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This paper is devoted to the study of a coupled system consisting in a wave and heat equations coupled through transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition.

Using an abstract Theorem of Burq and a new Carleman estimate shown near the interface, we complete the results obtained by Zhang and Zuazua and by Duyckaerts. We show, without any geometric restriction, a logarithmic decay result.

Introduction and results

In this work, we are interested with a linearized model for fluid-structure interaction introduced by Zhang and Zuazua in [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF] and Duyckaerts in [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF]. This model consists of a wave and heat equations coupled through an interface with suitable transmission conditions. Our purpose is to analyze the stability of this system and so to determine the decay rate of energy of solution as t → ∞.

Let Ω ⊂ R n be a bounded domain with a smooth boundary Γ = ∂Ω. Let Ω 1 and Ω 2 be two bounded open sets with smooth boundary such that Ω 1 ⊂ Ω and Ω 2 = Ω\Ω 1 . We denote by γ = ∂Ω 1 ∩ ∂Ω 2 the interface, γ ⊂⊂ Ω, Γ j = ∂Ω j \γ, j = 1, 2, ∂ n and ∂ n ′ the unit outward normal vectors of Ω 1 and Ω 2 respectively 1

(∂ n ′ = -∂ n on γ).                    ∂ t u -△u = 0 in (0, ∞) × Ω 1 , ∂ 2 t v -△v = 0 in (0, ∞) × Ω 2 , u = 0 on (0, ∞) × Γ 1 , v = 0 on (0, ∞) × Γ 2 , u = ∂ t v, ∂ n u = -∂ n ′ v on (0, ∞) × γ, u| t=0 = u 0 ∈ L 2 (Ω 1 ) in Ω 1 , v| t=0 = v 0 ∈ H 1 (Ω 2 ), ∂ t v| t=0 = v 1 ∈ L 2 (Ω 2 ) in Ω 2 .
(1)

In this system, u may be viewed as the velocity of fluid; while v and ∂ t v represent respectively the displacement and velocity of the structure. That's why the transmission condition u = ∂ t v is considered as the natural condition. For the modelisation subject, we refer to [START_REF] Rauch | Polynomial decay for a hyperbolicparabolic coupled system[END_REF] and [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF].

System [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] is introduced by Zhang and Zuazua [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF]. The same system was considered by Rauch, Zhang and Zuazua in [START_REF] Rauch | Polynomial decay for a hyperbolicparabolic coupled system[END_REF] but for simplified transmission condition u = v on the interface instead of u = ∂ t v. They prove, under a suitable Geometric Control Condition (GCC) (see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]), a polynomial decay result. Zhang and Zuazua in [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF] prove, without GCC, a logarithmic decay result. Duyckaerts in [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF] improves these results.

For system (1), Zhang and Zuazua in [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF], show the lack of uniform decay and they prove, under GCC, a polynomial decay result. Without geometric conditions, they analyze the difficulty to prove the logarithmic decay result. This difficulty is mainly due to the lack of gain regularity of wave component v near the interface γ (see [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF], Remark 19) which means that the embedding of the domain D(A) of dissipative operator in the energy space is not compact (see [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF], Theorem 1). In [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF], Duyckaerts improves the polynomial decay result under GCC and confirms the same obstacle to show the logarithmic decay for solution of (1) without GCC. In this paper we are interested with this problem.

There is an extensive literature on the stabilization of PDEs and on the Logarithmic decay of the energy ( [START_REF] Bellassoued | Distribution of resonances and decay rate of the local energy for the elastic wave equation[END_REF], [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF] [START_REF] Bellassoued | Decay of solutions of the elastic wave equation with a localized dissipation[END_REF], [START_REF] Lebeau | Équation des ondes amorties[END_REF], [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF], [START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF] and the references cited therein) and this paper use a part of the idea developed in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF].

Here we recall the mathematical frame work for this problem (see [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF]). Define the energy space H and the operator A on H, of domain D(A) by

H = U 0 = (u 0 , v 0 , v 1 ) ∈ L 2 (Ω 1 ) × H 1 Γ 2 (Ω 2 ) × L 2 (Ω 2 )
when H 1 Γ 2 (Ω 2 ) is defined as the space

H 1 Γ 2 (Ω 2 ) = v 0 ∈ H 1 (Ω 2 ), v 0 | Γ 2 = 0 , AU 0 = (△u 0 , v 1 , △v 0 ) D(A) = {U 0 ∈ H, u 0 ∈ H 1 (Ω 1 ), △u 0 ∈ L 2 (Ω 1 ), v 1 ∈ H 1 Γ 2 (Ω 2 ), △v 0 ∈ L 2 (Ω 2 ), u 0 | γ = v 1 | γ , ∂ n u 0 | γ = -∂ n v 0 | γ }.
Theorem 1.1 There exists C > 0, such that for every µ ∈ R with |µ| large, we have

(A -iµ) -1 L(H) ≤ Ce C|µ| . (2) 
Theorem 1.2 There exists C > 0, such that the energy of a smooth solution of [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] decays at logarithmic speed

E(t) ≤ C log(t + 2) U D(A) . (3) 
Burq in ( [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF], Theorem 3) and Duyckaerts in ( [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF], Section 7) show that to prove Theorem 1.2 it suffices to show Theorem 1.1.

The strategy of the proof of Theorem 1.1 is the following. A new Carleman estimate shown near the interface γ implies an interpolation inequality given by Theorem 2.2. Theorem 2.2 implies Theorem 2.1 which gives an estimate of the wave component by the heat one and which is the key point of the proof of Theorem 1.1.

The rest of this paper is organized as follows. In section 2, we show, from Theorem 2.1, Theorem 1.1 and we explain how Theorem 2.2 implies Theorem 2.1. In section 3, we begin by stating the new Carleman estimate and explain how this estimate implies Theorem 2.2. We give then the proof of this Carleman estimate. Section 4 is devoted to the proof of important estimates stated in Theorem 3.2 in the proof of Carleman estimate. Appendices A and B are devoted to prove some technical results that will be used along the paper.
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Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We start by stating Theorem 2.1. Then we will explain how this Theorem implies Theorem 1.1. Finally, we give the proof of Theorem 2.1.

Let µ be a real number such that |µ| is large, and assume

F = (A -iµ)U, U = (u 0 , v 0 , v 1 ) ∈ D(A), F = (f 0 , g 0 , g 1 ) ∈ H (4) 
The equation ( 4) yields

   (△ -iµ)u 0 = f 0 in Ω 1 , (△ + µ 2 )v 0 = g 1 + iµg 0 in Ω 2 , v 1 = g 0 + iµv 0 in Ω 2 , (5) 
with the following boundary conditions

   u 0 | Γ 1 = 0, v 0 | Γ 2 = 0 op(b 1 )u = u 0 -iµv 0 = g 0 | γ , op(b 2 )u = ∂ n u 0 -∂ n v 0 = 0| γ . (6) 
To proof Theorem 1.1, we begin by stating this result Theorem 2.1 Let U = (u 0 , v 0 , v 1 ) ∈ D(A) satisfying equation ( 5) and [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF]. Then there exists constants C > 0, c 1 > 0 and µ 0 > 0 such that for any µ ≥ µ 0 we have the following estimate

v 0 2 H 1 (Ω 2 ) ≤ Ce c 1 µ f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) . (7) 
Moreover, from the first equation of system (5), we have

Ω 1 (-△ + iµ)u 0 u 0 dx = ∇u 0 2 L 2 (Ω 1 ) + iµ u 0 2 L 2 (Ω 1 ) - γ ∂ n u 0 u 0 dσ. Since u 0 | γ = g 0 + iµv 0 and ∂ n u 0 = -∂ n ′ v 0 , then Ω 1 (-△ + iµ)u 0 u 0 dx = ∇u 0 2 L 2 (Ω 1 ) + iµ u 0 2 L 2 (Ω 1 ) -iµ γ ∂ n ′ v 0 v 0 dσ + γ ∂ n ′ v 0 g 0 dσ. ( 8 
)
From the second equation of system [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] and multiplying by (-iµ), we obtain iµ

Ω 2 (△ + µ 2 )v 0 v 0 dx = -iµ ∇v 0 2 L 2 (Ω 2 ) + iµ 3 v 0 2 L 2 (Ω 2 ) + iµ γ ∂ n ′ v 0 v 0 dσ. (9) 
Adding ( 8) and ( 9), we obtain

Ω 1 (-△ + iµ)u 0 u 0 dx + iµ Ω 2 (△ + µ 2 )v 0 v 0 dx = iµ u 0 2 L 2 (Ω 1 ) + ∇u 0 2 L 2 (Ω 1 ) -iµ ∇v 0 2 L 2 (Ω 2 ) + iµ 3 v 0 2 L 2 (Ω 2 ) + γ ∂ n ′ v 0 g 0 dσ.
Taking the real part of this expression, we get

∇u 0 2 L 2 (Ω 1 ) ≤ (△ -iµ)u 0 L 2 (Ω 1 ) u 0 L 2 (Ω 1 ) + (△ + µ 2 )v 0 L 2 (Ω 2 ) v 0 L 2 (Ω 2 ) + γ ∂ n ′ v 0 g 0 dσ .
(10) Recalling that △v 0 = g 0 + iµg 0 -µ 2 v 0 and using the trace lemma (Lemma 3.4 in [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF]), we obtain

∂ n v 0 H -1 2 (γ) ≤ C µ 2 v 0 H 1 (Ω 2 ) + g 1 + iµg 0 L 2 (Ω 2 ) .
Combining with [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF], we obtain

∇u 0 2 L 2 (Ω 1 ) ≤ f 0 L 2 (Ω 1 ) u 0 L 2 (Ω 1 ) + g 1 + iµg 0 L 2 (Ω 2 ) v 0 L 2 (Ω 2 ) + µ 2 v 0 H 1 (Ω 2 ) + g 1 + iµg 0 L 2 (Ω 2 ) g 0 H 1 2 (γ) . Then ∇u 0 2 L 2 (Ω 1 ) ≤ C ǫ f 0 2 L 2 (Ω 1 ) + ǫ u 0 2 L 2 (Ω 1 ) + C ǫ g 1 + iµg 0 2 L 2 (Ω 2 ) + ǫ v 0 2 L 2 (Ω 2 ) + µ 2 v 0 H 1 (Ω 2 ) + g 1 + iµg 0 L 2 (Ω 2 ) g 0 H 1 2 (γ)
. Now we need to use this result shown in Appendix A. 

u H 1 (O) ≤ C ∇u L 2 (O) + f L 2 (O) . (11) 
Using this Lemma, we obtain, for ǫ small enough

u 0 2 H 1 (Ω 1 ) ≤ C f 0 2 L 2 (Ω 1 ) + C ǫ g 1 + iµg 0 2 L 2 (Ω 2 ) + ǫ v 0 2 L 2 (Ω 2 ) + µ 2 v 0 H 1 (Ω 2 ) + g 1 + iµg 0 L 2 (Ω 2 ) g 0 H 1 2 (γ) . Then there exists c 3 >> c 1 such that u 0 2 H 1 (Ω 1 ) ≤ C f 0 2 L 2 (Ω 1 ) + ǫe -c 3 µ v 0 2 H 1 (Ω 2 ) + C ǫ e -c 3 µ g 1 + iµg 0 2 L 2 (Ω 2 ) + e c 3 µ g 0 2 H 1 (Ω 2 ) . (12)
Inserting in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF], we obtain, for ǫ small enough

v 0 2 H 1 (Ω 2 ) ≤ Ce cµ f 0 2 L 2 (Ω 1 ) + g 0 2 H 1 (Ω 2 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) . ( 13 
)
u 0 2 H 1 (Ω 1 ) ≤ Ce cµ f 0 2 L 2 (Ω 1 ) + g 0 2 H 1 (Ω 2 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) . (14) 
Recalling that v 1 = g 0 + iµv 0 and using [START_REF] Taylor | Reflection of singularities of solutions to systems of differential equations[END_REF], we obtain

v 1 2 H 1 (Ω 1 ) ≤ Ce cµ f 0 2 L 2 (Ω 1 ) + g 0 2 H 1 (Ω 2 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) . (15) 
Combining ( 13), ( 14) and (15), we obtain Theorem 1.1.

Proof of Theorem 2.1 Estimate ( 7) is consequence of two important results. The first is a known result shown by Lebeau and Robbiano in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and the second one is given by Theorem 2.2 and proved in section 3. Let 0 < ǫ 1 < ǫ 2 and V ǫ j , j = 1, 2, such that

V ǫ j = {x ∈ Ω 2 , d(x, γ) < ǫ j }.
Recalling that (△ + µ 2 )v 0 = g 1 + iµg 0 , then for all D > 0, there exists C > 0 and ν ∈]0, 1[ such that we have the following estimate (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF])

v 0 H 1 (Ω 2 \Vǫ 1 ) ≤ Ce Dµ v 0 1-ν H 1 (Ω 2 ) g 1 + iµg 0 L 2 (Ω 2 ) + v 0 H 1 (Vǫ 2 ) ν ( 16 
)
Moreover we have the following result shown in section 3.

Theorem 2.2 There exists C > 0, c 1 > 0, c 2 > 0, ǫ 2 > 0 and µ 0 > 0 such that for any µ ≥ µ 0 , we have the following estimate

v 0 2 H 1 (Vǫ 2 ) ≤ Ce c 1 µ f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) + Ce -c 2 µ v 0 2 H 1 (Ω 2 ) . (17) 
Combining ( 16) and (17) we obtain

v 0 2 H 1 (Ω 2 \Vǫ 2 ) ≤ Cǫe Dµ v 0 2 H 1 (Ω 2 ) + C ǫ g 1 + iµg 0 2 L 2 (Ω 2 ) + C ǫ e -c 2 µ v 0 2 H 1 (Ω 2 ) + C ǫ e c 1 µ f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) .( 18 
)
Adding ( 17) and (18), we obtain

v 0 2 H 1 (Ω 2 ) ≤ Cǫe Dµ v 0 2 H 1 (Ω 2 ) + C ǫ g 1 + iµg 0 2 L 2 (Ω 2 ) + C ǫ e -c 2 µ v 0 2 H 1 (Ω 2 ) +C ǫ e c 1 µ f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) .
We fixe ǫ small enough and D < c 2 , then there exists µ 0 > 0 such that for any µ ≥ µ 0 , we obtain [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF].

Carleman estimate and Consequence

In this part, we show the new Carleman estimate and we prove Theorem 2.2 which is consequence of this estimate.

State of Carleman estimate

In this subsection we state the Carleman estimate which is the starting point of the proof of the main result. Let u = (u 0 , v 0 ) satisfies the equation

       -(△ + µ)u 0 = f 1 in Ω 1 , -(△ + µ 2 )v 0 = f 2 in Ω 2 , op(B 1 )u = u 0 -iµv 0 = e 1 on γ, op(B 2 )u = ∂ n u 0 -∂ n v 0 = e 2 onγ, (19) 
We will proceed like Bellassoued in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF], we will reduce the problem of transmission as a particular case of a diagonal system define only on one side of the interface with boundary conditions.

We define the Sobolev spaces with a parameter µ, H s µ by

u(x, µ) ∈ H s µ ⇐⇒ ξ, µ s u(ξ, µ) ∈ L 2 , ξ, µ 2 = |ξ| 2 + µ 2 ,
u denoted the partial Fourier transform with respect to x.

For a differential operator

P (x, D, µ) = |α|+k≤m a α,k (x)µ k D α ,
we note the associated symbol by

p(x, ξ, µ) = |α|+k≤m a α,k (x)µ k ξ α .
The class of symbols of order m is defined by

S m µ = p(x, ξ, µ) ∈ C ∞ , D α x D β ξ p(x, ξ, µ) ≤ C α,β ξ, µ m-|β|
and the class of tangential symbols of order m by

T S m µ = p(x, ξ ′ , µ) ∈ C ∞ , D α x D β ξ ′ p(x, ξ ′ , µ) ≤ C α,β ξ ′ , µ m-|β| .
We denote by O m (resp. T O m ) the set of differentials operators P = op(p), p ∈ S m µ (resp. T S m µ ). We shall frequently use the symbol

Λ = ξ ′ , µ = (|ξ ′ | 2 + µ 2 ) 1 2 .
We shall need to use the following Gårding estimate: if p ∈ T S 2 µ satisfies for

C 0 > 0, p(x, ξ ′ , µ) + p(x, ξ ′ , µ) ≥ C 0 Λ 2 , then ∃ C 1 > 0, ∃ µ 0 > 0, ∀µ > µ 0 , ∀u ∈ C ∞ 0 (K), Re(P (x, D ′ , µ)u, u) ≥ C 1 op(Λ)u 2 L 2 . ( 20 
) Let x = (x ′ , x n ) ∈ R n-1 × R.
In the normal geodesic system given locally by

Ω 2 = {x ∈ R n , x n > 0}, x n = dist(x, ∂Ω 1 ) = dist(x, x ′ ),
the Laplacian is written in the form

△ = -A 2 (x, D) = -D 2 xn + R(+x n , x ′ , D x ′ ) .
The Laplacian on Ω 1 can be identified locally to an operator in Ω 2 gives by

△ = -A 1 (x, D) = -D 2 xn + R(-x n , x ′ , D x ′ ) .
We denote the operator, with C ∞ coefficients defined in Ω 2 = {x n > 0}, by

A(x, D) = diag A 1 (x, D x ), A 2 (x, D x )
and the tangential operator by

R(x, D x ′ ) = diag R(-x n , x ′ , D x ′ ), R(+x n , x ′ , D x ′ ) = diag R 1 (x, D x ′ ), R 2 (x, D x ′ ) .
The principal symbol of the differential operator

A(x, D) satisfies a(x, ξ) = ξ 2 n + r(x, ξ ′ ), where r(x, ξ ′ ) = diag r 1 (x, ξ ′ ), r 2 (x, ξ ′ ) is the principal symbol of R(x, D x ′ ) and the quadratic form r j (x, ξ ′ ), j = 1, 2, satisfies ∃ C > 0, ∀(x, ξ ′ ), r j (x, ξ ′ ) ≥ C |ξ ′ | 2 , j = 1, 2.
We denote P (x, D) the matrix operator with C ∞ coefficients defined in Ω 2 = {x n > 0}, by

P (x, D) = diag(P 1 (x, D), P 2 (x, D)) = A 1 (x, D) -µ 0 0 A 2 (x, D) -µ 2 .
Let ϕ(x) = diag(ϕ 1 (x), ϕ 2 (x)), with ϕ j , j = 1, 2, are C ∞ functions in Ω j . For µ large enough, we define the operator

A(x, D, µ) = e µϕ A(x, D)e -µϕ := op(a)
where a ∈ S 2 µ is the principal symbol given by

a(x, ξ, µ) = ξ n + iµ ∂ϕ ∂x n 2 + r x, ξ ′ + iµ ∂ϕ ∂x ′ . Let op(q 2,j ) = 1 2 (A j + A * j ), op(q 1,j ) = 1 2i (A j -A * j ), j = 1, 2
its real and imaginary part. Then we have

   A j = op(q 2,j ) + iop(q 1,j ), q2,j = ξ 2 n + q 2,j (x, ξ ′ , µ), q1,j = 2µ ∂ϕ j ∂xn ξ n + 2µq 1,j (x, ξ ′ , µ), j = 1, 2, (21) 
where q 1,j ∈ T S 1 µ and q 2,j ∈ T S 2 µ are two tangential symbols given by

   q 2,j (x, ξ ′ , µ) = r j (x, ξ ′ ) -(µ ∂ϕ j ∂xn ) 2 -µ 2 r j (x, ∂ϕ j ∂x ′ ), q 1,j (x, ξ ′ , µ) = rj (x, ξ ′ , ∂ϕ j ∂x ′ ), j = 1, 2, (22) 
with r(x, ξ ′ , η ′ ) is the bilinear form associated to the quadratic form r(x, ξ ′ ).

In the next, P (x, D, µ) is the matrix operator with C ∞ coefficients defined in Ω 2 = {x n > 0} by

P (x, D, µ) = diag(P 1 (x, D, µ), P 2 (x, D, µ)) = A 1 (x, D, µ) -µ 0 0 A 2 (x, D, µ) -µ 2 (23) and u = (u 0 , v 0 ) satisfies the equation      P u = f in {x n > 0} , op(b 1 )u = u 0 | xn=0 -iµv 0 | xn=0 = e 1 on {x n = 0} , op(b 2 )u = D xn + iµ ∂ϕ 1 ∂xn u 0 | xn=0 + D xn + iµ ∂ϕ 2 ∂xn v 0 | xn=0 = e 2 on {x n = 0} , (24) 
where f = (f 1 , f 2 ), e = (e 1 , e 2 ) and B = (op(b 1 ), op(b 2 )). We note p j (x, ξ, µ), j = 1, 2, the associated symbol of P j (x, D, µ).

We suppose that ϕ satisfies

                   ϕ 1 (x) = ϕ 2 (x) on {x n = 0} ∂ϕ 1 ∂x n > 0 on {x n = 0} ∂ϕ 1 ∂x n 2 - ∂ϕ 2 ∂x n 2 > 1 on {x n = 0} (25) 
and the following condition of hypoellipticity of Hörmander:

∃ C > 0, ∀x ∈ K ∀ξ ∈ R n \{0}, Rep j = 0 et 1 2µ Imp j = 0 ⇒ Rep j , 1 2µ Imp j ≥ C ξ, µ 2 , (26) 
where {f, g}(x, ξ)

= ∂f ∂ξ j ∂g ∂x j -∂f ∂x j ∂g ∂ξ j
is the Poisson bracket of two functions f (x, ξ) and g(x, ξ) and K is a compact in Ω 2 .

We denote by

u L 2 (Ω 2 ) = u , u 2 k,µ = k j=0 µ 2(k-j) u 2 H j (Ω 2 ) , u 2 k = op(Λ k )u 2 , |u| 2 k,µ = u| xn=0 2 k,µ , |u| 2 k = |u| xn=0 | 2 k , k ∈ R and |u| 2 1,0,µ = |u| 2 1 + |D xn u| 2 .
We are now ready to state our result.

Theorem 3.1 Let ϕ satisfies ( 25) and ( 26

). Let w ∈ C ∞ 0 (Ω 2 ) and χ ∈ C ∞ 0 (R n+1
) such that χ = 1 in the support of w. Then there exists constants C > 0 and µ 0 > 0 such that for any µ ≥ µ 0 we have the following estimate

µ w 2 1,µ + µ 2 |w| 2 1 2 + µ 2 |D xn w| 2 -1 2 ≤ C P (x, D, µ)w 2 + |op(b 1 )w| 2 1 2 + µ |op(b 2 )w| 2 . ( 27 
)
Corollary 3.1 Let ϕ satisfies ( 25) and ( 26). Then there exists constants C > 0 and µ 0 > 0 such that for any µ ≥ µ 0 we have the following estimate

µ e µϕ h 2 H 1 ≤ C e µϕ P (x, D)h 2 + |e µϕ op(B 1 )h| 2 H 1 2 + µ |e µϕ op(B 2 )h| 2 , ( 28 
)
for any h ∈ C ∞ 0 (Ω 2 ).
Proof.

Let w = e µϕ h. Recalling that P (x, D, µ)w = e µϕ P (x, D)e -µϕ w and using (27), we obtain (28).

Proof of Theorem 2.2

We denote

x = (x ′ , x n ) a point in Ω. Let x 0 = (0, -δ), δ > 0. We set ψ(x) = |x -x 0 | 2 -δ 2 and ϕ 1 (x) = e -βψ(x ′ ,-xn) , ϕ 2 (x) = e -β(ψ(x)-αxn) , β > 0, and δ 2 < α < 2δ.
The weight function ϕ = diag(ϕ 1 , ϕ 2 ) has to satisfy (25) and ( 26). With these choices, we have

ϕ 1 | xn=0 = ϕ 2 | xn=0 and ∂ϕ 1 ∂xn | xn=0 > 0. It remains to verify ∂ϕ 1 ∂x n 2 - ∂ϕ 2 ∂x n 2 > 1 on {x n = 0} (29) 
and the condition (26). We begin by condition (26) and we compute for ϕ 1 and p 1 (the computation for ϕ 2 and p 2 is made in the same way). Recalling that

Rep 1 , 1 2µ Imp 1 (x, ξ) = Im 2µ [∂ ξ p 1 (x, ξ -iµϕ ′ 1 (x)) ∂ x p 1 (x, ξ + iµϕ ′ 1 (x))] + t [∂ ξ p 1 (x, ξ -iµϕ ′ 1 (x))] ϕ ′′ 1 (x) [∂ ξ p 1 (x, ξ -iµϕ ′ 1 (x))] .
We replace ϕ 1 (x) by ϕ 1 (x) = e -βψ(x ′ ,-xn) , β > 0, we obtain, by noting

ξ = -βϕ 1 (x)η Rep 1 , 1 2µ Imp 1 (x, ξ) = (-βϕ 1 ) 3 Rep 1 (x, η -iµψ ′ ), 1 2µ Imp 1 (x, η + iµψ ′ ) (x, η) -β |ψ ′ (x)∂ η p 1 (x, η + iµψ ′ )| 2 and |ψ ′ (x)∂ η p 1 (x, η + iµψ ′ )| 2 = 4 µ 2 |p 1 (x, ψ ′ )| 2 + |p 1 (x, η, ψ ′ )| 2
where p1 (x, η, ψ ′ ) is the bilinear form associated to the quadratic form p 1 (x, η). We have

Rep 1 = 0 et 1 2µ Imp 1 = 0 ⇐⇒ p 1 (x, η + iµψ ′ ) = 0,
• If µ = 0, we have p 1 (x, ξ) = 0 which is impossible. Indeed, we have

p 1 (x, ξ) ≥ C |ξ| 2 , ∀(x, ξ) ∈ K × R n , K compact in Ω 2 . • If µ = 0, we have p1 (x, η, ψ ′ ) = 0. Then |ψ ′ (x)∂ η p 1 (x, η + iµψ ′ )| 2 = 4µ 2 |p 1 (x, ψ ′ )| 2 > 0.
On the other hand, we have

Rep 1 (x, η -iµψ ′ ), 1 2µ Imp 1 (x, η + iµψ ′ ) (x, η) ≤ C 1 (|η| 2 + µ 2 |ψ ′ | 2 )
where C 1 is a positive constant independent of ψ ′ . Then for β ≥ C 1 , we satisfy the condition (26). Now let us verify (29). We have, on {x n = 0},

∂ϕ 1 ∂x n 2 - ∂ϕ 2 ∂x n 2 = β 2 α(4δ -α)e -2βψ .
Then to satisfy (29), it suffices to choose

β = M δ where M > 0 such that M δ ≥ C 1 . We now choose r 1 < r ′ 1 < r 2 < 0 = ψ(0) < r ′ 2 < r 3 < r ′ 3 .
We denote

w j = {x ∈ Ω, r j < ψ(x) < r ′ j } and T x 0 = w 2 ∩ Ω 2 .
We set R j = e -βr j , R ′ j = e -βr ′ j , j = 1, 2, 3.

Then R ′ 3 < R 3 < R ′ 2 < R 2 < R ′ 1 < R 1 . We need also to introduce a cut-off function χ ∈ C ∞ 0 (R n+1 ) such that χ(ρ) =    0 if ρ ≤ r 1 , ρ ≥ r ′ 3 1 if ρ ∈ [r ′ 1 , r 3 ].
Let ũ = (ũ 0 , ṽ0 ) = χu = ( χu 0 , χv 0 ). Then we get the following system

   (△ -iµ)ũ 0 = χf 0 + [△ -iµ, χ]u 0 (△ + µ 2 )ṽ 0 = χ(g 1 + iµg 0 ) + [△ + µ 2 , χ]v 0 , ṽ1 = g 0 + iµṽ 0 ,
with the following boundary conditions

   ũ0 | Γ 1 = ṽ0 | Γ 2 = 0, op(b 1 )ũ = ũ0 -iµṽ 0 = ( χg 0 )| γ , op(b 2 )ũ = ([∂ n , χ]u 0 -[∂ n , χ]v 0 )| γ .
From the Carleman estimate of Corollary 3.1 , we have

µ e µϕ ũ 2 H 1 ≤ C e µϕ 1 (△ -iµ)ũ 0 2 + e µϕ 2 (△ + µ 2 )ṽ 0 2 + |e µϕ op(b 1 )ũ| 2 H 1 2 + µ |e µϕ op(b 2 )ũ| 2 . (30) Using the fact [△ -iµ, χ] is the first order operator supported in (w 1 ∪ w 3 ) ∩ Ω 1 , we have e µϕ 1 (△ -iµ)ũ 0 2 ≤ C e 2µR 1 f 0 2 L 2 (Ω 1 ) + e 2µR 1 u 0 2 H 1 (Ω 1 ) . (31) 
Recalling that [△ + µ 2 , χ] is the first order operator supported in (w 1 ∪ w 3 ) ∩ Ω 2 , we show

e µϕ 2 (△ + µ 2 )ṽ 0 2 ≤ C e 2µ g 1 + iµg 0 2 L 2 (Ω 2 ) + e 2µR 3 v 0 2 H 1 (Ω 2 ) . (32) 
From the trace formula and recalling that op(b 2 )ũ is an operator of order zero and supported in {x n = 0} ∩ w 3 , we show

µ |e µϕ op(b 2 )ũ| 2 ≤ Ce 2µR 3 u 2 H 1 (Ω) ≤ C e 2µR 3 u 0 2 H 1 (Ω 1 ) + e 2µR 3 v 0 2 H 1 (Ω 2 ) . ( 33 
)
Now we need to use this result shown in Appendix B Lemma 3.1 There exists C > 0 such that for all s ∈ R and u ∈ C ∞ 0 (Ω), we have

op(Λ s )e µϕ u ≤ Ce µC op(Λ s )u . (34) 
Following this Lemma, we obtain

|e µϕ op(b 1 )ũ| 2 H 1 2 ≤ Ce 2µc |g 0 | 2 H 1 2 ≤ Ce 2µc g 0 2 H 1 (Ω 2 ) . (35) 
Combining (30), (31), (32), (33) and (35), we obtain

Cµe 2µR ′ 2 u 0 2 H 1 (w 2 ∩Ω 1 ) + Cµe 2µR ′ 2 v 0 2 H 1 (Tx 0 ) ≤ C(e 2µR 1 f 0 2 L 2 (Ω 1 ) + e 2µR 1 u 0 2 H 1 (Ω 1 ) +e 2µ g 1 + iµg 0 2 L 2 (Ω 2 ) + e 2µR 3 v 0 2 H 1 (Ω 2 ) + e 2µR 3 u 0 2 H 1 (Ω 1 ) + e 2µc g 0 2 H 1 (Ω 2 ) ). Since R ′ 2 < R 1 . Then we have v 0 2 H 1 (Tx 0 ) ≤ Ce c 1 µ f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) + Ce -c 2 µ v 0 2 H 1 (Ω 2 ) . ( 36 
)
Since γ is compact, then there exists a finite number of T x 0 . Let V ǫ 2 ⊂ ∪T x 0 . Then we obtain (17)

3.3 Proof of Carleman estimate (Theorem 3.1)

In the first step, we state the following estimates Theorem 3.2 Let ϕ satisfies ( 25) and ( 26). Then there exists constants C > 0 and µ 0 such that for any µ ≥ µ 0 we have the following estimates

µ u 2 1,µ ≤ C P (x, D, µ)u 2 + µ |u| 2 1,0,µ (37) 
and

µ u 2 1,µ + µ |u| 2 1,0,µ ≤ C P (x, D, µ)u 2 + µ -1 |op(b 1 )u| 2 1 + µ |op(b 2 )u| 2 , ( 38 
)
for any u ∈ C ∞ 0 (Ω 2 ).
In the second step, we need to prove this Lemma Lemma 3.2 There exists constants C > 0 and µ 0 > 0 such that for any µ ≥ µ 0 we have the following estimate

D 2 xn op(Λ -1 2 )u 2 + D xn op(Λ 1 2 )u 2 + op(Λ 3 
2 )u 2 + µ |u| 2 1,0,µ ≤ C P (x, D, µ)u 2 + µ -1 |op(b 1 )u| 2 1 + µ |op(b 2 )u| 2 , ( 39 
)
for any u ∈ C ∞ 0 (Ω 2 ).
Proof.

We have

P (x, D, µ) = D 2 xn + R + µC 1 + µ 2 C 0 , where R ∈ T O 2 , C 1 = c 1 (x)D xn + T 1 , with T 1 ∈ T O 1 and C 0 ∈ T O 0 . Then we have (D 2 xn + R)op(Λ -1 2 )u 2 ≤ C P op(Λ -1 2 )u 2 + µ 2 op(Λ 1 2 )u 2 + µ 2 D xn op(Λ -1 2 )u 2 + µ 4 op(Λ -1 2 )u 2 .
Since

µ 4 op(Λ -1 2 )u 2 ≤ Cµ 3 u 2 , µ 2 D xn op(Λ -1 2 )u 2 ≤ Cµ D xn u 2 and µ 2 op(Λ 1 2 )u 2 = µ 2 ( 1 √ µ op(Λ)u, √ µu) ≤ C µ op(Λ)u 2 + µ 3 u 2 .
Using the fact that u 2 1,µ ≃ op(Λ)u 2 + D xn u 2 , we obtain

(D 2 xn + R)op(Λ -1 2 )u 2 ≤ C P op(Λ -1 2 )u 2 + µ u 2 1,µ .
Following (37), we have

(D 2 xn + R)op(Λ -1 2 )u 2 ≤ C P op(Λ -1 2 )u 2 + P u 2 + µ |u| 2 1,0,µ . (40) 
We can write

P op(Λ -1 2 )u = op(Λ -1 2 )P u + [P, op(Λ -1 2 )]u = op(Λ -1 2 )P u + [R, op(Λ -1 2 )]u + µ[C 1 , op(Λ -1 2 )]u + µ 2 [C 0 , op(Λ -1 2 )]u = op(Λ -1 2 )P u + t 1 + t 2 + t 3 . (41) 
Let us estimate t 1 , t 2 and t 3 . We have [R, op(Λ

-1 2 )] ∈ T O 1 2
, then following (37), we have

t 1 2 ≤ C op(Λ 1 2 )u 2 ≤ C op(Λ)u 2 + u 2 ≤ C P u 2 + µ |u| 2 1,0,µ . ( 42 
)
We have

t 3 = µ[C 1 , op(Λ -1 2 )]u = µ[c 1 (x)D xn , op(Λ -1 2 )]u + µ[T 1 , op(Λ - 1 
2 )]u. Then following (37), we obtain

t 2 2 ≤ C µ -1 D xn u 2 + µ u 2 ≤ C P u 2 + µ |u| 2 1,0,µ . (43) 
We have [C 0 , op(Λ -1 2 )] ∈ T O -3 2 , then following (37), we obtain

µ 2 [C 0 , op(Λ -1 2 )]u 2 ≤ Cµ u 2 ≤ C P u 2 + µ |u| 2 1,0,µ (44) 
From ( 41), (42), ( 43) and (44), we have

P op(Λ -1 2 )u 2 ≤ C P u 2 + µ |u| 2 1,0,µ .
Inserting this inequality in (40), we obtain

(D 2 xn + R)op(Λ -1 2 )u 2 ≤ C P u 2 + µ |u| 2 1,0,µ . (45) 
Moreover, we have

(D 2 xn + R)op(Λ -1 2 )u 2 = D 2 xn op(Λ -1 2 )u 2 + Rop(Λ -1 2 )u 2 +2Re(D 2 xn op(Λ -1 2 )u, Rop(Λ -1 2 )u),
where (., .) denoted the scalar product in L 2 . By integration by parts, we find

(D 2 xn + R)op(Λ -1 2 )u 2 = D 2 xn op(Λ -1 2 )u 2 + Rop(Λ -1 2 )u 2 +2Re i(D xn u, Rop(Λ -1 )u) 0 + i(D xn u, [op(Λ -1 2 ), R]op(Λ -1 2 )u) 0 +2Re (RD xn op(Λ -1 2 )u, D xn op(Λ -1 2 )u) + (D xn op(Λ -1 2 )u, [D xn , R]op(Λ -1 2 )u) .( 46 
)
Since, we have

op(Λ 3 2 )u 2 = (op(Λ 2 )op(Λ 1 2 )u, op(Λ 1 2 )u) = j≤n-1 (D 2 j op(Λ 1 2 )u, op(Λ 1 2 )u)+µ 2 (op(Λ 1 2 )u, op(Λ 1 2 )u).
By integration by parts, we find

op(Λ 3 2 )u 2 = j≤n-1 (D j op(Λ 1 
2 )u, D j op(Λ

1 2 )u)+µ 2 op(Λ 1 2 )u 2 = k+µ 2 op(Λ 1 2 )u 2 . ( 47 
) Let χ 0 ∈ C ∞ 0 (R n+1
) such that χ 0 = 1 in the support of u. We have

k = j≤n-1 (χ 0 D j op(Λ 1 
2 )u, D j op(Λ

1 2 )u) + j≤n-1 ((1 -χ 0 )D j op(Λ 1 2 )u, D j op(Λ 1 
2 )u).

Recalling that χ 0 u = u, we obtain

k = j≤n-1 (χ 0 D j op(Λ 1 
2 )u, D j op(Λ

1 2 )u)+ j≤n-1 ([(1-χ 0 ), D j op(Λ 1 
2 )]u, D j op(Λ

1 2 )u) = k ′ +k". (48) Using the fact that [(1 -χ 0 ), D j op(Λ 1 2 )] ∈ T O 1 2 and D j op(Λ 1 2 ) ∈ T O 3 2 , we show k" ≤ C op(Λ)u 2 . ( 49 
)
Using the fact that j,k≤n-1 χ 0 a j,k D j vD k v ≥ δχ 0 j≤n-1 |D j v| 2 , δ > 0, we obtain

k ′ ≤ C j,k≤n-1 (χ 0 a jk D j op(Λ 1 2 )u, D k op(Λ 1 2 )u) ≤ C j,k≤n-1 ([χ 0 , a jk D j op(Λ 1 2 )]u, D k op(Λ 1 
2 )u) + j,k≤n-1

(a jk D j op(Λ 1 2 )u, D k op(Λ 1 
2 )u).

Using the fact that [χ 0 , a jk D j op(Λ

1 2 )] ∈ T O 1 2 and D k op(Λ 1 2 )u ∈ T O 3 2
, we obtain

k ′ ≤ C j,k≤n-1 (a jk D j op(Λ 1 2 )u, D k op(Λ 1 2 )u) + op(Λ)u 2 . ( 50 
)
By integratin by parts and recalling that R = j,k≤n-1 a j,k D j D k , we have

j,k≤n-1 (a jk D j op(Λ 1 2 )u, D k op(Λ 1 
2 )u) = (Rop(Λ 1 2 )u, op(Λ 1 2 )u (51) + j,k≤n-1 ([D k , a jk ]D j op(Λ 1 2 )u, op(Λ 1 2 )u). Since [D k , a jk ]D j op(Λ 1 2 ) ∈ T O 3 2 , then j,k≤n-1 ([D k , a jk ]D j op(Λ 1 2 )u, op(Λ 1 2 )u) ≤ C op(Λ)u 2 .
Following (51), we obtain j,k≤n-1

(a jk D j op(Λ 1 2 )u, D k op(Λ 1 2 )u) ≤ C (Rop(Λ 1 2 )u, op(Λ 1 2 )u) + op(Λ)u 2 . (52) Since (Rop(Λ 1 2 )u, op(Λ 1 2 )u) = (Rop(Λ -1 2 )u, op(Λ 3 2 )u) + ([op(Λ -1 ), R]op(Λ 1 2 )u, op(Λ 3 
2 )u)).

Using the fact that [op(Λ -1 ), R]op(Λ

2 ) ∈ T O 1 2 and the Cauchy Schwartz inequality, we obtain

(Rop(Λ 1 2 )u, op(Λ 1 2 )u) ≤ ǫC op(Λ 3 2 )u 2 + C ǫ Rop(Λ -1 2 )u 2 + C op(Λ)u 2 (53)
Combining ( 47), ( 48), ( 49), ( 50), ( 52) and (53), we obtain

op(Λ 3 2 )u 2 ≤ ǫC op(Λ 3 2 )u 2 + C ǫ Rop(Λ -1 2 )u 2 + C op(Λ)u 2 .
For ǫ small enough, we obtain

Rop(Λ -1 2 )u 2 ≥ C op(Λ 3 2 )u 2 -µ 2 op(Λ 1 2 )u 2 . ( 54 
)
Using the same computations, we show

(RD xn op(Λ -1 2 )u, D xn op(Λ -1 2 )u) ≥ C D xn op(Λ 1 2 )u 2 -µ D xn u 2 . (55) 
Combining ( 46), ( 54) and (55), we obtain

(D 2 xn + R)op(Λ -1 2 )u 2 + (D xn u, Rop(Λ -1 )u) 0 + (D xn u, [op(Λ -1 2 ), R]op(Λ -1 2 )u) 0 + (D xn op(Λ -1 2 )u, [D xn , R]op(Λ -1 2 )u) + µ u 2 1,µ (56) 
≥ C D 2 xn op(Λ -1 2 )u 2 + D xn op(Λ 1 2 )u 2 + op(Λ 3 2 )u 2 . Since (D xn u, Rop(Λ -1 )u) 0 + (D xn u, [op(Λ -1 2 ), R]op(Λ -1 2 )u) 0 ≤ C |D xn u| 2 + |u| 2 1 = C |u| 2 1,0,µ (57) and 
(

D xn op(Λ -1 2 )u, [D xn , R]op(Λ -1 2 )u) ≤ Cµ u 2 1,µ . (58) 
From ( 45), (56), (57), ( 58) and (37), we obtain

D 2 xn op(Λ -1 2 )u 2 + D xn op(Λ 1 2 )u 2 + op(Λ 3 2 )u 2 ≤ C P (x, D, µ)u 2 + µ |u| 2 1,0,µ .
Following (38), we obtain (39).

We are now ready to prove Theorem 3.1. Let χ ∈ C ∞ 0 (R n+1 ) such that χ = 1 in the support of w and u = χop(Λ -1 2 )w. Then

P u = op(Λ -1 2 )P w + [P, op(Λ -1 2 )]w + P [χ, op(Λ -1 2 )]w = op(Λ -1 2 )P w + [P, op(Λ -1 2 )]w + D 2 xn [χ, op(Λ -1 2 )]w + R[χ, op(Λ -1 2 )]w + µc 1 (x)D xn [χ, op(Λ -1 2 )]w + µT 1 [χ, op(Λ -1 2 )]w + µ 2 C 0 [χ, op(Λ -1 2 )]w = op(Λ -1 2 )P w + [P, op(Λ -1 2 )]w + a 1 + a 2 + a 3 + a 4 + a 5 . (59) 
Let us estimate a 1 , a 2 , a 3 , a 4 and a 5 . Recalling that [χ, op(Λ

-1 2 )] ∈ T O -3 2 and χw = w. Using the fact that [D xn , T k ] ∈ T O k for all T k ∈ T O k , we show a 1 2 ≤ C D 2 xn op(Λ -3 2 )w 2 + D xn op(Λ -3 2 )w 2 + op(Λ -3 2 )w 2 (60) and a 3 2 ≤ C µ 2 D xn op(Λ -3 2 )w 2 + µ 2 op(Λ -3 2 )w 2 . ( 61 
) We have R[χ, op(Λ -1 2 )] ∈ T O 1 2 , T 1 [χ, op(Λ -1 2 )] ∈ T O -1 2 and C 0 [χ, op(Λ -1 2 )] ∈ T O -3 2 .
Then we obtain

a 2 2 + a 4 2 + a 5 2 ≤ C op(Λ 1 2 )w 2 . (62) 
Using the same computations made in the proof of Lemma 3.2 (cf t 1 , t 2 and t 3 of (41)), we show

[P, op(Λ -1 2 )]w 2 ≤ C op(Λ 1 2 )w 2 + µ -1 D xn w 2 . (63) 
Following (59), (60), (61), ( 62) and (63), we obtain

P u 2 ≤ C µ -1 P w 2 + op(Λ 1 2 )w 2 + µ -1 D xn w 2 + µ -1 D 2 xn op(Λ -1 )w 2 .
(64) We have

op(b 1 )u = op(b 1 )χop(Λ -1 2 )w = op(Λ -1 2 )op(b 1 )w + op(b 1 )[χ, op(Λ -1 2 )]w.
Recalling that op(b 1 ) ∈ T O 1 , we obtain

µ -1 |op(b 1 )u| 2 1 = µ -1 |op(Λ)op(b 1 )u| 2 ≤ C µ -1 op(Λ 1 2 )op(b 1 )w 2 + µ -1 op(Λ 1 2 )w 2 . ( 65 
)
We have

op(b 2 )u = op(b 2 )χop(Λ -1 2 )w = op(Λ -1 2 )op(b 2 )w+op(b 2 )[χ, op(Λ -1 2 )]w+[op(b 2 ), op(Λ -1 2 )]w. Recalling that op(b 2 ) ∈ D xn + T O 1 , we obtain µ |op(b 2 )u| 2 ≤ C µ op(Λ -1 2 )op(b 2 )w 2 + µ op(Λ -1 2 )w 2 + µ D xn op(Λ -3 2 )w 2 .
(66) Moreover, we have

µ |u| 2 1,0,µ = µ |u| 2 1 + µ |D xn u| 2 = µ |op(Λ)u| 2 + µ |D xn u| 2 . We can write op(Λ)u = op(Λ)χop(Λ -1 2 )w = op(Λ 1 2 )w + op(Λ)[χ, op(Λ -1 2 )]w.
Then

µ |op(Λ)u| 2 ≥ µ op(Λ 1 2 )w 2 -Cµ op(Λ -1 2 )w 2 ≥ µ op(Λ 1 2 )w 2 -Cµ -1 op(Λ 1 2 )w 2 .
For µ large enough, we obtain

µ |op(Λ)u| 2 ≥ Cµ op(Λ 1 2 )w 2 . ( 67 
)
By the same way, we prove, for µ large enough

µ |D xn u| 2 ≥ Cµ D xn op(Λ -1 2 )w 2 . (68) 
Combining ( 67) and ( 68), we obtain

µ |u| 2 1,0,µ ≥ C µ op(Λ 1 2 )w 2 + µ D xn op(Λ -1 2 )w 2 . ( 69 
)
By the same way, we prove

op(Λ 3 2 )u 2 ≥ op(Λ)w 2 -C w 2 , ( 70 
)
D xn op(Λ 1 2 )u 2 ≥ D xn w 2 -C op(Λ -1 )D xn w 2 -C op(Λ -1 )w 2 (71) 
and

D 2 xn op(Λ -1 2 )u 2 ≥ (72) D 2 xn op(Λ -1 )w 2 -C D 2 xn op(Λ -2 )w 2 -C D xn op(Λ -2 )w 2 -C op(Λ -2 )w 2 .
Combining (70), ( 71) and (72), we obtain for µ large enough

D 2 xn op(Λ -1 2 )u 2 + D xn op(Λ 1 2 )u 2 + op(Λ 3 2 )u 2 ≥ C D 2 xn op(Λ -1 )w 2 + D xn w 2 + op(Λ)w 2 . ( 73 
)
Combining (39), ( 64), ( 65), (66), ( 69) and (73), we obtain (27), for µ large enough.

4 Proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2.

Study of the eigenvalues

The proof is based on a cutting argument related to the nature of the roots of the polynomial p j (x, ξ ′ , ξ n , µ), j = 1, 2, in ξ n . On x n = 0, we note

q 1 (x ′ , ξ ′ , µ) = q 1,1 (0, x ′ , ξ ′ , µ) = q 1,2 (0, x ′ , ξ ′ , µ).
Let us introduce the following micro-local regions

E + 1/ 2 = (x, ξ ′ , µ) ∈ K × R n , q 2,1/ 2 + q 2 1 ( ∂ϕ 1/ 2 ∂xn ) 2 > 0 , Z 1/ 2 = (x, ξ ′ , µ) ∈ K × R n , q 2,1/ 2 + q 2 1 ( ∂ϕ 1/ 2 ∂xn ) 2 = 0 , E - 1/ 2 = (x, ξ ′ , µ) ∈ K × R n , q 2,1/ 2 + q 2 1 ( ∂ϕ 1/ 2 ∂xn ) 2 < 0 .
(Here and in the following the index 1/ 2 using for telling 1 or 2). We decompose p 1/ 2 (x, ξ, µ) as a polynomial in ξ n . Then we have the following lemma describing the various types of the roots of p 1/ 2 . Lemma 4.1 We have the following 

1. For (x, ξ ′ , µ) ∈ E + 1/ 2 , the roots of p 1/ 2 denoted z ± 1/ 2 satisfy ± Im z ± 1/ 2 > 0. 2. For (x, ξ ′ , µ) ∈ Z 1/ 2 ,
           p 1 (x ′ , ξ, µ) = ξ n + iµ ∂ϕ 1 ∂x n -iα 1 ξ n + iµ ∂ϕ 1 ∂x n + iα 1 , p 2 (x ′ , ξ, µ) = ξ n + iµ ∂ϕ 2 ∂x n -iα 2 ξ n + iµ ∂ϕ 2 ∂x n + iα 2 , (74) 
where

α j ∈ C, j = 1, 2, defined by            α 2 1 (x ′ , ξ ′ , µ) = µ ∂ϕ 1 ∂x n 2 + q 2,1 + 2iµq 1 , α 2 2 (x ′ , ξ ′ , µ) = µ ∂ϕ 2 ∂x n 2 -µ 2 + q 2,1 + 2iµq 1 . (75) 
We set 

z ± 1/ 2 = -iµ ∂ϕ 1/ 2 ∂x n ± iα 1/ 2 , ( 
∂ϕ 1 ∂x n 2 - ∂ϕ 2 ∂x n 2 > 1, ( 77 
)
then the following estimate holds

q 2,2 -µ 2 + q 2 1 (∂ϕ 2 /∂x n ) 2 > q 2,1 + q 2 1 (∂ϕ 1 /∂x n ) 2 . ( 78 
)
Proof.

Following ( 22), on {x n = 0}, we have

q 2,2 (x, ξ ′ , µ) -q 2,1 (x, ξ ′ , µ) = µ ∂ϕ 1 ∂x n 2 -µ ∂ϕ 2 ∂x n 2 . ( 79 
)
Using (77), we have (78).

Remark 4.1 The result of this lemma imply that

E + 1 ⊂ E + 2 .

Estimate in E +

In this part we study the problem in the elliptic region E + . In this region we can inverse the operator and use the Calderon projectors. Let χ + (x, ξ ′ , µ) ∈ T S 0 µ such that in the support of χ + we have q 2,1 + q 2 1 (∂ϕ 1 /∂xn) 2 ≥ δ > 0. Then we have the following partial estimate. Proposition 4.1 There exists a constant C > 0 and µ 0 > 0 such that for any µ ≥ µ 0 , we have

µ 2 op(χ + )u 2 1,µ ≤ C P (x, D, µ)u 2 + u 2 1,µ + µ |u| 2 1,0,µ , ( 80 
)
for any u ∈ C ∞ 0 (Ω 2 ).
If we suppose moreover that ϕ satisfies (77) then the following estimate holds

µ op(χ + )u 2 1,0,µ ≤ C P (x, D, µ)u 2 + µ -1 |op(b 1 )u| 2 1 + µ |op(b 2 )u| 2 + u 2 1,µ + µ -2 |u| 2 1,0,µ , (81) for any u ∈ C ∞ 0 (Ω 2
) and b j , j = 1, 2, defined in (24).

Proof

Let ũ = op(χ + )u. Then we get

     P ũ = f in {x n > 0} , op(b 1 )ũ = ũ0 | xn=0 -iµṽ 0 | xn=0 = ẽ1 on {x n = 0} , op(b 2 )ũ = D xn + iµ ∂ϕ 1 ∂xn ũ0 | xn=0 + D xn + iµ ∂ϕ 2 ∂xn ṽ0 | xn=0 = ẽ2 on {x n = 0} , ( 82 
) with f = op(χ + )f + [P, op(χ + )] u. Since [P, op(χ + )] ∈ (T O 0 )D xn + T O 1 , we have f 2 L 2 ≤ C P (x, D, µ)u 2 L 2 + u 2 1,µ (83) 
and ẽ1 = op(χ

+ )e 1 satisfying |ẽ 1 | 2 1 ≤ C |e 1 | 2 1 (84) and ẽ2 
= (D xn + iµ ∂ϕ 1 ∂xn ), op(χ + ) u 0 | xn=0 + (D xn + iµ ∂ϕ 2 ∂xn ), op(χ + ) v 0 | xn=0 + op(χ + )e 2 .
Since [D xn , op(χ + )] ∈ T O 0 , we have

|ẽ 2 | 2 ≤ C |u| 2 + |e 2 | 2 . ( 85 
)
Let ũ the extension of ũ by 0 in x n < 0. According to (21), ( 22) and (23), we obtain, by noting ∂ϕ/∂x n = diag (∂ϕ

1 /∂x n , ∂ϕ 2 /∂x n ), γ j (ũ) = t D j xn (ũ 0 ) | xn=0 + , D j xn (ṽ 0 ) | xn=0 + , j = 0, 1 and δ (j) = (d/dx n ) j (δ xn=0 ), P ũ = f -γ 0 (ũ) ⊗ δ ′ + 1 i γ 1 (ũ) + 2iµ ∂ϕ ∂x n ⊗ δ (86) 
Let χ(x, ξ, µ) ∈ S 0 µ equal to 1 for sufficiently large |ξ| + µ and in a neighborhood of supp(χ + ) and satisfies that in the support of χ we have p is elliptic. These conditions are compatible from the choice made for supp(χ + ) and Remark 4.1. Let m large enough chosen later, by the ellipticity of p on supp(χ) there exists E = op(e) a parametrix of P . We recall that e ∈ S -2 µ , of the form e(x, ξ, µ) = m j=0 e j (x, ξ, µ), where e 0 = χp -1 and e j = diag(e j,1 , e j,2 ) ∈ S -2-j µ such that e j,1 and e j,2 are rational fractions in ξ n . Then we have

EP = op(χ) + R m , R m ∈ O -m-1 . (87) 
Following ( 86) and (87), we obtain

                   ũ = E f + E -h 1 ⊗ δ ′ + 1 i h 0 ⊗ δ + w 1 , h 0 = γ 1 (ũ) + 2iµ ∂ϕ ∂x n γ 0 (ũ), h 1 = γ 0 (ũ), w 1 = (Id -op(χ)) ũ -R m ũ. (88) 
Using the fact that supp(1 -χ) ∩ supp(χ + ) = ∅ and symbolic calculus (See Lemma 2.10 in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]), we have (Id -op(χ)) op(χ + ) ∈ O -m , then we obtain

w 1 2 2,µ ≤ Cµ -2 u 2 L 2 . (89) 
Now, let us look at this term

E -h 1 ⊗ δ ′ + 1 i h 0 ⊗ δ . For x n > 0, we get                        E -h 1 ⊗ δ ′ + 1 i h 0 ⊗ δ = T1 h 1 + T0 h 0 , Tj (h) = 1 2π n-1 e i(x ′ -y ′ )ξ ′ tj (x, ξ ′ , µ)h(y ′ )dy ′ dξ ′ = op( tj )h tj = 1 2πi γ e ixnξn e(x, ξ, µ)ξ j n dξ n
where γ is the union of the segment

{ξ n ∈ R, |ξ n | ≤ c 0 |ξ ′ | 2 + µ 2 } and the half circle {ξ n ∈ C, |ξ n | = c 0 |ξ ′ | 2 + µ 2 , Imξ n > 0}
, where the constant c 0 is chosen sufficiently large so as to have the roots z + 1 and z + 2 inside the domain with boundary γ (If c 0 is large enough, the change of contour R -→ γ is possible because the symbol e(x, ξ, µ) is holomorphic for large |ξ n |; ξ n ∈ C). In particular we have in

x n ≥ 0 ∂ k xn ∂ α x ′ ∂ β ξ ′ tj ≤ C α,β,k ξ ′ , µ j-1-|β|+k , j = 0, 1. (90) 
We now choose χ 1 (x, ξ ′ , µ) ∈ T S 0 µ , satisfying the same requirement as χ + , equal to 1 in a neighborhood of supp(χ + ) and such that the symbol χ be equal to 1 in a neighborhood of supp(χ 1 ). We set t j = χ 1 tj , j = 0, 1. Then we obtain

ũ = E f + op(t 0 )h 0 + op(t 1 )h 1 + w 1 + w 2 (91) 
where w 2 = op((1 -χ 1 ) t0 )h 0 + op((1 -χ 1 ) t1 )h 1 . By using the composition formula of tangential operator, estimate (90), the fact that supp(1 -χ 1 ) ∩ supp(χ + ) = ∅ and the following trace formula

|γ 0 (u)| j ≤ Cµ -1 2 u j+1,µ , j ∈ N, (92) 
we obtain

w 2 2 2,µ ≤ Cµ -2 u 2 1,µ + |u| 2 1,0,µ . (93) 
Since χ = 1 in the support of χ 1 , we have e(x, ξ, µ) is meromorphic w.r.t ξ n in the support of χ

1 . z + 1/ 2 are in Imξ n ≥ c 1 |ξ ′ | 2 + µ 2 (c 1 > 0). If c 1 is small enough we can choose γ 1/ 2 in Imξ n ≥ c 1 2 |ξ ′ | 2 + µ 2 and
we can write

t j = diag(t j,1 , t j,2 ), t j,1/ 2 (x, ξ ′ , µ) = χ 1 (x, ξ ′ , µ) 1 2πi γ 1/ 2
e ixnξn e 1/ 2 (x, ξ, µ)ξ j n dξ n , j = 0, 1.

(94) Then there exists c 2 > 0 such that in x n ≥ 0, we obtain

∂ k xn ∂ α x ′ ∂ β ξ ′ t j ≤ C α,β,k e -c 2 xn ξ ′ ,µ ξ ′ , µ j-1-|β|+k . (95) 
In particular, we have e c 2 xnµ (∂ k xn )t j is bounded in T S j-1+k µ uniformly w.r.t x n ≥ 0. Then

∂ x ′ op(t j )h j 2 L 2 + op(t j )h j 2 L 2 ≤ C xn>0 e -2c 2 xnµ |op(e c 2 xnµ t j )h j | 2 1 (x n )dx n ≤ Cµ -1 |h j | 2 j and ∂ xn op(t j )h j 2 L 2 ≤ C xn>0 e -2c 2 xnµ |op(e c 2 xnµ ∂ xn t j )h j | 2 L 2 (x n )dx n ≤ Cµ -1 |h j | 2 j .
Using the fact that h 0 = γ 1 (ũ) + 2iµ ∂ϕ ∂xn γ 0 (ũ) and h 1 = γ 0 (ũ), we obtain

op(t j )h j 2 1,µ ≤ Cµ -1 |u| 2 1,0,µ . (96) 
From (91) and estimates (83), (89), ( 93) and (96), we obtain (80). It remains to proof (81). We recall that, in supp(χ 1 ), we have

e 0 = diag (e 0,1 , e 0,2 ) = diag 1 p 1 , 1 p 2 = diag 1 (ξ n -z + 1 )(ξ n -z - 1 ) , 1 (ξ n -z + 2 )(ξ n -z - 2 )
.

Using the residue formula, we obtain

e -ixnz + 1/ 2 t j,1/ 2 = χ 1 (z + 1/ 2 ) j z + 1/ 2 -z - 1/ 2 + λ 1/ 2 , j = 0, 1, λ 1/ 2 ∈ T S -2+j µ . ( 97 
)
Taking the traces of (91), we obtain

γ 0 (ũ) = op(c)γ 0 (ũ) + op(d)γ 1 (ũ) + w 0 , (98) 
where w 0 = γ 0 (E f + w 1 + w 2 ) satisfies, according to the trace formula (92), the estimates (83), ( 89) and (93), the following estimate

µ |w 0 | 2 1 ≤ C P (x, D, µ)u 2 + u 2 1,µ + µ -2 |u| 2 1,0,µ (99) 
and following (96), c and d are two tangential symbols of order respectively 0 and -1 given by

c 0 = diag(c 0,1 , c 0,2 ) with c 0,1/ 2 = -χ 1 z - 1/ 2 z + 1/ 2 -z - 1/ 2 , d -1 = diag(d -1,1 , d -1,2 ) with d -1,1/ 2 = χ 1 1 z + 1/ 2 -z - 1/ 2 .
Following (82), the transmission conditions give    γ 0 (ũ 0 ) -iµγ 0 (ṽ 0 ) = ẽ1 γ 1 (ũ 0 ) + γ 1 (ṽ 0 ) + iµ ∂ϕ 1 ∂xn γ 0 (ũ 0 ) + iµ ∂ϕ 2 ∂xn γ 0 (ṽ 0 ) = ẽ2 .

(100)

We recall that ũ = (ũ 0 , ṽ0 ), combining (98) and (100) we show that

op(k) t γ 0 (ũ 0 ), γ 0 (ṽ 0 ), Λ -1 γ 1 (ũ 0 ), Λ -1 γ 1 (ṽ 0 ) = w 0 + 1 µ op     0 0 1 0     ẽ1 +op     0 0 0 1     Λ -1 ẽ2 , ( 101 
)
where k is a 4 × 4 matrix, with principal symbol defined by

k 0 + 1 µ r 0 =             1 -c 0,1 0 -Λ d -1,1 0 0 1 -c 0,2 0 -Λ d -1,2 0 -i 0 0 iµΛ -1 ∂ϕ 1 ∂x n iµΛ -1 ∂ϕ 2 ∂x n 1 1             + 1 µ r 0 ,
where r 0 is a tangential symbol of order 0. We now choose χ 2 (x, ξ ′ , µ) ∈ T S 0 µ , satisfying the same requirement as χ + , equal to 1 in a neighborhood of supp(χ + ) and such that the symbol χ 1 be equal to 1 in a neighborhood of supp(χ 2 ). In supp(χ 2 ), we obtain

k 0 | supp(χ 2 ) =                 z + 1 z + 1 -z - 1 0 - Λ z + 1 -z - 1 0 0 z + 2 z + 2 -z - 2 0 - Λ z + 2 -z - 2 0 -i 0 0 iµΛ -1 ∂ϕ 1 ∂x n iµΛ -1 ∂ϕ 2 ∂x n 1 1                 .
Then, following (76),

det(k 0 )| supp(χ 2 ) = -z + 1 -z - 1 -1 z + 2 -z - 2 -1 Λ α 1 .
To prove that there exists c > 0 such that det(k 0 )| supp(χ 2 ) ≥ c, by homogeneity it suffices to prove that det(k

0 )| supp(χ 2 ) = 0 if |ξ ′ | 2 + µ 2 = 1.
If we suppose that det(k 0 )| supp(χ 2 ) = 0, we obtain α 1 = 0 and then α 2 1 = 0. Following (75),we obtain

q 1 = 0 and µ ∂ϕ 1 ∂x n 2 + q 2,1 = 0.
Combining with the fact that q 2,1 +

q 2 1
(∂ϕ 1 /∂xn) 2 > 0, we obtain

-µ ∂ϕ 1 ∂x n 2 > 0.
Therefore det(k 0 )| supp(χ 2 ) = 0. It follows that, for large µ, k = k 0 + 1 µ r 0 is elliptic in supp(χ 2 ). Then there exists l ∈ T S 0 µ , such that

op(l)op(k) = op(χ 2 ) + Rm ,
with Rm ∈ T O -m-1 , for m large. This yields t (γ 0 (ũ 0 ), γ 0 (ṽ 0 ), Λ -1 γ 1 (ũ 0 ), Λ -1 γ 1 (ṽ 0 )) = op(l)w 0 + 1 µ op(l)op

    0 0 1 0     ẽ1 + op(l)op     0 0 0 1     Λ -1 ẽ2
+ (op(1 -χ 2 ) -Rm ) t (γ 0 (ũ 0 ), γ 0 (ṽ 0 ), Λ -1 γ 1 (ũ 0 ), Λ -1 γ 1 (ṽ 0 )) .

Since supp(1 -χ 2 ) ∩ supp(χ + ) = ∅ and by using (99), we obtain

µ|ũ| 2 1,0,µ ≤ C µ -1 |ẽ 1 | 2 1 + µ|ẽ 2 | + P (x, D, µ)u 2 L 2 + u 2 1,µ + µ -2 |u| 2 1,0,µ .
From estimates (84) and (85) and the trace formula (92), we obtain (81).

Estimate in Z 1

The aim of this part is to prove the estimate in the region Z 1 . In this region, if ϕ satisfies (77), the symbol p 1 (x, ξ, µ) admits a real roots and p 2 (x, ξ, µ) admits two roots z ± 2 satisfy ± Im(z ± 2 ) > 0. Let χ 0 (x, ξ ′ , µ) ∈ T S 0 µ equal to 1 in Z 1 and such that in the support of χ 0 we have q 2,2 -µ 2 + q 2 1 (∂ϕ 2 /∂xn) 2 ≥ δ > 0. Then we have the following partial estimate. Proposition 4.2 There exists constants C > 0 and µ 0 > 0 such that for any µ ≥ µ 0 we have the following estimate

µ op(χ 0 )u 2 1,µ ≤ C P (x, D, µ)u 2 + µ |u| 2 1,0,µ + u 2 1,µ , (102) 
for any u ∈ C ∞ 0 (Ω 2 ). If we assume moreover that ϕ satisfies (77) then we have

µ op(χ 0 )u 2 1,0,µ ≤ C P (x, D, µ)u 2 + µ -1 |op(b 1 )u| 2 1 + µ |op(b 2 )u| 2 + u 2 1,µ + µ -2 |u| 2 1,0,µ , (103) for any u ∈ C ∞ 0 (Ω 2
) and b j , j = 1, 2, defined in (24).

Preliminaries

Let u ∈ C ∞ 0 (K), ũ = op(χ 0 )u and P the differential operator with principal symbol given by

p(x, ξ, µ) = ξ 2 n + q 1 (x, ξ ′ , µ)ξ n + q 2 (x, ξ ′ , µ)
where q j = diag(q j,1 , q j,2 ), j = 1, 2. Then we have the following system  

 P ũ = f in {x n > 0}, B ũ = ẽ = (ẽ 1 , ẽ2 ) on {x n = 0}, (104) 
where

f = op(χ 0 )f + [P, op(χ 0 )] u. Since [P, op(χ 0 )] ∈ (T O 0 )D xn + T O 1 , we have f 2 L 2 ≤ C P (x, D, µ)u 2 L 2 + u 2 1,µ , (105) 
B defined in (24) and ẽ1 = op(χ 0 )e 1 satisfying

|ẽ 1 | 2 1 ≤ C |e 1 | 2 1 (106) and ẽ2 = (D xn + iµ ∂ϕ 1 ∂xn ), op(χ 0 ) u 0 | xn=0 + (D xn + iµ ∂ϕ 2 ∂xn ), op(χ 0 ) v 0 | xn=0 + op(χ 0 )e 2 .
Since [D xn , op(χ + )] ∈ T O 0 , we have

|ẽ 2 | 2 ≤ C |u| 2 + |e 2 | 2 . ( 107 
)
Let us reduce the problem (104) to a first order system. Put v = t ( D ′ , µ ũ, D xn ũ). Then we obtain the following system respectively. We suppose that the symbols of E and F are two square matrices and have disjoint sets of eigenvalues. Then there exists a pseudo-differential operator K of order -1 such that w = (I + K)v satisfies

   D xn v -op(P)v = F in {x n > 0}, op(B)v = ( 1 µ Λẽ 1 , ẽ2 ) on {x n = 0}, (108) 
∂ ∂y w = Gw + α 1 α 2 w + R 1 w + R 2 v
where α j and R j , j = 1, 2 are pseudo-differential operators of order 0 and -∞, respectively.

By this argument, there exists a pseudo-differential operator K(x, D x ′ , µ) of order -1 such that the boundary problem ( 109) is reduced to the following

   D xn w -op(H)w = F in {x n > 0}, op( B)w = ( 1 µ Λẽ 1 , ẽ2 ) + v 1 + v 2 on {x n = 0}, (112) 
where

w = (I + K)V , F = (I + K)F 1 , op(H) is a tangential of order 1 with principal symbol H = diag(H -, H + ) and -Im(H -) ≥ CΛ, op( B) = op(B 1 )(I + K ′ ) with K ′ is such that (I + K ′ )(I + K) = Id + R ′ m (R ′ m ∈ O -m-1
, for m large) and v 2 = op(B 1 )R ′ m V . According to (110), we have

F 2 ≤ C P (x, D, µ)u 2 L 2 + u 2 1,µ . (113) 
Using the fact that R ′ m ∈ O -m-1 , for m large, the trace formula (92) and estimates (106), (107) and (111), we show

µ op( B)w 2 ≤ C 1 µ |e 1 | 2 1 + µ |e 2 | 2 + µ -2 |u| 2 1,0,µ + u 2 1,µ . ( 114 
) Lemma 4.4 Let R = diag(-ρId 2 , 0), ρ > 0. Then there exists C > 0 such that 1. Im(RH) = diag (e(x, ξ ′ , µ), 0), with e(x, ξ ′ , µ) = -ρIm(H -), 2. e(x, ξ ′ , µ) ≥ CΛ in supp (χ 0 ), 3. -R + B⋆ B ≥ C.Id on {x n = 0} ∩ supp (χ 0 ).
Combining ( 123) and (125), we obtain (121). It remains to proof (122). We take the trace at x n = 0 + of (124),

γ 0 (ũ 0 ) = w 0,1 = γ 0 (E f 1 + w 1,1 + w 2,1 ),
which, by the counterpart of (99), gives

µ |γ 0 (ũ 0 )| 2 1 ≤ C P 1 (x, D, µ)u 0 2 + u 0 2 1,µ + µ -2 |u 0 | 2 1,0,µ . (126) 
From (124) we also have

D xn ũ0 = D xn E f 1 + D xn w 1,1 + D xn w 2,1 , for x n > 0.
We take the trace at x n = 0 + and obtain

γ 1 (ũ 0 ) = γ 0 (D xn (E f 1 + w 1,1 + w 2,1 )).
Using the trace formula (92), we obtain

|γ 1 (ũ 0 )| 2 ≤ Cµ -1 D xn (E f 1 + w 1,1 + w 2,1 ) 2 1,µ ≤ Cµ -1 E f 1 + w 1,1 + w 2,1 2 
2,µ and, by the counterpart of ( 83), ( 89) and (93), this yields

µ |γ 1 (ũ 0 )| 2 ≤ C P 1 (x, D, µ)u 0 2 + u 0 2 1,µ + µ -2 |u 0 | 2 1,0,µ . (127) 
Combining ( 126) and (127), we obtain µ op(χ -)u 0 Then we have (122).

End of the proof

We choose a partition of unity χ + + χ 0 + χ -= 1 such that χ + , χ 0 and χ -satisfy the properties listed in proposition 4.1, 4.2 and 4.3 respectively. We have u 2 1,µ ≤ op(χ + )u Combining this inequality and (80), ( 102) and (121), we obtain, for large µ, the first estimate (37) of Theorem 3.2. i.e. Inserting (132) in (37) and for large µ, we obtain (38).

Recalling that µ ≥ 1, we have for ǫ small enough

χu 2 ≤ C ∇u 2 + f 2 . ( 133 
)
Hence the result inside O. Using the Cauchy Schwartz inequality, we obtain

|u(x ′ , x n )| 2 ≤ 2 |u(x ′ , ǫ)| 2 + 2ǫ 2 ǫ 0 |∂ xn u(x ′ , x n )| 2 dx n .
Integrating with regard to x ′ , we obtain 

|x ′ |<ǫ |u(x ′ , x n )| 2 dx ′ ≤ 2 |x ′ |<ǫ |u(x ′ , ǫ)| 2 dx ′ +2ǫ
) Since ξ ′ , µ s η ′ , µ -s ξ ′ -η ′ , µ 2R dξ ′ = |ξ ′ |≤ 1 ǫ |η ′ | ξ ′ , µ s η ′ , µ -s ξ ′ -η ′ , µ 2R dξ ′ + |η ′ |≤ǫ|ξ ′ | ξ ′ , µ s +η ′ , µ -s ξ ′ -η ′ , µ 2R dξ ′ , ǫ > 0. If |ξ ′ | ≤ 1 ǫ |η ′ |, we have ξ ′ , µ s η ′ , µ -s ξ ′ -η ′ , µ 2R ≤ C η ′ , µ s η ′ , µ -s ξ ′ -η ′ , µ 2R ≤ C ξ ′ -η ′ , µ 2R ∈ L 1 if 2R > n -1. 135 
If |η ′ | ≤ ǫ |ξ ′ |, i.e ξ ′ -η ′ , µ ≥ δ ξ ′ , µ , δ > 0, we have

ξ ′ , µ s η ′ , µ -s ξ ′ -η ′ , µ 2R ≤ C ξ ′ -η ′ , µ 2R-s ∈ L 1 if 2R -s > n -1.
Then there exists M > 0, such that

|K(ξ ′ , η ′ )| dξ ′ ≤ Me Cµ .
By the same way, we show that there exists N > 0, such that

|K(ξ ′ , η ′ )| dη ′ ≤ Ne Cµ .
Using Lemma of Schur, we have (op(Λ s )e µϕ χop(Λ -s )) is bounded in L 2 and op(Λ s )e µϕ χop(Λ -s ) L(L 2 ) ≤ Ce Cµ .

Applying in op(Λ s )u, we obtain the result.

Lemma 2 . 1

 21 Let O be a bounded open set of R n . Then there exists C > 0 such that for u and f satisfying (△ -iµ)u = f in O, µ ≥ 1, we have the following estimate

Lemma 4 . 3

 43 Let v solves the system ∂ ∂y v = Gv + Av where G = E F and A are pseudo-differential operators of order 1 and 0,

2 1 ,+ u 0 2 1

 12 0,µ ≤ C P 1 (x, D, µ)u 0 2 ,µ + µ -2 |u 0 | 2 1,0,µ .

2 1 , 2 1 2 1

 122 µ + op(χ 0 )u ,µ + op(χ -)u ,µ .

µ u 2 1 , 2 1 2 1 1 . 2 . 1 .

 122121 µ ≤ C P (x, D, µ)u 2 + µ |u| 2 1,0,µ .It remains to estimate µ |u|2 1,0,µ . We begin by giving an estimate of µ |u 0 | 2 1,0,µ . We have|u 0 | 21,0,µ ≤ op(χ + )u 0 ,0,µ + op(χ 0 )u 0 ,0,µ + op(χ -µ . Combining these inequalities, (81), (103), (122) and the fact thatµ -2 |u| 2 1,0,µ = µ -2 |u 0 | 2 1,0,µ + µ -2 |v 0 | 2 1,0,µ , we obtain, for large µ µ |u 0 | 2 1,0,µ ≤ C P (x, D, µ)u 2 + µ -1 |op(b 1 )u| 2 1 + µ |op(b 2 )u| 2 + µ -2 |v 0 | 2 1,0,µ + u 2 1,µ . (128) For estimate µ |v 0 | 21,0,µ , we need to use the transmission conditions given by (24). We haveop(b 1 )u = u 0 | xn=0 -iµv 0 | xn=0 on {x n = 0} . Then µ |v 0 | 2 1 ≤ C µ -1 |u 0 | 2 1 + µ -1 |op(b 1 )u| 2 Since we have µ -1 |u 0 | 2 1 ≤ µ |u 0 | 21,0,µ . Then using (128), we obtainµ |v 0 | 2 1 ≤ C P (x, D, µ)u 2 + µ -1 |op(b 1 )u| 2 1 + µ |op(b 2 )u| 2 + µ -2 |v 0 | 2 1,0,µ + u 2 1,µ . (129) We have also op(b 2 )u = D xn + iµ ∂ϕ 1 ∂x n u 0 | xn=0 + D xn + iµ ∂ϕ 2 ∂x n v 0 | xn=0 on {x n = 0} . Then µ |D xn v 0 | 2 ≤ C µ |op(b 2 )u| 2 + µ |D xn u 0 | 2 + µ 3 |u 0 | 2 + µ 3 |v 0 | Using the fact that |u| k-1 ≤ µ -1 |u| k , we obtain µ |D xn v 0 | 2 ≤ C µ |op(b 2 )u| 2 + µ |D xn u 0 | 2 + µ |u 0 | 2 1 + µ |v 0 | 2 Since we have µ |u 0 | 2 1,0,µ = µ |D xn u 0 | 2 + µ |u 0 | 2 1 .Then using (128) and (129), we obtainµ |D xn v 0 | 2 ≤ C P (x, D, µ)u 2 + µ -1 |op(b 1 )u| 2 1 + µ |op(b 2 )u| 2 + µ -2 |v 0 | 2 1,0,µ + u 2 1,µ .(130) Combining (129) and (130), we haveµ |v 0 | 2 1,0,µ ≤ C P (x, D, µ)u 2 + µ -1 |op(b 1 )u| 2 1 + µ |op(b 2 )u| 2 + u 2 1,µ .(131) Combining (128) and (131), we obtain µ |u| 2 1,0,µ ≤ C P (x, D, µ)u 2 + µ -1 |op(b 1 )u| 2 1 + µ |op(b 2 )u| 2 + u 2 1,µ . (132)

2 .

 2 In the neighborhood of the boundaryLet x = (x ′ , x n ) ∈ R n-1 × R. Then ∂O = {x ∈ R n , x n = 0}.Let ǫ > 0 such that 0 < x n < ǫ. Then we haveu(x ′ , ǫ) -u(x ′ , x n ) = ǫ xn ∂ xn u(x ′ , σ)dσ. Then |u(x ′ , x n )| 2 ≤ 2 |u(x ′ , ǫ)| 2 + 2 ǫ xn |∂ xn u(x ′ , σ)| dσ 2 .

  one of the roots of p 1/ 2 is real.

		∂ϕ 1/ 2 ∂xn < 0
	(resp. in the half-plane Imξ n < 0 if	∂ϕ 1/ 2 ∂xn > 0).
	Proof.	
	Using (21) and (22), we can write	

3. For

(x, ξ ′ , µ) ∈ E - 1/ 2 ,

the roots of p 1/ 2 are in the half-plane Imξ n > 0 if

  76) the roots of p 1/ 2 . The imaginary parts of the roots of p 1/ 2 are The signs of the imaginary parts are opposite if ∂ϕ 1/ 2 /∂x n < Re α 1/ 2 , equal to the sign of -∂ϕ 1/ 2 /∂x n if ∂ϕ 1/ 2 /∂x n > Re α 1/ 2 and one of the imaginary parts is null if ∂ϕ 1/ 2 /∂x n = Re α 1/ 2 . However the lines Re z = ±µ ∂ϕ 1/ 2 /∂x n change by the application z→ z ′ = z 2 into the parabolic curve Re z ′ = µ ∂ϕ 1/ 2 /∂x n 2 -|Im z ′ | 2 /4(µ ∂ϕ 1/ 2 /∂x n ) 2 .Thus we obtain the lemma by replacing z ′ by α 2 1/ 2 . If we assume that the function ϕ satisfies the following condition

	-µ	∂ϕ 1/ 2 ∂x n	-Re α 1/ 2 , -µ	∂ϕ 1/ 2 ∂x n	+ Re α 1/ 2 .
	Lemma 4.2				

  2 |x ′ |<ǫ, |xn|<ǫ|∂ xn u(x ′ , x n )| 2 dx n dx ′ .

						(134)
	Using the trace Theorem, we have		
	|x ′ |<ǫ	|u(x ′ , ǫ)|	2 dx ′ ≤ C	|x ′ |<2ǫ, |xn-ǫ|< ǫ 2	(|u(x)| 2 + |∇u(x)| 2 )dx.	(

where P is a 4 × 4 matrix, with principal symbol defined by

, B is a tangential symbol of order 0, with principal symbol given by

(r 0 a tangential symbol of order 0) and F = t (0, f). For a fixed (x 0 , ξ ′ 0 , µ 0 ) in suppχ 0 , the generalized eigenvalues of the matrix P are the zeroes in ξ n of p 1 and p 2 i.e z ± 1 = -iµ ∂ϕ 1 ∂xn ± iα 1 and z ± 2 = -iµ ∂ϕ 2 ∂xn ± iα 2 with ±Im(z ±

2 ) > 0 and z + 1 ∈ R. We note s(x, ξ ′ , µ) = (s - 1 , s - 2 , s + 1 , s + 2 ) a basis of the generalized eigenspace of P(x 0 , ξ ′ 0 , µ 0 ) corresponding to eigenvalues with positive or negative imaginary parts. s ± j (x, ξ ′ , µ), j = 1, 2 is a C ∞ function on a conic neighborhood of (x 0 , ξ ′ 0 , µ 0 ) of a degree zero in (ξ ′ , µ). We denote op(s)(x, D x ′ , µ) the pseudo-differential operator associated to the principal symbol s(x, ξ

µ equal to 1 in a conic neighborhood of (x 0 , ξ ′ 0 , µ 0 ) and in a neighborhood of supp(χ 0 ) and satisfies that in the support of χ, s is elliptic. Then there exists n ∈ T S 0 µ , such that

Then we have the following system   

where

Using the fact that supp(1χ) ∩ supp(χ 0 ) = ∅, Rm ∈ T O -m-1 , for m large and estimate (105), we show

Using the fact that supp(1

, for m large and the trace formula (92), we show

Here we need to recall an argument shown in Taylor [START_REF] Taylor | Reflection of singularities of solutions to systems of differential equations[END_REF] given by this lemma Proof Denote the principal symbol B of the boundary operator op( B) by B-, B+ where B+ is the restriction of B to subspace generated by s + 1 , s + 2 . We begin by proving that B+ is an isomorphism. Denote w 1 = t (1, 0) and w 2 = t (0, 1).

To proof that B+ is an isomorphism it suffices, for large µ, to proof that B + 0 is an isomorphism. Following (76), we obtain

If we suppose that det(B + 0 ) = 0, we obtain α 1 = 0 and then α 2 1 = 0. Following (75), we obtain

Combining with the fact that q 2,1 + 

where e(x, ξ

Then we have Bw = Bw -+ B+ w + . Since B+ is an isomorphism, then there exists a constant C > 0 such that

Therefore, we have

We deduce

Then, we obtain the result, if ρ is large enough.

Proof of proposition 4.2

We start by showing (102). We have

By integration by parts we find

Then we have

We show the same thing for P 2 (x, D, µ)v 0 . In addition we know that the principal symbol of the operator [ReP j , ImP j ], j = 1, 2, is given by {ReP j , ImP j }. Proceeding like Lebeau and Robbiano in paragraph 3 in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], we obtain (102).

It remains to prove (103). Following Lemma 4.4, let G(

The integration in the normal direction gives

From Lemma 4.4 and the Gårding inequality, we obtain, for µ large,

Applying Lemma 4.4 and the Gårding inequality, we obtain, for µ large,

Combining ( 119), ( 118), ( 117) and (116), we get

Recalling that w = (I + K)V , V = op(n)v, v = t ( D ′ , µ ũ, D xn ũ) and ũ = op(χ 0 )u and using estimates (113) and (114), we prove (103).

Estimate in E -

This part is devoted to estimate in region

µ equal to 1 in E - 1 and such that in the support of χ -we have q 2,1 + q 2 1 (∂ϕ 1 /∂xn) 2 ≤ -δ < 0. Then we have the following partial estimate. Proposition 4.3 There exists constants C > 0 and µ 0 > 0 such that for any µ ≥ µ 0 we have the following estimate

for any u ∈ C ∞ 0 (Ω 2 ). If we assume moreover that ∂ϕ 1 ∂xn > 0 then we have

for any u = (u 0 , v 0 ) ∈ C ∞ 0 (Ω 2 ).

Proof.

Let ũ = op(χ -)u = (op(χ -)u 0 , op(χ -)v 0 ) = (ũ 0 , ṽ0 ).

In this region we have not a priori information for the roots of p 2 (x, ξ, µ). Using the same technique of the proof of (102), we obtain

In supp(χ -) the two roots z ± 1 of p 1 (x, ξ, µ) are in the half-plane Imξ n < 0. Then we can use the Calderon projectors. By the same way that the proof of (80) and using the fact that the operators t 0,1 and t 1,1 vanish in x n > 0 (because the roots are in Imξ n < 0, see (94)), the counterpart of ( 91) is then

We then obtain (see proof of (80))

Appendix A

This appendix is devoted to prove Lemma 2.1. For this, we need to distinguish two cases.

Inside O

To simplify the writing, we note u L 2 (O) = u . Let χ ∈ C ∞ 0 (O). We have by integration by part

Then

Now we need to introduce the following cut-off functions 134) and (135), we obtain for ǫ small enough

Since following (133), we have

Inserting in (136), we obtain

Hence the result in the neighborhood of the boundary.

Following (133), we can write

Adding ( 137) and (138), we obtain

Hence the result.

Appendix B: Proof of Lemma 3.1

This appendix is devoted to prove Lemma 3.1. Let χ ∈ C ∞ 0 (R n ) such that χ = 1 in the support of u. We want to show that op(Λ s )e µϕ χop(Λ -s ) is bounded in L 2 . Recalling that for all u and v ∈ S(R n ), we have

Then

where g(ξ ′ , µ) = F (e µϕ χ)(ξ ′ , µ). Then we have

Our goal is to show that K(ξ ′ , η ′ )F (v)(η ′ , µ)dη ′ is bounded in L 2 . To do it, we will use Lemma of Schur. It suffices to prove that there exists M > 0 and N > 0 such that

In the sequel, we suppose s ≥ 0 (the case where s < 0 is treated in the same way).

For R > 0, we have ξ ′ , µ 2R g(ξ ′ , µ) = ξ ′ , µ 2R e -ix ′ ξ ′ ξ(x)e µϕ(x) dx ′ = (1 -∆ + µ 2 ) R (e -ix ′ ξ ′ )χ(x)e µϕ(x) dx ′ = e -ix ′ ξ ′ (1 -∆ + µ 2 ) R (χ(x)e µϕ(x) )dx ′ .

Then there exists C > 0, such that

Moreover, we can write

Using (139), we obtain