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Abstract

This paper deals with the problem of additional sensor location in order to recover the state and input observability for structured linear
systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. It allows
to provide the minimal number of the required sensors and either their pertinent location or a necessary and sufficient condition which
allows to check if a sensor location is adequate or not. We obtain a sensor placement procedure based on classical and well-known graph
theory algorithms, which have polynomial complexity orders.
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1 Introduction

The problem of estimating the state and the unknown input is
of great interest mainly in control law synthesis, fault detec-
tion and isolation, fault tolerant control, supervision and so on.
In this respect, using geometric or algebraic approaches, many
works, among which we can cite (Basile and Marro, 1969;
Hautus, 1983), are focused on the input and state observabil-
ity analysis. When the input and state observability conditions
are not satisfied, one way to recover this property is to add
sensors, which must measure some pertinent variables.
Many studies reviewed in (van de Wal and de Jager, 2001)
deal with the selection and sensor placement. They use, almost
all, optimisation criteria related to the observability Gramian,
sensitivity functions . . . . To apply these methods, which are
based on classical algebraic and geometric tools, the exact
knowledge of the state space matrices characterizing the sys-
tem’s model is required. However, in many modeling prob-
lems, these matrices have a number of fixed zero entries de-
termined by the physical laws while the remaining entries are
not precisely known, particularly during a conception stage.
This is why, to deal with these systems in spite of poor knowl-
edge we have on them, the idea is to consider models charac-
terized by matrices where the fixed zeros are conserved while
the non-zero entries are replaced by free parameters. Many
studies on this kind of systems, called structured systems, are
related to the graph-theoretic approach, and aim to analyse
some of their most important properties such as controllabil-
ity, observability, fault diagnosticability, reconfigurability or
the solvability of several classical control problems (Dion et
al., 2003; Staroswiecki, 2006). It results from these works that
the graph-theoretic approach provides generally simple and el-
egant analysis tools.
In this way, in (Commault et al., 2008), the authors address the
problem of additional sensor placement to recover the state ob-
servability of structured linear systems. However, these studies
do not allow to tackle systems with unknown inputs which can
model disturbances or faults for example. This is the first mo-
tivation of the presented work in which we consider systems
with exogenous unknown inputs having unknown dynamics.
More precisely, using a graph-theoretic approach, we study
the number and the location of the additional sensors which
are necessary and useful to recover the input and state observ-

ability conditions provided in (Boukhobza et al., 2007). We
try to answer to the following question: when a linear system
is not input and state observable, where must we place a mini-
mal number of additional sensors to recover this observability
property ? At this aim, we give the necessary and sufficient
number of additional sensors we must add, and either their
exact location or a condition which allows to check if a given
location is efficient. The goal is to precise as finely as possible
the location of the additional sensors which makes possible the
state and input observability of the system. All the proposed
results are based on classical combinatorial algorithms with
polynomial order complexity. This may be an important crite-
rion when we deal with large scale systems. Moreover, since
we consider structured systems, our approach can be used dur-
ing a conception stage.
The paper is organised as follows: after Section 2, which is
devoted to the problem formulation, a digraph representation
of structured systems is given in Section 3. The main results
are enounced in Section 4. A conclusion ends the paper.

2 Problem statement

In this paper, we treat systems of the form

ΣΛ :

{
ẋ(t) = Aλx(t) + Bλu(t)

y(t) = Cλx(t) + Dλu(t)
, where x ∈ Rn, u ∈ Rq

and y ∈ Rp are respectively the state vector, the unknown input
vector and the output vector. Aλ, Bλ, Cλ and Dλ represent
matrices which elements are either fixed to zero or assumed to
be nonzero free parameters noted λi. The latter form a vector
Λ = (λ1, . . . , λh)T ∈ Rh. If all parameters λi are numerically
fixed, we obtain a so-called admissible realization of structured
system ΣΛ. We say that a property is true generically if it is
true for almost all the realizations of structured system ΣΛ.
Here, “ for almost all the realizations ” is to be understood as
“ for all parameter values (Λ ∈ Rh) except for those in some
proper algebraic variety in the parameter space ”.
Let us now recall the definition of the generic state and input
observability which is related to the strong observability and
the left invertibility (Trentelman et al., 2001).

Definition 1 Structured system ΣΛ is generically state and
input observable if, for almost all its realizations, y(t) = 0
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for t ≥ 0 implies x(t) = 0 for t ≥ 0 and u(t) = 0 for t > 0.

Starting from a system which does not satisfy Definition 1,
the aim of the paper is to propose a systematic procedure for
additional sensor placement in order to recover the generic
state and input observability.

3 Graphical representation of structured linear systems

3.1 Digraph definition for structured linear system

Digraph G(ΣΛ), associated to ΣΛ, is constituted by a ver-
tex set V and an edge set E . The vertices represent the
state, the unknown input and the output components of ΣΛ

whereas the edges traduce the existence of static or dy-
namic relations between these variables. More precisely,
V = X∪Y ∪U, where X = {x1, . . . ,xn} is the set of state
vertices, Y = {y1, . . . ,yp} is the set of output vertices and
U = {u1, . . . ,uq} is the set of unknown input vertices. The
edge set is E = A-edges ∪ B-edges ∪ C-edges ∪ D-edges,
with A-edges =

{
(xj,xi), Aλ(i, j) 6= 0

}
, B-edges ={

(uj,xi), Bλ(i, j) 6= 0
}

, C-edges =
{
(xj,yi), Cλ(i, j) 6= 0

}
,

D-edges =
{
(uj,yi), Dλ(i, j) 6= 0

}
. Here, Mλ(i, j) is the

(i, j)th element of matrix Mλ and (v1,v2) denotes a di-
rected edge from vertex v1 ∈ V to vertex v2 ∈ V .
Hereafter, we illustrate the proposed digraph representation
with an example.

Example 2 To the system defined by

ẋ1 = λ1x2 + λ2x4, ẋ2 = λ3x3

ẋ3 = λ6u1, ẋ4 = λ4x1 + λ5x5,

ẋ5 = λ7u2

y1 = λ8x1 y2 = λ9x2 + λ10u1

we associate the digraph in Figure 1.
 

x2

y1

y2

x1x4x5

x3

u1

u2

Figure 1. Digraph representing system of Example 2

3.2 Notations and definitions

• Two edges e1 = (v1,v′1) and e2 = (v2,v′2) are v-disjoint
if v1 6= v2 and v′1 6= v′2.
In example 2, (x2,y2) and (x5,x4) as well as (x1,x4)
and (x4,x1) are v-disjoint. However, neither (x2,x1) and
(x4,x1) nor (u1,y2) and (u1,x3) are v-disjoint.
• Some edges are v-disjoint if they are mutually v-disjoint.
• A sequence of edges (vrj ,vrj+1

) ∈ E for j = 0, . . . , i−1 is
called a path and is denoted P = vr0 → vr1 → . . . → vri .
We say, in this case, that P covers or contains vertices
vr0 , vr1 , . . . , vri .• A path is simple when every vertex occurs only once in this
path. Some paths are disjoint if they have no common vertex.
Path P is an Y-topped path if its end vertex belongs to Y.
Let V1 and V2 denote two subsets of V . The cardinality of V1

is noted card
(V1

)
.

• θ
(V1,V2

)
is the maximal number of v-disjoint edges from

V1 to V2.
• A simple path P is said a V1-V2 path if its begin vertex
belongs to V1 and its end vertex belongs to V2. If the only
vertices of P belonging to V1 ∪ V2 are its begin and its end
vertices, P is a direct V1-V2 path.
• We note by ρ

(V1,V2

)
the maximal number of disjoint V1-

V2 paths. A set of ρ
(V1,V2

)
disjoint V1-V2 paths is called

maximum V1-V2 linking.
• The vertices which are covered by all the maximum V1-
V2 linkings are called the essential vertices for the V1-V2

linkings. These vertices constitute a specific subset de-

noted Vess(V1,V2) and which is defined as Vess(V1,V2)
def
=

{v ∈ V |v is covered by any maximum V1-V2 linking}.
• A subset S ⊆ V is a separator between sets V1 and V2, if
every path from V1 to V2 contains at least one vertex in S.
We call minimum separators between V1 and V2 any sepa-
rators having the smallest size, which is equal to ρ

(V1,V2

)
.

The minimum input separator between V1 and V2 is denoted
Si(V1,V2) and is defined as the set of the end vertices of all
direct V1 − Vess(V1,V2) paths.
In Example 2, ρ(U,Y) = 2 and θ(U,Y) = 1 since there ex-
ists only one edge linking U to Y and which is (u1,y2). Fur-
thermore, as the edges (u1,x3), (x3,x2), (x2,y2), (u2,x5),
(x5,x4), (x4,x1) and (x1,y1) are v-disjoint, we have that
θ(U ∪X,X ∪Y) = 7. Note also that there exist two maxi-
mum linkings: {u2→x5→x4→x1→y1;u1→y2},
{u2→x5→x4→x1→y1;u1→x3→x2→y2}. The es-
sential vertices, which are present in both the two maximum
linkings, are collected in Vess(U,Y) and so Vess(U,Y) =
{u1, u2, x1, x4, x5, y1, y2}. Moreover, as the input ver-
tices are essential, we have Si(U,Y) = {u1, u2}.
• Finally, we define a vertex subset denoted ∆0 such that

∆0
def
=

{
xi | ρ

(
U ∪ {xi},Y

)
= ρ

(
U,Y

)}

For a simple interpretation of ∆0, note that it merges all the
state vertices which are not connected to Y, the state vertices
belonging to Vess(U,Y) and the state vertices from which all
Y-topped paths cover at least an element of Vess(U,Y).
In Example 2, ∆0 = X because, on the one hand x1, x4, x5

are essential and on the other hand, all the Y-topped paths
from x2 or x3 arrive to y1 or y2 which are both essential.
Hereafter, we illustrate the latter definitions on the following
more consistent example:

Example 3 Consider the structured linear system represented
by the digraph depicted in Figure 2. There exist several max-

 

Figure 2. Digraph representing system of Example 3

imumU-Y linkings, which are of size 2 (ρ
(
U,Y

)
= 2):

{u1→x3→x4→x5→y1;u2→y4}, {u1→x3→x4→x6→
x5→y1;u2→x8→y4} , {u3→x2→x3→x4→x6→x5→y1;
u2→x7→y3} , . . .. Moreover, Vess(U,Y) = {x3, x5, u2}.
The essential vertices which are nearest the input ones con-
stitute Si(U,Y) = {x3, u2}. Finally, all the Y-rooted paths
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starting from x1, x2, x4 and x6 cover the essential vertex
x5. Then, ∆0 = {x1, x2, x3, x4, x5, x6}.

4 Main results

4.1 Recalls on the graphical conditions for the state and
input observability

Before dealing with the sensor placement problem, we recall
hereafter the graphic conditions established in (Boukhobza et
al., 2007), which ensure the generic state and input observ-
ability of structured linear systems:

Proposition 4 Structured linear system ΣΛ is generically
state and input observable iff in its associated digraph G(ΣΛ)
Cond1. θ

(
X ∪U,X ∪Y

)
= n + q (maximal matching con-

dition).
Cond2. every state vertex is the begin vertex of an Y-topped
path (output connectivity condition);
Cond3. ∆0 ⊆ Vess(U,Y) (length condition).

These state and input observability conditions are greatly based
on the more general study on the generic number of invariant
zeros initiated in (van der Woude, 2000).
The conditions Cond1. and Cond2. of Proposition 4 are the
two well-known state observability conditions for linear sys-
tems without unknown input recalled in (Reinschke, 1988;
Dion et al., 2003). The third condition of Proposition 4 is due
to the fact that we consider systems with unknown input.

4.2 Global strategy for the additional sensor placement

The aim of this paper is to study additional sensor placement
when the conditions of Proposition 4 are not satisfied. To
do so, our proposed procedure consists of three steps which
correspond one by one to the conditions of Proposition 4.
In the sequel, we define a new output vector z represent-
ing the additional sensors collecting the new measurements
z(t) = Hλ

x x(t) + Hλ
uu(t). Hence, we denote the completed

system by Σc
Λ:

Σc
Λ :





ẋ(t) = Aλx(t) + Bλu(t)

y(t) = Cλx(t) + Dλu(t)

z(t) = Hλ
x x(t) + Hλ

uu(t)

The additional sensor components can be represented by ver-
tex set Z and edge subsets Hx-edges and Hu-edges from
respectively X to Z and U to Z. Since we propose three
stages in our sensor implementation procedure, we subdivide
vertex subset Z into three subsets denoted Z1, Z2 and Z3.
Each subset Zi, i = 1, 2, 3 corresponds to the sensors possi-
bly added at the ith stage of our procedure.

4.3 Additional sensors for the maximal matching condition

The maximal matching condition is also equivalent to

∀V1 ⊆ X ∪U, θ
(
V1,X ∪Y

)
= card

(
V1

)
(1)

This condition means that there are enough independent ob-
servation equations to determine any subset of state and input
components. We say that there is a dilation in the digraph of
the system when the latter condition is not satisfied for some
vertex subset V1 ⊆ X ∪U. The aim of additional sensors at
this first stage is to eliminate all the dilations.

As in (Commault et al., 2008; Staroswiecki, 2006), we also
use the Dulmage-Mendelsohn decomposition (Dulmage and
Mendelsohn, 1958; Murota, 1987), which is a performant
tool to deal with general matching conditions. Hence, we
define a bipartite graph in order to localize the dilations oc-
curring in the digraph of the system. This bipartite graph
is noted B(ΣΛ) = (V+,V−,W ), where V+ and V− are
two disjoint vertex subsets and W is the edge set. More
precisely, V+ = X+ ∪ U+ and V− = Y− ∪ X−, with
X+ = {x+

1 , x+
2 , . . . , x+

n }, U+
1 = {u+

1 , u+
2 , . . . , u+

q },
X− = {x−1 , x−2 , . . . , x−n }, Y−

1 = {y−1 , y−2 , . . . , y−p }.
Edge set W is defined such that (v+

i ,v−j ) ∈ W iff there
exists an edge (vi,vj) in the associated digraph G(ΣΛ).
For the system of Example 2, the associated bipartite graph is
given in Figure 3. In this bipartite graph, the edge (u+

1 ,x−3 ),

x3
+

x2
-y2

- x1
-

x1
+

x4
- x5

-x3
- y1

-x4
-

x5
+ u2

+u1
+ x2

+ x4
+

 

Figure 3. Bipartite graph representing the system of Example 2
for example, corresponds to the edge (u1,x3) in the digraph
associated to the system depicted in Figure 1.
A matching in a bipartite graph B(ΣΛ) = (V+,V−,W ) is
an edge set M ⊆ W such that all the edges of M are dis-
joint. A matching is maximal if it has a maximal cardinality
which is equal to θ

(
V+,V−)

. Yet, by construction of the di-
graph, we have θ

(
V+,V−)

= θ
(
X ∪U,X ∪Y

)
. Then, the

fact that condition Cond1. of Theorem 4 is not satisfied i.e.
θ
(
X∪U,X∪Y

)
< card(X)+card(U) = n+q = card(V+)

or in other words θ
(
V+,V−)

< card(V+), implies that
some additional sensor vertices are needed to complete V−.
This number is at least equal to card(V+) − θ

(
V+,V−)

.
Indeed, since one sensor can augment the maximal match-
ing at most with one unity, with less additional vertices in
V−, it is impossible to complete the maximal matching in
order to satisfy θ

(
V+,V−)

= n + q = card(V+). In ad-
dition to the number of required sensors, another problem
is to precise as finely as possible their location because ob-
viously adding anywhere card(V+) − θ

(
V+,V−)

sensors
does not allow to recover the maximal matching condition.
We use a part of the Dulmage-Mendelsohn decomposition
precisely to solve this problem of sensor location. First,
let us associate to each maximal matching M , a non bi-
partite digraph noted BM (ΣΛ) = (V+,V−, W̄ ) where
(v1,v2) ∈ W̄ ⇔ (v1,v2) ∈ W or (v2,v1) ∈ M .
We denote by ∂+M (resp. ∂−M) the set of vertices in
V+ (resp. in V−) covered by the edges of M . we note
S+

0 = V+ \ ∂+M. Then, we use the following algorithm:
# Find a maximal matching M in B(ΣΛ),
# V+

0 = S+
0 ∪{v ∈ V+, ∃ a path in BM (ΣΛ) from S+

0 to v}
# V−

0 = {v ∈ V−, ∃ a path in BM (ΣΛ) from S+
0 to v}.

It is important to note that the obtained subsets V+
0 and V−

0
are the same whatever the choice of the maximal matching
M (Dulmage and Mendelsohn, 1958; Murota, 1987). Using
the previous algorithm, we have:

Proposition 5 Consider structured linear system ΣΛ repre-
sented by digraph G(ΣΛ) and by the bipartite graph B(ΣΛ).
To recover the maximal matching condition, the minimal num-
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ber of additional sensors, noted Z1 in the digraph G(Σc
Λ)

or Z−1 in B(Σc
Λ), is equal to γ = n + q − θ

(
V+,V−)

= card
(
V+

0

) − card
(
V−

0

)
. These additional sensors must

measure γ states and unknown inputs in V+
0 such that we ob-

tain a maximal matching of size n + q in B(Σc
Λ) i.e. θ

(
X+ ∪

U+,X− ∪Y− ∪ Z−1
)

= n + q.

Proof: the proof is similar to the one given in (Commault et
al., 2008).
Sufficiency: First note that the Dulmage-Mendelsohn decom-
position characterizes all the maximal matchings (Murota,
1987). It follows that, if card

(
V+

0

) − card
(
V−

0

)
edges are

added between S+
0 and the additional sensors, in order to form

a matching of size card
(
V+

0

) − card
(
V−

0

)
, then we obtain a

maximal matching of size n + q between V+
0 and V−

0 ∪ Z−1
in B(Σc

Λ). Thus adding γ sensors is sufficient.
Necessity: Let us consider a solution which provides a maxi-
mal matching M c of size n + q in B(Σc

Λ). M c covers all the
state and input vertices of V+ and in particular the elements
of V+

0 . Thus, there are at least card(V+
0 ) − card(V−

0 ) edges
from V+

0 to the additional sensors. 4
To illustrate the previous settings, let us consider the system
of Example 3. The bipartite graph used to the sensor place-
ment is given in Figure 4.

 y1
- y2

-

x5
+ x9

+

x9
- y4

-

u2
+

x8
-

x8
+

x10
- x7

- x1
-

x1
+

x2
-

u3
+ x2

+

x3
-

x3
+ u1

+

x6
- x5

-

x4
+ x6

+ x7
+

y3
-

x10
+

x4
-

Figure 4. Bipartite graph representing the system of Example 3

We can choose as maximal matching
M =

{
(x+

5 ,y−1 ), (x+
9 ,y−2 ), (x+

8 ,y−4 ), (u+
2 ,x−7 ), (x+

1 ,x−1 ), (u+
3 ,x−2 ),

(x+
3 ,x−4 ), (x+

2 ,x−3 ), (x+
4 ,x−6 ), (x+

6 ,x−5 ), (x+
7 ,y−3 )

}
. Thus, S+

0 ,
which consists of the subset of V+ which are not cov-
ered by M , is {u1

+, x+
10}. According to the defini-

tion of BM (ΣΛ), we construct it by adding to the bi-
partite graph of Figure 4 the reversed edges of M i.e.{

(y−1 ,x+
5 ), (y−2 ,x+

9 ), (y−4 ,x+
8 ), (x−7 ,u+

2 ), (x−1 ,x+
1 ), (x−2 ,u+

3 ),

(x−4 ,x+
3 ), (x−3 ,x+

2 ), (x−6 ,x+
4 ), (x−5 ,x+

6 ), (y−3 ,x+
7 )

}
. In the re-

sulted graph, there exist paths from the elements of S+
0

to x2
+, x6

+ and x7
+ (u+

1 → x−3 → x+
2 , x+

10 →
y−3 → x+

7 → x−5 → x+
6 , and x+

10 → y−3 → x+
7 ).

Thus, we have that V+
0 = {u1

+, x2
+, x6

+, x7
+, x+

10}
and V−

0 = {x−3 , x−5 , y−3 }. Hence, to recover the maxi-
mal matching condition, it is necessary and sufficient to
add two sensors which measure linear combinations of the
state and input components associated with the vertices
{u1, x2, x6, x7, x10}. However, all the possible linear com-
binations of these components do not necessarily allow to
recover the maximal matching condition. Indeed, if we add a
sensor which measures u1 and another which measures x2,
we do not recover the maximal matching condition since we
obtain V+

0 = {x6
+, x7

+, x+
10} and V−

0 = {x−5 , y−3 } and
so θ

(
X ∪U,X ∪Y ∪ Z1

)
= 12 < n + q = 13. Thus, it can

be useful to specify more precisely the additional sensor lo-
cations useful to recover the maximal matching condition. At
this aim, let us define by B̄(ΣΛ) the non-directed graph corre-

sponding to B(ΣΛ). We we define V0
def
= V+

0 ∪V−
0 and we

call V0-path every simple path of B̄(ΣΛ) which covers only

vertices of V0. For each V0-path P , we define a vertex subset
ϑ(P ) such that ϑ(P ) = {v ∈ V +

0 , such that P covers v}.
Finally, we say that a V0-path P is maximal, if there does
not exist a V0-path P ′ such that ϑ(P ) ⊂ ϑ(P ′). To recover
the maximal matching condition, it is necessary to have:

for each maximal V0-path P , θ
(
ϑ(P ),Z−1

) 6= 0 (2)

In fact, after adding sensors Z−1 , if constraint (2) is
not satisfied, then we can construct in B̄(Σc

Λ) a max-
imal V0-path which does not cover a new sensor ver-
tex. Since P is a maximal V0-path then in B̄(ΣΛ),
θ
(
ϑ(P ),V−)

= θ
(
ϑ(P ),V−

0

)
= card

(
ϑ(P )

) − 1. Yet,
if θ

(
ϑ(P ),Z−1

)
= 0. Since in B(Σc

Λ), V− becomes
X−∪Y−∪Z−1 , the quantity θ

(
ϑ(P ),V−)

remains unchanged
and relation (1) is no satisfied for V1 = ϑ(P ). It is possible
to prove that, to recover the maximal matching condition, it
is necessary to have, for each maximal V0-path P :

θ
(
V+

0 ,Z−1 ∪V−
0

)− θ
(
V+

0 \ ϑ(P ),Z−1 ∪V−
0

)
> 0 (3)

Conditions (2) and (3) ensure that there is at least one
sensor is dedicated to take a measurement in each sub-
set ϑ(P ). Indeed, the latter subset satisfy, by construction
θ
(
ϑ(P ),V−

0

)
= card

(
ϑ(P )

)−1 and so necessitates the addi-
tion of one sensor to recover the maximal matching condition.
These conditions can be seen as complementary tools which
allow to have effortlessly a better precision on the sensor
location, since we obtain a kind of repartition of the required
γ sensors.
For Example 3, we show previously that two sensors
which measure a linear combination of the components
associated with the vertices {u1, x2, x6, x7, x10} are
needed to recover the maximal matching condition. We
can exhibit two maximal V0-paths: u+

1 → x−3 → x+
2

and x+
10 → y−3 → x+

7 → x−5 → x+
6 . According

to relations (2) and (3), we can deduce that the addi-
tional sensors, represented by vertex subset Z1, must sat-
isfy in G(Σc

Λ) the following relations:θ
({u1, x2},Z1

) 6=
0, θ

({x6, x7, x10},Z1

) 6= 0, θ
({u1, x2, x6, x7, x10},Z1 ∪

{x3, x5, y3}
) − θ

({x6, x7, x10},Z1 ∪ {x3, x5, y3}
)

> 0,
θ
({u1, x2, x6, x7, x10},Z1 ∪ {x3, x5, y3}

) − θ
({u1, x2},Z1 ∪

{x3, x5, y3}
)

> 0 and θ
({u1, x2, x6, x7, x10},Z1

)
= 2.

Thus, we can deduce that a solution (not the unique one)
could be to have two sensors z1,1 = α1x2 + α2u1 and
z1,2 = β1x6+β2x7+β3x10, where either α1 or α2 is nonzero
as well as β1, β2 or β3.

4.4 Additional sensors for the output connectivity condition

The problem of additional sensors for recovering the out-
put connectivity condition has been treated and solved in
(Commault et al., 2008) for linear systems without unknown
input. In the case where the system is submitted to unknown
inputs, there are no significant differences. Hence, this sub-
section may be rather short. We provide hereafter some defi-
nitions and then we enounce quite immediately the conditions
required on the additional sensors to recover the output con-
nectivity condition.
Two vertices vi and vj are said to be strongly connected if it
exists a path from vi to vj and a path from vj to vi. It is as-
sumed that a vertex is strongly connected to itself. The relation
"is strongly connected to" is an equivalence relation and we can
define its equivalence classes. We call each equivalent class
a strongly connected component. These strongly components
are well known in the graph theory (Murota, 1987). They can
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be ordered using a partial order relation “4” defined between
two strongly connected components Ci and Cj as Ci 4 Cj

if there exists a path from an element of Cj to an element of
Ci. The minimal elements with this partial order relation are
the strongly connected components with no outgoing edges.
We call the minimal unconnected components, the minimal
strongly connected components which are not output vertices.
We denote by d̄ the number of such elements. The following
Proposition is established in (Commault et al., 2008) and is
also true for our kind of systems:
Proposition 6 Consider structured linear system ΣΛ repre-
sented by digraph G(ΣΛ). To recover the output connectivity
condition, the additional sensors must measure at least one
state in each strongly connected component constituting a min-
imal unconnected element.
To illustrate the latter definitions, let us consider the system
represented by the digraph depicted in Figure 5.

 

u2

x1

x3

x4 x6

x5 x7
u1

x2

{x6 , x7}{u2}

{x1}

{x3, x4, x5}

{u1}

{x2}

{x6 , x7}{u2}

{x1}

{x3, x4, x5}

{u1}

{x2}

Figure 5. Example of digraph representation and its decomposition
into strongly connected components
The strongly connected components are {u1}, {u2}, {x1},
{x2}, {x3, x4, x5} and {x6, x7}. We have that {x6, x7} 4
{x3, x4, x5}, {x2} 4 {x3, x4, x5}, {x3, x4, x5} 4
{x1} 4 {u1} and {x3, x4, x5} 4 {u2}. The strong compo-
nents {x2} and {x6, x7} are then the two minimal elements
relatively to the partial order relation “4”. Therefore, an ad-
ditional sensor to recover the output connectivity condition
has to measure x2 and at least one of components x6 or x7

(z2,1 = α1x2 + α2x6 for example).
Proposition 6 indicates the location of the additional sensors
but not their minimal number. Indeed, it is possible that only
one sensor, which takes its measurement in each minimal
unconnected component allows to satisfy the requirements of
the output connectivity condition. In particular, we can use the
sensors required to recover the maximal matching condition
at this aim. Indeed, in addition to the constraints of Proposi-
tion 5, we can impose to the additional sensors represented by
vertex subset Z1 to satisfy θ

(
Ci,Z1

) 6= 0 for each minimal
unconnected element Ci. This does not increase the minimal
number of required sensors which remains equal to γ and al-
lows to satisfy condition of Proposition 6. Thus, the minimal
number of additional sensors, required to recover both the
maximal matching and the output connectivity conditions, is
equal to max(γ, 1), where γ = n + q − θ

(
X ∪U,Y ∪X

)
.

4.5 Additional sensors for the length condition

Assume that the two conditions Cond1. and Cond2. of Propo-
sition 4 are verified by the system. If it is not the case, then
we must add first some sensors as it is described in the two
previous subsections. For the sake of clarity in the notations,
since we may add some sensors to the system in order to
satisfy Cond1. and Cond2., we denote by Ỹ the output ver-
tex subset at the beginning of this third and last stage. To be
more accurate, we redefine subset ∆0 by substituting Y by

Ỹ: ∆0
def
=

{
xi | ρ

(
U ∪ {xi}, Ỹ

)
= ρ

(
U, Ỹ

)}
.

If Condition Cond1. is satisfied then all the state and input
vertices (Dion et al., 2003; Reinschke, 1988) can be covered

by some disjoint simple Ỹ-topped paths and cycles. Since
the input vertices have no incoming edges, they cannot be
covered by cycles. Thus, if Condition Cond1. is satisfied, we
have ρ

(
U, Ỹ

)
= card(U). We can deduce then, that what-

ever sensors z3 represented by vertex subset Z3 we add to
the system, we have that Vess(U, Ỹ ∪ Z3) ⊆ Vess(U, Ỹ).
Indeed, when we add a sensor, we do not increase the num-
ber of U-Ỹ ∪ Z3 disjoint paths, we can just add some new
input-output paths and so some new maximum U-Ỹ ∪ Z3

linkings. Consequently, a state vertex which is not essential
in the U-Ỹ linkings i.e. which is not covered by all the max-
imum U-Ỹ linkings, cannot become essential when we add
a sensor. In other words, if an element xi is in ∆0 but not in
Vess(U, Ỹ), then adding sensors z3 anywhere cannot make
that xi ∈ Vess(U, Ỹ ∪ Z3). Consequently, the only way to
ensure condition Cond3. is to remove from ∆0 all the ele-
ments which do not belong to Vess(U, Ỹ).
According to this fact, to recover condition Cond3.,
it is necessary and sufficient to add some sensors z3,
such that for each xi ∈ ∆0 \ Vess(U, Ỹ), we have
ρ
(
U ∪ {xi}, Ỹ ∪ Z3

)
> ρ

(
U, Ỹ ∪ Z3

)
. Moreover, as

condition Cond2. is assumed to be satisfied at this stage,
all the state components are connected to some output
component. Considering virtually xi as an input vertex, a
necessary and sufficient condition to guarantee inequality
ρ
(
U ∪ {xi}, Ỹ ∪ Z3

)
> ρ

(
U, Ỹ ∪ Z3

)
is that the added

sensors z3 must measure any vertex covered by any direct
U ∪ {xi}-Si(U ∪ {xi}, Ỹ) path which has a nonzero length
(Commault and Dion, 2007). But it is not sufficient to con-
sider only measurement on such vertices because there can
exist some edges arriving to xi. According to the definition
of the input separator subset, all the state vertices, which are
covered by any direct U ∪ {xi}-Si(U ∪ {xi}, Ỹ) path, are
not essential and are obviously in ∆0 \ Vess(U, Ỹ). On the
other hand, if we add a new sensor to extract a component
xi from ∆0, then all the components xk which belong to a
strictly inferior strongly component are also extracted from
∆0. Thus, it is necessary and sufficient to consider only the
state vertices of ∆0 \ (Vess(U, Ỹ) which belong to maximal
strongly connected components.

Let us denote X∅
def
=

{
xi ∈ ∆0\Vess(U, Ỹ) and xi belongs

to a maximal strongly connected component
}

. To each

vertex in X∅, we define vertex subset δi =
{
vj ∈

∆0 ∪ U, vj is covered by a direct U ∪ {xi} −
(
Si(U ∪

{xi}, Ỹ)
)

non-zero length path
}
∪

(
Ci ∩ ∆0

)
, where Ci

is the strongly connected component including xi. For such
vertex subsets, we consider as a partial order relation the sub-
set inclusion “⊆” and we obtain the following necessary and
sufficient condition for sensor placement:

Proposition 7 Consider structured linear system ΣΛ repre-
sented by digraph G(ΣΛ). To recover the length condition, the
additional sensors must measure at least one state in each sub-
set δi, associated to each xi ∈ X∅ and constituting a minimal
element w.r.t relation “⊆”.
Proof: Using the discussion above, the proof of this proposi-
tion is immediate, knowing that to recover the length condi-
tion, the additional sensors must measure at least one state in
each subset δi, xi ∈ X∅. Using the partial order relation, it
is necessary and sufficient to measure in subsets δi which are
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minimal w.r.t relation “⊆”. 4
Consider system of Example 3 and assume that, to satisfy
the maximal matching condition Cond1., we add two sensors
which measure respectively x2 and x10. We obtain a system
which satisfies Cond1. and Cond2.. The new digraph is given
on Figure 6, where the new sensors are noted z1,1 and z1,2.

 

y1

u1

x2

y2

x3

x4 x5

x6

x7

x8

x1

u2

y3

x9

y4

u3

x10
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Figure 6. Digraph representing the system of Example 3 with addi-
tional sensors z1,1 and z1,2

We have that ∆0 = {x1, x2, x3, x4, x5, x6}, Vess(U, Ỹ) =
{u1, u2, u3, x2, x3, x5, z1,1}. We can compute X∅ ={
x1, x4, x6

}
. We compute subsets δ1 = {x1, u3} and

δ4 = δ6 = {u1, x3, x4, x6}. Therefore, an additional sensor
to recover the length condition must measure (x1 or u3) and
(u1 or x3 or x4 or x6).

Remark 8 We establish in Proposition 5 that to satisfy the
matching condition, the minimal number of required sensors
represented by Z1 is equal to γ = n+ q− θ

(
X∪U,X∪Y

)
.

We have also shown that, if we impose that θ
(
Ci,Z1

) 6= 0
for each minimal unconnected element Ci and θ

(
δi,Z1

) 6= 0
for all subset δi such that xi ∈ X∅, then sensors Z1 allow to
satisfy also the output connectivity and the length conditions..
Therefore, the overall minimal minimal number of additional
sensors required to recover the input and state strong observ-
ability is equal to max(γ, 1).

5 Concluding remarks

In order to recover the generic state and input observability
of structured linear systems, we provide the minimal number
of the required additional sensors and either their location or
necessary and sufficient conditions to be satisfied by any ac-
ceptable location. More precisely, we propose a procedure,
constituted of three stages. The first stage of the proposed so-
lution, in which we use a bipartite graph, aims to recovering
the so-called maximal matching condition. The second stage
concerns the output connectivity condition. Thus, our solution
is similar to the one proposed in (Commault et al., 2008). Fi-
nally, the last step of our procedure deals with the so-called
length condition, which is specific to the systems with un-
known inputs. To recover such condition, we use the notion
of input separators.
From a computational point of view, our proposed approach
needs few information about the system and is quite easy
to check by means of well-known combinatorial techniques
or simply by hand for small systems. Indeed, it uses clas-
sical programming techniques like Ford-Fulkerson algorithm
to compute the input separators in a digraph and Dulmage-
Mendelsohn decomposition of a bipartite graph. These algo-
rithms are free from numerical difficulties and are classically
used in structural analysis framework (Murota, 1987). More
precisely, the computation of vertex subset ∆0 requires n+1

computations of maximum linkings. Using a transformation
of the problem into a Max-Flow one, the computation of these
maxima linkings, which is based on the Ford-Fulkerson al-
gorithm, requires O(N2

√
M) complexity order, where M is

the number of edges in the digraph and N = n + p + q
the number of vertices. For our digraphs, in the worst case
M = n2 + n · p + n · q + q · p. The first step of our pro-
cedure requires a Dulmage-Mendelsohn decomposition which
can be implemented using an algorithm with a complexity or-
der O(M2) = O(n4) (Lovasz and Plummer, 1986; Chen and
Kanj, 2003), assuming without loss of generality that n ≥ p
and n ≥ q. The second step of our procedure requires the
calculation of the strongly connected components which can
be done using an algorithm which complexity order equals
O(Nlog(N)) = O(nlog(n)) (Fleischer et al., 2000). After
finding the strongly components, we must order these com-
ponents simply by comparison to find the minimal elements
with a O(n2) complexity order algorithm. The third step is
also based on the Ford-Fulkerson algorithm. which must be
executed n times and so the complexity order for this step is
n × O(n3) = O(n4). According to the previous settings, the
proposed method can be implemented using a global algorithm
with a polynomial global complexity equal to O(n4). The fact
that the overall complexity order is not exponential makes the
proposed method suited to deal with large scale systems.

References

Basile, G. & Marro, G. (1969). On observability of linear time-invariant
systems with unknown inputs. Journal of Optimization Theory and
Applications, 3(6), 410–415.

Boukhobza, T., Hamelin, F. & Martinez-Martinez, S. (2007). State and input
observability for structured linear systems: A graph-theoretic approach.
Automatica, 43(7), 1204–1210.

Chen, J. & Kanj, I. A. (2003). Constrained minimum vertex cover in bipartite
graphs: Complexity and parameterized algorithms. Journal of Computer
and System Sciences, 67(4), 833–847.

Commault, C. & Dion, J-M. (2007). Sensor location for diagnosis in linear
Systems: a structural analysis. IEEE Transactions on Automatic Control,
52(2), 155–169.

Commault, C., Dion, J-M., & Trinh, D. H. (2008). Observability preservation
under sensor failure. IEEE Transactions on Automatic Control, 53(6),
1554–1559.

Dion, J-M., Commault, C., & Van der Woude, J. (2003). Generic properties
and control of linear structured systems: A survey. Automatica,
39(7), 1125–1144.

Dulmage, A. L. & Mendelsohn, N. S. (1958). Coverings of bipartite graphs.
Canadian Journal of Mathematics, 10 517–534.

Fleischer, L. K., Hendrickson, B., & Pinar, A. (2000). On Identifying Strongly
Connected Components in Parallel. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg.

Hautus, M.L.J. (1983). Strong detectability and observers. Linear Algebra
and its Applications, 50, 353–360.

Lovasz, L. & Plummer, M. D. (1986). Matching Theory. Annals of Discrete
Mathematics, 29, North-Holland, Amsterdam, Netherlands.

Murota, K. (1987). System Analysis by Graphs and Matroids. Springer-
Verlag. New York, U.S.A.

Reinschke, K. J. (1988). Multivariable Control. A Graph Theoretic
Approach.. Springer-Verlag. New York, U.S.A.

Staroswiecki, M. (2006). Observability and the Design of Fault Tolerant
Estimation Using Structural Analysis. Advances in Control Theory and
Application, 257–278 Springer, 2006

Trentelman, H. L., Stoorvogel, A. A. & Hautus, M. (2001). Control Theory
for Linear Systems. Springer, London, U.K.

van de Wal, M. & de Jager,B. (2001). A review of methods for input/output
selection. Automatica, 37(4), 487–510.

van der Woude, J. W. (2000). The generic number of invariant zeros of a
structured linear system. SIAM Journal of Control and Optimization,
38(1), 1–21.

6


