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1 Introduction and motivation

The adaptive control of Markovian stochastic processes has a mature theory, either for optimal
discounted reward [3, 2] than for average reward [1]. However, the analysis of controlled particles
systems has not been studied closely. The aim of this paper is to fill this gap, and bring concepts
of statistical physics into the field of optimal control.

The general framework is the following, N particles are in interaction and their interactions
depend on a control parameter. The performance of the particle system is described by a
reward associated to an average over the particles states and over time. With the appropriate
hypothesis, if the control parameter is non-adaptive, (i.e. does not depend on the particle
state), classical mean-field theory predicts that, as the number of particles grows large, the
time evolution of the empirical measure of the particle states converges to the trajectory of a
measure solution of an appropriate deterministic differential equation. Now consider, for each
number of particles, N , an optimal adaptive control which maximizes the associated reward. It
is now unclear whether or not the same convergence holds, as N grows large. More importantly,
it is not clear whether or not this optimal control strategy and its associated reward converge
to an optimal control strategy and its reward for the deterministic control problem associated
to the limiting differential equation. In this paper, we deal with this issue.

For interacting particle systems, a phenomena which draws a tremendous attention in statis-
tical physics is symmetry breaking. Loosely speaking, this phenomena occurs if a macroscopic
state of the system is not symmetric with respect to the symmetry of the interactions in the
system. In the framework of controlled particle systems, a control strategy is not symmetric, if
enforcing this control breaks the initial symmetry of particles states. It is of prime interest to
know if the optimal control strategies break the symmetry of the interactions. We will discuss
when this type of symmetry breaking phenomena is expected through typical examples.
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The main motivations of this work come from nanotechnologies and communication net-
works. Typically, in these engineering fields, a large number of particles or communication
units are in interaction and a central controller may aim at optimizing a performance measure
of the system via a control on the transitions rates of the particles or communication units. In
many examples, the performance measure is simply the number of particles or communication
units in a given state.

The remainder of the paper is organized as follows. In Section 2, we introduce our model
and state our main results for discounted reward and average reward. Section 4 is dedicated to
the proofs of our main results. In Section 3, we discuss some extensions of our model and of our
results. Finally, Section 5 is a collection of examples and we illustrate the symmetry breaking
phenomena for optimal control strategies.

2 Controlled particle systems

2.1 Model description

We consider N particles evolving in a finite state space X at discrete time t ∈ N. The state of
particle i at time t is XN

i (t) ∈ X and the trajectory of the particle is XN
i = XN

i (·) ∈ XN. The
state of the particle system at time t is described by the vector XN (t) = (XN

1 (t), · · · ,XN
N (t)).

Let P(X ) (resp. P(XN)) denotes the space of probability measures on X (resp. XN).
PN (X ) = {q ∈ P(X ) : ∀x ∈ X , Nq({x}) ∈ N}, the set of measures on X putting a mass in N/N
at each element of X . We define the empirical measures in P(X ) and P(XN) respectively

µNt =
1

N

N
∑

i=1

δXN
i (t) and µN =

1

N

N
∑

i=1

δXN
i
.

We consider a sequence of random variables in [0, 1), ZN = (ZN0 , Z
N
1 , · · · ) thought as a source

of external randomness in the system. Let FN
t = σ(µN0 , Z

N
0 , · · · , µ

N
t , Z

N
t ) be the filtration

associated to the process (µN , ZN ) and FN
t = σ(XN (0), ZN0 · · · ,XN (t), ZNt ) the filtration

associated to (XN , ZN ). The evolution of the particle system depends on a FN
t -adapted control

process UN = (UNt )t∈N ∈ UN, where U is a finite space. Given the past history FN
t , XN (t+ 1)

evolves according to the transition probability P(XN (t + 1) ∈ ·|FN
t ) = PN

UN
t

(XN (t), ·) where

PNu (X,Y ) is a transition kernel on XN . We assume that for all u ∈ U , PNu is exchangeable
(that is PNu (X,Y ) is invariant by simultaneous permutations of the entries of X and Y ). Then,
we may define a projected kernel on PN (X ),

KN
u (q, p) =

∑

Y ∈XN : 1

N

PN
i=1

δYi
=p

PNu (X,Y ),

where p, q ∈ PN (X ), and X is any vector in XN such that
∑N

i=1 δXi
= qN . Then, given FN

t ,
µNt+1 evolves according the transition kernel on PN (X ),

P(µNt ∈ · |FN
t ) = KN

UN
t

(µNt , ·). (1)

Similarly, we define for all q ∈ PN (X ) and x such that q({x}) > 0, the projected kernel on X

KN
u,q(x, y) =

∑

Y ∈XN :Y1=y

PNu (X,Y ),
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where X is any vector satisfying X1 = x and
∑N

i=1 δXi
= qN . Given the past history, FN

t , at
time t+ 1, particle i evolves according to the probability,

KN
UN

t ,µN
t

(XN
i (t), ·). (2)

For a function f from X to R and a measure q ∈ P(X ), we define:

〈f, q〉 =
∑

x∈X

f(x)q(x) =

∫

X
f(x)q(dx).

Let r be a function from X×U to R which represents a reward, 0 < β < 1 a discount parameter,
and T ≥ 1. If u ∈ U and q ∈ P(X ), we define r(q, u) = 〈r(·, u), q〉 =

∫

X r(x, u)q(dx). For any
measure ν ∈ P(XN) with marginals (ν0, ν1, · · · ) and a sequence of control V = (V0, V1, · · · ) ∈
UN, we define the discounted reward

Jβ(ν, V ) = (1 − β)

∞
∑

t=0

βtr(νt, Vt), (3)

the finite average reward,

JT (ν, V ) =
1

T

T−1
∑

t=0

r(νt, Vt), (4)

(which depends on the sequence (ν, V ) only up to T − 1), and the ergodic average reward

Jav(ν, V ) = lim inf
T→∞

JT (ν, V ). (5)

A control process UN = (UNt ), t ∈ N, is admissible if UNt is FN
t -measurable. A strategy

π = (πt)t∈N for the N particles system is a sequence of functions πt from PN (X )t+1 to U . By
definition, setting UNt = πt(µ

N
0 , Z

N
0 , · · · , µ

N
t , Z

N
t ), there is an equivalence between admissible

controls and strategies. A strategy π = (πt)t∈N is Markov if for all t ∈ N, πt(q0, z0, · · · , qt, zt)
depends only on (qt, zt) ∈ P(X )× [0, 1). For a strategy π for the N particles system, we denote
by (µNπ , U

N
π ) the empirical measure and the control process associated to the strategy π and

JN,πβ (µN0 ) = E[Jβ(µ
N
π , U

N
π )],

and respectively for JN,πT (µN0 ) and JN,πav (µN0 ). The expectation E is with respect to the process
ZN and the randomness coming from the transitions in (1), note that the initial measure µN0 is
not random here. From (1), it is well known, refer to Dynkin and Yushkevitch [5], that for any
strategy π, there exists a Markov strategy σ such that JN,πβ (µN0 ) = JN,σβ (µN0 ) (and respectively

for JN,πT (µN0 )). In this paper, for each N we take interest to the supremum over all strategies

of JN,πβ (µN0 ), JN,πT (µN0 ) or JN,πav (µN0 ). The aim being to prove a convergence of the N particles
optimal control problem to an infinite particle optimal control problem. In optimal control
theory the case of ergodic average reward is known to be much harder than the finite average
and discounted reward cases.

Extra Notation and assumptions Let Y be a Polish space, for a random variable Y ∈ Y,
L(Y ) ∈ P(Y) will denote the distribution of Y . We denote by ‖ · ‖ the total variation norm
on the measures on X : ‖ν‖ = 1/2

∑

x∈X |ν(x)|. We endow XN and UN with the topology
associated to the metric ‖X − Y ‖β =

∑∞
t=0 β

t1Xt 6=Yt
. XN and UN are then Polish spaces.
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A transition kernel on X is a linear mapping from P(X ) to P(X ). Thus a transition kernel
K may be seen as a stochastic X × X -matrix.

For a probability measure ν ∈ P(Y) on a Polish space Y, we define its support

supp(ν) = {x ∈ Y : for all open sets A such that x ∈ A, ν(A) > 0}.

The only property of the support that we will use is that if A is a measurable sets outside the
support then ν(A) = 0.

Let Ψ be a finite measure on the product space Y×Z, B a measurable set in Z, the measure
Ψ(·, B) will denote the measure on Y: A 7→ Ψ(A×B).

If (AN ), N ∈ N, is an infinite sequence of subsets of a set Y, then we define lim supN AN =
∩M≥1 ∪N≥M AM .

The following extra assumptions are made:

A1. There exists a family of transitions kernels {Ku,q}u∈U ,q∈P(X ) on X such that, for all u ∈ U ,
x ∈ X

lim
N→∞

sup
qN∈PN (X ):qN ({x})>0

‖KN
u,qN (x, ·) −Ku,qN (x, ·)‖ = 0.

A2. There exists C > 0, such that for all u ∈ U , x ∈ X , p, q ∈ P(X ),

‖Ku,q(x, ·) −Ku,p(x, ·)‖ ≤ C‖p− q‖.

A3. There exists a sequence δN , with limN δN = 0, such that for all u ∈ U , x1, x2, y1, y2 ∈ X
and X ∈ XN such that X1 = x1, X2 = x2,

∣

∣

∣
KN

u, 1

N

PN
i=1 δXi

(x1, y1)K
N

u, 1

N

PN
i=1 δXi

(x2, y2) −
∑

Y ∈XN :Y1=y1,Y2=y2

PNu (X,Y )
∣

∣

∣
≤ δN .

Assumption A2 implies that the family of transition kernels {Ku,q}u∈U ,q∈P(X ) is measurable:
the application (u, q) 7→ Ku,q from U × P(X ) to the set of matrices of dimension X × X is
Lipschitz for the standard matrix norm ‖A‖1 = maxx∈X

∑

y∈X |A(x, y)| and the distance on
P(X ) × U : d((q, u), (p, v)) = ‖q − p‖ + 1u 6=v.

In words, assumption A3 implies that at any time t, the evolution of two particles becomes
asymptotically independent given the control UNt and the empirical measure µNt .

Let x ∈ X , note that assumptions A1 and A2 imply that if qN ∈ PN (X ) converges to
q ∈ P(X ) in total variation with qN ({x}) > 0 (but possibly q({x}) = 0) then ‖KN

u,qN (x, ·) −

Ku,q(x, ·)‖ ≤ ‖KN
u,qN (x, ·) − Ku,qN (x, ·)‖ + ‖Ku,qN (x, ·) − Ku,q(x, ·)‖ goes to 0 as N goes to

infinity.

2.2 Discounted reward

Dynamic programming recursion. Consider an initial condition µN0 ∈ PN (X ). We define
the optimal discounted reward with initial condition µN0 as

J N
β (µN0 ) = sup

π
JN,πβ (µN0 ) = sup

π
EJβ(µ

N
π , U

N
π ), (6)

where the supremum is over all N particles strategies π and, as above, (µNπ , U
N
π ) the empirical

measure and the control process associated to the strategy π. For each µN0 , the existence of an
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optimal Markov strategy π∗ with associated empirical measure and control process (µNπ∗ , U
N
π∗

)
follows from the classical theory of fully observed dynamic programming on a finite state space,
refer to Bertsekas [2], chapter 1. Indeed, this problem may be restated as a fully observed Dy-
namic Programming (DP) recursion (or Bellman Equation). DP theory predicts that Equation
(1) implies that JN

β is uniquely defined by the recursion, for all q ∈ PN (X ),

J N
β (q) = max

u∈U

{

(1 − β)r(q, u) + β
∑

p∈PN (X )

JN
β (p)KN

u (q, p)
}

,

and (UNπ∗)t ∈ UNβ ((µNπ∗)t) where, for q ∈ PN (X ),

UNβ (q) =
{

u ∈ U : J N
β (q) = (1 − β)r(q, u) + β

∑

p∈PN (X )

JN
β (p)KN

u (q, p)
}

is the set of controls reaching the maximum in the DP recursion (see Bertsekas [2], chapter
1). Hence if UNβ (µNt ) is not reduced to a singleton, the solution to the dynamic programming

optimization (6) is not unique. The process ZN may be used to draw randomly a control in
UNβ (µNt ). For example, we index the controls by integers: U = {u1, · · · , u|U|} and if UNβ (µNt ) =

{ui1 , · · · , uin}, with i1 < · · · < in, the strategy π∗ picks uiℓ , 1 ≤ ℓ ≤ n, if ℓ − 1 ≤ nZNt < ℓ.
This strategy π∗ is discount optimal and Markovian.

Mean-Field approximation. We define the mapping F from P(X ) × U to P(X ):

F : (q, u) 7→ qKu,q. (7)

Now let (µ,U) ∈ P(XN) × UN be a pair of empirical measure and control sequence and let
q0 ∈ P(X ). We say that (µ,U) is a solution of (7) with initial condition q0 if µ0 = q0, for all
t ∈ N,

µt+1 = F (µt, Ut)

For each arbitrary sequence U = (Ut)t∈N, there exists a pair (µ,U) solution of (7) with initial
condition q0. This pair is not unique but if (µ,U) and (ν, U) are solutions of (7) with initial
condition q0 then for all t ∈ N, µt = νt. We may thus define without ambiguity the associated
discounted reward JUβ (q0) = Jβ(µ,U), and

Jβ(q0) = sup
U∈UN

JUβ (q0). (8)

The problem may be restated as a fully observed DP recursion: Equations (7), (8) implies that
Jβ is uniquely defined by the recursion, for all q ∈ P(X ),

Jβ(q) = max
u∈U

{

(1 − β)r(q, u) + βJβ(qKu,q)
}

.

We define
Uβ(q) =

{

u ∈ U : Jβ(q) = (1 − β)r(q, u) + βJβ(qKu,q)
}

.

Then if (µ∗, U∗) solves (7) and for all t ≥ 0, (U∗)t ∈ Uβ((µ∗)t) then Jβ(q0) = Jβ(µ∗, U∗). The
next theorem implies the convergence of the N particles DP problem to the DP problem (7)-(8).
We consider a given sequence (µN0 )N∈N which converges as N goes to infinity.
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Theorem 1 Assume that assumptions A1-A3 hold, and the empirical measure µN0 converges
to q0. Then,

lim
N→∞

JN
β (µN0 ) = Jβ(q0),

and
lim sup
N→∞

UNβ (µN0 ) ⊆ Uβ(q0).

This result is interesting because it states the convergence of DP problem without any
assumption on the reward function r or on the sets Uβ of optimal strategies.

We may also define the sets, for all u ∈ U ,

PN
β (u) = {q ∈ PN (X ) : u ∈ UNβ (q)} and Pβ(u) = {q ∈ P(X ) : u ∈ Uβ(q)}.

Theorem 1 implies that for all u ∈ U ,

lim sup
N→∞

PN
β (u) ⊆ Pβ(u).

Indeed, let u ∈ U and q ∈ lim supN PN
β (u), then for an increasing subsequence (Nk), k ∈ N,

q ∈ PNk

β (u) or equivalently, u ∈ UNk

β (q). Thus, from Theorem 1, u ∈ Uβ(q) and it follows that
q ∈ Pβ(u).

2.3 Finite average reward

Dynamic programming recursion. Consider an initial condition µN0 ∈ PN (X ), the finite
average optimal reward is defined as the supremum over all N -particles strategies of the average
reward:

JN
T (µN0 ) = sup

π
JN,πT (µN0 ). (9)

Again, this problem may be restated as a fully observed Dynamic Programming (DP) recursion
(see Bertsekas [3], chapter 2). DP theory predicts that Equation (1) implies that JN

T is uniquely
defined by the recursion, for all q ∈ PN (X ) and T ∈ N:

JN
T (q) =

1

T
max
u∈U

{

r(q, u) + (T − 1)
∑

p∈PN (X )

JN
T−1(p)K

N
u (q, p)

}

,

where by convention, JN
0 (q) = 0. For all T ∈ N, we define:

UNT (q) =
{

u ∈ U : TJN
T (q) = r(q, u) + (T − 1)

∑

p∈PN (X )

JN
T−1(p)K

N
u (q, p)

}

Any strategy π∗ with associated process (µNπ∗ , U
N
π∗

) such that for all 0 ≤ t < T , (UNπ∗)t is in the
set UNT−t((µ

N
π∗

)t) is optimal.

Mean-Field approximation. Let (µ,U) ∈ P(XN) × UN be a solution of (7) with initial
condition q0. The associated finite average reward is JT (µ,U) = JUT (q0). The finite average
optimal reward is defined as

JT (q0) = sup
U∈UN

JUT (q0) (10)

6



JT is uniquely defined by the recursion, J0 ≡ 0 and for all q ∈ P(X ) and T ∈ N:

JT (q) =
1

T
max
u∈U

{

r(q, u) + (T − 1)JT−1(qKu,q)
}

,

We define,

UT (q) =
{

u ∈ U : TJT (q) = r(q, u) + (T − 1)JT−1(qKu,q)
}

Then any pair (µ,U) ∈ P(XN)×UN solving (7) and satisfying for all 0 ≤ t < T−1, Ut ∈ UT−t(µt)
is optimal: JT (µ0) = JT (µ,U). Note again that even if J is deterministic, U may not be
uniquely defined. The next result is the analog to Theorem 1.

Theorem 2 Assume that assumptions A1-A3 hold, and that the empirical measure µN0 con-
verges to q0. Then,

lim
N→∞

JN
T (µN0 ) = JT (q0),

and for all 1 ≤ t ≤ T ,
lim sup
N→∞

UNt (µN0 ) ⊆ Ut(q0).

As in the discounted reward case, we may define the sets, for all u ∈ U , 1 ≤ t ≤ T ,

PN
t (u) = {q ∈ PN (X ) : u ∈ UNt (q)} and Pt(u) = {q ∈ P(X ) : u ∈ Ut(q)}.

Theorem 1 implies that for all u ∈ U ,

lim sup
N→∞

PN
t (u) ⊆ Pt(u).

2.4 Ergodic average reward

Ergodic occupation measure. We now optimize over all admissible strategies the average
reward:

J N
av (µ

N
0 ) = sup

π
JN,πav (µN0 ) = sup

π
E lim inf

T→∞
JT (µNπ , U

N
π ). (11)

We add an extra irreducibility assumption,

A4. For all N ∈ N, p, q ∈ PN (X ), JN
av (p) = J N

av (q).

Note that assumption A4 holds if for all N ∈ N, p, q ∈ PN (X ) there exist k ∈ N and
((p1, u1), · · · , (pk, uk)) ∈ (PN (X )×U)k such that p1 = p, pk = q and 1 ≤ i < k, KN

ui
(pi, pi+1) >

0.
With this assumption, the convex analytic approach gives a convenient way to describe a

control policy. Let (µN , UN ) ∈ P(XN) × UN be an admissible controlled process, following
Borkar (Chap. 11 in [7]), for each T ∈ N, we define the ergodic occupation measure on PN (X )×
U ,

ΨN
T := ΨN

T (µN , UN ) =
1

T

T−1
∑

t=0

δ(µN
t ,U

N
t ).

Note that, by definition, Jav(µ
N , UN ) = lim infT 〈Ψ

N
T , r〉. Now, since PN (X ) × U is a finite

space, the sequence (ΨN
T )T∈N has limit points. The following sample path result holds (for a

proof, see Lemma 5.1 in Arapostathis et al. [1]),
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Lemma 3 (Borkar) Almost-surely, any limit point ψN of (ΨN
T ) in P(PN (X ) × U) satisfies,

∀p ∈ PN (X ),
∑

q∈PN (X )

∑

u∈U

ψN (q, u)KN
u (q, p) = ψN (p,U), (12)

Note that the limit point ψN is a sample path limit point. Now, reciprocally let ψN ∈
P(PN (X ) × U) satisfying (12). Using the extra randomness ZN , we define a Markov strat-

egy π and its associated controlled process (µN , U
N

) such that the law of U
N
t given µNt is

ψN (µNt , ·)/ψ
N (µNt ,U). Then (µNt , U

N
t )t∈N is a Markov chain on P(X ) × U with transition

kernel

P((µN1 , U
N
1 ) = (q, u)|(µN0 , U

N
0 ) = (p, v)) = KN

v (p, q)
ψN (q, u)

ψN (q,U)
.

If ψN satisfies (12), we check easily that ψN is a stationary distribution of this Markov chain.

Therefore if L(µN0 , U
N
0 ) = ψN , then for all T ≥ 1,

EJT (µN , U
N

) = 〈ψN , r〉.

Now we define SN = {ψN ∈ P(PN (X )×U) : (12) holds true}. From what precedes we have
JN
av ≥ infψN∈SN 〈ψN , r〉. The next lemma implies that an equality holds.

Lemma 4 (Borkar) Let π∗ be an ergodic average optimal strategy with associated process
(µNπ∗ , U

N
π∗

) which maximizes (11) with initial condition µN0 . Then, almost surely, the following
holds

- limT→∞ JT (µNπ∗ , U
N
π∗) = JN

av ,

- for any limit point ψN of ΨN
T (µNπ∗ , U

N
π∗

), J N
av = 〈ψN , r〉.

Proof. Let A be the event of probability one such that the conclusion of Lemma 3 holds for
the process (µNπ∗ , U

N
π∗). We define the event B = A ∩ {lim infT JT (µNπ∗ , U

N
π∗) ≥ JN

av}. Since
JN
av = E lim infT JT (µNπ∗, U

N
π∗), we have P(B) > 0 and B is not empty. On the event B, we

may extract a subsequence Tk such that limTk
JTk

(µNπ∗ , U
N
π∗) = lim infT JT (µNπ∗ , U

N
π∗) ≥ JN

av . Up
to extracting another sequence from (Tk) we may also assume that ΨN

Tk
(µNπ∗ , U

N
π∗) converges to

ψ′N and then
〈ψ′N , r〉 ≥ JN

av .

Now, from what precedes, there exists a Markov strategy π′ with associated controlled pro-

cess (µ′N , U
′N

) such that EJav(µ
′N , U

′N
) = 〈ψ′N , r〉. However, by assumption A4., J N

av ≥

EJav(µ
′N , U

′N
) = 〈ψ′N , r〉, and we deduce that J N

av = 〈ψ′N , r〉 and thus P(B) = 1. We have
proved so far that

a.s - lim inf
T

JT (µNπ∗, U
N
π∗

) = JN
av = 〈ψ′N , r〉.

Now, still on the event B, let ψN be any limit point of ΨN
T (µNπ∗, U

N
π∗), thanks to our choice of ψ′N ,

〈ψN , r〉 ≥ 〈ψ′N , r〉 = Jav. However, again, there exists a Markov strategy π with associated

controlled process (µN , U
N

) such that EJav(µ
N , U

′N
) = 〈ψN , r〉. Then, by assumpton A4.

EJav(µ
N , U

N
) ≤ J N

av , and we deduce that 〈ψN , r〉 = 〈ψ′N , r〉. �

We define the set of optimal ergodic occupation measures:

SNav = {ΨN ∈ P(PN (X ) × U) : (12) holds true and 〈ΨN , r〉 = J N
av}.
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SNav is a non-empty closed convex set. It is also possible to describe J N
av as a fixed point of DP

recursion, see Arapostathis et al. [1]. In this paper, we will however not use this representation
of JN

av . The Borkar’s representation via the ergodic occupation measure has appeared to be
more convenient to state limit theorems.

Mean-Field approximation. Let q0 ∈ P(X ). For each sequence U = (Ut)t∈N, there exists
a pair (µ,U) solution of (7) with initial condition q0. We may consider the associated ergodic
average reward JUav(q0) = Jav(µ,U), and we define:

Jav(q0) = sup
U∈UN

JUav(q0). (13)

We formulate for this deterministic average cost problem an irreducibility assumption, sim-
ilar to assumption A4:

A5. For all p, q ∈ P(X ), Jav(p) = Jav(q).

Again, for a pair (µ,U), solution of (7), we define the ergodic accumulation measure on P(X )×U
by

ΨT := ΨT (µ,U) =
1

T

T−1
∑

t=0

δ(µt,Ut),

P(P(X ) × U) is compact and any limit point Ψ of (ΨT )T∈N satisfies for all measurable sets
A ⊂ P(X ), such that Ψ(∂A,U) = 0 and for all u ∈ U , Ψ(∂{q : qKu,q ∈ A}, u) = 0,

∑

u∈U

Ψ({q : qKu,q ∈ A}, u) = Ψ(A,U). (14)

Again, Ψ may be interpreted as a stationary distribution of a Markov chain. Indeed, let αu be
Radon-Nikodym derivative of Ψ(·, u) with respect to Ψ(·,U). Ψ is a stationary distribution of
the Markov chain (µt, U t)t∈N with transition kernel

P((µ1, U1) = (q, u)|(µ0, U0) = (p, v)) = αu(q)1(pKv,p = q). (15)

Note that Jav(µ,U) = lim infT 〈ΨT , r〉. Note that this Markov transition kernel is defined only
on the support of Ψ(·,U). In order to define a transition kernel of P(X )×U , we need to extend
on P(X ), for all u ∈ U , the mapping: q 7→ αu(q), in a measurable way. Even if this extension
is obviously not unique, Ψ is always an invariant measure of the Markov chain.

Now, note that the supremum in (13) is reached for some U∗ ∈ UN (depending on q0) and a
pair (µ∗, U∗) solution of (7). Then, if Ψ is a limit point of the occupation measure ΨT (µ∗, U∗),
by assumption A5, we also have

Jav = 〈Ψ, r〉.

We may define the set of optimal ergodic occupation measures:

Sav = {Ψ ∈ P(P(X ) × U) : (14) holds true and 〈Ψ, r〉 = Jav}.

A stationary solution (µ,U) of (7) is a solution of (7) such that for all t ≥ 0, L(µ0, U0) =
L(µt, Ut) and (14) holds true for L(µ0, U0). A stationary policy (αu)u∈U is a set of measurable
mappings from P(X ) to [0, 1] such that for all q ∈ P(X ),

∑

u∈U αu(q) = 1.
A stationary policy (αu)u∈U is continuous if for all u ∈ U , the mapping q 7→ αu(q) is

continuous. We define Cr as the set of continuous stationary policies such that if Ψ1, Ψ2 ∈
P(P(X ) × U) are invariant probability measures of the Markov transition kernel (15) with
(αu)u∈U ∈ Cr, then 〈Ψ1, r〉 = 〈Ψ2, r〉. Finally we add a key assumption on Sav.
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A6. There exists Ψ ∈ Sav such that Ψ is an invariant measure of a Markov transition kernel
(15) with (αu)u∈U ∈ Cr,

Theorem 5 Assume that assumptions A1-A6 hold then

lim
N→∞

JN
av = Jav,

and
lim sup
N→∞

SNav ⊆ Sav,

(that is if ΨN ∈ SNav for all N then any limit point of ΨN is in Sav).

On Assumptions A6. Assumption A6 holds if there exists (q, u) such that δ(q,u) ∈ Sav , and q
is the globally stable fixed point of the mapping from P(X ) to P(X ), p 7→ pKu,p. Similarly,

assume that there exists Ψ in Sav such that Ψ = 1/M
∑M

i=1 δ(qi,ui) with qiKui,qi = qi+1 (and

qM+1 = q1). Since P(X ) is separable, there exists a stationary continuous policy (αu)u∈U such
that αu(q

i) = 1(ui = u). If Ψ is the unique invariant measure of the Markov transition kernel
(15) for this choice of (αu)u∈U then assumption A6 is satisfied.

3 Auxiliary results and model extensions

3.1 Phase transition on the average reward

In this paragraph, we discuss what happens when the conclusions of Theorem 5 fail to hold.
We first start with a general lemma

Lemma 6 For all N ∈ N and q ∈ PN (X ),

JN
av (q) = lim

T→∞
J N
T (q) = lim

β↑1
JN
β (q).

For all q ∈ P(X ),
Jav(q) ≤ lim inf

T→∞
JT (q).

Proof. Fix q ∈ PN (X ) and note that for each N , the space PN (X ) is finite. A well-known result
of Blackwell [4] implies that limβ↑1 J

N
β (q) = J N

av (q). More precisely (see the proof of Theorem
4.3 in [1]), there exists a mapping f from PN (X ) to U and 0 < β0 < 1, such that for all
q ∈ PN (X ) and β ∈ (β0, 1), J

N
β (q) = EJβ(µ

N , UNf ) and J N
av (q) = EJav(µ

N , UNf ), where UNf is

the adapted sequence obtained by setting (UNf )t = f(µNt ). Then a Tauberian Theorem of Hardy

and Littlewood (see Theorem 2.3 in [9]) implies that limT→∞ EJT (µN , UNf ) = EJav(µ
N , UNf ) =

JN
av (q). Since by definition, EJT (µN , UNf ) ≤ JN

T (q), we obtain: J N
av (q) ≤ lim infT→∞J N

T (q).

Reciprocally, let (Tk), k ∈ N, be an increasing sequence such that limk J
N
Tk

(q) = lim supT J N
T (q).

The family of sets {UNT (q)}q∈PN (X ) is included in a finite set, hence there exists a subse-
quence Tkn

and a mapping g from PN (X ) to U such that for all n ∈ N and q ∈ PN (X ),
g(q) ∈ UNTkn

(q). We have JTkn
(q) = EJTkn

(µN , UNg ) where UNg is the adapted sequence ob-

tained by setting (UNg )t = g(µNt ). Now, (µN , UNg ) is a Markov chain on a finite state space

with initial condition (q, g(q)), thus limT→∞ EJT (µN , UNg ) = EJav(µ
N , UNg ). Since by definition

EJav(µ
N , UNg ) ≤ J N

av , we deduce that lim supT JN (q) = limn EJTkn
(µN , UNg ) ≤ J N

av .
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It remains to consider the recursion (7), let U∗(q) be an optimal sequence for the average
ergodic reward with initial condition q: Jav(q) = Jav(µ,U∗(q)). Then by definition for all
T ≥ 1, JT (µ,U∗(q)) ≤ JT (q), hence letting T tend to infinity, we get: Jav(q) ≤ lim infT JT (q).
�

We now assume that assumptions A1-A4 hold. Theorem 2 states that for all T ∈ N and
q ∈ ∪N∈NPN (X ):

lim
N→∞

JN
T (q) = JT (q).

(and similarly with JN
β using Theorem 1). Assume that Jav(q) = limT→∞ JT (q), then we

obtain,
lim
T→∞

lim
N→∞

JN
T (q) = Jav(q).

Theorem 5 gives sufficient conditions under which the inversion of limits in N and T holds:

lim
T→∞

lim
N→∞

JN
T (q) = Jav(q)

?
= lim

N→∞
J N
av = lim

N→∞
lim
T→∞

JN
T (q).

As we will see through a well-known example, this inversion fails in general. Note in particular
that a necessary condition is that Jav(q) does not depend on q (i.e. assumption A4). When
this inversion does not hold, a phase transition occurs: the limit behavior of the average reward
depends on the initial condition. Without the somewhat restrictive assumptions A5 and A6 of
Theorem 5, we have the following result:

Corollary 7 If assumptions A1-A4 holds,

lim sup
N→∞

J N
av ≤ sup

q∈P(X )
Jav(q).

The proof of this corollary is contained in the first half of the forthcoming Lemma 20.

3.2 Partial information

In Theorems 1 and 5, we have assumed that the control UNt was FN
t -measurable where FN

t

is the σ-field generated by (µN0 , · · · , µ
N
t ). In optimal control words, we have assumed that the

system was fully observed.
Assume now that the control UNt is constrained to be measurable with respect to GNt , the σ-

field generated by (µN0 , F (µN1 ), · · · , F (µNt )) where F is a mapping from P(X ) to an observation
space Z. Then for each N the problem of optimal control is partially observed. However,
with the assumptions of Theorem 1, as the number of particles N goes large, we have proved
the convergence of the fully observed problem to a deterministic optimal control problem. In
particular, along the proof of this result, we have shown that a deterministic optimal control
(depending on the initial state µN0 ) achieves asymptotically the optimum. Hence as a Corollary,
since µN0 is Gt-measurable we have the following:

Corollary 8 Assume that assumptions A1-A3 hold, and that for all N , and the empirical
measure µN0 converges to a deterministic limit q0. Then the statements of Theorems 1, 2 also
hold for the GNt -partially observed problem.

Note that the crucial assumption is that the initial state µN0 is fully observed and neither
F nor the observation space Z play any role. This assumption is fulfilled in many potential
applications. If µN0 is not fully observed, then the convergence of the optimal control is more
complicated and we will not address this problem here. The same remark also applies to the
average reward case where the initial value may not play any role.
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3.3 Propagation of chaos

The propagation of chaos is an important concept in mean field theory. This phenomena appears
if the trajectories of the particles are asymptotically independent, see Sznitman [10].

Discounted reward. Let µN0 ∈ PN (X ) converging to q0 ∈ P(X ) as N goes to infinity. For
all N , we consider a controlled process (µN , UN ) which is optimal for the discounted reward,
i.e. EJβ(µ

N , UN ) = JN
β (µN0 ). Under assumptions A1-A3, Theorem 1 states the convergence of

EJβ(µ
N , UN ) to Jβ(q0). However, this theorem does not state any result on the convergence of

the trajectories of the particles. Notice that, since U is finite, the sequence UN is tight in UN,
the next result states the convergence of the trajectories of the particles along any converging
subsequence of UN .

Corollary 9 Let (µN , UN ) be as above. Assume that assumptions A1-A3, that for all N ,
(XN

1 (0), · · · ,XN
N (0)) is exchangeable, and that the empirical measure µN0 converges to a deter-

ministic limit q0. Finally assume that (UN ) converges weakly to U ∈ UN. Then there exists
µ ∈ P(XN) such that (µ,U) solves (7) with initial condition µ0 = q0, and for all subsets I ⊂ N

of finite cardinal |I|,

lim
N→∞

L
(

(XN
i )i∈I

)

= µ⊗|I| weakly in P((XN)|I|). (16)

The measure µ appearing in the statement of Corollary 9 is explicitly defined in the proof: µ is
the distribution of a non-homogeneous Markov chain with transition kernel at time t, KUt,µt and
µ0 = q0. Note that Corollary 9 assumes that the control sequence UN converges. For example
if there exists a sequence such that qi+1 = F (qi, ui) and Uβ(qi) = {ui} then by Theorem 1, if
µN0 converges to q0, (UN ) converges to (ui)i∈N.

Finite average reward. If the controlled process (µN , UN ) is optimal for the discounted
reward, i.e. EJT (µN , UN ) = JN

T (µN0 ), the statement of Corollary 9 holds for the finite average
reward case without change.

Ergodic average reward. We now consider the extra assumption

A7. There exists q∗ ∈ P(X ) such that for all Ψ ∈ Sav : Ψ(·,U) = δq∗ .

With this assumption, any optimal stationary solution (µ,U) of (7) satisfies for all t ∈ N,
µt = q∗. We have the following propagation of chaos.

Corollary 10 Assume that assumptions A1-A7 hold, and that for all N , (XN
i (t))1≤i≤N , t ∈ N,

is a stationary exchangeable solution of the ergodic average cost problem. Then for all subsets
I ⊂ N of finite cardinal |I|,

lim
N→∞

L
(

(XN
i (0))i∈I

)

= q
⊗|I|
∗ weakly in P(X |I|). (17)

3.4 More general state and control space

If U or X are countable and not necessarily finite then the proofs of Theorem 1 and 5 extend
provided that L(µN , UN ) is tight in P(P(XN) × UN).
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3.5 Continuous time

We have considered so far a discrete time t ∈ N. We could define similarly an interacting particle
systems, (µNt )t∈R+

, evolving in continuous time governed by a control process UN = (UNt )t∈R+

and a family of Markovian generator LNu (q, p) (in place of the transition kernel KN
u (p, q)). If

the generator associated to a single particle is LNu,q(x, y) (in place of Ku,q(x, y)) and if LNu,q
converges to Lu,q, then the mean-field approximation is

dµt
dt

= µtLUt,µt − µt.

There are obvious continuous analog of assumptions A1-A3. If one can prove that the process
(µN , UN ) is tight then the proof of Theorem 1 extends to continuous time (using a non-linear
martingale problem formulation, see e.g. Graham [8]). Therefore the main technical issue is
proving that the optimal control process (UNt )t∈R+

is tight. We do not have a proof of a claim
of this type and postpone this issue to future work.

4 Proofs of main results

4.1 Proof of Theorem 1 and Corollary 9.

We consider a sequence of discount optimal strategies πN∗ with associated process (µN∗ , U
N
∗ ) ∈

P(XN) × UN). In order to simplify notation, the optimal control sequence (µN∗ , U
N
∗ ) is simply

denoted by (µN , UN ). The following proposition will imply both Theorem 1 and Corollary 9.
We consider for all N ∈ N, a vector of initial condition (XN

1 (0), · · · ,XN
N (0)) which is exchange-

able, and that satisfies µN0 = 1
N

∑N
i=1 δXN

i (0) (considering a uniform random permutation of

{1, · · · , N} it is possible).

Proposition 11 With the assumptions of Theorem 1, if the initial condition (XN
1 (0), · · · ,XN

N (0))
is exchangeable, then any limit point of L(µN , UN ) in P(P(XN)×UN) has its support included in
the set of the solutions (µ,U) of (7) with initial condition µ0 = q0 such that Jβ(µ,U) = Jβ(q0).

Proof of Proposition 11 Step 1 : Tightness. We prove the tightness of L(µN , UN ) in
P(P(XN) × UN). The control sequence L(UN (·)) is obviously tight in P(UN) since U is finite.
Note also that the sequence L(µN ) is also tight in P(P(XN)). Indeed, thanks again to Sznitman
[10] Proposition 2.2, we only have to prove that L(XN

1 (·)) is tight in P(XN). This follows
immediately from the finiteness of X .
Step 2 : Martingale formulation.

Let f be a function from X to R, t ≥ 1 and fy(x) = f(y) − f(x). We have

f(XN
i (t)) − f(XN

i (0)) =

t−1
∑

s=0

f(XN
i (s+ 1)) − f(XN

i (s))

=
∑

y∈X

t−1
∑

s=0

fy(XN
i (s))

(

1XN
i (s+1)=y − P(XN

i (s+ 1) = y|FN
s )

)

+
∑

y∈X

t−1
∑

s=0

fy(XN
i (s))P(XN

i (s+ 1) = y|FN
s ), (18)
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Then we define

Mf,N
i (t) =

∑

y∈X

t−1
∑

s=0

fy(XN
i (s))

(

1XN
i (s+1)=y −KN

UN
s ,µN

s
(XN

i (s), y)
)

(19)

and the operator GNf defined by, for (x, u, q) ∈ X × U × P(X ),

GNf(x, u, q) =
∑

y∈X

fy(x)KN
u,q(x, y).

So that, we may rewrite Equation (18) as

f(XN
i (t)) − f(XN

i (0)) = Mf,N
i (t) +

t−1
∑

s=0

GNf(XN
i (s), UNs , µ

N
s ).

Lemma 12 Mf,N
i (t) defined at (19) is a FN -martingale. There exists C > 0 such that for all

i 6= j, EMf,N
i (t)Mf,N

j (t) ≤ Ct‖f‖2
∞δN and EMf,N

i (t)Mf,N
i (t) ≤ Ct‖f‖2

∞.

Proof. We define:
AN,yi (t) = {XN

i (t+ 1) = y}

Recall that
P(AN,yi (t)|FN

t ) = KN
UN

t ,µN
t

(XN
i (t), y),

and we can rewrite Equation (19) as:

Mf,N
i (t) =

t−1
∑

s=0

∑

y∈X

fy(XN
i (s))

(

1
A

N,y
i (s)

− E[1
A

N,y
i (s)

|FN
s ]

)

.

Thus, Mf,N
i (t) is a square-integrable martingale by the Dynkin’s formula. Now assumption

A3 implies that for all i 6= j, y, y′ ∈ X ,
∣

∣

∣
P(AN,yi (t)AN,y

′

j (t)|FN
t ) − P(AN,yi (t)|FN

t )P(AN,y
′

j (t)|FN
t )

∣

∣

∣
≤ δN . (20)

We need to compute E[Mf,N
1 (t)Mf,N

2 (t)]. Since (Mf,N
i (t))t∈N is a martingale this product is

equal to:

E[Mf,N
1 (t)Mf,N

2 (t)] =
t−1
∑

s=0

∑

y,y′∈X

Efy(XN
1 (s))

(

1
A

N,y
1

(s)
− E[1

A
N,y
1

(s)
|FN
s ]

)

×fy
′

(XN
2 (s))

(

1
A

N,y′

2
(s)

− E[1
A

N,y′

2
(s)

|FN
s ]

)

.

Now, let

INs =
∑

y,y′∈X

E
[

fy(XN
1 (s))(1

A
N,y
1

(s)
− E[1

A
N,y
1

(s)
|FN
s ])fy

′

(XN
2 (s))(1

A
N,y′

2
(s)

− E[1
A

N,y′

2
(s)

|FN
s ])

]

=
∑

y,y′∈X

E
[

fy(XN
1 (s))fy

′

(XN
2 (s))

×
(

E[1
A

N,y
1

(s)
1
A

N,y′

2
(s)

|FN
s ] − E[1

A
N,y
1

(s)
|FN
s ]E[1

A
N,y′

2
(s)

|FN
s ]

)]

.
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Hence, using (20),

|INs | ≤ 4‖f‖2
∞|X |2δN ,

and the lemma follows. �

Now let Gf(x, u, q) =
∑

y∈X f
y(x)Ku,q(x, y). By assumption A1,

|GNf(XN
i (s), UNs , µ

N
s )−Gf(XN

i (s), UNs , µ
N
s )| ≤ 2‖f‖∞ sup

(qN ,u,x)

‖KN
u,qN (x, ·)−Ku,qN (x, ·)‖ ≤ ‖f‖∞ǫN .

for some sequence (ǫN ) tending to 0 as N goes to infinity and where the supremum is over all
triples (qN , u, x) ∈ PN (X ) × U × X such that qN ({x}) > 0. It follows that

Mf,N
i (t) = f(XN

i (t)) − f(XN
i (0)) −

t−1
∑

s=0

Gf(XN
i (s), UNs , µ

N
s ) + εf,Ni (t), (21)

with |εf,Ni (t)| ≤ t‖f‖∞ǫN .
Step 3 : Accumulation to the infinite control problem.

In this paragraph, we finish the proof of Theorem 9 and prove that any weak limit of
(µN , UN ) is a solution of the infinite control problem.

Let Π∞ be an limit point of L(µN , UN ) and let (ν, V ) ∈ P(XN)×UN be a random variable
with law Π∞.

Lemma 13 Π∞-a.s. for all t ≥ 0,

νt+1 = νtKVt,νt.

Proof. Let (µN , UN ) be a weak converging subsequence to (ν, V ). Summing (21) for all i, if
t ≥ 1, we obtain

〈f, µNt 〉 − 〈f, µN0 〉 −

t−1
∑

s=0

(〈f, µNs KUN
s ,µN

s
〉 − 〈f, µNs 〉) =

1

N

N
∑

i=1

Mf,N
i (t) + εf,Ni (t). (22)

By assumption A2, the mapping ϕ : (ν, V ) 7→ 〈f, νt〉 − 〈f, ν0〉 −
∑t−1

s=0(〈f, νsKVs,νs〉 − 〈f, νs〉) is
Lipschitz: for some C > 0,

|ϕ(ν, V ) − ϕ(ν ′, V ′)| ≤ C‖f‖∞

t
∑

s=0

‖Vs − V ′
s‖ + ‖νs − ν ′s‖.

Hence, ϕ is continuous and ϕ(µN , UN ) converges weakly to ϕ(ν, V ).

We have checked that |εf,Ni (t)| ≤ t‖f‖∞ǫN where ǫN tends to 0. Also, by Lemma 12,
1
N

∑N
i=1M

f,N
i (t) converges in L2 to 0, hence, by Fatou’s Lemma, Equation (22) gives:

E
∣

∣

∣
〈f, νt〉−〈f, ν0〉−

t−1
∑

s=0

(〈f, νsKVs,νs〉−〈f, νs〉)
∣

∣

∣

2
≤ lim

N→∞
2t2‖f‖2

∞ǫ
2
N+2E

∣

∣

∣

1

N

N
∑

i=1

Mf,N
i (t)

∣

∣

∣

2
= 0.

We conclude by induction that for all t ≥ 0, Π∞-a.s. νt+1 = νtKVt,νt.
We now define the mapping from P(X )N × UN to R

+:

Jβ(ν, V ) = (1 − β)

∞
∑

t=0

βtr(νt, Vt).

Jβ is continuous for the product topology, indeed:
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Lemma 14 There exists C > 0 such that for all ν, ν ′ ∈ P(XN), V, V ′ ∈ UN,

|Jβ(ν, V ) − Jβ(ν
′, V ′)| ≤ C

(

‖ν − ν ′‖β + ‖V − V ′‖β

)

,

where ‖ν − ν ′‖β =
∑∞

t=0 β
t‖νt − ν ′t‖.

Proof. Let C = max(x,u)∈X×U |r(x, u)| = ‖r‖∞. We write,

|Jβ(ν, V ) − J(ν ′, V ′)| ≤ |Jβ(ν, V ) − J(ν ′, V )| + |Jβ(ν
′, V ) − Jβ(ν

′, V ′)|

≤ (1 − β)

∞
∑

t=0

βtC‖νt − ν ′t‖ + (1 − β)

∞
∑

t=0

βtC1Vt=V ′
t

≤ C
(

‖ν − ν ′‖β + ‖V − V ′‖β

)

.

�

We now check the continuity of Jβ(q).

Lemma 15 The mapping q 7→ Jβ(q) is uniformly continuous.

Proof. First, fix U = (Ut)t∈N a control sequence and consider two initial conditions µ0 and µ̃0

and their trajectory (µt)t∈N and (µ̃t)t∈N obtained by the recursion (7). By assumption A2, we
have: ‖µ1 − µ̃1‖ = ‖µ0KU0,µ0

− µ̃0KU0,µ̃0
‖ ≤ ‖µ0KU0,µ0

− µ̃0KU0,µ0
‖+ ‖µ̃0KU0,µ0

− µ̃0KU0,µ̃0
‖ ≤

(C + 1)‖µ0 − µ̃0‖ = C1‖µ0 − µ̃0‖. By recursion we deduce that:

‖µt − µ̃t‖ ≤ Ct1‖µ0 − µ̃0‖. (23)

Fix ǫ > 0 and let Jβ,T (ν, V ) = (1 − β)
∑T

t=0 β
tr(νt, Vt). There exists T ∈ N, such that for all

(ν, V ) ∈ P(X )N × UN,
|Jβ,T (ν, V ) − Jβ(ν, V )| ≤ ǫ. (24)

Now let q, q̃ ∈ P(X ), we apply an optimal control strategy U = (Ut)t∈N of q both to q and q̃.
We obtain two trajectories (µt)t∈N and (µ̃t)t∈N with initial condition µ0 = q and µ̃0 = q̃. By
construction:

Jβ(q) = Jβ(µ,U) and Jβ(q̃) ≥ Jβ(µ̃, U).

From Equations (23), (24), we obtain:

Jβ(q) ≤ Jβ(q̃) + ǫ+ ‖q − q̃‖(1 − β)‖r‖∞

T
∑

t=0

βtCt1.

and reciprocally by inverting q and q̃. Thus,

|Jβ(q) − Jβ(q̃)| ≤ ǫ+ ‖q − q̃‖(1 − β)‖r‖∞

T
∑

t=0

βtCt1,

and the continuity follows directly. �

Lemma 16 If µ̃0 ∈ PN (X ), let (µ̃, Ũ ) ∈ P(XN)×U be a solution of (7), with initial condition
µ̃0 ∈ PN (X ) and µ̃N ∈ P(XN) be the empirical measure of the trajectories of the particles in a
N particles system with initial condition µ̃0 and control sequence Ũ . Then

lim
N→∞

sup
µ̃0∈PN (X )

E
∣

∣

∣
Jβ(µ̃, Ũ) − Jβ(µ̃

N , Ũ )
∣

∣

∣
= 0.
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Proof. Fix ǫ > 0, as in the proof of Lemma 15, let Jβ,T (ν, V ) = (1 − β)
∑T

t=0 β
tr(νt, Vt). There

exists T ∈ N, such that for all (ν, V ) ∈ P(XN) × UN,

|Jβ,T (ν, V ) − Jβ(ν, V )| ≤ ǫ/2.

It remains to check that there exists a sequence (αN )N∈N with limN αN = 0 such that, for all
µ̃0 ∈ PN (X ),

∣

∣

∣
Jβ,T (µ̃, Ũ ) − EJβ,T (µ̃N , Ũ)

∣

∣

∣
≤ αN . (25)

The proof of (25) is an extension of the proofs of Lemmas 13 and 15. Notice first that Lemma 13
was proved for the sequence of processes (µN , UN ) obtained from the strategies πN∗ . However,
no assumption on πN∗ were used and Lemma 13 holds for any limit point of sequence of processes
(µN
πN , U

N
πN ) obtained from the strategies πN . We may thus apply this result to the strategy which

enforces at any time t, the control Ũt. Equation (22) for t = 1 reads 〈f, µ̃N1 〉 − 〈f, µ̃0KŨ0,µ̃0
〉 =

1
N

∑N
i=1M

f,N
i (1) + εf,Ni (1). Hence by Lemma 12,

E
∣

∣

∣
〈f, µ̃N1 〉 − 〈f, µ̃0KŨ0,µ̃0

〉
∣

∣

∣

2
≤ 2ǫ2N‖f‖∞ + 2C‖f‖2

∞/N + 2C‖f‖2
∞δN

Since X is finite, we deduce that there exists a sequence γN with limN γN = 0 such that:

E‖µ̃N1 − µ̃0KŨ0,µ̃0
‖ ≤ γN ,

and the sequence γN does not depend on the pair (µ̃0, Ũ0). Notice also that for t ≥ 1,

‖µ̃Nt+1 − µ̃t+1‖ ≤ ‖µ̃Nt+1 − µ̃Nt KŨt,µ̃
N
t
‖ + ‖µ̃Nt KŨt,µ̃

N
t
− µ̃tKŨt,µ̃t

‖.

By assumption A2, as in the proof of Lemma 15, we have: ‖µ̃tKŨt,µ̃t
− µ̃Nt KŨt,µ̃

N
t
‖ ≤ C1‖µ̃t −

µ̃Nt ‖, with C1 > 1. It follows that:

E‖µ̃Nt+1 − µ̃t+1‖ ≤ γN + C1E‖µ̃
N
t − µ̃t‖.

So that:

E‖µ̃Nt − µ̃t‖ ≤ γN
Ct1 − 1

C1 − 1
,

and

E
∣

∣

∣
Jβ,T (µ̃, Ũ ) − Jβ,T (µ̃N , Ũ)

∣

∣

∣
≤ (1 − β)γN‖r‖∞

T
∑

t=0

βt
Ct1 − 1

C1 − 1
.

Equation (25) follows. �

The next lemma concludes the proof of Proposition 11.

Lemma 17 Π∞-a.s., for all t, Vt ∈ Uβ(νt) and Jβ(q0) = Jβ(ν, V ).

Proof. The projection map ν 7→ ν0 is continuous. In particular, this implies that ν0 = q0,
Π∞-a.s. Hence, Lemma 13 implies, Π∞-a.s.

Jβ(ν, V ) ≤ Jβ(q0) (26)

Π∞ is an limit point of L(µN , UN ), thus, up to extracting a converging subsequence of N ,
Lemma 14 implies that Jβ(µ

N , UN ) converges weakly to Jβ(ν, V ). Since, by construction,
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EJβ(µ
N , UN ) = J N

β (µN0 ), we deduce that for this converging subsequence, limN JN
β (µN0 ) =

EJβ(ν, V ) ≤ Jβ(q0).
The other way around, we define an admissible control strategy by induction for the N

particles system (this strategy is however not Markovian). Let µN0 = µN0 and draw with ZN0 a

control U
N
0 ∈ Uβ(µ

N
0 ). Then set µN1 = F (µN0 , U

N
0 ) and draw with ZN1 a control U

N
1 ∈ UNβ (µN1 )

(see page 5 for details on how to draw with ZN1 an element in UNβ (µN1 )). By induction, we define

a sequence of controls U
N

= (U
N
0 , U

N
1 , · · · ), such that U

N
t ∈ σ(µN0 , Z

N
0 , Z

N
1 , · · · , Z

N
t ) ⊆ FN

t .
Define µ̃N as the empirical measure of the particle system with N particles when the control

applied at time t is U
N
t and the initial condition is µN0 . This control process is admissible and

it is sub-optimal, i.e.

E[Jβ(µ̃
N , U

N
)] ≤ JN

β (µN0 ). (27)

From Lemma 16, there exists a sequence (γN )N∈N with limN γN = 0 such that

E[
∣

∣ Jβ(µ
N , U

N
) − Jβ(µ̃

N , U
N

)
∣

∣] ≤ γN .

Hence Equation (27) implies
Jβ(µ

N
0 ) ≤ JN

β (µN0 ) + γN .

Then, by Lemma 15,
Jβ(q0) ≤ lim inf

N
J N
β (µN0 ).

So finally, with Equation (26),

Π∞-a.s. Jβ(q0) = Jβ(ν, V ).

It follows that Π∞-a.s. the pair (ν, V ) is a solution of the DP recursion given by (7), (8). �

Proof of Theorem 1. Note that the sequence (J N
β (µN0 ))N∈N is bounded, indeed |J N

β (µN0 )| ≤

‖r‖∞. Therefore, in order to prove that limN J N
β (µN0 ) = Jβ(q0) it suffices to show that

along any increasing subsequence of integers N , we may extract a subsequence (Nk) such
that J Nk

β (µNk

0 ) converges to Jβ(q0). Now, along an increasing subsequence of integers N ,

let (µN , UN ) ∈ P(XN) × UN be a discount optimal control process with initial condition
µN0 : JN

β (µN0 ) = EJβ(µ
N , UN ). From Step 1 in the proof of Proposition 11, L(µN , UN ) is

tight in P(P(XN) × UN). Let (Nk)k∈N be a converging subsequence, L(µNk , UNk) converges
weakly to Π∞ = L(ν, V ). From Proposition 11, Π∞-a.s., Jβ(ν, V ) = Jβ(q0). The mapping

Jβ : (µ,U) 7→ Jβ(µ,U) is continuous, hence limk→∞JNk

β (µNk

0 ) = limk→∞ EJβ(µ
Nk , UNk) =

E∞Jβ(ν, V ) = Jβ(q0), where E∞ denotes the expectation with respect to the law Π∞. There-
fore, we have proved that limN JN

β (µN0 ) = Jβ(q0).

Similarly, let u ∈ lim supUNβ (µN0 ), then along an increasing subsequence of integers N ,

u ∈ UNβ (µN0 ). Along this increasing subsequence, there exists a discount optimal control process

(µN , UN ) ∈ P(XN) × UN with initial condition µN0 and initial control UN0 = u. From Step 1
in the proof of Proposition 11, L(µN , UN ) is tight in P(P(XN) × UN). Let (Nk)k∈N be a
converging subsequence, L(µNk , UNk) converges weakly to Π∞ = L(ν, V ). From Lemma 17,
Π∞-a.s., V0 ∈ Uβ(ν0). The projection mapping (µ,U) 7→ (µ0, U0) is continuous, hence Π∞-a.s.
ν0 = q0 and V0 = u, and we obtain u ∈ Uβ(q0).
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Proof of Corollary 9. As in the statement of Corollary 9, we now assume that UN converges
weakly to U . It implies that Π∞-a.s. V = U . From Proposition 2.2. in Sznitman [10], it is
sufficient (and nearly equivalent) to prove only, for some µ ∈ P(XN),

lim
N→∞

L(µN ) = δµ weakly in P(P(XN)). (28)

Thus we need to prove that Π∞-a.s. ν = µ. The proof is an extension of the above arguments
and follows a standard technique. Let X = (Xt) ∈ XN be a canonical trajectory. We prove the
following

Lemma 18 Π∞-a.s., ν satisfies a discrete martingale problem: for all functions f on X ,

Mf
t := f(Xt) − f(X0) −

t−1
∑

s=0

Gf(Xs, Us, νs) (29)

is a ν-martingale with initial condition ν0 = q0.

Proof. It suffices to prove that for all t ≥ 1 and all functions g from X t to R,

Π∞-a.s. 〈ν,Mf
t g(X0, · · · ,Xt−1)〉 = 〈ν,Mf

t−1g(X0, · · · ,Xt−1)〉.

(recall that 〈ν, g(X0, · · · ,Xt−1)〉 =
∫

XN g(X1, · · · ,Xt−1)ν(dX)). We define the function Φ from
P(XN) to R, defined by

Φ(ν) = 〈ν, (Mf
t −Mf

t−1)g(X0, · · · ,Xt−1)〉.

Let gNi = g(XN
i (0), · · · ,XN

i (t− 1)), applying (21) to f at time t and t− 1, we get:

(

f(XN
i (t)) − f(XN

i (t− 1) − Gf(XN
i (t− 1), UNt−1, µ

N
t−1)

)

gNi =
(

Mf,N
i (t) −Mf,N

i (t− 1) + εf,Ni (t) − εf,Ni (t− 1)
)

gNi ,

and summing over all i, we deduce

E|Φ(µN )| = E
1

N

∣

∣

∣

N
∑

i=1

(

f(XN
i (t)) − f(XN

i (t− 1) − Gf(XN
i (t− 1), UNt−1, µ

N
t−1)

)

gNi

∣

∣

∣

= E
1

N

∣

∣

∣

N
∑

i=1

(

Mf,N
i (t) −Mf,N

i (t− 1) + εf,Ni (t) − εf,Ni (t− 1)
)

gNi

∣

∣

∣

≤ E
∣

∣

∣

1

N

N
∑

i=1

(

Mf,N
i (t) −Mf,N

i (t− 1)
)

giN

∣

∣

∣
+E

∣

∣

∣

1

N

N
∑

i=1

(

εf,Ni (t) − εf,Ni (t− 1)
)

gNi

∣

∣

∣

≤ I + II. (30)

From Step Two, |εf,Ni (t)| ≤ t‖f‖∞ǫN hence, II ≤ 2t‖g‖∞‖f‖∞ǫN which tends to 0 as N goes
to infinity. Using exchangeability, Lemma 12 and Cauchy-Schwartz inequality,

I2 ≤
‖g‖2

∞

N
E|Mf,N

i (t)−Mf,N
i (t−1)|2+

N − 1

N
E(Mf,N

1 (t)−Mf,N
1 (t−1))(Mf,N

2 (t)−Mf,N
2 (t−1))gN1 g

N
2 .

Thus from Lemma 12, I tends to 0 as N goes to infinity. By Fatou’s Lemma, we obtain:

E|Φ(ν)| ≤ lim inf
N→∞

E|Φ(µN )| = 0.
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Therefore Π∞-a.s. 〈ν, (Mf
t −Mf

t−1)g(X0, · · · ,Xt−1)〉 = 0. �

The solution of the discrete martingale problem (29) is unique and is known (see for example
Problem 16 p 264 in Ethier and Kurtz [6]). The unique measure µ ∈ P(XN) such that µ0 = q0
and which satisfies (29) for all functions f is the law of the process (Xt) defined by recursion
with L(X0) = µ0 = q0 and transition probabilities:

P(Xt+1 ∈ ·|(X0, U0, · · · ,Xt, Ut)) = KUt,µt(Xt, ·).

We have proved that Π∞-a.s. ν = µ. Hence, we have proved that limN→∞L(µN ) = δµ weakly
in P(P(XN)). �

4.2 Proof of Theorem 2

The proof of Theorem 1 extends without any difficulty to the finite average reward and leads
to Theorem 2.

4.3 Proofs of Theorem 5 and Corollary 10

As in Lemma 4, we consider a stationary solution (µN , UN ) of the DP average cost problem.

There exists ΨN ∈ SNav such that L(µN0 ) = ΨN (·,U) and the law of UNt given (µNt ,F
N
t−1)

is ΨN (µNt , ·)/Ψ
N (µNt ,U). The following proposition implies both Theorem 5 and Corollary

10. We consider for all N ∈ N, a vector of initial condition (XN
1 (0), · · · ,XN

N (0)) which is

exchangeable, and that satisfies µN0 = 1
N

∑N
i=1 δXN

i (0).

Proposition 19 Under the assumptions of Theorem 5, if (XN
1 (0), · · · ,XN

N (0)) is exchangeable,
then any limit point of L(µN , UN ) in P(P(XN) × UN) has its support included in Sav.

We first prove Theorem 5 and Corollary 10 using Proposition 19. Note that if a subsequence
of L(µN , UN ) converges in P(P(XN)×UN), then L(µN0 , U

N
0 ) = ΨN also converges. By continuity

we deduce that JN
av = 〈ΨN , r〉 = Er(µN0 , U

N
0 ) converges to Jav and since ΨN ∈ SNav it implies

also that lim supN SNav ⊆ Sav . If in addition Assumption A7 holds, then there exists a unique
stationary measure q∗ solution of (7). Hence, since the mapping ν 7→ νt is continuous, by
Proposition 19, for all t, limN µ

N
t = q∗ weakly in P(X ). From Proposition 2.2 in Sznitman [10]

it implies Corollary 10.

Proof of Proposition 19 The proof follows step by step the proof of Theorem 9. Let
(µN , UN ) ∈ P(XN)×UN be a stationary solution of the average cost problem with N particles.

We may apply Steps 1 and 2 of the proof of Theorem 9 to the process (µN , UN ). We deduce
that its law is tight in P(P(XN) × UN) and Lemma 13 holds to any limit point of its law.
The difficulty comes from deriving an analog of Lemma 17 to the mapping from P(X )N × UN

to R
+: Jav(ν, V ) which is certainly not continuous for the topology induced by the distance

‖ν − ν ′‖β + ‖V − V ′‖β. Borkar’s ergodic occupation measure solves this difficulty. Let Π∞ be
an limit point of L(µN , UN ) and let (ν, V ) ∈ P(XN) × UN be a random variable with law Π∞.
Proposition 19 is a consequence of Lemma 13 and the next Lemma.

Lemma 20 Π∞-a.s. Jav(ν, V ) = Jav

Proof. Let Π∞
t ∈ P(P(X ) × U) be the distribution of (νt, Vt) and let A be a measurable set in

P(X ) such that Π∞
0 (∂A,U) = Π∞

1 (∂A,U) = 0. Equation (12) reads:

P(µN1 ∈ A) = P(µN0 ∈ A).
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Along a converging subsequence, we deduce that: P(ν1 ∈ A) = P(ν0 ∈ A). Since Π∞-a.s.
νt+1 = νtKVt,νt , this last equation can be restated as P(ν0KV0,ν0 ∈ A) = P(ν0 ∈ A). Thus if
Ψ′ = Π∞

0 , we obtain
∑

u∈U

Ψ′({q : qKu,q ∈ A}, u) = Ψ′(A,U).

Hence, by the definition of Sav, Π∞-a.s.,

〈Ψ′, r〉 ≤ Jav.

Moreover, note that the mapping (ν ′, V ′) 7→ r(ν ′0, V
′
0) is continuous, so that along a converging

subsequence:
〈Ψ′, r〉 = lim

N→∞
Er(µN0 , U

N
0 ) = lim

N→∞
J N
av .

The other way around, let Ψ ∈ Sav as in Assumption A6. For N particle system, using the
extra randomness ZN , we may define a Markov strategy π and associated process (µN , UN )
such that P(UNt = u|µNt , µ

N
t−1, · · · , µ

N
0 ) = αu(µ

N
t ). (µN , UN ) is then a Markov chain on the

finite state space PN (X ) × U . Let ΠN
0 be a stationary distribution of this Markov chain (note

that it is not necessarily unique), and (µN , UN ) the stationary process with initial distribution
ΠN

0 . As usual, ΠN denotes the law of the process (µN , UN ) and ΠN
t the law of (µNt , U

N
t ). By

construction, for all t ∈ N, ΠN
t = ΠN

0 and Equation (12) holds for ΠN
0 and it follows:

〈ΠN
0 , r〉 ≤ J N

av .

As in Step 1 of the proof of Theorem 1, ΠN is tight in P(P(XN)×UN). Let Π∞ be an limit point
of L(µN , UN ). The projection mapping Π 7→ Πt is continuous, hence for all t ∈ N, Π∞

t = Π∞
0 .

Now, as above Lemma 13 holds: if L(ν, V ) = Π∞, then Π∞-a.s., νt+1 = νtKVt,νt. Moreover,
the continuity of q 7→ αu(q) implies also P(Vt = u|νt, νt−1, · · · , ν0) = αu(νt). Hence, Π∞

0 is an
invariant measure of the Markov transition kernel (15). By assumption A6, (αu)u∈U ∈ Cr and
thus 〈Π∞

0 , r〉 = 〈Ψ, r〉 = Jav. We obtain that along a converging subsequence,

lim
N→∞

〈ΠN
0 , r〉 = 〈Π∞

0 , r〉 = Jav,

and it concludes the proof. �

5 Symmetry breaking in controlled particle systems

5.1 Phase transition in epidemic models

We consider the following simplistic epidemic model on N particles. The particles are agents
in a network and a virus is spreading throughout the network. Time is slotted, and a central
controller controls the global activity in the network. The state of a particle is X = {0, 1}, in
state 0, the particle is healthy whereas in state 1 the particle is infected. For a given control
parameter, u ∈ U ⊆ (0, 1), at a given time slot, an infected particle becomes healthy with
probability 0 < h(u) < 1 independently of everything else. A healthy particle, with probability
u, communicates in the network with a particle picked uniformly among the N − 1 remaining
particles independently of everything else. If the randomly picked particle is infected then the
healthy particle becomes infected otherwise it remains healthy. We consider the ergodic average
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reward for the reward function r(x, u) = 1 − x. This model fits in our framework and, with
q ∈ PN (X ),

KN
u,q(1, 0) = h(u),

KN
u,q(0, 1) =

N

N − 1
uq(1),

and we obtain a limit kernel Ku,q. Note that for all u ∈ U andN ∈ N, the corresponding Markov
chain is irreducible, and the state where all particles are healthy is absorbing, therefore, for all
N ∈ N:

J N
av = 1.

As N goes to infinity, the limit empirical measure evolves according to the recursion µt+1 =
µtKut,µt . Hence if αt = µt({1}) is the proportion of infected particles, we have

αt+1 = αt(1 + ut(1 − αt) − h(ut)).

The fixed points of this equation are α(1) = 0 and α(2) = 1− h(u)/u. If there exists u ∈ U such
that h(u) ≥ u, then there is a unique attracting fixed point to the equation µt+1 = µtKu,µt : the
measure δ0 with associated reward 1. We then have J ∗(q) = 1 for all q ∈ P(X ). Otherwise,
if γ = maxu∈U h(u)/u < 1, then there exists another locally stable fixed point: the measure
(h(u)/u)δ0 + (1 − h(u)/u)δ1 with associated reward h(u)/u. A quick calculation shows then
that Jav(q) = 1 if q(1) < γ and Jav(q) = γ, otherwise.

As a conclusion, depending on the value of γ, there is a phase transition in this simplistic
epidemic model. If γ ≥ 1, then for all q ∈ ∪N∈NPN (X ), limT limN J N

T (q) = limN limT JN
T (q) =

1, whereas, if γ < 1, this exchange of limits fails for some initial conditions q.

5.2 Non-uniform initial condition - Uniform interactions

The state of a particle is X = {0, 1}×{1, 2} corresponding to an energy state 0 or 1 and a class
1 or 2. The control parameter is U = {u = (u(1), u(2)) ∈ [0, 1]2 : u(1) + u(2) = 1}, the control
u(1) is applied to class-1 particles and u(2) to class-2 particles. The transition kernel Ku,q for
a single particle is described as follows

(1, c) → (1, c) with probability Ku,q((1, c), (1, c)) = ϕ(u(1)q(1, 1) + u(2)q(1, 2)),

(0, c) → (0, c) with probability Ku,q((0, c), (0, c)) = 1.

For some function 0 < ϕ(·) < 1. All other transitions have probability 0. The energy state 0 is
an absorbing energy state. We define the recursion:

µt+1 = µtKut,µt .

The reward function is
r(x, u) = x.

The aim is to maximize
∑

t≥0 β
tr(µt, ut). If αt(c) = µt(1, c), and αt = αt(1) + αt(2). The

reward is simply
∑

t≥0

βtαt,
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and:

αt+1 = αtϕ(ut(1)αt(1) + ut(2)αt(2))

αt+1(c) = αt(c)ϕ(ut(1)αt(1) + ut(2)αt(2))

For example assume ϕ is convex and monotone, then the optimal control is

αt+1 = αt max(ϕ(αt(1)), ϕ(αt(2)))

αt+1(c) = αt(c)max(ϕ(αt(1)), ϕ(αt(2))).

The associated reward should be compared with the reward of the system with a unique class:
u = (1/2, 1/2). However, even if the particle system has uniform interactions, if α0(1) 6= α0(2),
it is possible to benefit from the control over two classes.

5.3 Uniform initial condition - Symmetric interactions

Same as above but the transition kernel Ku,q for one particle is

(1, 1) → (1, 1) with probability Ku,q((1, 1), (1, 1)) = ϕ(u(1)q(1, 1), u(2)q(1, 2)),

(1, 2) → (1, 2) with probability Ku,q((1, 2), (1, 2)) = ϕ(u(2)q(1, 2), u(1)q(1, 1))

(0, c) → (0, c) with probability Ku,q((0, c), (0, c)) = 1.

For some function 0 < ϕ(·, ·) < 1. With the above notations, we have

αt+1(c) = αt(1)ϕ(ut(1)αt(1), ut(2)αt(2))

αt+1(c) = αt(2)ϕ(ut(2)αt(2), ut(1)αt(1))

Assume that α0(1) = α0(2) = α0: uniform initial conditions. Then, we may benefit from
the control over two classes if:

max
u∈U :u1+u2=1

ϕ(u(1)α0, u(2)α0) + ϕ(u(2)α0, u(1)α0) > ϕ(α0/2, α0/2).

5.4 Uniform initial condition - Symmetric interactions - Average reward

Same as above, we add an extra transition

(0, c) → (1, c) with probability Ku,q((0, c), (1, c)) = δ.

The evolution equations are:

αt+1(1) = αt(1)ϕ(ut(1)αt(1), ut(2)αt(2)) + δµt(0, 1)

αt+1(2) = αt(2)ϕ(ut(2)αt(2), ut(1)αt(1)) + δµt(0, 2).

We may then consider the average reward optimization. To this end, we need to compute the
fixed points of these evolution equations, we might expect to find optimal configurations such
that α(1) 6= α(2) if ϕ is not symmetric in its first and second variable.
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5.5 Space-time particle system

The particles have a position on the d-dimensional unit torus T
d = R

d/Zd. The state of the
particle is in X = {0, 1} × T

d, corresponding to an energy state 0 or 1 and a position on the
torus. The energy state 0 is a ground state and 1 is an excited state.

The interactions between particles depend on their relative distance on T
d. This interaction

is captured by an influence function I on T
d, I(z) being the influence of z over a particle located

at 0. We will assume that the influence is a non-increasing function of |z|, (| · | denotes the
norm on the unit torus). Typical examples are I(z) = 1(|z| ≤ r), the interaction with range r,
or I(z) = (1 + |z|)−α long range interaction with exponent α > 0.

The control set U is a subset of the set of measurable non-negative functions on T
d such

that
∫

Td u(z)dz = 1. u(z) is thought as the density of the effort for particles located at z.
For simplicity, the particles are assumed to have a fixed position, so that for all z 6= z′ ∈ T

d,
Ku,q((x, z), (x, z

′)) = 0. We define Kz
u,q as the transition kernel of a particle located at z ∈ T

d,
we assume that Kz

u,q is as follows

(1, z) → (1, z) with probability Kz
u,q(1, 1) = ϕ

(

∫

Td

I(z − ξ)u(ξ)q(1, dξ)
)

,

(0, z) → (0, z) with probability Kz
u,q(0, 0) = 1.

For some function 0 < ϕ < 1. Note in particular that 0 is an absorbing energy state.
The recursion satisfied by the empirical measure is:

µt+1(·, dz) = µt(·, dz)K
z
ut ,µt

.

The initial state is uniform: µ0(1, dz) = α0dz, where 0 < α0 ≤ 1 is the density of particles in
energy state 1 at time 0. In particular for all t ≥ 0, µt(1, dz) has a density pt(z) with respect
to the Lebesgue measure, p0(z) = α0 and

pt+1(z) = pt(z)ϕ
(

∫

Td

I(z − ξ)ut(ξ)pt(ξ)dξ
)

.

The reward function is simply taken as r((x, z), u) = x, so that the associated discounted
reward is

∑

t≥0

βt
∫

Td

pt(z)dz.

We assume also that the control space U is finite: the torus is divided into (Ri)1≤i≤M
regions and due to the coarseness of the control, u(z) is constrained to be constant on each
region (Ri)1≤i≤M and the possible values of u(z) are finite. We assume also that the system
is only partially observed: the control is a function of the integrated measure

∫

Td µ(·, dz) and
the initial state is known to be spatially uniform. Hence the density α0 is known and we are in
the framework of Corollary 8. So finally, if ut(i) is the control applied in region Ri, the density
evolution is:

p
(M)
t+1 (z) = p

(M)
t (z)ϕ

(

M
∑

i=1

ut(i)

∫

Ri

I(z − ξ)p
(M)
t (ξ)dξ

)

. (31)

If M = 1, then ut(1) = 1 and due to the complete symmetry of the system,

p
(1)
t+1(z) = p

(1)
t+1(0) = p

(1)
t (0)ϕ

(

p
(1)
t (0)

∫

Td

I(ξ)dξ
)

.
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If M ≥ 2 is it possible to achieve a higher average density
∫

Td p
(M)
t (z)dz ? If this is possible,

then the controller enforces a non-symmetric control putting more effort in some regions and
will break the symmetry of the system. The other way around, does there exists a partition of
T
d into M regions such that a non-symmetric control achieves a better performance ? Indeed, in

many applications, the controller may be free to choose to break the system into a few regions.
For example, assume that the controller may divide the system into up to M regions

{Ri}1≤i≤M . If
∫

Td p
(M)
1 (z)dz > p

(1)
1 (0) = α0ϕ(α0

∫

Td I(ξ)dξ), the optimal control will break
the symmetry of the system (at least for β small enough). This will happen if there exists a
partition into M regions {Ri}1≤i≤M , (ui)1≤i≤M ∈ R

M
+ , such that

∑M
i=1 ui|Ri| = 1 and

∫

Td

ϕ
(

α0

M
∑

i=1

ui

∫

Ri

I(z − ξ)dξ
)

dz > ϕ
(

α0

∫

Td

I(ξ)dξ
)

.

If ϕ is linear, then we may check easily that the right hand side always equals the left hand side.
Then the general answer is no: for linear ϕ the optimal control does not break the symmetry of
the system, irrespectively of the influence function I. Notice that a linear function ϕ will arise
in pair-wise interaction.

If ϕ is non-linear, the expected answer is yes. Indeed, for any partition {Ri}1≤i≤M ,

sup
(ui)1≤i≤M ∈ R

M
+ ,

PM

i=1
ui|Ri| = 1

∫

Td

ϕ
(

α0

M
∑

i=1

ui

∫

Ri

I(z − ξ)dξ
)

dz,

will not in general be reached for ui|Ri| = 1/M . For example if ϕ is convex, from Jensen’s
inequality, for any partition {Ri}1≤i≤M and (ui) as above:

∫

Td

ϕ
(

α0

M
∑

i=1

ui

∫

Ri

I(z − ξ)dξ
)

dz ≥ ϕ
(

α0

∫

Td

I(ξ)dξ
)

,

and the symmetric control is the worst possible control ! The optimal control lies on the
boundary of the constraint set:

sup
(ui)1≤i≤M ∈ R

M
+ ,

PM

i=1
ui|Ri| = 1

∫

Td

ϕ
(

α0

M
∑

i=1

ui

∫

Ri

I(z − ξ)dξ
)

dz = max
1≤i≤M

∫

Td

ϕ
( α0

|Ri|

∫

Ri

I(z − ξ)dξ
)

dz.

Convex and non-linear functions ϕ will naturally appear in k-particle interactions with k ≥ 3.
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