2001.

10. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems. In
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI’97),
pages 366-371, Nagoya (Japan), August 1997.

11. Shtrichman Oler. Tuning sat checkers for bounded model checking. In Proceedings of Computer
Aided Verification (CAV’00), 2000.

12. Grégoire E. Mazure B. Ostrowski R. and Sais L. Recovering and exploiting structural knowledge
from cnf formulas. In Eighth International Conference on Principles and Practice of Constraint
Programming (CP’2002), pages 185-199, Tthaca (N.Y.), 2002. LNCS 2470, Springer Verlag.

13. Antoine Rauzy, Lakhdar Sais, and Laure Brisoux. Calcul propositionnel : vers une extension
du formalisme. In Actes des Cinquiémes Journées Nationales sur la Résolution Pratique de
Probléemes NP-complets (JNPC’99), pages 189-198, Lyon, 1999.

14. Sat 2001: Workshop on theory and applications of satisfiability testing, 2001.
http://www.cs.washington.edu/homes/kautz/sat2001/.

15. Sat 2002 : Fifth international symposium on theory and applications of satisfiability testing, May
2002. http://gauss.ececs.uc.edu/Conferences/SAT2002/.

16. Sat 2003 : Sixth international symposium on theory and applications of satisfiability testing, May
2003. http://www.mrg.dist.unige.it/events/sat03/.

17. Ryan Williams, Carla P. Gomez, and Bart Selman. Backdoors to typical case complexity. In Pro-
ceedings of the Fighteenth International Joint Conference on Artificial Intelligence (IJCAI08),
pages 1173-1178, 2003.

18. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning in a
boolean satisfiability solver. In Proceedigns of ICCAD’2001, pages 279-285, San Jose, CA (USA),
November 2001.

