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Logarithmic decay of the energy for an
hyperbolic-parabolic coupled system

Ines Kamoun Fathallah*

Abstract

This paper is devoted to the study of a coupled system consisting in a wave
and heat equations coupled through transmission condition along a steady
interface. This system is a linearized model for fluid-structure interaction
introduced by Rauch, Zhang and Zuazua for a simple transmission condition
and by Zhang and Zuazua for a natural transmission condition.

Using an abstract Theorem of Burq and a new Carleman estimate shown
near the interface, we complete the results obtained by Zhang and Zuazua
and by Duyckaerts. We show, without any geometric restriction, a logarith-
mic decay result.

Keywords : Fluid-structure interaction; Wave-heat model; Stability; Log-
arithmic decay.

2000 Mathematics Subject Classification : 37L15; 35B37; 74F10; 93D20

1 Introduction and results

In this work, we are interested with a linearized model for fluid-structure inter-
action introduced by Zhang and Zuazua in [[4] and Duyckaerts in [[f. This model
consists of a wave and heat equations coupled through an interface with suitable
transmission conditions. Our purpose is to analyze the stability of this system and
so to determine the decay rate of energy of solution as t — oo.

Let 2 C R™ be a bounded domain with a smooth boundary I' = 9. Let ()
and 25 be two bounded open sets with smooth boundary such that ; C Q and
Oy = Q\Q;. We denote by v = 9 N 98y the interface, v CC Q, I'; = 9Q;\7,
j = 1,2, 0, and 9, the unit outward normal vectors of €2; and {2, respectively
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(O = =0, on 7).

([ Ou— Au=0 in (0, 00) x €y,
OP2v—NAv=0 in (0, 00) X s,
u= on (0,00) x I'y,
v = on (0,00) x I'y, (1)
u= 0w, Oyu= —0uv on (0,00) X 7,
u‘t:() = Uug € L2(Ql) in Ql,
U|t:0 =1 € HI(QQ), aﬂ)|t:0 =111 € Lz(Qg) in .

\

In this system, u may be viewed as the velocity of fluid; while v and O,v repre-
sent respectively the displacement and velocity of the structure. That’s why the
transmission condition u = 0yv is considered as the natural condition. For the
modelisation subject, we refer to [[I]] and [L4].

System ([) is introduced by Zhang and Zuazua [[4]. The same system was
considered by Rauch, Zhang and Zuazua in [[[I] but for simplified transmission
condition © = v on the interface instead of u = d;v. They prove, under a suitable
Geometric Control Condition (GCC) (see [I]), a polynomial decay result. Zhang
and Zuazua in [[[4] prove, without GCC, a logarithmic decay result. Duyckaerts in
@) improves these results.

For system ([l), Zhang and Zuazua in [I4], show the lack of uniform decay and
they prove, under GCC, a polynomial decay result. Without geometric conditions,
they analyze the difficulty to prove the logarithmic decay result. This difficulty is
mainly due to the lack of gain regularity of wave component v near the interface
v (see [[4], Remark 19) which means that the embedding of the domain D(A) of
dissipative operator in the energy space is not compact (see [[4], Theorem 1). In
[B], Duyckaerts improves the polynomial decay result under GCC and confirms the
same obstacle to show the logarithmic decay for solution of ([l) without GCC. In
this paper we are interested with this problem.

There is an extensive literature on the stabilization of PDEs and on the Loga-
rithmic decay of the energy ([@], [B] [[], [, [L0], [[F and the references cited therein)
and this paper use a part of the idea developed in [g].

Here we recall the mathematical frame work for this problem (see [[4]).

Define the energy space H and the operator A on H, of domain D(A) by

H = {U(] = (UO,’U(),’Ul) S Lz(Ql) X H%\2(QQ) X L2(92>}
when HY, () is defined as the space
HIlaz(Qg) = {’U() € Hl(Qg),’Uoh‘z = 0} ,

AU() = (AUQ,’Ul, A’Uo)
D(A) ={U € H, up € H' (Y1), Aug € L*(Qy),

V1 € HIlaz(Qg), A’Uo € L2(Q2), UQ|»Y = 'Ul|fy, 0nu0|y = —an’l}()|-y}.
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System ([l)) may thus be rewritten in the abstract form
oU = AU, U(t) = (u(t),v(t), dw(t)).
For any solution (u, v, d;v) of system ([, we have a natural energy

E(t)zE(u,v,@m)(t)z%( Je@Pdet | e+ | \W(t)ﬁdx).

By means of the classical energy method, we have

d 2
—E(t) = — dz.
E0 == [ Ivul iz

Therefore the energy of ([) is decreasing with respect to ¢, the dissipation coming
from the heat component u. Our main goal is to prove a logarithmic decay without
any geometric restrictions.

As Duyckaerts [[] did for the simplified model, the idea is, first, to use a known
result of Burq (see [[]) which links, for dissipative operators, logarithmic decay to
resolvent estimates with exponential loss; secondly to prove, following the work of
Bellassoued in [f], a new Carleman inequality near the interface .

The main results are given by Theorem [[.]] for resolvent and Theorem [[.9 for
decay.

Theorem 1.1 There exists C' > 0, such that for every pu € R with || large,
we have

[(A =)™ | gy < CeClHl, (2)

Theorem 1.2 There exists C' > 0, such that the energy of a smooth solution of (1)
decays at logarithmic speed

VED < — S Ullpea - 3)

log(t + 2)

Burq in ([f], Theorem 3) and Duyckaerts in ([ff], Section 7) show that to prove
Theorem [ it suffices to show Theorem [[]].

The strategy of the proof of Theorem [[.]] is the following. A new Carleman
estimate shown near the interface 7 implies an interpolation inequality given by
Theorem P.3. Theorem P.J implies Theorem P.T] which gives an estimate of the wave
component by the heat one and which is the key point of the proof of Theorem [[1].

The rest of this paper is organized as follows. In section 2, we show, from The-
orem R.1], Theorem and we explain how Theorem R.3 implies Theorem P.1. In
section 3, we begin by stating the new Carleman estimate and explain how this
estimate implies Theorem P.2. We give then the proof of this Carleman estimate.
Section 4 is devoted to the proof of important estimates stated in Theorem B.J in
the proof of Carleman estimate. Appendices A and B are devoted to prove some
technical results that will be used along the paper.
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2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem [[.1. We start by stating Theorem
R Then we will explain how this Theorem implies Theorem [[.]. Finally, we give
the proof of Theorem R.1l.

Let u be a real number such that |u| is large, and assume

F=(A—-iwU, U= (ug,vo,v1)€ D(A), F=(fo,90,01) € H (4)
The equation () yields

(A — ’LM)UO = f(] in Ql,
(A+p)vy = g1 +ipgo inQy, (5)
v = go+ipvy infly,

with the following boundary conditions

uo|r, =0, vo|r, =0
op(br)u=uo —ipvo = Goly, (6)
op(b2)u = Opug — Opvg = 0).

To proof Theorem [[.1], we begin by stating this result

Theorem 2.1 Let U = (ug,vg,v1) € D(A) satisfying equation (@) and (G). Then
there exists constants C' > 0, ¢; > 0 and po > 0 such that for any p > po we have
the following estimate

2 c 2 , 2 2 2
||U0||H1(Qz) < Ce?t (HfOHL?(Ql) + llgr + W90||L2(92) + HgOHHl(Qg) + HU0||H1(91)> :

(7)

Moreover, from the first equation of system (f), we have
/Q (=& +ip)ugtigds = HVUOHi?(Ql) +ip HUOHiz(Ql) - /&Luou_odo—.
1 Y
Since ugly = go + ipvy and dpug = —0,v, then
/Q 1(—A +ip)ullods = || Vo 72, + i luoll 2, — ip [y D voTodo + [y A voGodo. (8)
From the second equation of system (f]) and multiplying by (—iu), we obtain

i /Q (D + iYu@ods = —ip | Vool oy, + i 100l 2agey + i / DvoTiodo.  (9)
2 ol
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Adding (B) and ({), we obtain

/ (=2 + ip)ugtodr + z'u/ (A + p?)vgToda =
Q1

Qo
: 2 2 , 2 : 2 _
L ||u0||L2(Ql) + ||VU0||L2(91) U ||VU0||L2(92) + iy’ ||U0||L2(92) + / O vogodo.
gl
Taking the real part of this expression, we get

2 . —
||VU0||L2(91) < [I(A - ZIU)UOHLZ(Ql) ||u0||L2(Ql)+H(A + M2)U0HL2(QZ) ||UO||L2(QZ)+ Opvogodo| -

v
(10)
Recalling that Avy = g + iugo — p*v and using the trace lemma (Lemma 3.4 in
[@]), we obtain

[0l -3 ) < C (12 Ioollir oy + 91 + 190l 2(a) -
Combining with ([[Q), we obtain
2 .
HV“0HL2(91) < HfOHL?(Ql) ||“0HL2(91) + g1 + ZM90||L2(92) ||U0||L2(Qg)
(2 ol + 91 + 310l 20y ) 90l -

Then
¢

C
2 2 0 2
c 1 follz2(0,) + € llwollz2,) + " 191 + ingollz2(0,) + €llvollz2qy)

2
||VU0||L2(91) <

+ <M2 [voll g1 ey + lg1 + WQOHLZ(QQ)> ||90||H%(7) :
Now we need to use this result shown in Appendix A.

Lemma 2.1 Let O be a bounded open set of R™. Then there exists C' > 0 such that
forw and f satisfying (A —ip)u = f in O, u > 1, we have the following estimate

lullinoy < € (190l 20y + 1l - (11)
Using this Lemma, we obtain, for € small enough
2 2 , 2 2
||u0||H1(Ql) <C ||f0||L2(Ql) +Cellgr + Z,U90||L2(Qz) +e ||U0||L2(92)
+ <M2 [voll g1 ey + lg1 + WQOHLZ(QQ)> ||90||H%(7) :

Then there exists ¢3 >> ¢; such that

2 2 —e 2 —e , 2 c 2
HUOHHl(m) <C <||f0HL2(Ql) +ee” ||UO||H1(QQ) + Cee™ " |lg1 + W90||L2(92) + e Hg(]HHl(Qg)) :
(12)
Inserting in ([), we obtain, for € small enough

2 c 2 2 . 2
leolli @) < Ce (Ifoll3aqan) + ool + lor + im0l Faey ) - (13)
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Combining ([J) and ([J), we obtain

2 C 2 2 . 2
JuolBrsiary < O (WfollZaqny + NoolBrsgan) + lon + ibgolaay) - (14)

Recalling that v; = gg + ipvy and using ([[3), we obtain
2 c 2 2 , 2
lorl @ < Ce (Ioll3aqan) + ool + lor + ol fay ) - (15)

Combining ([J), ([4) and ([3), we obtain Theorem [[]]].

Proof of Theorem [2.7]

Estimate ([]) is consequence of two important results. The first is a known re-
sult shown by Lebeau and Robbiano in [[J] and the second one is given by Theorem
R.2 and proved in section 3.

Let 0 < e < e and V,,, j = 1,2, such that V., = {z € Qy, d(z,7) < ¢}.

Recalling that (A + p?)vg = g1 + iugo, then for all D > 0, there exists C' > 0 and
v €]0, 1] such that we have the following estimate (see [{])

1—-v . v
||U0||H1(92\V51) < CePt ||U0||H1(Qg) (Hgl + W90||L2(Qg) + ||U0||H1(v52)> (16)
Moreover we have the following result shown in section 3.

Theorem 2.2 There exists C' >0, ¢c; > 0, cg > 0, €3 > 0 and g > 0 such that for
any [ > jo, we have the following estimate

2 c 2 o 2 2
||UO||H1(V€2) < Cett [HfOHL?(Ql) + 91 +ipgoll 20,y + 190l 51 n) + w0l 21y

—c 2
+ Cem " |luoll 3 () - (17)

Combining ([[d) and (I]) we obtain

C C
2 2 o —c 2
||'U0||H1(Qz\V€2) < Cee® ||U0||H1(92) + . g1 + W90||L2(Qz) + ?‘3 - ||U0||H1(Qg)
. 2 9 2 2
Gt [l + o+ 1001y + Iy + ol ] 19)
Adding ([7) and ([[§), we obtain

2 2 . 2 —c 2
||UO||H1(92) < Cee* ||UO||H1(92) +Cellgr + Z,U90||L2(Qz) + Cee™" ||UO||H1(92)

c 2 . 2 2 2
O [ foll2aiany + 191 + 61903 0y + N0l ) + ol |-

We fixe € small enough and D < ¢y, then there exists py > 0 such that for any
[ > i, we obtain ([1).
O



3 Carleman estimate and Consequence

In this part, we show the new Carleman estimate and we prove Theorem P.2
which is consequence of this estimate.

3.1 State of Carleman estimate

In this subsection we state the Carleman estimate which is the starting point of
the proof of the main result. Let u = (ug, vg) satisfies the equation

_(A+u)u0:fl ian>
—(A + ,uz)’Uo = f2 il’ng, (19)
op(By)u = ug — ipvg = €1 on-,

op(Ba)u = Oyug — Opvg = €9 ON7y,

We will proceed like Bellassoued in [B], we will reduce the problem of transmission
as a particular case of a diagonal system define only on one side of the interface with
boundary conditions.

We define the Sobolev spaces with a parameter u, H; by

u(z,p) € H == (&, )&, p) € L, (&, p)* = €] + 1%,

u denoted the partial Fourier transform with respect to x.
For a differential operator

P(Ivau): Z aa,k(x)ukDa>

|a|+k<m

we note the associated symbol by

ple,&m) = Y o)t

|a|+k<m

The class of symbols of order m is defined by

S/Zn = {p(x,f,,u) S COO’ D?D?p(l’7gju)} S Ca76<§’u>m—|m}

and the class of tangential symbols of order m by
TSy = {p(a.&', 1) € O, |DIDLp(w. &' )| < Casl€' )™}

We denote by O™ (resp. 7TO™) the set of differentials operators P = op(p), p € Sy
(resp. TS).

We shall frequently use the symbol A = (¢, 1) = (|€/|* + p2)2.

We shall need to use the following Garding estimate: if p € 7 Sﬁ satisfies for Cy > 0,
p(x, &, 1) +pla, &' ) > CoA?, then

3C, >0, Fpo >0, Y > po,Yu € C(K), Re(P(x, D', p)u,u) > C |lop(A)ul|?, .
(20)




Let x = (2/,x,) € R"! x R. In the normal geodesic system given locally by
Qy={zeR" x, >0}, r, = dist(z,00) = dist(z,z'),
the Laplacian is written in the form
A = —Ay(z,D) = — (D2 + R(+x,,2',Dy)) .
The Laplacian on §2; can be identified locally to an operator in €2, gives by
A =—A(z,D)=— (D2 + R(—z,,2', D)) .
We denote the operator, with C* coefficients defined in Qy = {z,, > 0}, by
Az, D) = diag (Al(x, D), As(z, Dm))
and the tangential operator by
R(z, Dy = diag (R(—xn, o', Do), R(+ap, @, Dz,)) = diag (31 (z, Dy), Ro(z, Dm,)>.

The principal symbol of the differential operator A(z, D) satisfies
a(z,&) = & + r(x,¢), where r(z,¢) = diag(rl(x,f’),rg(x,f’)) is the principal
symbol of R(z, D,/) and the quadratic form r;(z,¢’), j = 1, 2, satisfies

30 >0, Y(x,€), r,¢)>ClEf, j=1.2
We denote P(x, D) the matrix operator with C*° coefficients defined in
QQ = {In > 0}, by

P(x, D) = diag(Py(x, D), Py(x, D)) = ( Aile, OD J—m Ao(x, g) 2 ) .

Let p(z) = diag(y1(x), p2(x)), with ¢;, j = 1,2, are C*° functions in Q;. For p
large enough, we define the operator

A(z,D,p) = e"? Az, D)e™"? := op(a)

where a € Sﬁ is the principal symbol given by

§£)2+r<x,§'+iu%>.

a(z,§, ) = (£n + ip
Let ] ]
op(Ga,j) = §(Aj + A7), op(qrj) = 2_1'(Aj - 47, =12

its real and imaginary part. Then we have

Aj = op(ga,5) + iop(qu,;),

(21)
~ ~ 0w ; .
q2,j = £r2L + q2,j(x7 5,7 /J’)7 QI,j = Quﬁgn + 2Mq17j(x7 5,7 ,LL), J= 17 27
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where ¢ ; € 7S}, and ¢y ; € TS, are two tangential symbols given by

— Op; 90
q27j(x7£,7,u/) Tj($,£,> — (Mafi)Q _ MQTj(SL’, 6_423)’

~ Oy .
qu(I,f,,,U/) = Tj(xuglv 5;;3)7 J= 1727

with 7(z,&’,n) is the bilinear form associated to the quadratic form r(z,&’).
In the next, P(x, D, u) is the matrix operator with C'* coefficients defined in
Qg = {z, > 0} by

P(z, D, u) = diag(Py (s, D, ), Po(a, D 1)) = ( A ) Do) — i )
(23)
and u = (ug, vg) satisfies the equation
Pu=f in {z, >0},
op(b1)u = wo|z,—0 — 10|, —0 = €1 on {z, =0},
op(by)u = ( D, + i,u% Uo|e, =0 + (Dxn + i,u%) Vo|e,=0 = €2 on {x, =0},

(24)
where f = (fi1,f2), e = (e1,e2) and B = (op(b1),op(by)). We note p;(z,&, p),
j = 1,2, the associated symbol of Pj(z, D, p).
We suppose that ¢ satisfies

[ p1(z) = () on{z, = 0}
i1 _
9, >0 on{z, =0} (25)

e ? D2 ?
— 1 =
\ <&En) i >1 on{z, =0}
and the following condition of hypoellipticity of Hormander: 3C' > 0, Vo € K
V¢ € R™\{0},

1 1
<Repj =0 et @Impj = 0) = {Repj, @Impj} > O, 1)?, (26)

where {f,g}(x,&) = > (%% - %g—gj) is the Poisson bracket of two functions

f(x, &) and g(x,€) and K is a compact in {)s.
We denote by

k
2 i 2 2 2
lull 2y = Nl ully, =D 2 D Nl o, lull; = [lop(A*)u]|”,
§=0
2 2 2 2 2 2 2
lulp = lulen=olly s [uly = lule,=oly, K €R and [ulj,, = |ul} + [Dy,ul".

We are now ready to state our result.



Theorem 3.1 Let ¢ satisfies (23) and ([28). Let w € C°(Qy) and x € CF(R™1)
such that x = 1 in the support of w. Then there exists constants C' > 0 and g > 0
such that for any p > po we have the following estimate

2 2 2
llwl?, + 12 [wf} + 2 | Dol

< O (1P, Dyl + lop(bo)wls + plop(ia)ul’) . (27)

Corollary 3.1 Let ¢ satisfies ([29) and (2G). Then there exists constants C' > 0
and po > 0 such that for any pu > o we have the following estimate

ez < © (e Pz, DRI + |e"op(Ba)hLE ) + plerop(Bo)hl?) . (28)

for any h € C° ().

Proof.
Let w = e#?h. Recalling that P(x, D, u)w = e*? P(x, D)e "?w and using (B7), we
obtain (B§).

3.2 Proof of Theorem 2.2
We denote = = (2/, z,,) a point in Q. Let xg = (0, —9), 6 > 0. We set

Y(x) = |z — 20)* — 62 and

/ J
o1 (z) = e V@) () = e AW@am) 3 50 and g <ac< 20.

The weight function ¢ = diag(p1,¢2) has to satisfy () and (B6). With these

. . D1 . .
choices, we have 1|, —0 = p2|s,—0 and g |zn=0 > 0. It remains to verify

Pp1)’ 2N >1 on{ 0} (29)
o0x,, o0x,
and the condition (B§). We begin by condition (Bf) and we compute for ¢; and p;
(the computation for ¢ and ps is made in the same way). Recalling that

{Reph ilmpl} (2,€) = IQ—IE [agpl(xaf - W‘Pi(x)) Dupr (7, € + W%(@)]

+ [Oepr (2, € — i) ()] 1 (2) [Oepa (2, § — ipph ()]

We replace o1 (z) by ¢1(z) = e @ =22) 3 > 0, we obtain, by noting & = — By (z)n

{Repl, ilmpl} (2,€)

= (—Bp)’ HRepl (z,m — ipy)), ilmpl (z,m + i/ﬂb’)} (z,n) — B ()01 (2,0 + ip)) [

10



and
4201 (2, + i) = 4|12 1 (2, 0 + [ m, 0

where py(x,7,1)) is the bilinear form associated to the quadratic form p;(x,n). We
have

1
(Repl =0 et o Imp; = 0) < pi(x,n+iu)’) =0,
L

e If =0, we have pi(x,&) = 0 which is impossible. Indeed, we have
p(x,€) > ClEf, V(z,€) € K x R*, K compact in Q.

o If 11 # 0, we have pi(x,n,¢') = 0.
Then ¢/ (2)d,p1(x,n + ipd")|> = 4p? [pr(2,4")[> > 0. On the other hand, we
have

1
{Rep1<x,n i) ot (. + wm} (e,m) < Cr(lnl? + w2 17)

where (' is a positive constant independent of ¢)'. Then for 5 > C, we satisfy
the condition (24).

Now let us verify (B9). We have, on {z,, = 0},

2 2
(2 (32 -

Then to satisfy (B9), it suffices to choose 3 = & where M > 0 such that &£ > C).
We now choose r; <1 <19 <0=1(0) <rh <rs<r;. We denote

wj:{,j(:EQ, Tj <¢(I) <7’;—} and Tmo :wgﬂQ2.

We set Rj = e P, R = e i, i =1,2,3.
Then R < R3 < Ry < Ry < R} < R;. We need also to introduce a cut-off function
X € C5°(R™) such that

0 if p<mr, p>ri

1 it per,rsl.
Let @ = (g, 09) = Xu = (X0, Xv0). Then we get the following system

(A —ip)ig = Xfo+ [A —ip, X]uo
(A +p®)0y = X(g91 +ipgo) + [A + 12, X]vo,
U1 = go + iuvo,

with the following boundary conditions

Uolr, = Tolr, = 0,
op(by)t = o — ipt9 = (X90)l|ss
OP(b2)?~L = ([am X]UO - [aTH )NC]UO)|’Y‘

11



From the Carleman estimate of Corollary B.]] , we have

plleal < O (e (2 — il + (2 + )il + e op(br)il? g + il op(ba)il?)

(30)
Using the fact [A —iu, x| is the first order operator supported in (w; Uwsz) Ny, we
have

N~ 2 2 :
1€ (A — ipn)iio|> < © (62uR1 ||f0||L2(Q1) + 21k ||u0||H1(Q1)) . (31)

Recalling that [A + u?, Y] is the first order operator supported in (w; Uws) Ny, we
show

~ 12 ] '
o724 22)00]* < € ( llgs + ingollzacay + ™ leollzer)) - (32)

From the trace formula and recalling that op(bs)u is an operator of order zero and
supported in {z, = 0} Nw;, we show

pleeop(ba)l® < Ce™ ™ |ulf gy < C (7 lugllfq,) + € oy, ) - (33)

Now we need to use this result shown in Appendix B

Lemma 3.1 There exists C > 0 such that for all s € R and u € C§°(S?), we have
lop(A*)e"eul| < Ce [lop(A®)u]|. (34)
Following this Lemma, we obtain
e op(b )il ) < Ceelgol? ) < O™ lgoll2nia - (33)
Combining (B0), (BI)), (B2), (BJ) and (BY), we obtain

/ 2 / 2 2 2
Cpe® ™ 1o 11 ) + Cre™ ™ ool ) < CE [ folliaa + ™™ Tuollin oy

. 2 2 2 c 2
+e™ [lgr + ipgoll 2, + €™ ol ) + € luollz o,y + €™ 9ol ay)-
Since R, < Ry. Then we have
2 c 2 : 2 2 2
ool (z,,y) < Ce [HfOHL?(Ql) + g1 +ingoll 720,y + 190151 00y + w0l g ayy

+ Ce ™ ||U0H§{1(92) : (36)

Since 7y is compact, then there exists a finite number of 7,,. Let V., C UT,,. Then
we obtain ([[7)
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3.3 Proof of Carleman estimate (Theorem B.1))

In the first step, we state the following estimates

Theorem 3.2 Let ¢ satisfies (29) and (28). Then there exists constants C' > 0 and
Lo such that for any p > o we have the following estimates

el < © (1P, Dyl + el ) (37)
and
pllully, + wluliy, < C (1P, D, wul® + p=" |op(br)ul; + plop(ba)ul®) ,  (38)
for any u € Cg°(y).
In the second step, we need to prove this Lemma

Lemma 3.2 There exists constants C' > 0 and pg > 0 such that for any p > po we
have the following estimate

1 3

2
[ on~tyul] + [Descpthdsal] + optaby + i,

< O (I1P(z, D, w)ull® + u~* |op(ba)ul; + plop(ba)ul”*) | (39)
for any u € C3°(Qy).

Proof.
We have
P(z,D,p) = D2 + R+ uC + pi*Cy,

where R € TO?, Cy = ¢i(x)D,, + Ty, with T} € TO! and Cy € TO°. Then we have

)

H(Din + R)op(/\_%)uH2

1

< (Jrona <

In

o
Since

OPW%)“HQ < Ol

u
2 || Drop(A -2 H < Cp||Dyyul®  and
|

op(ayul|” = 2 Lop(A)u. i) < € G lop(A)ul” + s [ul?).
Using the fact that ||u||fu ~ |lop(A)u® + || Dy, ul]*, we obtain

2 -1 2 -1 2 2
|02, + Byopa—4yul| < € (| Popa=yu + w i, ).

13



Following (B7), we have
|02, + mapiaiial < o (|[Popia by hPulf i) 40

We can write

Pop(A"2)u = op(A~2)Pu+ [P,op(A~2)]u
= op(A_%)Pu + [R, op(A_%)]u
+ plCy, op(A72)Ju + p?[Co, op(A~2)]u
= op(A"E)Pu+t) 4ty + t3. (41)

Let us estimate tq, t5 and t3. We have [R, op(A_%)] € TOz, then following (B7), we
have

2l < ¢ ]Jophdyal|” < € (lop(yul® + 1ul) < © (1Pull + lully,) - (42)

We have t3 = pu[Cr, op(A~2)|u = ple (@)D, , op(A~2)u + p[Ty, op(A~2)]u. Then
following (B7), we obtain

Is1* < C (™ | Dol + pe[fu]]*) < € HPU||2+M\U|T,O,H)- (43)

We have [Cy, op(A~2)] € TO™2, then following (B7), we obtain

2o op(A5)lu| < Cullull* < € (1Pul* + eluly,) (44)
From (), (E2), (E3) and (4), we have
|Pops—tyul|" < € (1Pul + nluf?y,)

Inserting this inequality in ({0), we obtain
|02, + Rops—ya|" < € (1Pul® + nlul?,,) (45)
Moreover, we have
H(D2 + R)op(A H = HD2 op(A H +HROp uH2+2Re(Dinop(A_é)u, Rop(A™2)u),
where (.,.) denoted the scalar product in L?. By integration by parts, we find

. s = - s

[SIE

+2Re <i(Dwnu, Rop(A~YYu)o + i(Dy,u, [op(A~%), Rlop(A~ )u)o)
+2Re ((RDwnop(A_%)u, D, op(A"3)u) + (D, op(A~)u, [D,,, R]op(A—%)u)) (46)

14



Since, we have

Nl
N[

Ju) = Y (D2op(A?)u, op(A%)u)+p*(op(A?)u, op(A

j<n—1

Jop(a2)u|” = (op(A)op(A})u, op(a Ju).

By integration by parts, we find

3. 12 1 1 9 112 9 112
lopadyu|| = = (Diop(AS)u, Diop(AS)u)+42 |jop(Adyul|” = k+p22 op(A2)u
j<n—1
(47)
Let xo € C5°(R™) such that yo = 1 in the support of u. We have

k=Y (xoDjop(A?)u, Djop(A2)u) + > ((1 = xo)Djop(A2)u, Djop(A

j<n—1 j<n—1

N

Recalling that you = u, we obtain

E= 37 (xoDsop(Ah)u, Diop(A)u)+ 37 ([(1=xo), Dyop(AS)u, Djop(A%)u) = K+,
j<n—1 j<n—1
(48)
Using the fact that [(1 — xo), Djop(A%)] € TO? and Djop(A%) e TO?, we show

k< Cllop(A)ul*. (49)

Using the fact that Zj,kgn—1 Xo0ajrDjvDyv > dxo ngn_l |Djv|2, 0 > 0, we obtain

K <O Y (xoauDjop(A2)u, Dyop(A2)u)
7,k<n—1
<C D7 (o auDjop(A2)Ju, Dyop(A2)u) + Y (azDsop(A?)u, Dyop(A?)u).
Jrksn—1 jk<n—1

Using the fact that [xo, ajijop(A%)] € TOz and Dyop(A2)u € TO3, we obtain

K< c( S™ (aDyop(A%)u, Diop(A)u) + ||op<A>u||2> S (0)

By integratin by parts and recalling that R = Zj k<n_1 kD Dy, we have

Jyu) = (Rop(A2)u,op(Az)u (51)

=

Z (ajijop(A%)u, Dyop(A

jk<n—1

N

+ " (D, a1 Djop(A2 )u, op(A

jk<n—1

Since [Dk,ajk]Djop(A%) € TO?, then

>~ ([Dx, aj] Dop(A%)u, op(A)u) < C [lop(A)ul]®.

7 k<n—1

15



Following (F1]), we obtain

> (ajeD;0p(A? )u, Dyop(A%)u) < C ((Rop(A%>u, op(A®)u) + ||0p(A)u||2> .
7,k<n—1 (52)
Since

(Rop(A%)u, op(A2)u) = (Rop(A~%)u, op(A2)u) + ([op(A™), Rlop(A%)u, op(A?)u)).
Using the fact that [op(A™'), R] op(A%) € TO3 and the Cauchy Schwartz inequality,

we obtain
(Rop(A2)u, op(A?)u) < — | Rop(A~2)u
Combining (A7), (£]), (£9), (B0), (b2) and (BJ), we obtain

Hop(Ag)qu <eC

2 C

op(Ad)u "1 Cllop(A)ul? (53)

3
0p5 H—i—

Rop(AH)u|" + € lop(A)ul*

For € small enough, we obtain

1

HRop(A—%)uHQzc(Hop(A%)u‘Q 2 | op(ad) H) (54)

Using the same computations, we show
1 1 1 2
(RD,, op(A"%)u, Dy, op(A~3)u) > C (HDmnop(AE)uH —u HD%uH?) . (55)

Combining (fd), (54) and (B3), we obtain

|22, + Rop(A~3)u|" + [Pyt Rop(A~" o] + [(Dr, lop(A~%), Rlop(a—#)u|

+ | (Dasop(A4)u, (D, Rlop(AH)u)| + g ull},  (56)

i)
Since

(D, Rop(A~ Yo || (D, lop(A~), Rlop(A~Hyulo| < € (1Du,ul? + Jul}) = C full,

> o[t b + [omopiab +

(57)
and
(D2, 0p(A™H)u, [Ds, Rlop(A~)u)| < Cpull},. (58)
From ([H), (BG), (B7), (B]) and (B7), we obtain
HDinop(A % u i ( %)U 2+ OP(A%) 2

< (IPG, D, pyull* + pluly,.) -
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Following (BY), we obtain (BY).
O
We are now ready to prove Theorem B.]].

Let xy € C§°(R™™!) such that y = 1 in the support of w and u = yop(A~2)w.
Then

1

Pu = OP(A_%)PQU + [P, Op(A_%)]w + P[x, op(A™2)]w
— op(A‘%)Pw + [P, Op(A—%)]w + D:%n X, Op(A_%)]w
+ Rx, op(A™%)]w + pc1 () Dy, [x. op(A™2)]w
+ uTy[x, op(A~2)]w + 2 Colx, op(A~2)]w
= Op(A_%)PuH— [P, op(A_%)]ijal +ag+ as +ag + as. (59)

Let us estimate aq, as, a3, as and as. Recalling that [X,op(A_%)] € TO 3 and
xw = w. Using the fact that [D,, ,T;] € TO* for all T, € TO*, we show

lal?<cC (HDinop(A_%)sz + HD%op(A—%mH2 + HOp(A—%>wH2) (60)

and

5 2 5 2
las|> < C (,f Dwnop(A_i)wH + 2 Op(A—a)wH ) (61)

We have R[x,op(A~2)] € TOz2, Ti[x,op(A~2)] € TO™ = and
Co[x,op(A™2)] € TO™2. Then we obtain

2
laall” + llaal* + las > < € ||op(a)eo| (62)

Using the same computations made in the proof of Lemma B.9 (cf ¢, t3 and t3 of

(A1), we show
[iP opaspu] < (H%(A%)w\f ! HD%wrF) . (63)
Following (B9), (B0), (B1)), (62) and (63), we obtain

1 2
1Pu))’ < C (u—l |Pwlf? + HOp(A5)wH + | Daw® 4 \\Dgnop(A—l)wH?) .

(64)
We have
op(b)u = op(by)xop(A~2)w = op(A~2)op(by )w + op(by)[x, op(A~2)]w.
Recalling that op(b;) € TO', we obtain
1 2 1 2
=t op(b)ulf = p" Jop(A)op(by)ul® < C (u‘l op(A2)op(by)w| + p~" jop(A2)w
(65)
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We have

op(bs)u = op(ba)xop(A~2)w = op(A~2)op(bs)w—+op(ba)[x, op(A~2)w+]op(be), op(A~2)]w.
Recalling that op(by) € D,, + 7O, we obtain

1 2 1 2 s 9
H |Op(b2)“‘2 <C (N OP(A_i)Op(bz)w‘ + ‘OP(A_E)UJ‘ +u ‘Dwnop(/\_ﬁ)w‘

(66)
Moreover, we have
plulio, = plulf + 1| Dyyul* = plop(A)ul® + | D, ul*.
We can write
_1 1 _1
op(A)u = op(A)xop(A~2)w = op(A2)w + op(A)[x, op(A~2)]w.
Then
2 1|2 1 |2 AL 1 1 |2
plop(A)ul” = p Op(/\z)w‘ — Cp|op(A Z)w‘ > p ‘Op( ?) w‘ — Cp |op(A2)w ‘
For p large enough, we obtain
L2
plop(A)ul” > C ‘Op Az) (67)
By the same way, we prove, for p large enough
L2
o1 De,uf* = Cpa | D 0p(A~2 ) (68)
Combining (f7) and (6g), we obtain
L2 INE
M\UIlou>C(u‘0p Az) +M‘Dmn0p(/\ 2)w ) (69)
By the same way, we prove
s |12
lopayu| = llop(a)wl® = € flw]?, (70)

1

|Deuoph 2y 2 1Dl = O op(A) D] = € JopA el (1)

D2, op(A~ 1)wH — C|| D2, op(A 2)wH2 -C HDmnop(A_2)wH2 - C Hop(A‘2)wH2.
Combining ([70), ([[1)) and ([73), we obtain for 4 large enough
2
[z, 0ph ]+ [Drsopi iyl + vty
> € (||D2,0p(A o + D0l + llop(Aol?) . (73)

Combining (B9), (64), (63), (66), () and ([[3), we obtain (R7), for u large enougl&
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4 Proof of Theorem

This section is devoted to the proof of Theorem B.3.

4.1 Study of the eigenvalues

The proof is based on a cutting argument related to the nature of the roots of
the polynomial p;(z, &', &, 1), j = 1,2, in §,. On z, = 0, we note

q1 (,’,U/, 5/7 /J’) = q1,1(07 LU/, 5/7 /J’) = q1,2(07 LU/, 5/7 :u)

Let us introduce the following micro-local regions

2
n q

51—;2: {(gj,g/hu)GKXR , Q2’1/2+(8901i2)2 >O},
OTn

2

n q
Zl/gz{(;(;,é‘/”u)EKXR’ q271/2+m:0}7

Oxn

2
1_/2 = {(x,g’,,u) e K xR", 42,1/, + % < O} .
(Fat)?
(Here and in the following the index 1/, using for telling 1 or 2).
We decompose p1,(z, &, 1) as a polynomial in &,. Then we have the following lemma
describing the various types of the roots of p;/,.

Lemma 4.1 We have the following
1. For (x,& ) € 8172, the roots of p1/, denoted sz satisfy + Imzft/2 > 0.

2. For (x,§', ) € 21y,, one of the roots of py/, is real.

s the roots of py;, are in the half- plane Im&, > 0 if%i—lr/f <0
resp. in the half-plane Im&,, < 0 if %13 ),
Ozn

Proof.
Using (2]]) and (P2), we can write

.0 : .0 ,
pl(z/a ga ,U) = (fn + Zuaf; - ZO41) (fn + Zuaf; + ZO41) )

3. For(z,&, pn) €&

(74)

0 0

p2(z/a ga ,U) = (fn + Zua(p2 - 7;042) <§n + Z:U“ L + 7;042) )
T axn
where o; € C, j = 1,2, defined by
200 ¢l 6901 ? .

a2, &, n) = M&E + g1 + 2tuq,

(75)

o 2 .
s, € ) = (u&p ) — 12+ go1 + 2ipg.
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We set 9
+ . ¥1/
Py T T or -

:l: ’iOél/Q y (76)
the roots of py,. The imaginary parts of the roots of p;/, are

84,01/2

84,01/2 .y
oz,

o,

— Reayy,,

+ Reayy,.

The signs of the imaginary parts are opposite if }&pl /o Gxn‘ < ‘Re aqy,|, equal to
the sign of —0y1/, /0, if }0@1/2/8xn‘ > ‘Re al/z‘ and one of the imaginary parts
is null if g1/, /0x,| = |Reay),|. However the lines Rez = +40¢py,,/0, change
2 ‘2

by the application z — 2/ = 2

into the parabolic curve Rez’ = |0y, /0,
Tm 2'|* /4(p 8p1, /O, )2 Thus we obtain the lemma by replacing 2’ by ai),.

Lemma 4.2 If we assume that the function ¢ satisfies the following condition

2 2
(-

then the following estimate holds

2 2
- 2+ QI > _'_ QI ] 78
L2 @pafowa)? TP (01 0wa)? (7)
Proof.
Following (9), on {z,, = 0}, we have
iy 2 0o 2
/ _ / — —
qa2(z, &, 1) — qoa(z, & 1) <u &En) (u or. ) (79)

Using ([77), we have ([g). O
Remark 4.1 The result of this lemma imply that £ C €.

4.2 Estimate in &

In this part we study the problem in the elliptic region £T. In this region we
can inverse the operator and use the Calderon projectors. Let x*(z,&, u) € T SS

such that in the support of xy™ we have ¢a1 + W > 0 > 0. Then we have the
following partial estimate.

Proposition 4.1 There exists a constant C' > 0 and py > 0 such that for any
> o, we have

2
i Jopc Y, < © (1P Dl + [l + nluffy,).  (80)
for any u € C(Qy).
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If we suppose moreover that ¢ satisfies ([T7) then the following estimate holds

2 _ _
plop(xPuly,, < C (IIP(:& D, pyul* + p~" op(b)ulf + pop(bo)ul* + [[ullf, + 2 |u|io,u) :

(81)
for any u € C(Qa) and by, j = 1,2, defined in ().
Proof
Let @ = op(x™)u. Then we get
Pi=f in {z, >0},
11 = ﬂo‘wn_o Z,U/U(]|m -0 = 61 on {In = 0} y

en=0 = €3 on {x, =0},
. (82)
with f = op(x™)f + [P, op(x™)] u. Since [P, op(x")] € (TO°)D,, + T O, we have

1712 < € (1P, D, wyule + 1l (83)

and é; = op(x1)e; satisfying
e} < Clealy (84)

and

— [(Da, + 082, 00(¢) | ol + [ (Day +1132),0p(x*)] 0lam0 + 0B (e
Since [D,,,op(x™)] € TO°, we have
&l < C (Juf? +|eaf?) (85)

Let @ the extension of @ by 0 in x, < 0. According to (1)), (B3) and (B3), we obtain,
by noting dp/0x, = diag (8501/8%, 0o/ 0,,), %’(ﬂ) =? (D] (o) |gn=0+, D%n (o) |:En=0+)7
j=0,1and 6V = (d/dx,)’ (64,-0),

P

2

:i—'yo(ﬁ)®5,—l—% (71(a)+2w§f) ® 0 (86)
Let x(z,&, 1) € Sp equal to 1 for sufficiently large |£] 4+ p and in a neighborhood of
supp(x ") and satisfies that in the support of x we have p is elliptic. These conditions
are compatible from the choice made for supp(x™) and Remark [[.I. Let m large
enough chosen later, by the ellipticity of p on supp(y) there exists £ = op(e) a
parametrix of P. We recall that e € S;z, of the form e(z,&, u) = Z;n:(] e;(z, &, 1),
where eg = xp~' and e; = diag(e;1,¢e;2) € S, >~/ such that e;; and e, are rational
fractions in &,. Then we have

EP =op(x) + Ry, R,cO ™% (87)
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Following (B) and (B7), we obtain

~ 1
Q:Ei—FE —h1®5/+€h0®5 +w1,

_ .0 _ _
ho = (@) + 2iprg “0(i), I = 70(@),

Tn

| w1 = (Id —op(x)) & — Rt

Using the fact that supp(1 — x) Nsupp(x™) = @ and symbolic calculus (See Lemma
2.10 in []), we have (Id — op(x)) op(x™) € O™, then we obtain

lwill3,, < Cp? flullza - (89)

1
Now, let us look at this term E [—hl R0+ -hg® 5] . For x, > 0, we get
i

/ 1 . .
E {—fn ® 0+ —hy® 5] = T1hy + Toho,
)

o

A 1 -l S APYIN ’ ’ ) gt ~
Tj(h):( ) /e’(x I (2, & ) h(y)dy'd€' = op(t;)h

. 1 ) )

ti=— [ ere(x, &, p)&ldé,
L 2mi J,
where 7 is the union of the segment {&, € R, [§,| < co/[€'|> + 12} and the half
circle {§, € C, [&,.] = co\/|¢'|)? + p?, Im&, > 0}, where the constant ¢y is chosen
sufficiently large so as to have the roots 2" and z; inside the domain with boundary
v (If ¢ is large enough, the change of contour R — = is possible because the symbol

e(z, &, p) is holomorphic for large |€,]; &, € C'). In particular we have in x,, > 0

8’;n8§,a§,£j‘ < Copal€ )P j=0,1. (90)

We now choose x1(z,&’, ) € TS}, satisfying the same requirement as x*, equal to
1 in a neighborhood of supp(x™) and such that the symbol x be equal to 1 in a
neighborhood of supp(x1). We set t; = xit;, 7 = 0,1. Then we obtain

U= E£+ op(to)ho + op(t1)hy + wy + we (91)
where wy = op((1 — x1)f0)ho + op((1 — x1)t1)hy. By using the composition formula

of tangential operator, estimate (P{), the fact that supp(l — x1) Nsupp(x*) = &
and the following trace formula

1 :
o(u)l; < Cu~2lulljrr, 7 EN, (92)

22



we obtain

lwal3, < Cu™* ([ull?, + lulfo,.) - (93)
Since x = 1 in the support of x1, we have e(x, &, ) is meromorphic w.r.t &, in the
support of x;. zf/2 are in Im¢,, > cl\/|§’|27+,u2 (c1 > 0). If ¢; is small enough we
can choose 71/, in Im&, > %\/m and we can write

. 1 o ; .
t; = diag(tj1, tj2), tja(2, &, p) =xi(z, &, ,U)2 p / ey, (2,6, p)ELdE,  j=0,1,
V1/9
(94)
Then there exists ¢y > 0 such that in z,, > 0, we obtain
b OBORL| < a0l (€, pyr= 1101k (95)

In particular, we have e?*"#(85 )t; is bounded in 7.5)~'** uniformly w.r.t 2, > 0.
Then

102 0p(t5) s\ 72+ lop(t;) Ry 72 < € et Jop(ex ety )y ] () < Oyl

xn>0

and

[0n,0p(E ) e < C [ e fop(ea, ) yl2 () da, < Oy L.

xn>0

Using the fact that hg = v, (@) + QZ,ua Yo(@) and hy = 7o(@), we obtain

lop(t)hyllY,, < Crulip,e (96)

From (P1]) and estimates (B3), (B9), (Pj) and (Pg), we obtain (B().
It remains to proof (BI). We recall that, in supp(x1), we have

‘ 11 . 1 L
‘0= dlag (60’1’ 6072) dlag (p_l ]3_2) N dlag ((fn - Zf_)(gn - Zl_)’ (gn - Z;)(gn - 22_)) .

Using the residue formula, we obtain

—iznzt (Z+ )J . )
€ "2 t_] 1/2 = X1z+17/2 + >\1/27 J= 07 17 )‘1/2 S 75;2—‘”‘ (97)
1/2 1/2

Taking the traces of (PI]), we obtain

0(@) = op(c)yo(@) + op(d)ya (@) + wo, (98)

where wy = vo(F f + wy + we) satisfies; according to the trace formula (2), the
estimates (B3), (B9) and (P3), the following estimate

plwol? < C (IP(, D, )l + ull?, + 172 ul} ) (99)
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and following (Pq), ¢ and d are two tangential symbols of order respectively 0 and
—1 given by

. . 21,
co = diag(co,1, Co2) with cor, = — [ Xa—z b,
Z1/2 — Z1/2

. . 1
dy= dlag(d—Lla d—1,2) with d—1,1/2 =\ xo -
21/2 - Z1/2
Following (BJ), the transmission conditions give

Yo(tio) — tpyo(Do) = €1

(100)
Y1 (to) +71(%o) + iuﬁ%%(ﬂo) + Wg%%(@o) = €.
We recall that @ = (o, 0), combining (B§) and ([0]) we show that
0 0
t ~ ~ 1. (-~ 1. (=~ 1 U [ 0 —1s
op(k) " (70(to),v0(%0), A~ 71 (1), A" 11 (o)) = wotop g Etop| g A~le,,
0 1
(101)
where k is a 4 X 4 matrix, with principal symbol defined by
1 —co 0 —ANd_y; 0
0 1— Co,2 0 —A d—1,2
ko + ! + !
—7rn = iy
T 0 —i 0 0 o
dpr Jipa
AL AL 1 1
o, M On,

where r( is a tangential symbol of order 0.

We now choose xa(z,&', 1) € TS}, satisfying the same requirement as x*, equal to
1 in a neighborhood of supp(x™) and such that the symbol y; be equal to 1 in a
neighborhood of supp(z). In supp(yz), we obtain

+ A
- 0 e 0
21 T XA 21 T X1
+ A
0 +Z2 — 0 - + —
Folsupp(xa) = 2T A 2T
0 —3 0 0
0 0
z',uA_lafl z',u/\_la—f2 1 1
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Then, following ([[q),

det(l{?0>|supp(x2) = — (Zf— - Zl_)_l (Z;— - 22_)_1 AOél.

To prove that there exists ¢ > 0 such that ‘det k:o |Supp(><2 ‘ > ¢, by homogeneity it

suffices to prove that det(ko)|supp(y) 7 0 if )+ 2 = 1.
If we suppose that det(ko)|supp(xs) = 0, we obtain a; = 0 and then of = 0.
Following ([/H),we obtain

o ?
g1 =0 and +q21 = 0.

a oz,

Combining with the fact that ¢2; + > > (0, we obtain

ai
(Op1/0zn)

o1 ?
— > 0.
(,u &En)
Therefore det(ko)|supp(y.) 7 0. It follows that, for large p, k = ko + %7’0 is elliptic
in supp(2). Then there exists [ € ’752, such that

op(l)op(k) = op(x2) + R,

with R, € TO~™ ' for m large. This yields

0

" (70(10), Y0(o), A1 (o), A (o)) = op(l)wo + 5 0p(l (1) ey + op(l)op
0
(

+ (op(1 — x2) — 0), Yo (0

Since supp(1 — x2) Nsupp(x™) = @ and by using (09), we obtain
. 1~ - 2 2 22
il g, < € (e + lea] + PG D pulfs + Nl + 72 )

From estimates (B4) and (BY) and the trace formula (pg), we obtain (BT)).

4.3 Estimate in Z;

The aim of this part is to prove the estimate in the region Z;. In this region, if
o satisfies ([77), the symbol py(x, &, 1) admits a real roots and po(x, &, 1) admits two

roots zy satisfy 4 Im(z3) > 0. Let x°(z, &, ) € TS} equal to 1 in Z; and such

that in the support of x° we have gao — p? + ( 5 > 0 > (0. Then we have the

D2 /8:(:
following partial estimate.
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Proposition 4.2 There exists constants C' > 0 and pg > 0 such that for any p > po
we have the following estimate

2
llopC)uly, < € (1P, Dyl + el g, + ). (102)

for any u € C(Qy).
If we assume moreover that ¢ satisfies ([T]) then we have

2 _ _
plop OOl o, < € (1P, Dy p)ul? + 1™ lop(br)al? + lop(baal + [l + 172 )
B (103)
for any u € C°(€2) and b;, j = 1,2, defined in (24).

4.3.1 Preliminaries

Let u € C3°(K), @ = op(x°)u and P the differential operator with principal
symbol given by

pla, & 1) = & + (2, & )& + o, € 1)
where ¢; = diag(g;1,¢;2), j = 1,2. Then we have the following system
Pu=f in{z, >0},
(104)

where f = op(X°)f + [P, op(x°)] u. Since [P, op(x°)] € (TO°)D,,, + TO", we have
1713 < € (1P, D ul + ful?,) (105)
B defined in (P4) and é; = op(x)e; satisfying
@} < Cleal; (106)
and
62 = (D, +i132), 0p(x*) | tola,=0 + [ (De, +8522), 0p(x°)] ola=0 + 0P (X2
Since [D,, ,op(x™)] € TO°, we have
@l < C (Jul + [eaf?) - (107)

Let us reduce the problem ([[04) to a first order system. Put v = ((D’, p)u, D, u).
Then we obtain the following system

D, v—op(P)v=F in{z, > 0},
(108)
op(B)v = (iAél, é) on{z, =0},
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where P is a 4 x 4 matrix, with principal symbol defined by

A , , 3
P (a0 M) (A=t = (1)),

B is a tangential symbol of order 0, with principal symbol given by
B+ r 0 —i 00 n 1
0 ETO N z',uA_lg% z',uA_lgT“Di 11 ;ro

(ro a tangential symbol of order 0) and F =* (0, f).
For a fixed (xo, &), po) in suppxo, the generalized eigenvalues of the matrix P are

the zeroes in &, of p; and py ie 2f = —i,ugT“D:L +ia; and 25 = —z'ugT”j + iy with
+Im(2;) > 0 and z; € R.
We note s(z,&' 1) = (s7,85,57,55) a basis of the generalized eigenspace of

P(z0, &), o) corresponding to eigenvalues with positive or negative imaginary parts.

s;-t(:c, ¢, ), j=1,21is a C* function on a conic neighborhood of (zg, &}, o) of a de-

gree zero in (&', ). We denote op(s)(x, D, ) the pseudo-differential operator asso-

ciated to the principal symbol s(z, &, ) = (s1 (z,&', p), s5 (2, &, ), s7(z, & ), 53 (x, &, 1)).
Let X (x,¢', ) € TS}, equal to 1 in a conic neighborhood of (zo, &, f10) and in a neigh-
borhood of supp(x") and satisfies that in the support of ¥, s is elliptic. Then there

exists n € TSy, such that

op(s)op(n) = op(X) + R,

with R,, € TO~™1, for m large.
Let V = op(n)v. Then we have the following system

D, V=GV+AV+F  in{z, >0},
(109)
op(B1)V = (iAél, é) + vy on{x, =0},

where G = op(n)op(P)op(s), A = [Dy,, op(n)] op(s), )

Fy = op(n)F + op(n)op(P)(op(1 — X) — Rp)v + [Ds,,0p(n)] (op(1 = X) — R )v,
op(By) = op(B)op(s) and v = op(B)(op(X — 1) + Rpm)v.

Using the fact that supp(1 — ¥) Nsupp(x°) = @, R,, € TO™™ ! for m large and
estimate ([[07), we show

IR < € (I1P@, D, wyullfs + llulf,,) (110)

Using the fact that supp(1 — %) Nsupp(x°) = &, Ry € TO~™1 for m large and
the trace formula (PJ), we show

2 22 2
plor? < € (72 full o, + 1l (111)
Here we need to recall an argument shown in Taylor [[J] given by this lemma
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Lemma 4.3 Let v solves the system

0
8—yU = GU + AU
E . .
where G = and A are pseudo-differential operators of order 1 and 0,

F
respectively. We suppose that the symbols of E and F' are two square matrices and
have disjoint sets of eigenvalues. Then there exists a pseudo-differential operator K
of order —1 such that w = (I + K)v satisfies

gw:Gw—l—(al )w+R1w+R2v
dy Q2

where o; and R;, j = 1,2 are pseudo-differential operators of order 0 and —oo,
respectively.

By this argument, there exists a pseudo-differential operator K (x, D,, i) of order
—1 such that the boundary problem ([[09) is reduced to the following

D, w—op(H)w=F in{x, > 0},
~ (112)
op(B)w = (1Aé1, &) + o + v on {an = 0},

where w = (I+K)V, F = (I+ K)F}, op(H) is a tangential of order 1 with principal

symbol H = diag(H~,H") and —Im(H~) > CA, op(B) = op(B1)(I + K') with
K' is such that (I + K')(I + K) = Id+ R, (R, € O™ for m large) and
vy = op(B1) R, V.

According to ([L10), we have

|£12 < € (1P(, D, mhullys + ull,) - (113)

Using the fact that R/, € O™~ for m large, the trace formula (P2) and estimates

([0g), ([07) and ([T1), we show

2 1 -
ulopBruf < (Ll ulesl + o, i) (11

Lemma 4.4 Let R = diag(—pldy,0), p > 0. Then there exists C' > 0 such that
1. Im(RH) = diag(e(x, &', 1), 0), with e(x, &, u) = —pIm(H™),
2. e(z, &, p) > CA in supp (X°),
3. —R+B*B> C.Id on {x, = 0} N supp (x°).
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Proof
Denote the principal symbol B of the boundary operator op(B) by (B‘ B*) where

Bt is the restriction of B to subspace generated by (81 ,52) We begin by proving
that BT is an isomorphism. Denote

="(1,0) and w,="(0,1).

Then
st = (wi, 2 A wy)

s3 = (wo, 25 A w,)

are eigenvectors of 2 and z;. We have Bt = (B + iro)(sf sy) = Bi + %rar.

To proof that BT is an isomorphism it suffices, for large p, to proof that B is an
isomorphism. Following ([§), we obtain

0 —1
+ _
BO - ( A_l’é()él A_l’é()ég ) '
det(Ba_) = —A_lal.
If we suppose that det(Bg) = 0, we obtain a; = 0 and then o? = 0. Following (),

we obtain ,
0
¢t =0 and (,u S01) +q21 = 0.
o0x,

Then

2
Combining with the fact that g,; + = 0, we obtain (,ugfl) = 0, that is

a
(0p1/0zn)*
impossible because following ([77), we have (%) # 0 and following ( P2)), we have

1 # 0. We deduce that B* is an isomorphism.
Let us show the Lemma [[.4. We have

Im(RH) = diag (—pIm(H ™), 0) = diag (e(z,&’, 1), 0), (115)

where e(z,¢',u) = —pIm(H™) > CA, C > 0. It remains to proof 3.
Let w = (w™,w") € C* = C?> @ C2. Then we have Bw = B~w™ + Btw*. Since B*
is an isomorphism, then there exists a constant C' > 0 such that

‘g+w+‘2 > C}w*\z.
Therefore, we have
< (|Bu] + )
We deduce

2 1 2 2 s P
—(Rw,w) = p|w”| Za‘wﬂ +(p—1)|w | - Bw‘ .

Then, we obtain the result, if p is large enough.
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4.3.2 Proof of proposition
We start by showing ([09). We have

1Pi(, D, whuol* = [[(RePr)uol|* + || (Im Py )uo|*
+ Z|:<(II'I1P1)U0, (RePl)u0> - <(ReP1)u0, (ImPl)uo)} .
By integration by parts we find
I3, D, ol = | (RePyYaol|*+ (1 Py o+ [RePy, T2 g, ) + peofo),

where

Qo(ug) = (—Q%Dmuml)xnuo)OﬂL(OP(Tl)Uo,D:cnuo)o

+ (op(r}) Dy, o, uo)o + (0p(r2)uo, uo)o + u(g%u(], U)o,

— ! — — 9p1
rn=r-= 2(]171, 9 = _28anzl‘

Then we have
|Qo(uo)” < C |u0|io,u~

We show the same thing for Py(x, D, p)ve. In addition we know that the principal
symbol of the operator [ReP;,ImP;|, j = 1,2, is given by {ReP;,ImP;}. Proceeding
like Lebeau and Robbiano in paragraph 3 in [0], we obtain ([L02).

It remains to prove ([[03)). Following Lemma .4, let G(z,,) = d/dz,(op(R)w, w) r2@n-1y.
Using D,,w — op(H) = F, we obtain

G(z,) = —2Im(op(R)F,w) — 2Im(op(R)op(H)w, w).

The integration in the normal direction gives

(op(R)w, w)o = /000 Im(op(R)op(H)w, w)dx, + 2 /000 Im(op(R)F, w)dzx,. (116)
From Lemma [£.4 and the Garding inequality, we obtain, for yu large,
Im(op(R)op(H)w,w) > C ‘w‘@ , (117)
moreover we have for all € > 0
/OOO ‘(op(R)F,w)’ da, < eCp|jw||* + %HFH?. (118)

Applying Lemma [I.4 and the Garding inequality, we obtain, for y large,

— (op(R)w, w) + |op(B)wl* > C w|*. (119)
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Combining ([19), ([1§), ([T7]) and ([[1§), we get
. -~ N
Cluw[} +Clof* < ZIEIP + lop(B)uw (120)
Then i ~
plw® < C|F|? + plop(Bywl®.

Recalling that w = (I + K)V, V = op(n)v, v =t ((D', u)u, D,, ) and @ = op(x°)u

and using estimates ([13) and ([14), we prove ([[03).
U

4.4 Estimate in &

This part is devoted to estimate in region &; .
Let x~(z,&, 1) € TSg equal to 1 in £ and such that in the support of x~ we have
2

Q21 + (8@1(/]#11)2 < —6§ < 0. Then we have the following partial estimate.

Proposition 4.3 There exists constants C' > 0 and po > 0 such that for any p > po
we have the following estimate

—_ 2
pllopO)ulls, < € (1P, Dyl + plull g, + ully,) . (121)

for any u € C(Qy).
If we assume moreover that % > 0 then we have

_ 2 _
plop ol < C (IPG DLyl + 2l + lul,)  (122)

for any u = (ug,vy) € C°(Qa).

Proof.

Let @ = op(x™)u = (op(x~)uo, op(X~)vo) = (o, To)-
In this region we have not a priori information for the roots of ps(z, &, ). Using the
same technique of the proof of ([02), we obtain

_ 2
pllop(x wolly, < C (HP(%D,M)Uon + plvoli o, + ||vo||f,u> (123)

In supp(x~) the two roots 2 of py(x, &, i) are in the half-plane Imé&, < 0. Then we
can use the Calderon projectors. By the same way that the proof of (B() and using
the fact that the operators ¢y, and t;; vanish in z,, > 0 (because the roots are in
Imé&, <0, see (P4)), the counterpart of (P1) is then

g =Ef +wiy+wy, fora, >0. (124)

We then obtain (see proof of (B{))
2 _ 2 2 2 2
i lop( a2, < € (1P Doyl + gl g+ ) - (125)
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Combining ([[23) and ([[27), we obtain ([21]).
It remains to proof ([23). We take the trace at z,, = 0" of ([24),

Yo(tip) = wo = ’Yo(Efl +wi g+ wa),
which, by the counterpart of (09), gives
pholin) < € (1P Dol + ol + 5 ok, ). (126)
From ([[24)) we also have
D, tg = DmnEf1 + D, w11+ Dy, way, forx, > 0.
We take the trace at z,, = 07 and obtain

(ii0) = Yo(Da, (Ef | + w11 + w21)).

Using the trace formula (P3), we obtain

. 2 . 2
")/1(’&0”2 S C',u_l Dxn(Eil + wy,1 + wg’l) . S C’,U,_1 Eil + W11 + W21 )
s iy
and, by the counterpart of (BJ), (B9) and (P3), this yields
phn(Eo) < € (1P, Dol + ol + 1 fuol,) - (127
Combining ([26) and ([27), we obtain
2 2 2 —2, 2
plopOcYlyy, < C (1P, D ol + ol + 172 ol )
Then we have ([27). O

4.5 End of the proof

We choose a partition of unity x™ + x° + x~ = 1 such that x™, x° and x~ satisfy
the properties listed in proposition [L.1], .2 and .3 respectively. We have

lull?, < lopOcHul?, + [lop)ull}, + [lopteull? -

Combining this inequality and (B(), ([0) and ([21)), we obtain, for large u, the first
estimate (B7) of Theorem B.J. i.e.

2 2 2
el < (1P, Dol + ulely,).

It remains to estimate |u|§ 0, We begin by giving an estimate of u |u0|f 0
We have

luol3,, < }Op(xﬂuo}io,u + }op(xo)u()}i()# + }op(x‘)uo}io,u,
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\w(x*)wﬁw < \Op(x+)U}io,u
and ) )
|op(X"Juol, g, < [op(X")uly,

Combining these inequalities, (B1), ([03), ([29) and the fact that
w2 \u\iw = 2 \u0|io’u + 2 |UO|§,O,W we obtain, for large

ol < € (1P, Dol + = fop(ba)ul? + plop(Ba)ul + =2 ol + [l

(128)
For estimate p |UO|§,0, » We need to use the transmission conditions given by (4).
We have

op(by)u = ug|e,—0 — ipvo|e,—0 on {z, =0}.

Then
flvols < C (0" Juols + 1t op(by)ul?) -

Since we have =" |ug|> < p |u0|i07u‘ Then using ([[2§), we obtain

pleof? < C (I1PGe, D, phull + i lop(by )l + elop(Ba)el® + 172 ol + 1l )
(129)
We have also

.0 .0
op(b)u = <D;pn + wgil) Uglz,=0 + <Dmn + W&?) Uolz,—0 on {z, =0}.

Then
p| D vol* < C (e |op(ba)ul® + g | Do uol* + 12 [uol* + 42 o) -

Using the fact that |u|,_, < p~!|ul,, we obtain
D, vol* < C (e lop(be)ul® + 11| D, uol” + puuoly + p o) -

Q

Since we have u|u0|iw = 1| Dy uol” + pt|uol;. Then using ([28) and ([29), we
obtain

1| Dy, vol” < C (IIP(:& D, pyul* + p" op(b)ulf + 1 lop(ba)ul* + 12 |volt o, + |IUI|3,M> :
(130)
Combining ([29) and ([30), we have

ol o, < © (IPG. D, pyul? + =" lop(bi)uf? + lop(bayul” + ull2,) . (131)
Combining ([2§) and ([[31)), we obtain
pluf? o, < € (1P, Dyl + 5 fop(bo)ul? + g lop(ba)ul® + ul?,) . (132

Inserting ([[33) in (B7) and for large i, we obtain (Bg).
U
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Appendix A

This appendix is devoted to prove Lemma R.1. For this, we need to distinguish two
cases.

1. Inside O
To simplify the writing, we note [[ul| ;2 = [lull-
Let x € C§°(O). We have by integration by part

(& = ip)u, X*u) = (=Vu,x*Vu) = (Vu, V) — i |[xul*.

Then
plbul® < C (1A xCul| + 1Vl + [Vl [[xul) -

Then
il < © (I + el + 190l + L9l + )
Recalling that p > 1, we have for € small enough
Ixull” < C (IVull® + [1£17) - (133)
Hence the result inside O.

2. In the neighborhood of the boundary
Let 2 = (2/,x,) € R"' x R. Then

00 ={z eR", z, =0}.
Let € > 0 such that 0 < z,, < €. Then we have
u(x' €) —u(a, x,) = / Oz, u(z’, o)do.
Then )
lu(z!, ) > < 2u(a’,e)]” + 2 (/ 10, u(2', o) da) .

Using the Cauchy Schwartz inequality, we obtain
lu(@, z) < 2u(a,e)” + 262/ 10, u(x’, )| d,.
0
Integrating with regard to 2/, we obtain

/ (!, )2 da’ < 2 / (', €[ da’+2¢2 / (\amnu(x',xn)ﬁdxn) dz'.
|z’|<e |z’ <e |z’ |<e, |xn|<e
(134)

Using the trace Theorem, we have

/,|< lu(z, e)|” dz’ < c/ (Ju())? + |Vu(z)|*)dz. (135)

|2"|<2¢, |zn—e|<§
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Now we need to introduce the following cut-off functions

1 if 0<z, <3,

xi(z) =
0 if x,-€

and ‘ 5
1 if 7 <Tp <5,
xa(z) =

0 if x, <%, x,-2€

T
Combining ([[34) and ([[37), we obtain for € small enough
Ixaull? < C (Ixaul® + | Vul?) .
Since following ([33), we have
aull® < C (LA + [ Vul®) -
Inserting in ([3§), we obtain
aul® < C (1A + [ Vul®) -

Hence the result in the neighborhood of the boundary.

Following ([33), we can write

1= x)ull® < C (I1£1° + IVull?).

Adding ([37) and ([3§), we obtain

lull® < (117 + 1 Vul”) -

Hence the result.
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Appendix B: Proof of Lemma 871

This appendix is devoted to prove Lemma B.1.
Let x € C°(R"™) such that x = 1 in the support of u. We want to show that
op(A%)e"?xop(A~*) is bounded in L?. Recalling that for all v and v € S(R™), we

have
Flun)(€) = ()" Flw) « FO)(E), V€ e R

Then
F(op(A*)er?xop(A=*)v) (&', pn) = (&, w)*F (e xop(A=*)v) (&', 1)

= ()" (Ol ) € ) F)E ),

where g(¢', 1) = F(e"*x) (&, ). Then we have
F(op(A)e!?xop(A~*)v)(€, 1) = / g(& = 0", (&) (' ) = F () (', p)dny'.
Let k(&) = g(&'—n', u)(€', w)*(1f, 1) ~*. Our goal is to show that [ K (&', ') F (v) (1, p)dny

is bounded in L% To do it, we will use Lemma of Schur. It suffices to prove that
there exists M > 0 and N > 0 such that

[iK@ e <y and [IKE a7 <N

In the sequel, we suppose s > 0 (the case where s < 0 is treated in the same way).
For R > 0, we have

<€/> N>2R9(§/, ,U) = /<€/’ M>2Re—ix’£’§(x)eu<p(x)dx/
= /(1 — A+ ) ey (2)e! @ da!

- / e (L= A4 ) (x(w)e ) da
Then there exists C' > 0, such that

(€', 1)*Rg(€ )| < Cer. (139)

Moreover, we can write

oo I I I 2R<§'7M>S<7II7M>_S /

Using ([[39), we obtain

[t prae < ceor [EIA g
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Since

(& w ', m=° . &', (&) '
| e e ‘/gqm € — i, p) " d“/ww AT

It [¢/] < L], we have

(& my(n'sm)—* (', w)*{n’, )= C 1.
< < e L if 2R>n—1.
(& —n', p)?t (& = w* = (& =0, u)k
If || < eld|, e (€ —n' ) > (¢ 1), 0 >0, we have
SSTDRUSTO ¢ e L' if 2R—s>n—1.

<£/ _ 77/7 N>2R - <£/ _ 77/7/~L>2R_s
Then there exists M > 0, such that

[ ag < aren
By the same way, we show that there exists N > 0, such that
1 an < e
Using Lemma of Schur, we have (op(A%)e*?xop(A~*)) is bounded in L? and
HOP(AS)QWXOP(A_S)Hc(L?) < Ceh.

Applying in op(A®)u, we obtain the result.
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