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Abstract

In density-based clustering methods, the clusters are defined as the con-

nected components of the upper level sets of the underlying density f . In

this setting, the practitioner fixes a probability p, and associates with it a

threshold t(p) such that the level set { f ≥ t(p)} has a probability p with

respect to the distribution induced by f . This paper is devoted to the es-

timation of the threshold t(p), of the level set { f ≥ t(p)}, as well as of the

number k(t(p)) of connected components of this level set. Given a nonpara-

metric density estimate f̂n of f based on an i.i.d. n-sample drawn from f , we

first propose a computationally simple estimate t
(p)
n of t(p), and we establish

a concentration inequality for this estimate. Next, we consider the plug-in

level set estimate { f̂n ≥ t
(p)
n }, and we establish the exact convergence rate

of the Lebesgue measure of the symmetric difference between { f ≥ t(p)}

and { f̂n ≥ t
(p)
n }. Finally, we propose a computationally simple graph-based

estimate of k(t(p)), which is shown to be consistent. Thus, the methodology

yields a complete procedure for analyzing the grouping structure of the data,

as p varies over (0;1).

Index Terms — Kernel estimate; Density level sets; Nonparametric statistics;

Clustering.
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1 Introduction

Cluster analysis encompasses a number of popular statistical techniques aiming at

classifying the observations into different groups, called clusters, of similar items;

see, e.g., Chapter 10 in Duda et al. (2000), and Chapter 14 in Hastie et al. (2009),

for a general exposition on the subject. In general, no prior knowledge on the

groups and their number is available, in which case clustering is an unsupervised

learning problem. According to Hastie et al. (2009), clustering methods may be

categorized in three ensembles, namely combinatorial algorithms, mixture mod-

eling, and mode seekers. The methods proposed and studied in this paper pertain

to the third class and rely on the ideas of density-based clustering; see Hartigan

(1975).

Let us recall the nonparametric definition of a cluster given by Hartigan (1975).

Let X be a R
d-valued random variable with density f . For any t ≥ 0, denote by

L (t) the t-upper-level set of f , i.e.,

L (t) = { f ≥ t} = {x ∈ R
d : f (x) ≥ t}. (1.1)

According to Hartigan (1975), the clusters are the connected components of L (t),
whence relating population clusters with domains of mass concentration.

Density level sets are therefore the basic objects of Hartigan’s approach to the

clustering problem. They also play a prominent role in various scientific applica-

tions, including anomaly or novelty detection, medical imaging, and computer vi-

sion. The theory behind their estimation has developed significantly in the recent

years. Excess-mass level set estimates are studied in Hartigan (1987), Muller and

Sawitzki (1991), Nolan (1991), Polonik (1995, 1997), Tsybakov (1997). Other

popular level set estimates are the plug-in level set estimates, formed by replacing

the density f with a density estimate f̂n in (1.1). Under some assumptions, consis-

tency and rates of convergence (for the volume of the symmetric difference) have

been established in Baillo et al. (2000, 2001), Baillo (2003), and an exact con-

vergence rate is obtained in Cadre (2006). Recently, Mason and Polonik (2009)

derive the asymptotic normality of the volume of the symmetric difference for

kernel plug-in level set estimates; see also related works in Molchanov (1998),

Cuevas et al. (2006).

In the context of clustering, algorithms relying on the definition of Hartigan

(1975) are typically composed of two main operations. First, observations falling
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into an estimation of L (t) are extracted, and next, these extracted observations

are partitioned into groups; see, e.g., Cuevas et al. (2000), Biau et al. (2007), and

the references therein. However, to interpret the cluster analysis, the extracted set

of observations must be related to a probability instead of a threshold of the level

set. Such an objective may be reached as follows: given a probability p ∈ (0;1),
define t(p) as the largest threshold such that the probability of L (t(p)) is greater

than p, i.e.,

t(p) = sup
{

t ≥ 0 : P
(

X ∈ L (t)
)

≥ p
}

. (1.2)

Note that P(X ∈ L (t(p))) = p whenever P( f (X) = t(p)) = 0. The parameter p

has to be understood as a resolution level fixed by the practitioner: if p is close to

1, almost all the sample is in the level set, while if p is small, L (t(p)) is a small

domain concentrated around the largest mode of f .

Hence, in a cluster analysis, the practitioner fixes a probability p, depending

on the objectives of his study. For a complete study, he needs to estimate, from a

set of observations, the threshold t(p), the level set L (t(p)), as well as the number

of clusters, i.e. the number of connected components of L (t(p)). Assessing the

number of clusters is also a major challenge in cluster analysis, due to its inter-

pretation in terms of population diversity. When a hierarchical cluster analysis is

needed, a dendrogram (see, e.g., Hastie et al., 2009, p. 521) may be produced

by varying the value of p over (0,1). The aim of this paper is to address these

estimation problems, given a set of i.i.d. observations X1, · · · ,Xn drawn from f .

Estimation of t(p) and L (t(p)). In Cadre (2006), a consistent estimate of t(p) is

defined as a solution in t of the equation

∫

{ f̂n≥t}
f̂n(x)dx = p, (1.3)

where f̂n is a nonparametric density estimate of f based on the observations

X1, · · · ,Xn. In practice, though, computing such an estimate would require multi-

ple evaluations of integrals, yielding a time-consuming procedure. Following an

idea that goes back to Hyndman (1996), we propose to consider the estimate t
(p)
n

defined as the (1− p)-quantile of the empirical distribution of f̂n(X1), . . . , f̂n(Xn).
Such an estimate may be easily computed using an order statistic. We first es-

tablish a concentration inequality for t
(p)
n , depending on the supremum norm of

f̂n − f (Theorem 2.1). Next we specialize to the case where f̂n is a nonparametric
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kernel density estimate, and we consider the plug-in level set estimate Ln(t
(p)
n )

defined by

Ln(t
(p)
n ) = { f̂n ≥ t

(p)
n }.

The distance between two Borel sets in R
d is defined as the Lebesgue measure

λ of the symmetric difference denoted ∆ (i.e., A∆B = (A∩Bc)∪ (Ac ∩B) for all

sets A,B). Our second result (Theorem 2.3) states that, under suitable conditions,

Ln(t
(p)
n ) is consistent in the following sense:

√

nhd
n λ
(

Ln(t
(p)
n )∆L (t(p))

)

P
−→C

(p)
f .

Here, C
(p)
f is an explicit constant, depending on f and p, that can be consistently

estimated.

Estimation of the number of clusters. Then, we consider the estimation of the

number of clusters of L (t(p)). A theoretical estimator could be defined as the

number of connected components of the plug-in level set estimate Ln(t
(p)
n ), for

any estimate t
(p)
n of t(p). However, heavy numerical computations are required to

evaluate this number in practice, especially when the dimension d is large. For

this reason, stability criterions with respect to resampling, or small perturbations

of the data set, are frequently employed in practice, despite the negative results

of Ben-David et al. (2006) and Ben-David et al. (2007). The approach developed

in Biau et al. (2007) and summarized below is based on a graph and leads to a

dramatic decrease of the computational burden; see also Ben-David et al. (2006).

In Biau et al. (2007), the threshold t > 0 is fixed. Set (rn)n a sequence of posi-

tive numbers, and define the graph Gn(t) whose vertices are the observations Xi

for which f̂n(Xi) ≥ t, and where two vertices are connected by an edge when-

ever they are at a distance no more than rn. Biau et al. (2007) prove that, with

probability one, the graph Gn(t) and the set L (t) have the same number of con-

nected components, provided n is large enough. Hence the number of connected

components, say kn(t), of Gn(t) is a strongly consistent estimate of the number of

connected components k(t) of L (t). In practice, however, only the probability p

is fixed, hence the threshold defined by (1.2) is unknown. Moreover, in the above-

mentioned paper, the behavior of kn(t) depends on the behavior of the gradient

of f̂n; when f̂n is a kernel density estimate for instance, this leads to restrictive

conditions on the bandwidth sequence. In comparison with Biau et al. (2007),

one can sum up our contribution (Theorem 3.1) as follows: only the probability

p is fixed, and the associated threshold is estimated, leading to an efficient and
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tractable method for clustering. Moreover, the concentration inequality for the

estimator is obtained whatever the behavior of the gradient of f̂n, hence a better

inequality.

The paper is organized as follows. Section 2 is devoted to the estimation of

the threshold t(p) and the level set L (t(p)). In Section 3, we study the estimator of

the number of clusters of L (t(p)). Section 4, Section 5, and Section 6 are devoted

to the proofs. Finally, several auxiliary results for the proofs are postponed in the

Appendices, at the end of the paper.

2 Level set and threshold estimation

2.1 Notations

Let f̂n be an arbitrary nonparametric density estimate of f . For t ≥ 0, the t-upper

level sets of f and f̂n will be denoted by L (t) and Ln(t) respectively, i.e.,

L (t) =
{

f ≥ t
}

, and Ln(t) =
{

f̂n ≥ t
}

.

Given a real number p in (0;1), our first objective is to estimate a level t(p) ∈R

such that L (t(p)) has µ-coverage equal to p, where µ is the law of X . To this aim,

let H and Hn be the functions defined for all t ≥ 0 respectively by

H(t) = P( f (X) ≤ t), Hn(t) =
1

n

n

∑
i=1

1
{

f̂n(Xi) ≤ t
}

.

Next, for all p ∈ (0;1), we define the (1− p)-quantile of the law of f (X), i.e.

t(p) = inf{t ∈ R : H(t) ≥ 1− p}, (2.1)

and its estimate based on the sample f̂n(X1), · · · , f̂ (Xn):

t
(p)
n = inf{t ∈ R : Hn(t) ≥ 1− p}. (2.2)

In comparison with the estimator of t(p) defined as a solution of (1.3), the estimate

t
(p)
n is easily computed, by considering the order statistic induced by the sample

f̂n(X1),. . . , f̂n(Xn). Moreover, note that the set of discontinuities for H is at most

countable, and that whenever H is continuous at t(p), the two definitions (1.2) and
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(2.1) coincide. In this case, we have µ(L (t(p))) = p. We shall consider Ln(t
(p)
n )

as an estimate of L (t(p)).

Whenever f is of class C1, we let T0 be the subset of the range of f defined

by

T0 =

{

t ∈ (0;sup
Rd

f ) : inf
{ f =t}

‖∇ f‖ = 0

}

.

This set naturally arises when considering the distribution of f (X). Indeed, the

Implicit Function Theorem implies that T0 contains the set of points in (0;sup
Rd f )

which charges the distribution of f (X). We shall assume throughout that the den-

sity f satisfies the following conditions.

Assumption 1 [on f ]

(i) The density f is of class C2 with a bounded hessian matrix, and

f (x) → 0 as ‖x‖→ ∞.

(ii) T0 has Lebesgue content 0.

(iii) λ({ f = t}) = 0 for all t > 0.

Assumptions 1-(ii) and 1-(iii) are essentially imposed for the sake of the sim-

plicity of the exposition, allowing the main results to be stated for almost all

p ∈ (0;1).

By Assumption 1-(i), the upper t-level set L (t) is compact for all t > 0, as

well as its boundary { f = t}. Assumption 1-(iii), which ensures the continuity of

H, roughly means that each flat part of f has a null volume. Moreover, it is proved

in Lemma A.1 that under Assumption 1-(i), we have T0 = f (X ) \ {0;sup
Rd f},

where X = {∇ f = 0} is the set of critical points of f . Suppose in addition that f

is of class Ck, with k ≥ d. Then, Sard’s Theorem (see, e.g., Aubin, 2000) ensures

that the Lebesgue measure of f (X ) is 0, hence implying Assumption 1-(ii).

Let us introduce some additional notations. We let ‖.‖2 and ‖.‖∞ be the L2(λ)-
and L∞(λ)-norms on functions respectively, and ‖.‖ be the the usual Euclidean

norm. At last, H stands for the (d − 1)-dimensional Hausdorff measure (see,

e.g., Evans and Gariepy, 1992). Recall that H agrees with ordinary (d − 1)-
dimensional surface area on nice sets.
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The next subsection is devoted to the study of the asymptotic behavior of t
(p)
n

and Ln(t
(p)
n ), when t

(p)
n is defined by (2.2). The case of an arbitrary density esti-

mate f̂n is considered first. Next, we specialize the result in the case where f̂n is a

kernel density estimator.

2.2 Asymptotic behavior of t
(p)
n

Our first result provides a concentration inequality for t
(p)
n defined by (2.2) when

f̂n is an arbitrary density estimate.

Theorem 2.1. Suppose that f satisfies Assumption 1. Then, for almost all p ∈
(0;1) and for all η > 0, we have

P

(

|t
(p)
n − t(p)| ≥ η

)

≤ P
(

‖ f̂n − f‖∞ ≥C1η
)

+C2n2 exp
(

−nC1η
2
)

,

where C1 and C2 are positive constants.

We now specialize the above result in the case where f̂n is a nonparametric

kernel density estimate of f with kernel K and bandwidth sequence (hn)n, namely

f̂n(x) =
1

nhd
n

n

∑
i=1

K

(

x−Xi

hn

)

. (2.3)

The following assumptions on hn and K will be needed in the sequel.

Assumption 2a [on hn]

nhd
n

logn
→ ∞, and nhd+4

n → 0.

Assumption 3 [on K]

The kernel K is a density on R
d with radial symmetry:

K(x) = Φ(‖x‖) ,

where Φ : R+ → R+ is a decreasing function with compact support.

Under Assumption 3 the class of functions

{

K

(

x− .

h

)

: h > 0; x ∈ R
d

}

7



has a polynomial discrimination (see, e.g., Pollard, 1984, Problem II.28, p. 42).

Then, sharp almost-sure convergence rates on f̂n − f can be established (see, e.g.,

Giné and Guillou, 2002, Einmahl and Mason, 2005). More precisely, since ‖E f̂n−
f‖∞ = O(h2

n) under Assumption 1-(i), one deduces from the above-mentioned

papers that, if Assumptions 2a and 3 also hold, then for all η > 0,

∑
n

P
(

vn‖ f̂n − f‖∞ ≥ η
)

< ∞, (2.4)

where (vn)n is any sequence satisfying vn = o(
√

nhd
n/ logn). Combined with the

concentration inequality in Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Suppose that f satisfies Assumption 1. Let f̂n be the nonparametric

kernel density estimate (2.3) satisfying Assumptions 2a and 3. Then, for almost

all p ∈ (0;1), we have
√

nhd
n

logn

∣

∣

∣
t
(p)
n − t(p)

∣

∣

∣

a.s
−→ 0.

Even if the above result is non-optimal, it turns out to be enough for a cluster

analysis, as showed in the next section.

2.3 Asymptotic behavior of Ln(t
(p)
n )

We shall need a slightly stronger assumption than Assumption 2a on the band-

width sequence (hn)n.

Assumption 2b [on hn]

nhd
n

(logn)16
→ ∞, and nhd+4

n (logn)2 → 0.

Under this set of conditions on the bandwidth sequence, one may apply the main

result in Cadre (2006).

The next result is an equivalent to Corollary 2.1 of Cadre (2006), in which the

estimate of t(p) is defined as a solution of (1.3). It shows that Ln(t
(p)
n ) is consistent

for the volume of the symmetric difference. Hence, this estimate can be used as a

reliable basis for performing a cluster analysis in practice.
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Theorem 2.3. Suppose that f satisfies Assumption 1 and that d ≥ 2. Let f̂n be

the nonparametric kernel density estimate (2.3) satisfying Assumptions 2b and 3.

Then, for almost all p ∈ (0;1), we have

√

nhd
n λ
(

Ln(t
(p)
n )∆L (t(p))

)

P
−→

√

2

π
‖K‖2 t(p)

∫

{ f =t(p)}

1

‖∇ f‖
dH .

The deterministic limit in the above theorem depends on the unknown density

f . However, one can prove that if (αn)n is a sequence of positive numbers tending

to 0 and such that α2
nnhd

n/(logn)2 → ∞, then, for almost all p ∈ (0;1),

t
(p)
n

αn
λ
(

Ln(t
(p)
n )\Ln(t

(p)
n +αn)

)

P
−→ t(p)

∫

{ f =t(p)}

1

‖∇ f‖
dH .

The proof of the above result is similar to the one of Lemma 4.6 in Cadre (2006),

using our Corollary 2.2. Combined with Theorem 2.3, we then have, for almost

all p ∈ (0;1),

αn

√

nhd
n

t
(p)
n λ

(

Ln(t
(p)
n )\Ln(t

(p)
n +αn)

)λ
(

Ln(t
(p)
n )∆L (t(p))

)

P
−→

√

2

π
‖K‖2,

which yields a feasible way to estimate λ(Ln(t
(p)
n )∆L (t(p))).

Remark 2.4. According to Proposition A.2 in Appendix A, on any interval I ⊂
(0;sup

Rd f ) with I ∩T0 = /0, the random variable f (X) has a density on I, which

is given by

g(t) = t

∫

{ f =t}

1

‖∇ f‖
dH , t ∈ I.

Thus the normalized distance between Ln(t
(p)
n ) and L (t(p)) in Theorem 2.3 cor-

responds to the density g at point t(p), up to a multiplicative constant.

3 Estimation of the number of clusters

3.1 Notations

As in the previous section, let us start with an arbitrary nonparametric density

estimate f̂n of f . We first recall the methodology developed by Biau et al. (2007)

to estimate the number of clusters k(t) of L (t). Set

Jn(t) =
{

j ≤ n : f̂n(X j) ≥ t
}

,
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i.e., {X j : j ∈ Jn(t)} is the part of the n-sample lying in the t-level set of f̂n. Let

(rn)n be a sequence of positive numbers vanishing as n → ∞. Define the graph

Gn(t) with vertices {X j : j ∈ Jn(t)} and where, for i, j ∈ Jn(t), Xi and X j are

joined by an edge if and only if ‖Xi −X j‖ ≤ rn. Then we set kn(t) as the number

of connected components of the graph Gn(t).

Under suitable assumptions, Biau et al. (2007) prove that, with probability

one, kn(t) = k(t) provided n is large enough. In our setting however, the threshold

t(p) is unknown and has to be estimated. Hence, the main result in Biau et al.

(2007) may not be applied in order to estimate the number of clusters k(t(p)).

Let t
(p)
n be an arbitrary estimator of t(p). In the next subsection, we state a

concentration inequality for kn(t
(p)
n ). Then, we specialize this result to the case

where f̂n is the kernel estimate (2.3) and t
(p)
n is given by (2.2).

3.2 Asymptotic behavior of kn(t
(p)
n )

In what follows, ωd denotes the volume of the Euclidean unit ball in R
d .

Theorem 3.1. Suppose that f satisfies Assumption 1. Let (εn)n and (ε′n)n be two

sequences of positive numbers such that εn +ε′n = o(rn). For almost all p ∈ (0;1),
there exists a positive constant C, depending only on f and p, such that, if n is

large enough,

P
(

kn(t
(p)
n ) 6= k(t(p))

)

≤ 2P
(

‖ f̂n − f‖∞ > εn

)

+2P
(

|t
(p)
n − t(p)| > ε′n

)

+Cr−d
n exp

(

−t(p) ωd

4d+1
nrd

n

)

.

In comparison with the result in Biau et al. (2007) for a fixed threshold, the

above concentration inequality does not require any assumption on the gradient

of f̂n. As a consequence, when f̂n is a nonparametric kernel estimate for instance,

the conditions imposed on the bandwidth are less restrictive.

Now consider the particular case where f̂n is defined by (2.3) and t
(p)
n is defined

by (2.2). Letting (vn)n be a sequence such that vn = o(
√

nhd
n/ logn), and choosing

the sequences (rn)n, (ε′n)n and (εn)n in Theorem 3.1 so that εn = ε′n = 1/vn and

vn rn → ∞, we deduce the following from Theorem 3.1, Theorem 2.1 and (2.4).
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Corollary 3.2. Suppose that f satisfies Assumption 1. Let f̂n be the kernel density

estimate (2.3) satisfying Assumptions 2a and 3, and let t
(p)
n be the estimate of t(p)

defined by (2.2). Then, for almost all p ∈ (0;1), we have almost surely

kn(t
(p)
n ) = k(t(p)),

provided n is large enough.

4 Proof of Theorem 2.1: convergence of t
(p)
n

4.1 Auxiliary results

We shall assume throughout this subsection that Assumptions 1, 2a and 3 hold.

First note that under Assumption 1, H is a bijection from (0;sup
Rd f ) to (0;1).

Indeed, Assumption 1-(iii) implies that H is a continuous function. Moreover,

under Assumption 1-(i), H is increasing: for suppose it were not, then for some

t ≥ 0 and some ε> 0,

0 = H(t + ε)−H(t) =
∫

{t< f≤t+ε}
f dλ,

which is impossible, because λ({t < f < t + ε}) > 0. Then we denote by G the

inverse of H restricted to (0;sup
Rd f ).

Lemma 4.1. The function G is almost everywhere differentiable.

Proof. As stated above, H is increasing. Hence, by the Lebesgue derivation The-

orem, for almost all t, H is differentiable with derivative H ′(t) > 0. Thus, G is

almost everywhere differentiable.

The Levy metric dL between any real-valued functions ϕ1,ϕ2 on R is defined

by

dL (ϕ1,ϕ2) = inf
{

θ > 0 : ∀x ∈ R,ϕ1(x− θ)− θ ≤ ϕ2(x) ≤ ϕ1(x+ θ)+ θ
}

,

(see, e.g., Billingsley, 1995, 14.5). Recall that convergence in distribution is

equivalent to convergence of the underlying distribution functions for the metric

dL .
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Lemma 4.2. Let x0 be a real number, and let ϕ1 be an increasing function with

a derivative at point x0. There exists C > 0 such that, for any increasing function

ϕ2 with dL (ϕ1,ϕ2) ≤ 1,

|ϕ1(x0)−ϕ2(x0)| ≤CdL (ϕ1,ϕ2).

Proof. Let θ be any positive number such that, for all x ∈ R,

ϕ1(x− θ)− θ ≤ ϕ2(x) ≤ ϕ1(x+ θ)+ θ. (4.1)

Since ϕ1 is differentiable at x0,

ϕ1(x0 ± θ) = ϕ1(x0)± θϕ
′
1(x0)+ θψ±(θ) (4.2)

where each function ψ± satisfies ψ±(θ) → 0 when θ→ 0+. Using (4.1) and (4.2),

we obtain

−θ(ϕ′
1(x0)+1)+ θψ−(θ) ≤ ϕ2(x0)−ϕ1(x0) ≤ θ(ϕ′

1(x0)+1)+ θψ+(θ).

Taking the infimum over θ satisfying (4.1) gives the announced result with any C

such that, for all δ ≤ 1,
∣

∣ϕ′
1(x0)+1

∣

∣+max
(

|ψ−(δ)|, |ψ+(δ)|
)

≤C.

Let L ℓ(t) denote the lower t-level set of the unknown density f , i.e., L ℓ(t) =
{x ∈ R

d : f (x) ≤ t}. Moreover, we set

Vn = sup
t≥0

∣

∣

∣
µn

(

L
ℓ(t)
)

−µ
(

L
ℓ(t)
)∣

∣

∣
, (4.3)

where µn = 1
n ∑

n
i=1 δXi

is the empirical measure indexed by the sample, δx denoting

the Dirac measure at point x. The next lemma borrows elements from the Vapnik-

Chervonenkis theory; we refer the reader to Devroye et al. (1996) for materials on

the subject.

Lemma 4.3. There exists a constant C such that, for all η > 0, we have

P(Vn ≥ η) ≤Cn2 exp
(

−nη2/32
)

.

Proof. Let A be the collection of lower level sets, namely

A = {L ℓ(t), t ≥ 0}.

Observe that the Vapnik-Chervonenkis dimension of A is 2. Then, by the Vapnik-

Chervonenkis inequality (see, e.g., Devroye et al., 1996, Theorem 12.5), we obtain

the stated result.
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4.2 Proof of Theorem 2.1

We first proceed to bound dL (H,Hn). We have Hn(t) = µn

(

L ℓ
n (t)

)

, and H(t) =

µ
(

L ℓ(t)
)

where L ℓ
n (t) = {x ∈ R

d : f̂n(x) ≤ t} and L ℓ(t) = {x ∈ R
d : f (x) ≤ t}.

The triangular inequality gives

L
ℓ
(

t −‖ f̂n − f‖∞

)

⊂ L
ℓ

n (t) ⊂ L
ℓ
(

t +‖ f̂n − f‖∞

)

,

which, applying µn, yields

µn

(

L
ℓ
(

t −‖ f̂n − f‖∞

)

)

≤ Hn(t) ≤ µn

(

L
ℓ
(

t +‖ f̂n − f‖∞

)

)

.

Moreover, by definition of Vn in (4.3), we have

H(s)−Vn ≤ µn

(

L
ℓ(s)
)

≤ H(s)+Vn,

for all real number s. The two last inequalities give

H(t −‖ f̂n − f‖∞)−Vn ≤ Hn(t) ≤ H(t +‖ f̂n − f‖∞)+Vn.

Using the fact that H is non-decreasing, we obtain

dL (H,Hn) ≤ max
(

‖ f̂n − f‖∞,Vn

)

. (4.4)

By Lemma 4.1, G is almost everywhere differentiable. Let us fix p ∈ (0;1)
such that G is differentiable at 1− p, and observe that G(1− p) = t(p). Denote by

Gn the pseudo-inverse of Hn, i.e.

Gn(s) = inf{t ≥ 0 : Hn(t) ≥ s},

and remark that Gn(1 − p) = t
(p)
n . Moreover, we always have dL (H,Hn) ≤ 1

because 0 ≤ H(t) ≤ 1 and 0 ≤ Hn(t) ≤ 1 for all t ∈ R. Hence, since dL (H,Hn) =
dL (G,Gn), we obtain from Lemma 4.2 that for some constant C,

∣

∣

∣
t
(p)
n − t(p)

∣

∣

∣
= |Gn(1− p)−G(1− p)| ≤CdL (H,Hn) .

Theorem 2.1 is now a straightforward consequence of (4.4) and Lemma 4.3.
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5 Proof of Theorem 2.3: convergence of Ln(t
(p)
n )

5.1 Auxiliary results

We shall assume throughout this subsection that Assumptions 1, 2b and 3 hold.

Lemma 5.1. For almost all p ∈ (0;1), we have

(i) (logn)×λ
(

Ln(t
(p))∆L (t(p))

)

P
−→ 0 and

(ii) (logn)×λ
(

Ln(t
(p)
n )∆L (t(p))

)

P
−→ 0.

Proof. We only prove (ii). Set εn = logn/
√

nhd
n , which vanishes under Assump-

tion 2b. Moreover, let N1, N2 be defined as

N
c

1 =

{

p ∈ (0;1) : lim
ε→0

1

ε
λ
({

t(p)− ε≤ f ≤ t(p) + ε
})

exists

}

;

N
c

2 =

{

p ∈ (0;1) :
1

εn
|t

(p)
n − t(p)|

a.s.
−→ 0

}

.

Both N1 and N2 have a null Lebesgue measure: the first property is a conse-

quence of the Lebesgue derivation Theorem and the fact that H is a bijection from

(0;sup
Rd f ) onto (0;1). The second one is a direct consequence of Theorem 2.1.

Hence, one only needs to prove the lemma for all p ∈ N c
1 ∩N c

2 . We now fix

p in this set, and we denote by Ωn the event

Ωn = {‖ f̂n − f‖∞ ≤ εn}∩{|t
(p)
n − t(p)| ≤ εn}.

Since P(Ωn)→ 1 by (2.4), it suffices to show that the stated convergence holds on

the event Ωn. Simple calculations yields

λ
(

Ln(t
(p)
n )∆L (t(p))

)

= λ
({

f̂n ≥ t
(p)
n ; f < t(p)

})

+λ
({

f̂n < t
(p)
n ; f ≥ t(p)

})

.
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But, on the eventΩn, we have f̂n +εn ≥ f ≥ f̂n−εn and t
(p)
n −εn ≤ t(p) ≤ t

(p)
n +εn.

Consequently, if n is large enough,

λ
(

Ln(t
(p)
n )∆L (t(p))

)

≤ λ
({

t(p)−2εn ≤ f < t(p)
})

+λ
({

t(p) ≤ f ≤ t(p) +2εn

})

= λ
({

t(p)−2εn ≤ f ≤ t(p) +2εn

})

≤Cεn,

for some constant C, because p ∈ N c
1 and (εn)n vanishes. The last inequality

proves the lemma, since by Assumption 2b, εn logn → 0.

In the sequel, µ̃n denotes the smoothed empirical measure, which is the ran-

dom measure with density f̂n, defined for all Borel set A ⊂ R
d by

µ̃n(A) =
∫

A
f̂ndλ.

Lemma 5.2. For almost all p ∈ (0;1),

(i)
√

nhd
n

{

µ̃n(Ln(t
(p)))−µ(Ln(t

(p)))
}

P
−→ 0 and

(ii)
√

nhd
n

{

µ̃n(Ln(t
(p)
n ))−µ(Ln(t

(p)
n ))

}

P
−→ 0.

Proof. We only prove (ii). Fix p ∈ (0;1) such that the result in Lemma 5.1 holds.

Observe that
∣

∣

∣
µ̃n(Ln(t

(p)
n ))−µ(Ln(t

(p)
n ))

∣

∣

∣

≤
∫

Ln(t
(p)
n )∆L (t(p))

| f̂n − f |dλ+

∣

∣

∣

∣

∫

L (t(p))
( f̂n − f )dλ

∣

∣

∣

∣

≤ λ
(

Ln(t
(p)
n )∆L (t(p))

)

‖ f̂n − f‖∞ +

∣

∣

∣

∣

∫

L (t(p))
( f̂n − f )dλ

∣

∣

∣

∣

. (5.1)

Recall that K is a radial function with compact support. Since nhd+4
n → 0 and

L (t(p)) is compact for all p ∈ (0;1), it is a classical exercise to prove that for all

p ∈ (0;1),
√

nhd
n

∫

L (t(p))
( f̂n − f )dλ

P
−→ 0. (5.2)
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(see, e.g., Cadre, 2006, Lemma 4.2). Moreover, by (2.4) and Lemma 5.1,

√

nhd
n λ
(

Ln(t
(p)
n )∆L (t(p))

)

‖ f̂n − f‖∞
P

−→ 0. (5.3)

The inequalities (5.1), (5.2) and (5.3) prove the assertion of the lemma.

Lemma 5.3. For almost all p ∈ (0;1),
√

nhd
n

{

µ
(

Ln(t
(p)
n )
)

−µ
(

L (t(p))
)}

P
−→ 0.

Proof. Let εn = logn/
√

nhd
n and N be the set defined by

N
c =

{

p ∈ (0;1) :
1

εn
|t

(p)
n − t(p)|

a.s.
−→ 0

}

.

By Corollary 2.2, N has a null Lebesgue measure. If p∈N c, then almost surely,

we have t(p)− εn ≤ t
(p)
n ≤ t(p) + εn for large enough n. Hence,

Ln(t
(p) + εn) ⊂ Ln(t

(p)
n ) ⊂ Ln(t

(p)− εn).

Consequently, one only needs to prove that for almost all p ∈ N c, the two results

above hold:
√

nhd
n

{

µ
(

Ln(t
(p)± εn)

)

−µ
(

L (t(p))
)}

P
−→ 0. (5.4)

For the sake of simplicity, we only prove the “+” part of (5.4).

One can follow the arguments of the proofs of Propositions 3.1 and 3.2 in

Cadre (2006), to obtain that for almost all p ∈ N c, there exists J = J(p) with

√

nhd
n µ
(

Ln(t
(p) + εn)∩Vn

)

P
−→ J and

√

nhd
n µ
(

Ln(t
(p) + εn)

c ∩ V̄n

)

P
−→ J,

where we set

Vn =
{

t(p)− εn ≤ f < t(p)
}

and V̄n =
{

t(p) ≤ f < t(p) +3εn

}

.

Thus, for almost all p ∈ N c

√

nhd
n

{

µ
(

Ln(t
(p) + εn)∩Vn

)

−µ
(

Ln(t
(p) + εn)

c ∩ V̄n

)}

P
−→ 0. (5.5)
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Now let p ∈N c satisfying the above result, and set Ωn = {‖ f̂n− f‖∞ ≤ 2εn}. By

(2.4), P(Ωn) → 1 hence one only needs to prove that the result holds on the event

Ωn. But, on Ωn,

µ
(

Ln(t
(p) + εn)

)

−µ
(

L (t(p))
)

= µ
({

f̂n ≥ t(p) + εn; f < t(p)
})

−µ
({

f̂n < t(p) + εn; f ≥ t(p)
})

= µ
(

Ln(t
(p) + εn)∩Vn

)

−µ
(

Ln(t
(p) + εn)

c ∩ V̄n

)

.

Consequently, by (5.5), we have on Ωn

√

nhd
n

{

µ
(

Ln(t
(p) + εn)

)

−µ
(

L (t(p))
)}

P
−→ 0.

This proves the “+” part of (5.4). The “−” part is obtained with similar arguments.

5.2 Proof of Theorem 2.3

Let t0 ∈ T c
0 . Since f is of class C2, there exists an open set I(t0) containing t0

such that

inf
{ f∈I(t0)}

‖∇ f‖ > 0.

Thus, by Theorem 2.1 in Cadre (2006), we have, for almost all t ∈ I(t0),

√

nhd
n λ(Ln(t)∆L (t))

P
−→

√

2

π
‖K‖2 t

∫

{ f =t}

1

‖∇ f‖
dH .

Recalling now that the Lebesgue measure of T0 is 0, and that H is a bijection

from (0;sup
Rd f ) onto (0;1), it follows that the above result remains true for al-

most all p ∈ (0;1), with t(p) instead of t. As a consequence, one only needs to

prove that for almost all p ∈ (0;1),
√

nhd
n Dn(p) → 0 in probability, where

Dn(p) = λ
(

Ln(t
(p)
n )∆L (t(p))

)

−λ
(

Ln(t
(p))∆L (t(p))

)

.

After some calculations, Dn(p) may be expressed as

Dn(p) =
∫

Rd
1{t

(p)
n ≤ f̂n < t(p)}gdλ−

∫

Rd
1{t(p) ≤ f̂n < t

(p)
n }gdλ,
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where g = 1−21{ f ≥ t(p)}. For simplicity, we assume that 0 < t
(p)
n ≤ t(p). Recall

that µ̃n is the random measure with density f̂n. Thus,

Dn(p) ≤ λ
({

t
(p)
n ≤ f̂n < t(p)

})

≤
1

t
(p)
n

µ̃n

({

t
(p)
n ≤ f̂n < t(p)

})

.

The factor 1/t
(p)
n in the right-hand side of the last inequality might be asymptot-

ically bounded by some constant C, using Corollary 2.2. Hence, for all n large

enough, and for almost all p ∈ (0;1),

Dn(p) ≤C

∣

∣

∣
µ̃n

(

Ln(t
(p)
n )
)

− µ̃n

(

Ln(t
(p))
)∣

∣

∣
. (5.6)

The right-hand term in (5.6) may be bounded from above by

∣

∣

∣
µ̃n

(

Ln(t
(p)
n )
)

− µ̃n

(

Ln(t
(p))
)∣

∣

∣
≤

∣

∣

∣
µ̃n

(

Ln(t
(p)
n )
)

−µ
(

Ln(t
(p)
n )
)∣

∣

∣

+
∣

∣

∣
µ
(

Ln(t
(p)
n )
)

−µ
(

L (t(p))
)∣

∣

∣

+
∣

∣

∣
µ
(

L (t(p))
)

− µ̃n

(

Ln(t
(p))
)∣

∣

∣
.

By Lemma 5.2 and Lemma 5.3, we obtain, for almost all p ∈ (0;1),

√

nhd
n

{

µ̃n

(

Ln(t
(p)
n )
)

− µ̃n

(

Ln(t
(p))
)}

P
−→ 0,

which, according to (5.6), gives the stated result.

6 Proof of Theorem 3.1: convergence of kn(t
(p)
n )

6.1 Preliminaries

We assume in the whole section that Assumption 1 holds. Since H is a bijection

from (0;sup
Rd f ) onto (0;1) and since the Lebesgue measure of T0 is 0, one only

needs to prove Theorem 3.1 for each probability p ∈ (0;1) such that t(p) /∈ T0.

Now fix such a probability p. Because f is of class C2, there exists a closed

interval I ⊂ (0;+∞) such that t(p) is in the interior of I, and inf{ f∈I} ‖∇ f‖ > 0.

For ease of notation, we now set

k
(p)
n = kn(t

(p)
n ), k(p) = k(t(p)), Jn = Jn(t

(p)
n ), and Gn = Gn(t

(p)
n ).
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In what follows, B(x,r) stands for the Euclidean closed ball centered at x ∈ R
d

with radius r.

Let Pn be a finite covering of L (t(p) + εn + ε′n) by closed balls B(x,rn/4)
with centers at x ∈ L (t(p) + εn + ε′n), constructed in such a way that

Card(Pn) ≤C1r−d
n , (6.1)

for some positive constant C1. Let J′n be the subset of Jn defined by

J′n = { j ∈ Jn : f (X j) ≥ t(p) + εn + ε′n}.

Define the event Γn on which every ball of the covering Pn contains at least one

point X j with j ∈ J′n, i.e.,

Γn =
{

∀A ∈ Pn, ∃ j ∈ J′n withX j ∈ A
}

.

Finally, we set

Γ ′
n = Γn ∩

{

‖ f̂n − f‖∞ ≤ εn

}

∩
{

|t
(p)
n − t(p)| ≤ ε′n

}

.

In the sequel, the statement “n is large enough” means that n satisfies the three

following conditions:

(i) (rn/4)2 +
(

4(εn + ε′n)/rn

)2

< min(α2,β2), where α and β are given by

Proposition B.3 and Proposition B.4 respectively,

(ii)
[

t(p)− εn − ε
′
n; t(p) + εn + ε′n

]

⊂ I and,

(iii) rn < Dmin.

In condition (iii) above, Dmin denotes the smallest distance between two different

connected components of L (min I). By Lemma B.1, each level set L (t) has

exactly k(p) connected components, provided t ∈ I. Hence,

Dmin = min
1≤ℓ<ℓ′≤k(p)

dist
(

Cℓ(min I),Cℓ′(min I)
)

,

where for all t, the Cℓ(t)’s denote the connected components of L (t).

Lemma 6.1. Assume that n is large enough. Then, on Γ ′
n, k

(p)
n = k(p).
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Proof. In the proof, a graph is denoted as (set of vertices, set of edges).
On V ′

n = {X j : j ∈ J′n}, the graph Gn = (Vn,En) induces the subgraph G ′
n =

(V ′
n ,E ′

n). We first proceed to prove that G ′
n has exactly k(p) connected components

on Γ ′
n. To this aim, observe first that

J′n ⊂ { j ≤ n : f (X j) ≥ t(p) + εn + ε′n}, (6.2)

by definition of J′n, provided ‖ f̂n − f‖∞ ≤ εn and |t
(p)
n − t(p)| ≤ ε′n. Conversely, if

j ≤ n is such that f (X j) ≥ t(p) + εn + ε′n and if |t
(p)
n − t(p)| ≤ ε′n, then

f̂n(X j) ≥ f (X j)−‖ f̂n − f‖∞ ≥ f (X j)− εn ≥ t(p) + ε′n ≥ t
(p)
n .

Hence, if |t
(p)
n − t(p)| ≤ ε′n

J′n ⊃ { j ≤ n : f (X j) ≥ t(p) + εn + ε′n}. (6.3)

This shows that the two sets in (6.2) and (6.3) are in fact equal as soon as ‖ f̂n −

f‖∞ ≤ εn and |t
(p)
n − t(p)| ≤ ε′n, i.e.,

J′n = { j ≤ n : f (X j) ≥ t(p) + εn + ε′n}. (6.4)

In particular, on Γ ′
n, we have

V
′

n = Vn ∩L (t(p) + εn + ε′n). (6.5)

We are now ready to prove that k′n = k(p). Since n is large enough, L (t(p) +
εn + ε′n) has exactly k(p) connected components by Lemma B.1. Hence, one only

needs to prove that any pair of vertices Xi and X j of G ′
n is linked by an edge of E ′

n

if and only if both vertices lie in the same connected components of L (t(p) +εn +
ε′n). First, if Xi and X j belong to different connected components of L (t(p) +εn +
ε′n), then necessarily, ‖Xi −X j‖ ≥ Dmin. Since n is large enough, we have rn <
Dmin, and so no edge of G ′

n connects Xi to X j. Second, if Xi and X j belong to the

same connected component of L (t(p) + εn + ε′n), then on Γ ′
n, they are contained

in some balls of Pn. If they happen to lie in the same ball, then ‖Xi −X j‖ ≤ rn/2

and so they are connected by an edge in G ′
n. Otherwise, there exists a path of edges

in G ′
n connecting Xi to X j, and so they belong to the same connected component

of G ′
n. This follows from the fact that, whenever n is large enough, the union of

the balls of Pn has the same topology as L (t(p) + εn + ε′n); in particular, their
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number of connected components are equal. As a consequence, since on Γn, each

ball of Pn contains at least one vertex of G ′
n, it follows that G ′

n has exactly k(p)

connected components, i.e.,

k′n = k(p). (6.6)

And, if we decompose G ′
n into its connected components

G
′
n = (V ′

n,1,E
′
n,1)∪·· ·∪ (V ′

n,k(p),E
′
n,k(p)),

we have also obtained that

V
′

n,ℓ = V
′

n ∩Cℓ(min I), ℓ = 1, . . . ,k(p). (6.7)

Now let

V
′′

n = Vn \V
′

n .

A moment’s thought reveals that

V
′′

n ⊂ L (t(p)− εn − ε
′
n)\L (t(p) + εn + ε′n). (6.8)

For all vertices X j in V ′′
n , we have B(X j,rn/4)∩L (t(p) +εn +ε′n) 6= /0 by Proposi-

tion B.4, so that B(X j,rn/4) intersects some ball of the covering Pn. This proves

that any vertex of V ′′
n is connected by an edge of Gn to at least one vertex in V ′

n .

Consequently, k
(p)
n is smaller than the number of connected components of G ′

n,

which is equal to k(p) by (6.6). But since n is large enough, so that rn < Dmin,

each vertex in V ′′
n cannot be connected simultaneously to different components of

G ′
n by (6.7) and (6.8). Therefore k

(p)
n ≥ k(p) and so k

(p)
n = k(p).

6.2 Proof of Theorem 3.1

By Lemma 6.1, provided n is large enough,

Γ ′
n ⊂

{

k
(p)
n = k(p)

}

.

We assume in this section that n is large enough, so that the set of assumptions on

n of the preliminaries holds. If we set

Γ ′′
n =

{

‖ f̂n − f‖∞ ≤ εn

}

∩
{

|t
(p)
n − t(p)| ≤ ε′n

}

,

we then have

P
(

k
(p)
n 6= k(p)

)

≤ P(Γ ′c
n ) ≤ P(Γ c

n )+P
(

Γ ′′c
n

)

. (6.9)
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We now proceed to bound P(Γ c
n ). First observe that

P(Γ c
n ) ≤ P

(

Γ ′′
n ; ∃A ∈ Pn : ∑

j∈J′n

1A(X j) = 0

)

+P
(

Γ ′′c
n

)

≤ Card(Pn) sup
A∈Pn

P
(

Γ ′′
n ; ∀i ∈ J′n : Xi ∈ Ac

)

+P
(

Γ ′′c
n

)

. (6.10)

Denote by J̄n the set J̄n = { j ≤ n : f (X j)≥ t(p) +εn +ε′n}, and recall that by (6.4),

J′n and J̄n coincide on Γ ′′
n . Then, for all A ∈ Pn,

P
(

Γ ′′
n ; ∀i ∈ J′n : Xi ∈ Ac

)

≤ P
(

∀i ∈ J̄n,Xi ∈ Ac
)

=
(

1−µ
(

A∩L (t(p) + εn + ε′n)
))n

. (6.11)

By Proposition B.3, for any closed ball A centered at x in L (t(p)) with radius

rn/4, we have

µ
(

A∩L (t(p) + εn + ε′n)
)

≥ t(p)λ
(

A∩L (t(p) + εn + ε′n)
)

≥ t(p) ωd

4d+1
rd

n . (6.12)

With (6.1), (6.10), (6.11) and (6.12), we deduce that

P(Γ c
n ) ≤C1r−d

n

(

1− t(p) ωd

4d+1
rd

n

)n

+P(Γ ′′c
n ).

According to (6.9) and the inequality 1−u ≤ exp(−u) for all u ∈ R, we obtain

P

(

k
(p)
n 6= k(p)

)

≤C1r−d
n exp

(

−t(p) ωd

4d+1
nrd

n

)

+2P(Γ ′′c
n ).

This concludes the proof.

A Auxiliary results on f and H

In this Appendix, we only presume that Assumption 1-(i) holds. Recall that X is

the subset of R
d composed of the critical points of f , i.e.,

X = {∇ f = 0}.

The following lemma characterizes the set T0.
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Lemma A.1. We have f (X )\{0;sup
Rd f} = T0.

Proof. Let x ∈ X . If f (x) 6= 0 or f (x) 6= sup
Rd f , then obviously f (x) ∈ T0 and

hence, f (X ) \ {0;sup
Rd f} ⊂ T0. Conversely, T0 ⊂ f (X ) by continuity of ∇ f

and because the set { f = t} is compact whenever t 6= 0.

The next proposition describes the absolutely continuous part of the random

variable f (X).

Proposition A.2. Let I be a compact interval of R
⋆
+ such that I ∩T0 = /0. Then,

the random variable f (X) has a density g on I, which is given by

g(t) = t

∫

{ f =t}

1

‖∇ f‖
dH , t ∈ I.

Proof. Since { f ∈ I} is compact and { f ∈ I}∩{∇ f = 0} = /0, we have

inf
{ f∈I}

‖∇ f‖ > 0.

Now, let J be any interval included in I. Observe that f is a locally Lipschitz

function and that 1{ f ∈ J} is integrable. According to Theorem 2, Chapter 3 in

Evans and Gariepy (1992),

P( f (X) ∈ J) =
∫

{ f∈J}
f dλ=

∫

J

(

∫

{ f =s}

f

‖∇ f‖
dH

)

ds,

hence the lemma.

B Auxiliary results on L (t)

In this Appendix, we only presume that Assumption 1-(i) holds. We denote by I a

closed and non-empty interval such that

inf
{ f∈I}

‖∇ f‖ > 0.

The following lemma, stated without proof, is a consequence of Theorem 3.1

in Milnor (1963) p.12 and Theorem 5.2.1 in Jost (1995) p.176; see also Lemma

A.1 in Pelletier and Pudlo (2008). Recall that for all t ≥ 0, L (t) = C1(t)∪ ·· · ∪
Ck(t)(t), where the Cℓ(t)’s denote the connected components of L (t).
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Lemma B.1. There exists a one-parameter group of diffeomorphisms (ϕu)u∈R

such that for all s, t in I, ϕt−s is a diffeomorphism from L (s) onto L (t). Conse-

quently, for all s, t in I,

(i) L (s) and L (t) have the same number of connected components;

(ii) Cℓ(t) ⊂ Cℓ(s) whenever s < t and 1 ≤ ℓ ≤ k(t);

(iii) Cℓ(t) = ϕt−s(Cℓ(s)) whenever 1 ≤ ℓ ≤ k(t).

Lemma B.2. Let t ∈ I, and fix x ∈ L (t).

(i) If x is in the interior of L (t), then

lim
(δ,r)→(0,0)

r−dλ(B(x,r)∩L (t + rδ)) = ωd.

(ii) If x is on the boundary of L (t), then

lim
(δ,r)→(0,0)

r−dλ(B(x,r)∩L (t + rδ)) =
ωd

2
.

Proof. (i) If x is in the interior of L (t), then x is in the interior of L (t + δ0) for

some δ0. Thus, for some r0 > 0, B(x,r0)⊂L (t +δ0). We can assume that r0 < 1.

Then, if δ < δ0 and r < r0,

B(x,r) ⊂ B(x,r0) ⊂ L (t + δ0) ⊂ L (t + rδ).

Hence, for such a pair (r,δ), B(x,r)∩L (t + rδ) = B(x,r), which gives the result.

(ii) Let x be an element of the boundary of L (t), and denote by H1/r the homo-

thety with center x and similitude ratio 1/r. For r,δ > 0, we have

1

rd
λ(B(x,r)∩L (t + rδ)) = λ

(

Ar,δ

)

(B.1)

where Ar,δ = H1/r

(

B(x,r)∩L (t + rδ)
)

. We claim that as (r,δ) → (0,0), the

indicator function of the set Ar,δ converges toward the indicator function of the set

A0,0 =
{

ξ ∈ R
d : ‖ξ− x‖ ≤ 1,∇ f (x) · (ξ− x) > 0

}

.

Observe that H1/r

(

B(x,r)
)

= B(x,1), and fix ξ ∈B(x,1). Then, ξ is in H1/r

(

L (t +

rδ)
)

if and only if f
(

x + r(ξ− x)
)

≥ t + rδ. Moreover, f
(

x + r(ξ− x)
)

= t +
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r∇ f (x) · (ξ− x)+o(r) when r → 0. Recalling that ∇ f (x) 6= 0, this gives, for any

ξ ∈ R
d ,

lim
(δ,r)→(0,0)

1{ξ ∈ Ar,δ} = 1{ξ ∈ A0,0}.

But, λ(A0,0) =ωd/2, and the indicator functions of Aδ,r are bounded by the indica-

tor function of B(x,1). Therefore it follows that λ(Ar,δ) → ωd/2 as (r,δ) → (0,0)
by Lebesgue dominated convergence Theorem. Reporting this fact in equation

(B.1) leads to the assertion (ii) of the lemma.

Proposition B.3. Let t ∈ I. There exists α> 0 such that, if r2 + δ2 < α2, then, for

all x ∈ L (t),
λ(B(x,r)∩L (t + rδ)) ≥Crd,

where C is any positive constant such that C < ωd/2.

Proof. Let U =
{

(x,r,δ) : f (x)≥ t, r ≥ 0, δ ≥ 0
}

, and consider the map ψ : U →
R+ given by

ψ(x,δ,r) =











r−dλ(B(x,r)∩L (t + rδ)) if r > 0,

ωd if r = 0, f (x) > t,

ωd/2 if r = 0, f (x) = t.

By Lemma B.2, ψ is bounded from below by some constant C < ωd/2 on V ∩
U , where V is some open neighborhood of L (t)× (0,0). Since dist(L (t)×
(0,0),Rd+3 \V ) > 0, as a distance between two disjoint closed sets, one of them

being compact, the result is proved.

The proof of the next result is left to the reader, since it can be obtained by

adapting the proofs of Lemma B.2 and Proposition B.3.

Proposition B.4. There exists β > 0 such that, if r2 + δ2 < β2, then, for all (t,x)
such that t ∈ I and x ∈ L (t − rδ), the closed ball B(x,r/4) intersects L (t + rδ).
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