
HAL Id: hal-00397308
https://hal.science/hal-00397308

Submitted on 20 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tuning Temporal Features within the Stochastic
π-Calculus

Loïc Paulevé, Morgan Magnin, Olivier Roux

To cite this version:
Loïc Paulevé, Morgan Magnin, Olivier Roux. Tuning Temporal Features within the Stochas-
tic π-Calculus. IEEE Transactions on Software Engineering, 2011, 37 (6), pp.858-871.
�10.1109/TSE.2010.95�. �hal-00397308�

https://hal.science/hal-00397308
https://hal.archives-ouvertes.fr

RESEARCH REPORT - JUNE 2009 1

Tuning Temporal Features within the
Stochastic π-Calculus
Loı̈c Paulevé, Morgan Magnin, and Olivier Roux

Abstract—The stochastic π-calculus is a formalism that have been shown of interest for modelling systems where the stochasticity and

the delay of transitions are important features, such as the biochemical reactions. Commonly, duration of transitions within stochastic

π-calculus models follow an exponential random variable. Underlying dynamics of such distributed models are expressed in terms of

continuous-time Markov chains and can then be efficiently simulated and model-checked. However, the exponential law comes with

a huge variance making difficult the modelling of systems with accurate temporal constraints. In this report, a technique for tuning

temporal features within the stochastic π-calculus is presented. This method relies on the introduction of a stochasticity absorption

factor by replacing the exponential distribution by the Erlang distribution, that is the sum of exponential random variables. A construction

of this stochasticity absorption factor in the classical exponentially distributed stochastic π-calculus is provided. This report also offers

tools for manipulating the stochasticity absorption factor and its link with timed intervals for firing transitions. Finally, the model-checking

of such designed models is tackled through the support for the stochasticity absorption factor in the stochastic π-calculus translation to

the probabilistic model checker PRISM.

Index Terms—Temporal parameters, π-Calculus, Model checking, Markov processes, Stochastic processes.

✦

1 INTRODUCTION

B Y the introduction of temporal and stochastic aspects
within models, the designer aims at reproducing

real systems more closely. This complexation of models
generally raises a compromise between a precise spec-
ification of temporal parameters and efficient analyses
techniques.

The π-calculus [1]is a concurrent process algebra suit-
able for modelling independently defined entities com-
municating through mobile channels. This formalism is
widely used for analysing, for instance, communication
protocols. Amongst the different extensions of this cal-
culus, the stochastic π-calculus [2] introduces stochastic
and temporal features within π-calculus models. The
stochastic π-calculus is notably used to model biological
systems [3], [4], [5], [6]. Temporal and stochastic features
of biochemical reactions are prominent for analysing and
predicting the behaviours of such complex systems.

In the stochastic π-calculus framework, time and
stochasticity are injected by making the duration of
transitions to follow an exponential distribution. The
parameter of this distribution is called the use rate, and
informally, defines the number of times the transition
can by used within a time unit. Underlying semantics of
stochastic π-calculus expressions can be expressed with
continuous-time Markov chains (CTMCs). By exploiting
the memoryless property of the exponential law, very
efficient simulation algorithms have been designed —
such as the Gillespie’s algorithm [7], BioSpi [3] and SPiM
[8]. The model checking of stochastic π-calculus has been

• IRCCyN, UMR CNRS 6597, École Centrale de Nantes, France.
E-mail: {pauleve,magnin,roux}@irccyn.ec-nantes.fr

recently proposed by [9] which offers a translation of
the exponentially distributed π-Calculus to PRISM, a
probabilistic symbolic model checker.

However, despite use rates bring temporal features
within models, the high variance of the exponential
distribution seems to prevent a precise modelling of
temporal constraints. As an example, one may wonder
how to model in stochastic π-calculus a transition taking
place only within a given time interval, as usually done
with Timed Automata [10].

In this report, we present a technique to tune temporal
features within the stochastic π-calculus and we provide
a method to analyse such models with PRISM. This tun-
ing permits to model systems with both stochastic and
temporal aspects in a more independent manner than
in the classical stochastic π-calculus. Such a modelling
accuracy is obtained by attaching to actions, in addition
of the use rate, a so-called stochasticity absorption factor.
The higher this factor is, the more the temporal variance
is reduced around the mean imposed by the use rate.

The stochasticity absorption of transitions is obtained
by replacing the exponential distribution by the Erlang
distribution, which is the distribution of the sum of
exponential random variables. It is worth to notice that
the semantics of the stochastic π-calculus with gen-
eral distributions has already been studied [11]. The
originality of the presented approach is to provide a
correct construction of the Erlang distributed stochastic
π-calculus into the exponentially distributed stochastic
π-calculus. Therefore, such models still have CTMCs
semantics and can be simulated and verified with the
various existing tools based on the memoryless property
of the exponential distribution.

As a first result of this study, the construction of

2 RESEARCH REPORT - JUNE 2009

the stochasticity absorption factor with the exponen-
tially distributed π-calculus allows to simulate such
parametrised transitions with standard simulation algo-
rithms.

As a second result of using this stochasticity absorp-
tion factor, a transition can be parametrised by specifying
a confidence time interval of firing, referred as the firing
interval. In other terms, at a given confidence coefficient,
to any firing interval corresponds a unique rate and a
unique stochasticity absorption factor which ensure the
transition is fired within this time interval.

Finally, as a third result, we provide an adapta-
tion of the translation of the exponentially distributed
π-calculus into PRISM given by Norman et al. [12]
to support the stochasticity absorption factor. In that
way, model checking of Erlang distributed stochastic π-
calculus can be efficiently performed thanks to PRISM.

As related works, we may cite the modelling of prob-
abilistic timed automata as Markov decision process
suitable for model checking with PRISM [13]. The pro-
posed PRISM construction, presented in the last section
of this report, follows the same idea of having dedicated
transitions for incrementing a clock.

Analysis of complex dynamical systems have been
widely done through model-checking algorithms de-
signed for states graphs underlying CTMCs. For this
purpose, the branching temporal logic CTL was ex-
tended as a stochastic logic called CSL which was ini-
tially proposed in [14] and furthermore extended in [15].
Later again, this approach was pursued by the work of
[16]. It consisted in defining a new stochastic temporal
logic (named CSLTA) intended at limiting the explosion
of complexity in analysis. The idea of this work is to
use timed automata both to express the property that
has to be checked and to specify the system on which it
is checked. Thus, the model-checking algorithm works
on products of timed automata which prevents from
computing the wholly developed reachability graph of
the product. Such an avoidance of building a graph the
number of states of which may makes it non tractable
is an idea that we have used too in a slightly different
way in our work.

This report is structured as follows. Section 2 formally
presents the stochastic π-calculus. Section 3 introduces
the stochasticity absorption factor through the Erlang
distribution. A construction of the Erlang distributed
to the exponentially distributed stochastic π-calculus is
provided. Section 4 establishes the parallel between the
firing interval and the rate and stochasticity absorption
factor of a transition. Section 5 adapts the translation
from the standard stochastic π-calculus into PRISM to
support the stochasticity absorption factor. Finally, Sec-
tion 6 concludes this report and discusses future works.

2 THE STOCHASTIC π-CALCULUS

The π-calculus is a concurrent process algebra where two
processes communicate using a shared channel [1]. For

establishing a communication, a sender process outputs
on a channel and a receiver process inputs on the same
channel. The sender process may outputs names on the
channel to transmit data to the receiver. A name is either
a value or a channel. In that way, π-calculus allows
to model the mobility of the communication channels
between concurrent processes.

The stochastic extension of the π-calculus affects to
each action (channel input/output or internal action) a
probabilistic distribution for determining the delay until
it is effective [2], [11]. Usually, the exponential distribu-
tion is preferred. The parameter of this distribution is
referred as the use rate for the action, and informally,
gives the number of time such an action is to be fired
within a time unit.

The syntax for the stochastic π-calculus used in this
report is presented by Definition 1. It is close to the
commonly used definition of the stochastic π-calculus
(e.g. [8], [12]).

Definition 1 (Stochastic π-Calculus Sπ). Using P, Pi, Q
to range over terms, A to range over definitions of terms, π to
range over actions and x, y, z1, . . . , zn to range over names:

π ::= τ | ay | āy

P ::= 0 | νxP | P |Q | [cond]P |

π.P | A(z1, . . . , zn)

A(z1, . . . , zn) ::=
∑

i∈I

Pi

Where I is an index set, t is the identifier of the internal action
and cond is a boolean expression on names.

Hereafter, P.0 is abbreviated as P , A() is abbreviate ad A
and z1, . . . , zn is abbreviated as z̃.

The actions of a process are either internal action (τ),
input of y on channel a (ay) or free output of y on
channel a (āy). After performing an action π, the process
evolves as P , noted as π.P . The term 0 denotes the null
process, P |Q the parallel compositions of processes P
and Q, [cond]P the process P enabled only if cond is
satisfied (generally, cond is a conjunction of tests upon
names), and νxP is the restriction of a new name to
the process P .

∑

i∈I Pi is a race conditions between pro-
cesses Pi: only the first fired Pi is considered. Each race
condition has a definition of the form A(z̃) =

∑

i∈I Pi,
where z̃ are the parameters of the process A.

A name y is bound to a process P if there exists a
term of the form νy or ay within the expression of P .
Otherwise, the name y is free. The set of bound names in
a process P is noted as bn(P) and the set of free names as
fn(P). n(P) = fn(P)∪bn(P) is the set of names present
in the term P .

Figure 1 depicts the operational semantics of the
stochastic π-calculus. Transitions are labeled by the per-
formed action, τt denotes an internal transition identified
by t, ȧ denotes a communication on channel a.

We denote by Sπe the stochastic π-calculus having
the duration of each action a following an exponential

PAULEVÉ et al.: TUNING TEMPORAL FEATURES WITHIN THE STOCHASTIC π-CALCULUS 3

PREτ
τt.P

τt−→P
PREIN

ay.P
ay

−→P
PREOUT

ay.P
ay

−→P

SUM
Pj

π

−→P ′

j

(
∑

i∈I
Pi)

π

−→P ′

j

j ∈ I

PAR
P

π

−→P ′

P |Q
π

−→P ′|Q
bn(π) ∩ fn(Q) = ∅ COM

P
ay

−→P ′ Q
az

−→Q′

P |Q
ȧ

−→P ′{z/y}|Q′

RES
P

π

−→P ′

νxP
π

−→P ′

x /∈ n(π) MATCH
P

π

−→P ′

[cond]P
π

−→P ′

cond

Fig. 1. Operational semantics for the stochastic π-calculus.

random variable of use rate ra ∈ R+∗. The probability
that an action with use rate r is fired within a time t is
1−exp(−r.t). Its average duration is r−1 time units with
a variance of r−2. Given x actions having respectively
use rates r1, . . . , rx, the probability that the yth reaction
is fired is

ry

r1+···+rx
. We also consider actions having

an infinite rate ra = ∞, i.e. which are instantaneous.
Such action are always played first. If two instantaneous
actions are possible, the choice of the one to fire is non-
deterministic.

3 STOCHASTICITY ABSORPTION

To cope with the strong bind between the average du-
ration of an action and its probability of being fired
before a given time brought by the exponential law, we
introduce the stochasticity absorption factor.

Instead of having the duration of an action following
one exponential random variable at rate r, we propose
to have the duration of an action following the sum
of sa exponential random variables at rate r.sa. This
results in an unchanged average duration but a variance
divided by sa. In this way, sa stands for the stochasticity
absorption factor. The obtained probabilistic distribution
is known as the Erlang distribution. Therefore, the tun-
ing of the temporal features within the stochasticity π-
calculus is achieved by attaching to each action an Erlang
distribution of a fixed rate and stochasticity absorption
factor. We denote by SπEr such a distributed stochastic
π-calculus.

This sections starts by presenting the Erlang distribu-
tion and functions to compute some standard probabili-
ties. The construction of SπEr into Sπe is then presented,
demonstrating SπEr processes can be simulated using
standard algorithms based on the exponential law for
firing actions. Finally, this section is illustrated by a toy
example.

3.1 The Erlang distribution

The Erlang distribution is usually defined by two pa-
rameters: the shape k ∈ N

∗ and the rate λ ∈ R
∗
+. The

Erlang distribution is then the distribution of the sum of
k exponential random variables at use rate λ. The Erlang
distribution is a particular case of the gamma distribution
where the shape parameter may be any positive real.

For the sake of consistency, we refer to the Erlang
distribution as the distribution of the sum of sa expo-
nential random variables of use rate r.sa, where sa is the
stochasticity absorption factor and r the use rate of the
non-absorbed exponential variable (i.e. when sa = 1).
Equivalence between these two definitions is given by
the relations k = sa and λ = r.sa.

We recall the probability density function (PDF) (1)
and cumulative distribution function (CDF) (2) of an
Erlang distribution of rate r and stochasticity absorption
factor sa. PDF and CDF with different stochasticity
absorption factors but a constant rate are plotted in
Figure 2.

fr,sa(t) =
(r.sa)satsa−1 exp(−r.sa.t)

(sa− 1)!
(1)

Fr,sa(t) = 1− exp(−r.sa.t)

sa−1
∑

n=0

(r.sa.t)n

n!
. (2)

Let be an action having its duration following an
Erlang distribution of use rate r and stochasticity absorp-
tion factor sa. The average duration of this action is r−1

with a variance of r−2sa−1. Fr,sa(t) (2) gives the proba-
bility of firing the action within a time t. Given x actions
having respectively use rates r1, . . . , rx and stochasticity
absorption factors sa1, . . . , sax, the probability that the
yth reaction will be fired is given by (3) [11].

∫ ∞

0

fry,say
(t)

∏

w 6=y

(1− Frw,saw
(t))dt . (3)

3.2 Stochastic π-Calculus Construction

The paper [11] shows how to simulate stochastic π-
calculus models having actions following general prob-
abilistic distributions. However, to our knowledge, no
such suitable simulator have been implemented yet.
Moreover, the majority of tools around the stochastic π-
calculus assume the distribution of actions being expo-
nential [3], [8], [12]. In this section, we propose a con-
struction of SπEr processes into Sπe. This construction
allows the simulation of SπEr processes with standard
algorithms, as previously cited.

The construction is done through a map operator J.Ke

where . stands for a SπEr term. If P is a SπEr term, JP Ke

is a Sπe term showing the same behaviour than P (this

4 RESEARCH REPORT - JUNE 2009

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6 7 8

time

sa=1
sa=5

sa=50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

time

sa=1
sa=5

sa=50

Fig. 2. Probability density function (left) and cumulative distribution function (right) of the Erlang distribution for different

stochasticity absorption factors (sa) when rate is 1
2 .

is to be more formally detailed in this section). The full
mapping of SπEr terms into Sπe is given by Definition 2.
It is worth to notice that this construction can be applied
to any SπEr processes.

We sketch this transformation. Any action of rate r has
to be replaced by sa actions of rate r.sa. Beforehand, to
each couple of parameters ra, saa of the SπEr process,
a parameter r′a = ra.sa is set for the resulting Sπe

process. Then, the main idea is to count the number of
times an actions has been effective: until this number is
equal to the stochasticity absorption factor, the current
process is restarted. Let A(z̃) be a race condition, i.e.
A(z̃) ::=

∑

i∈I Pi. By definition, each term of the sum
starts by an action (possibly prefixed by restriction or
enabling conditions). Basically, for each of these actions,
indexed by i, a counter ci is attached. This counter is
given as an argument for A. Each time the ith action
is fired, the counter ci is incremented by one, and until
it reaches the given stochasticity absorption factor, the
process A is restarted. This principle is straightforwardly
applied to the internal actions (10). Handling channel
input and output is more tricky. Consider the following
SπEr process A1:

A1 ::= ā.0 A2 ::= a.0 A ::= A1|A2|A2 . (4)

When counting the number of firing of the channel
output ā, there must be a differentiation between re-
sponding instances of A2. To achieve this differentiation,
the Sπe process A1 initiates a private communications
with the responding process by sharing a new name
a′. After saa enabling of the private communication a′,
A1 outputs on another private channel a′′ to inform its
correspondent that the correct number of communication
has been done. Technically, this behaviour is achieved
by storing into ci the set of current active private com-
munications and the counter of firing for each (11). For
the channel input action, no counting is necessary: the
process first inputs the two private channels a′ and a′′

and input on them by adding race conditions. An input
on a′ means the stochasticity absorption is not complete,

so the current process has to be restarted. An input on
a′′ means the communication is terminated, the next
process is called. As for the channel output, the set of
pair of private channels has to be stored in ci (12).

Definition 2 (J.Ke). Let J.Ke be the map from SπEr processes
and definitions into Sπe processes and definitions given by
rules below.

Notations: c̃ stands for c1, . . . , cn. ci is either a positive
integer (internal action), a set of triples 〈csa

in , ca′

in, ca′′

in 〉 (output)
– n is the index of the element in the set, csa

in a positive integer,
and ca′

in, ca′′

in a couple of channels – or a set of couples of
channels 〈ca′

in, ca′′

in 〉 (input). c̃{ci+ = 1} stands for c̃ having
ci incremented by one (ci has to be a positive integer). #ci is
the size of the set ci. ā〈a′, a′′〉 (resp. a〈a′, a′′〉) stands for the
outputting (resp. inputting) of the couple of names a′, a′′.

J0Ke = 0 (5)

JνxP Ke = νxJP Ke (6)

JP |QKe = JP Ke | JQKe (7)

J[cond]P Ke = [cond]JP Ke (8)

Process definition:

JA(z̃) ::=
∑

i∈I

PiKe = A(z̃, c̃) ::=
∑

i∈I

JPiKe (9)

with c̃ ∩ bn(
∑

i∈IJPiKe) = ∅.
Internal action:

Jτt.P Ke =[ci < sat] τt.A(z̃, c̃{ci+ = 1}) (10)

+[ci = sat] τt.JP Ke

Channel output:

Jay.P Ke = (11)

νa′νa′′ā〈a′, a′′〉.A(z̃, c̃′)

+

#ci
∑

n=0

[csa
in < saa] ca′

in.A(z̃, c̃ {csa
in+=1})+

[csa
in = saa] ca′′

in y.JP Ke

PAULEVÉ et al.: TUNING TEMPORAL FEATURES WITHIN THE STOCHASTIC π-CALCULUS 5

with r′a′ = r′a and r′a′′ =∞, {a′, a′′}∩(fn(A)∪fn(P)) = ∅,

and c̃′ is c̃ where ci has a new element 〈c′sa
in , c′

a′

in, c′
a′′

in 〉 =
〈1, a′, a′′〉, n = #ci + 1.

Channel input:

Jay.P Ke = a〈a′, a′′〉.A(z̃, c̃′) (12)

+

#cj
∑

n=0

ca′

jn.A(z̃, c̃) + ca′′

jny.JP Ke

with {a′, a′′} ∩ (fn(A) ∪ fn(P)) = ∅, and c̃′ is c̃ where ci

has a new element 〈c′a
′

in, c′
a′′

in 〉 = 〈a′, a′′〉, n = #ci + 1.

Process call:

JA(z̃)Ke = A(z̃, c̃) (13)

with ∀i ∈ I, ci =











1 if the first action of Pi

is an internal action,

∅ else.

3.3 Correctness of the construction

To ensure that this construction is correct several points
have to be proved. First, the qualitative behaviour has
to be preserved: there must be an equivalence between
transitions from any SπEr process A(z̃) to a process B(w̃)

by the action π (noted as A(z̃)
π
−→E B(w̃)) and a series

of transitions starting from the Sπe process Ae(z̃, ˜cA0)
to the process Be(w̃, ˜cB0) (denoted as Ae(z̃, ˜cA0) −→e

· · ·Be(w̃, ˜cB0)), where Ae (resp. Be) is the constructed
Sπe process from the SπEr process A (resp. B) using J.Ke

construction and ˜cA0 and ˜cB0 are computed by following
(13). Finally, it must be ensured a transition in SπEr at
rate r and stochasticity absorption factor sa results in sa
transitions at rate r.sa in Sπe.

Figure 3 identifies the transition rules for a Sπe process
resulting from the construction defined in Definition 2.

At first, the inclusion of behaviours of SπEr process in
the behaviours of the constructed Sπe process is proven.
Let A(z̃)

π
−→E B(w̃) be a transition, where π is either an

internal action t (π = τt) or a communication on channel
a (π = ȧ). The index of the action π in the sum defined
by A is denoted by i.

Internal action (π = τt)

At the initial call of Ae(z̃, c̃), ci = 1 (Equation (13)). As
long as ci < sat, only the rule TAUwait can be applied.
After each of these transitions, ci is incremented by 1.
When ci reaches sat, TAUeff is the only rule applicable,
resulting in a transition towards Be(w̃, d̃).

Thus, for each A(z̃)
τt−→E B(w̃), there exists a chain:

Ae(z̃, c̃)
τt−→e · · ·Ae(z̃, c̃k)

τt−→e Be(w̃, d̃)

where c̃k is c̃ having ci = k. From the conditions for
applying TAUeff , it is obvious that k = sat. The duration
of the chain follows an Erlang distribution of rate r′t and
stochasticity absorption sat.

Communication (π = ȧ)

We look for an equivalence of the COM transition

A(z̃)|C(z̃′)
ȧ
−→E B(w̃)|D(w̃′) in the Sπe translated pro-

cesses Ae,Ce,Be,De. We assume A(z̃)
ay
−→E B(w̃) and

C(z̃′)
ay
−→E D(w̃′).

Initially, only rules INinit and OUTinit can be applied:

Ae(z̃, c̃)|Ce(z̃
′, c̃′)

ȧ
−→e Ae(z̃, c̃1)|Ce(z̃

′, c̃′1)

where c̃1 and c̃′1 are computed according to (12) and (11).
During this communication, Be sends to Ae two fresh
names a′ and a′′. These names are shared only between
Ae(z̃, c̃1) and Be(z̃

′, c̃′1). After this first communication,
saa−1 transitions OUTwait are necessary for applying the
final OUTeff :

Ae(z̃, c̃1)|Ce(z̃
′, c̃′1)

ȧ′

−→e · · ·Ae(z̃, c̃saa
)|Ce(z̃

′, c̃′saa
)

ȧ′′

−−→e Be(w̃, d̃)|D(w̃′, d̃′)

As a′′ is an instantaneous transition and the rate of a′

is the same as the rate of a, the duration of the chain
follows an Erlang distribution of rate r′a and stochasticity
absorption saa.

Finally, from rules depicted in Figure 3, it can be de-
duced that Ae(z̃, c̃)

π
−→e Be(w̃, d̃) implies A(z̃)

π
−→E B(w̃)

— and there is a finite number of transitions between
Ae(z̃, c̃) and Be(w̃, d̃). From the previous points, it has
been shown that the correct number of transition has
to be done between the initial call of Ae and its final
transition to Be. This ends the correction of the proposed
construction of the stochasticity absorption factor.

3.4 Toy Example

We apply the results obtained in this section to a toy
example: an infinite looping sequence of two processes
(14).

A0 ::= τt.A1 A1 ::= τt.A0 (14)

Basically, starting from A0, we expect to observe an
infinite sequence of A0 becoming A1 becoming A0, etc.
Between each transition, the interval action τt is per-
formed.

Figure 4 plots the presence of A0 and A1 during sim-
ulations of JA0Ke under SPIM [8], [17] with an identical
rate but different stochasticity absorption factors.

When no stochasticity absorption is applied, we ob-
serve a strong variance of the duration of the internal
actions, as imposed by the exponential distribution. By
increasing the stochasticity absorption factor, this vari-
ance reduces. Regular oscillations are observed with a
high stochasticity absorption factor.

4 FIRING INTERVALS

The aim of this section is to point up a link between
the couple use rate and stochasticity absorption factor
of an action and the interval of time within it is fired

6 RESEARCH REPORT - JUNE 2009

TAUwait
A(z̃)

rt−→EB(w̃)

Ae(z̃,c̃)
r′

t−→eAe(z̃,c̃{ci+=1})

ci < sat TAUeff
A(z̃)

rt−→EB(w̃)

Ae(z̃,c̃)
r′

t−→eBe(w̃,c̃B0)

ci = sat

INinit
A(z̃)

ay

−→EB(w̃)

Ae(z̃,c̃)
a<a′,a′′>

−−−−−−→eAe(z̃,c̃′)

OUTinit
A(z̃)

āy

−→EB(w̃)

Ae(z̃,c̃)
ā<a′,a′′>

−−−−−−→eAe(z̃,c̃′′)

INwait
A(z̃)

ay

−→EB(w̃)

Ae(z̃,c̃)
a′

−→eAe(z̃,c̃)

∃n, ca′

in = a′ OUTwait
A(z̃)

ay

−→EB(w̃)

Ae(z̃,c̃)
a′

−→eAe(z̃,c̃{csa
in

+=1})
∃n, ca′

in = a′, csa
in < saa

INeff
A(z̃)

ay

−→EB(w̃)

Ae(z̃,c̃)
a′′y

−−→eBe(w̃,c̃B0)

∃n, ca′′

in = a′′ OUTeff
A(z̃)

ay

−→EB(w̃)

Ae(z̃,c̃)
a′′y

−−→eBe(w̃,c̃B0)

∃n, ca′′

in = a′′, csa
in = saa

Fig. 3. Operational semantics derived from Definition 2. i is the index of the action π in the sum defined by the SπEr

process A. c̃′ and c̃′′ are computed respectively as in (12) and (11). c̃B0 is computed as in (13).

A0

A1

 0 5 10 15 20 25 30 35 40

sa
=

1

time

A0

A1

 0 5 10 15 20 25 30 35 40

sa
=

5

time

A0

A1

 0 5 10 15 20 25 30 35 40

sa
=

50

time

Fig. 4. Simulation of the SπEr process defined by (14)
with rate 1

2 and different absorption factors sa.

at a given confidence. That timed interval is refered as
the firing interval (Definition 3). This section results in a
set of statistical tools that may help the modelling and
the checking of temporal and stochastic systems where
durations of transitions follow an Erlang distribution.

Definition 3 (Firing Interval). Given a use rate r and
a stochasticity absorption factor sa, the Firing Interval at
confidence coefficient 1−α is noted FIα(r, sa) = [d;D] where
Fr,sa(d) = α

2 and Fr,sa(D) = 1− α
2 .

At the modelling time, and more especially when
parametrising a model, it may be more natural to reason
on firing intervals than on couples rate and stochasticity
absorption factor. Here, we provide estimators and ap-
proximating functions to translate from and back a firing
interval to rate and stochasticity absorption parameters.

These bring to the stochastic absorption factor differ-
ent usages, depending on the knowledge and on the
nature of the modelled system. On the one hand, the
stochasticity absorption factor expresses a certainty on
the precise action duration: the higher the confidence
in the action duration is, the more the stochasticity
absorption factor can be raisen. On the other hand, the
stochasticity absorption supplies the ability to reproduce
actions with intrinsic stochasticity where time bounds

are known.
As supplementary modelling helpers, we points out

there exists methods for inferring the shape [18] and the
scale [19] parameters of a gamma distribution from a set
of time measurement data. The conversion from gamma
parameters to Erlang parameters is discussed below.

In the following of this section, the computation of
the time interval from rate and stochasticity absorption
parameters is first introduced. Finally, the computation
of the rate and stochasticity absorption corresponding to
a given time interval is tackled. To our knowledge, no
prior study has been done in that way.

4.1 From Parameters to Firing Interval

Given the rate and stochasticity absorption parameters of
an action, we are interested in computing the confidence
interval for the time at which the action is fired. Let 1−
α be the confidence coefficient for computing the firing
interval. We search d and D such that Fr,sa(d) = α

2 and
Fr,sa(D) = 1 − α

2 , where Fr,sa is the CDF of the Erlang
distribution of use rate r and stochasticity absorption
factor sa (2). The function which associates to 0 ≤ x ≤ 1
the time t such that Fr,sa(t) = x is known as the quantile
function, and is noted F−1.

Because of its relation with the incomplete gamma
function, the quantile function of the gamma distri-
bution, hence of the Erlang distribution, has no easy
analytical expression and can not be used directly [20].
However, efficient approximation algorithms for F−1

exist [21], [22]. The widely used statistical tool R [23]
proposes an implementation of such an algorithm. As R
is distributed with a C programming language library,
one can easily access to this implementation from in-
dependent programs. To compute the quantiles for the
Erlang distribution using R, the qgamma function can be
used. Here is an instance of a R session for computing the
firing interval of an action of use rate r and stochasticity
absorption factor sa:

d←qgamma(α/2, shape = sa, rate = r ∗ sa)

D ←qgamma(1− α/2, shape = sa, rate = r ∗ sa)

PAULEVÉ et al.: TUNING TEMPORAL FEATURES WITHIN THE STOCHASTIC π-CALCULUS 7

r = 0.25 r = 1

t
0 15

1
rd D

t
0 15

d D

sa = 1; FIα(r, sa) ≃ [0.10127; 14.75552] sa = 1; FIα(r, sa) ≃ [0.02532; 3.68888]

t
0 15

1
rd D

t
0 15

d D

sa = 5; FIα(r, sa) ≃ [1.29879; 8.19327] sa = 5; FIα(r, sa) ≃ [0.32470; 2.04832]

t
0 15

1
rd D

t
0 15

d D

sa = 50; FIα(r, sa) ≃ [2.96888; 5.18245] sa = 50; FIα(r, sa) ≃ [0.74222; 1.29561]

Fig. 5. Evolution of the firing interval when the stochasticity absorption factor sa increases. The thick vertical line is

the average duration for each parameters. Confidence coefficient has been fixed to 95% (α = 0.05).

Figure 5 shows the influence of the use rate and the
stochasticity absorption factor on the firing interval.

4.2 From Firing Interval to Parameters

Given a firing interval [d;D] at a confidence coefficient
1−α, we look for a rate r and stochastic absorption factor
sa such that FIα(r, sa) = [d, D]. To achieve this goal, an
estimator of r and sa (respectively r̂α and ŝaα) is built
in function of the lower and upper bound of the firing
interval d and D.

In a first phase, the integer constraint on the stochas-
ticity absorption factor is released to consider the gamma
distribution of use rate r ∈ R

∗
+ and stochasticity absorp-

tion factor sa ∈ R
∗
+. As there is no analytical expression

of the quantile function of the gamma distribution, ex-
pressing r and sa in function of the confidence interval
can not be done analytically either. Therefore, to be able
to build an estimator, firing intervals have been com-
puted for a huge amount of use rates r and stochasticity
absorption factors. Estimators are then obtained by a
regression on the generated data. For this report, d and
D have been computed at a confidence coefficient of 95%
for all rounded log sa between 0 and 4.5 (step of 0.1) and
all log r between −8 and 2 (step of 0.1). Figure 6 shows
the heat map for r and sa parameters in function of the
bounds d and D of firing intervals for such a generation.

From this obtained 3-D plots, regressions fitting the
data have been manually determined. Parameters of

these regressions have then been abstracted as they
may depend on the confidence coefficient value. The
estimator obtained for the use rate, noted r̂α, is given by
(15), and the one for the stochasticity absorption factor,
noted ŝaα is given by (16).

r̂α = (w + x exp(−y.d))(d + D)−1 (15)

ŝaα = exp

(

u

(

D

d

)v)

, (16)

where u, v, w, x, y are parameters depending on the con-
fidence coefficent 1− α.

Finally, R has been used to valuate the parameters of
these estimators from a set of generated data points.
Table 1 sums up the estimators found for r ans sa
at different confidence coefficients. The lack of usable
analytical expressions around the gamma distribution
makes it difficult to evaluate. Figure 7 shows an attempt
to evaluate the quality of these estimators by comparing,
for generated data, the expected value and the estimated
value.

It is worth to notice that the estimators are bijective
functions, i.e. to each firing interval corresponds one and
only one use rate and stochasticity absorption factor. The
resting point is the integer constraints on the stochas-
ticity absorption factor. Because of the bijectivity of the
estimators, if the estimated stochasticity absorption is
not an integer, there is no Erlang distribution fitting
with the given firing interval. From this observation, the
search for approximating Erlang distribution parameters

8 RESEARCH REPORT - JUNE 2009

is at the confidence of the modeller. However, one can
notice that rounding the estimated stochasticity absorp-
tion factor to the upward (resp. downward) integer
results in a firing interval included by (resp. including
the) originally given firing interval. In that way, one
can easily estimate an over or under approximation of
the couple of parameters matching an arbitrary firing
interval.

4.3 Sequence of Actions

To conclude this section, we briefly discuss about the
distribution of a sequence of actions and its relation with
firing intervals.

Given k actions at respectively rates r1, . . . , rk and
stochasticity absorption factors sa1, . . . , sak, and con-
sidering they are fired successively, what is the firing
interval of the sum of the actions?

It can be easily checked that the firing interval [d;D]
of a sequence of Erlang distributed actions is not the
sum of the firing intervals of the individual actions —
i.e. d 6= d1 + · · · + dk where di is the lower bound of
the firing interval of the ith action ; D is computed sim-
ilarly. However, the sum of Erlang distributed random
variables with different parameters has been studied in
[24], [25] and [26] gives an easily computable expression
of the CDF for such a distribution. In that way, the firing
interval of the sum of Erlang distributed random vari-
ables can be computed using standard approximation
techniques of the quantile function (like bisections). The
dual operation consisting of inferring the parameters of
the Erlang sum from the firing interval raises several
difficulties, such as the lost of bijectivity. We consider
such an issue as out of the scope of this report.

5 MODEL CHECKING USING PRISM

The probabilist model checker PRISM [9] offers efficient
model checking for CTMCs. In PRISM, actions are de-
fined within PRISM modules. Each module has a finite
set of local variables. The union of the local variables of
all modules gives the global state of the model, denoted
by V .

[act] guard→ r : (x′
1 = u1) & . . . & (x′

k = uk)

where act is an optional action label, guard a predicate
over V , xi is a local variable and ui a function over V .
r ∈ R

∗
+ is the use rate of the action and is assumed to

1 when omitted. To be applicable, a labelled action has
to be synchronised with an action of the same label in
another module. The rate of such a synchronised action
is the product of the rate of both actions.

An efficient translation of the classical exponentially
distributed stochastic π-calculus (Sπe) into PRISM has
been proposed by Norman et al. [12]. Their translation
requires the overall process structure to be rearrangeable
to the form P = νx1 . . . νxk(P1| . . . |Pn) where each Pi

contains no ν operator nor recursive use of the | operator,
especially to ensure a finite number of states. In that

way, given a SπEr process P respecting these constraints,
the constructed Sπe process JP Ke does not respect this
limitation. Indeed, our proposed construction of the
output action into Sπe, presented in (11), involves a
recursive generation of fresh names a′, a′′. A solution is
then to directly translate the SπEr process to PRISM.

In this section, the translation of Sπe process to PRISM
proposed by Normal et al. is adapted to the translation
of SπEr process respecting previously cited structure.
Therefore, this allows an efficient model checking of
SπEr processes, which is a new result.

To end, the overall approach of this report is illustrated
by a toy example.

5.1 Construction of the Stochasticity Absorption

Let P be a stochastic π-calculus expression of the form
P = νx1 . . . νxk(P1| . . . |Pn) where each Pi contains nei-
ther the ν or | operator. In that way, each process Pi

can be described by a transition graph where nodes
are race conditions annotated by Qi, Ri, . . . [12]. Hence,
each Qi, Ri, . . . stands for a state of the process Pi.
Using the translation detailed in [12], the PRISM model
corresponding to P can be computed. It results in n
PRISM modules, one per Pi, each having a variable si

representing the current state of the process Pi. Variables
representing names to be sent or to be received are
also attached to modules. Obtained actions are of three
different main forms:

[] (si = Qi) & M → rt : (s′i = Ri) (17)

[a Pi Pj y] (si = Qi) & M → ra : (s′i = Ri) (18)

[a Pj Pi y] (si = Qi) & M → (s′i = Ri) & (z′ = y)
(19)

Each of these forms represents the process Pi at state
Qi applying a certain action under the condition M and
changing to state Ri. These actions are respectively the
internal action (17), the output (either bound or free) of
y on a channel a to Pj (18) and the input of y as z on a
channel a from Pj (19). Depending on the boundness of
the sent name y, supplementary conditions are added to
M . In the following of this section, we assume that any
identical action label inside a same module have disjoint
guards, i.e. both are never part of a same race condition.

As for the construction of the stochasticity absorption
factor in Sπe, a counter is attached to each PRISM action.
For identifying internal actions, a label is attached to
them: Pi t is the label of the internal action τt of Pi.
The set of labels of internal and output actions of Pi

is denoted by LPi♦ = {a Pi Pj y, . . . , Pi t, . . . }, and
the set of labels of input actions of Pi is denoted by
L♦Pi

= {a Pj Pi y, . . . }. Basically, there is one counter
for each action having a label in l ∈ LPi♦. This counter
is defined as a local variable c l of the PRISM module
for Pi. Each time an output or an internal action is
performed, the corresponding counter is incremented
by one. The update of the action is proceed when this

PAULEVÉ et al.: TUNING TEMPORAL FEATURES WITHIN THE STOCHASTIC π-CALCULUS 9

r0.05 sa0.05

Fig. 6. Heat map of the use rate (left) and stochasticity absorption factor (right) in function of the bounds d and D of

the Firing Interval FI0.05 = [d, D] for some generated data.

TABLE 1

Obtained estimators of parameters r and sa for the Firing Interval [d;D] at different confidence coefficients.

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99
r̂α (2.13 + 2.89 exp(−44.46d))(d + D)−1 (2.06 + 1.93 exp(−36.49d))(d + D)−1 (2.03 + 1.39 exp(−33.33d))(d + D)−1

ŝaα exp

(

6.39
(

d

D

)

−0.66
)

exp

(

6.41
(

d

D

)

−0.87
)

exp

(

6.41
(

d

D

)

−1.04
)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

es
tim

at
ed

 r

r

estimation
truth

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

es
tim

at
ed

 s
a

sa

estimation
truth

evaluation of r̂0.05 evaluation of ŝa0.05

Fig. 7. Evaluation of obtained estimators for use rate r and stochasticity absorption factor sa with confidence coefficient

of 95%. Points are the estimated parameter value. A perfect estimator would put all points on the truth line.

counter reaches the expected stochasticity absorption
factor.

To ensure a correct count of absorption, all counters
related Pi have to be reset when Pi changes its state.
This raises a concern concerning the reset of counters not
owned by Pi, as this is the case for all actions labelled
by L♦Pi

. To cope with such an issue, a boolean variable
d l is defined in the module Pi for each l = a Pj Pi y ∈
L♦Pi

, and is set to true when the reset of c l is required.

The following subsection precisely describes transfor-
mations to apply to each of the PRISM modules Pi to

add support for the stochasticity absorption factor.

Additional local variables

For each label l ∈ LPi♦, the variable c l stands for the
counter of the stochasticity absorption.

c l : [1..sa l] init 1;

For each label l ∈ L♦Pi
, the boolean variable d l is

true if Pi has changed its state while the absorption of
the action played by l has started. In other terms, d l is

10 RESEARCH REPORT - JUNE 2009

true if the associated counter c l has to be reset.

d l : bool init false;

Hereafter, the PRISM update for the reset of all
stochasticity absorption counter is denoted by RPi♦ (20).
The update of d l variables, l ∈ L♦Pi

, is denoted by
S♦Pi

(21). Basically, d l is set to true if and only if the
associated counter c l is different from its default value.

RPi♦

def
= &

l∈LPi♦

(c l′ = 1) (20)

S♦Pi

def
= &

l∈L♦Pi

(d l′ = c l > 1) (21)

with &
i∈{1,...,k}

ui = u1 & · · · & uk.

Internal action

Let l = Pi t be the label of an action resulting from
the translation of an internal action τt. The use rate and
stochasticity absorption factor of this internal action are
respectively rt and sat. The PRISM action respects the
following form:

[] G→ rt : U ;

where G stands for the guard of the action and U for the
updates to perform. The stochasticity absorption of the
action is achieved by replacing the previous statement
by the actions below:

[] G & (c l < sat)→ rt ∗ sat : (c l′ = c l + 1);

[] G & (c l = sat)→ rt ∗ sat : U & RPi♦ & S♦Pi
;

Channel output

Let l = a Pi Pj y be the label an action resulting from
the translation of an output of name y on channel a.
The use rate and stochasticity absorption factor of this
channel are respectively ra and saa. The PRISM action
respects the following form:

[l] G→ ra : U ;

where G stands for the guard of the action and U for the
updates to perform. The stochasticity absorption of the
action is achieved by replacing the previous statement
by the actions below.

[l wait] G & d l→ ra ∗ saa : (c l′ = 2);

[l wait] G & !d l & (c l < saa)→ ra ∗ saa :

(c l′ = c l + 1);

[l] G & !d l & (c l = saa)→ ra ∗ saa :

U & RPi♦ & S♦Pi
;

Channel input

Let l = a Pj Pi y be the label of an action resulting from
the translation of an input of name y on channel a. The
PRISM action respects the following form:

[l] G→ U ;

where G stands for the guard of the action and U for the
updates to perform. The stochasticity absorption of the
action is achieved by replacing the previous statement
by the actions below:

[l wait] G→ (d l′ = false);

[l] G→ U & RPi♦ & S♦Pi
;

5.2 Toy Example

As an application of the use of the PRISM model checker
for analysing SπEr processes, and as an illustration of
the overall method presented by this report, we propose
the study of an example process P defined in (22).

A1 ::= a.A0 + b.A1 B1 ::= b.B0 + a.B1

A0 ::= ⊥ B0 ::= ⊥

P ::= νaνbν⊥(A1|B1) (22)

Intuitively, two stories can happen: either A1 outputs
first on b then B1 becomes B0 and the system ends in
deadlock ; or B1 outputs first on a then A1 becomes A0

and the system ends in deadlock.
For this toy example, we search for reducing to near

zero the probability that A1 becomes A0, i.e. the probabil-
ity p that B1 outputs on a. As supplementary constraints,
the average duration for using channels a and b is fixed
to respectively 4 and 1 time units (i.e. ra = 0.25 and
rb = 1). For instance, these constraints may have been
imposed by observations of the real system modelled
by P . The property to verify is expressed in PRISM as
P=? [F (s_a=0)] which means the probability that A0

is reached.
We first study this model as a Sπe process. Listing 1

shows the result of the translation of P into PRISM using
the method of Norman et al. Verifying the previously
given property with PRISM results in a probability for
reaching A0 of 0.2.

Let us consider P as a SπEr process. For the sake of
simplicity, we will consider that both a and b have the
same stochasticity absorption factor.

In terms of firing interval, we look for a stochasticity
absorption factor with which the firing interval of b is
entirely before the firing interval of a. By computing
the firing interval for both of these actions at different
absorptions factors — as done in Figure 8 — one can
observe the probability of firing a before b will be
seriously decreased with a stochasticity absorption factor
of 5. By using a stochasticity absorption factor of 50, we
expect the probability of firing a first to be near zero.

To confirm these results, we now turn to the model
checking of the SπEr process P using PRISM. Listing 2
shows the translation of P into PRISM using the con-
struction presented above. With a stochasticity absorp-
tion of 5, the probability that A1 reaches A0 is divided
by 100 (almost 0.02) comparing without stochasticity
absorption. As expected, increasing this stochasticity
absorption factor to 50 drops down this probability to
approximately 10−11.

PAULEVÉ et al.: TUNING TEMPORAL FEATURES WITHIN THE STOCHASTIC π-CALCULUS 11

0 15

ta

tb
sa = 1

ta

tb
sa = 5

ta

tb
sa = 50

Fig. 8. Firing intervals at confidence coefficient 95% for

a and b (22) with different stochasticity absorption factors

but constant use rates ra = 0.25 and rb = 1.

ctmc

const double r_a = 0.25;

const double r_b = 1;

module proc_A

s_a: [0..1] init 1;

[a_B1_A1] (s_a=1) -> (s_a’=0);

[b_A1_B1] (s_a=1) -> r_b: (s_a’=1);

endmodule

module proc_B

s_b: [0..1] init 1;

[b_A1_B1] (s_b=1) -> (s_b’=0);

[a_B1_A1] (s_b=1) -> r_a: (s_b’=1);

endmodule

Listing 1. Translation of the example stochastic π-

calculus model (22) as a Sπe process into PRISM.

6 CONCLUSION

In this report, we presented and proved a technique
for tuning temporal features within the stochastic π-
calculus. This tuning is done through a stochasticity
absorption factor which reduces the variance around
the average duration of transitions. This absorption is
achieved by replacing the exponential distribution for
firing actions by the Erlang distribution.

We proved a translation of the Erlang distributed
stochastic π-calculus into the exponential distributed
one. In this way, such tuned models can still be efficiently
simulated with standard algorithms. The assignment
of the temporal and stochastic parameters has been
discussed and we detailled the link with the classical
timed interval for firing transitions. We showed that by
using estimators it is possible to parameterise stochastic
π-calculus models by specifying either the parameters
of the Erlang distribution or the firing interval at a
given confidence level. Finally, we added support for
this stochasticity absorption factor within the translation
of the stochastic π-calclus to PRISM, allowing efficient
model-checking of these models.

As further works, we are interested in improving the
efficienty of the model-checking for Erlang distributed
stochastic π-calculus by the study of the sum of Erlang
random variables with different parameters.

ctmc

const double r_a = 0.25; const int sa_a = 5;

const double r_b = 1; const int sa_b = 5;

module proc_A

s_a: [0..1] init 1;

c_b_A1_B1: [1..sa_b] init 1;

d_a_B1_A1: bool init false;

[a_B1_A1_wait] (s_a=1) -> (d_a_B1_A1’=false);

[a_B1_A1] (s_a=1) -> (s_a’=0) & (d_a_B1_A1’=false) &

(c_b_A1_B1’=1);

[b_A1_B1_wait] (s_a=1) & d_b_A1_B1 -> r_b:

(c_b_A1_B1’=2);

[b_A1_B1_wait] (s_a=1) & !d_b_A1_B1 & (c_b_A1_B1<sa_b)

-> r_b: (c_b_A1_B1’=c_b_A1_B1+1);

[b_A1_B1] (s_a=1) & !d_b_A1_B1 & (c_b_A1_B1=sa_b) ->

r_b: (s_a’=1) & (c_b_A1_B1’=1) &

(d_a_B1_A1’=c_a_B1_A1>1);

endmodule

module proc_B

s_b: [0..1] init 1;

c_a_B1_A1: [1..sa_a] init 1;

d_b_A1_B1: bool init false;

[b_A1_B1_wait] (s_b=1) -> (d_b_A1_B1’=false);

[b_A1_B1] (s_b=1) -> (s_b’=0) & (d_b_A1_B1’=false) &

(c_a_B1_A1’=1);

[a_B1_A1_wait] (s_b=1) & d_a_B1_A1 -> r_a:

(c_a_B1_A1’=2);

[a_B1_A1_wait] (s_b=1) & !d_a_B1_A1 & (c_a_B1_A1<sa_a)

-> r_a: (c_a_B1_A1’=c_a_B1_A1+1);

[a_B1_A1] (s_b=1) & !d_b_A1_B1 & (c_a_B1_A1=sa_a) ->

r_a: (s_b’=1) & (c_a_B1_A1’=1) &

(d_b_A1_B1’=c_b_A1_B1>1);

endmodule

Listing 2. Translation of the example stochastic π-

calculus model (22) as a SπEr process into PRISM.

APPENDIX

AN ALTERNATIVE CONSTRUCTION FOR THE

STOCHASTICITY ABSORPTION FACTOR WITHIN

THE STOCHASTIC π-CALCULUS

In this appendix, we provide an alternative to that of
Definition 2 for the construction of the stochasticity
absorption factor within the stochastic π-calculus. The
main motivation for this new construction is to prevent
the use of an indexing set for the race condition which
depend on parameters of the process. That is the case
for the proposed construction of the channel output (11)
and input (11). The construction hereafter can then be
fully implemented in SPIM, for instance.

Basically, instead of having a race condition growing
after each communication instantiation, a process han-
dling the stochasticity absorption for each new commu-
nication is composed in parallel. To identify the process
Pi winning the race condition

∑

i∈I Pi, a name ci is
bound to each component of the race condition. When
the process handling a communication has completed
its absorption, it outputs on this channel ci. In that way,
the translation of the call for the race condition (13) is
replaced by:

JA(z̃)Ke = A(z̃, c̃) (23)

12 RESEARCH REPORT - JUNE 2009

with ∀i ∈ I, ci =











1 if the first action of Pi

is an internal action,

νci else, with rci
=∞

Channel output: The process defined below takes as
parameters the stochasticity absorption factor to reach
sa, the counter of firing c, channels a′, a′′ as defined
in (11), and the channel r for outputting when the
absorption is completed.

Asend(sa, c, a′, a′′, r) ::= (24)

[c < sa] a′.Asend(sa, c + 1, a′, a′′, r)

+[c = sa] ra′′

(11) is then replaced by the following:

Jay.P Ke = (25)

νa′νa′′a < a′, a′′ > .(A(z̃, c̃)|Asend(saa, 1, a′, a′′, ci))

+cia
′′.a′′y.JP Ke

with r′a′ = r′a, r′a′′ =∞ and {a′, a′′} ∩ (fn(A) ∪ fn(P)).
Channel input: Similarly, the process defined below

inputs either on the channel a′ (absorption in progress)
on the channel a′′ (communication done), and outputs on
r the data received by a′′ to the parent race condition.

Arecv(a′, a′′, r) ::= a′.Arecv(a′, a′′, r) (26)

+a′′y.ry

Finally, (12) is replaced as follows:

Jay.P Ke = a < a′, a′′ > .(A(z̃, c̃)|Arecv(a′, a′′, ci)) (27)

+ciy.JP Ke

with {a′, a′′} ∩ (fn(A) ∪ fn(P)) = ∅.

REFERENCES

[1] R. Milner, Communicating and mobile systems: the π-calculus. New
York, NY, USA: Cambridge University Press, 1999.

[2] C. Priami, “Stochastic pi-Calculus,” The Computer Journal, vol. 38,
no. 7, pp. 578–589, 1995.

[3] C. Priami, A. Regev, E. Shapiro, and W. Silverman, “Application
of a stochastic name-passing calculus to representation and sim-
ulation of molecular processes,” Inf. Process. Lett., vol. 80, no. 1,
pp. 25–31, 2001.

[4] C. Kuttler and J. Niehren, “Gene regulation in the pi calculus:
Simulating cooperativity at the lambda switch,” Transactions on
Computational Systems Biology, vol. 4230, no. VII, pp. 24–55, Nov.
2006.

[5] R. Blossey, L. Cardelli, and A. Phillips, “Compositionality, stochas-
ticity and cooperativity in dynamic models of gene regulation,”
HFSP Journal, vol. 2, no. 1, pp. 17–28, Feb 2008.

[6] L. Cardelli, E. Caron, P. Gardner, O. Kahramanogullari, and
A. Phillips, “A process model of actin polymerisation,” Electronic
Notes in Theoretical Computer Science, vol. 229, no. 1, pp. 127–144,
January 2009.

[7] D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” The Journal of Physical Chemistry, vol. 81, no. 25, pp.
2340–2361, 1977.

[8] A. Phillips and L. Cardelli, “Efficient, correct simulation of bio-
logical processes in the stochastic pi-calculus,” in Computational
Methods in Systems Biology, ser. LNCS, vol. 4695. Springer, Sep
2007, pp. 184–199.

[9] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
A tool for automatic verification of probabilistic systems,” in
Proc. 12th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’06), ser. LNCS,
H. Hermanns and J. Palsberg, Eds., vol. 3920. Springer, 2006,
pp. 441–444.

[10] R. Alur and D. Dill, Lecture Notes in Computer Science, 1992, ch.
The theory of timed automata, pp. 45–73.

[11] C. Priami, “Stochastic π-calculus with general distributions,” in
Proc. of the 4th Workshop on Process Algebras and Performance
Modelling, CLUT, 1996, pp. 41–57.

[12] G. Norman, C. Palamidessi, D. Parker, and P. Wu, “Model check-
ing probabilistic and stochastic extensions of the π-calculus,” IEEE
Transactions on Software Engineering, vol. 35, no. 2, pp. 209–223,
2009.

[13] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston, “Per-
formance analysis of probabilistic timed automata using digital
clocks,” Formal Methods in System Design, vol. 29, pp. 33–78, 2006.

[14] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking
continuous-time markov chains,” ACM Trans. Comput. Logic,
vol. 1, no. 1, pp. 162–170, 2000.

[15] C. Baier and H. Hermanns, “Model-checking algorithms for
continuous-time markov chains,” IEEE Trans. Softw. Eng., vol. 29,
no. 6, pp. 524–541, 2003, senior Member-Haverkort, Boudewijn
and Member-Katoen, Joost- Pieter.

[16] S. Donatelli, S. Haddad, and J. Sproston, “Model checking timed
and stochastic properties with CSL

TA,” IEEE Transactions on
Software Engineering, vol. 35, no. 2, pp. 224–240, 2009.

[17] A. Phillips, SPiM, http://research.microsoft.com/˜aphillip/spim.
[18] A. Zaigraev and A. Podraza-Karakulska, “On estimation of the

shape parameter of the gamma distribution,” Statistics & Proba-
bility Letters, vol. 78, no. 3, pp. 286 – 295, 2008.

[19] J. Mi and A. Naranjo, “Inferences about the scale parameter of
the gamma distribution based on data mixed from censoring and
grouping,” Statistics & Probability Letters, vol. 62, no. 3, pp. 229 –
243, 2003.

[20] D. J. Wilkinson, Stochastic Modelling for Systems Biology (Mathe-
matical and Computational Biology). Chapman & Hall/CRC, April
2006.

[21] D. Best and D. Roberts, “Algorithm as 91: The percentage points
of the chi-squared distribution,” Applied Statistics, vol. 24, no. 3,
pp. 385–390, 1975.

[22] A. R. DiDonato and A. H. Morris, Jr., “Computation of the
incomplete gamma function ratios and their inverse,” ACM Trans.
Math. Softw., vol. 12, no. 4, pp. 377–393, 1986.

[23] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2009, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[24] S. Amari and R. Misra, “Closed-form expressions for distribution
of sum of exponential random variables,” Reliability, IEEE Trans-
actions on, vol. 46, no. 4, pp. 519–522, Dec 1997.

[25] S. Nadarajah, “A review of results on sums of random variables,”
Acta Applicandae Mathematicae: An International Survey Journal on
Applying Mathematics and Mathematical Applications, vol. 103, no. 2,
pp. 131–140, Sep 2008.

[26] S. Favaro and S. Walker, “On the distribution of sums of inde-
pendent exponential random variables via wilks’ integral repre-
sentation,” Acta Applicandae Mathematicae: An International Survey
Journal on Applying Mathematics and Mathematical Applications,
2008.

