
HAL Id: hal-00397235
https://hal.science/hal-00397235v2

Submitted on 18 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Refining Dynamics of Gene Regulatory Networks in a
Stochastic π-Calculus Framework
Loïc Paulevé, Morgan Magnin, Olivier Roux

To cite this version:
Loïc Paulevé, Morgan Magnin, Olivier Roux. Refining Dynamics of Gene Regulatory Networks in
a Stochastic π-Calculus Framework. Transactions on Computational Systems Biology, 2011, XIII,
pp.171-191. �10.1007/978-3-642-19748-2_8�. �hal-00397235v2�

https://hal.science/hal-00397235v2
https://hal.archives-ouvertes.fr

Refining Dynamics of Gene Regulatory

Networks in a Stochastic π-Calculus Framework

Löıc Paulevé, Morgan Magnin, Olivier Roux

IRCCyN, UMR CNRS 6597,
École Centrale de Nantes, France

{loic.pauleve,morgan.magnin,olivier.roux}@irccyn.ec-nantes.fr

Abstract. In this paper, we introduce a framework allowing to model
and analyse efficiently Gene Regulatory Networks (GRNs) in their tem-
poral and stochastic aspects. The analysis of stable states and inference
of René Thomas’ discrete parameters derives from this logical formalism.
We offer a compositional approach which comes with a natural transla-
tion to the Stochastic π-Calculus. The method we propose consists in
successive refinements of generalised dynamics of GRNs. We illustrate
the merits and scalability of our framework on the control of the differ-
entiation in a GRN generalising metazoan segmentation processes, and
on the analysis of stable states within a large GRN studied in the scope
of breast cancer researches.

Changes since http://dx.doi.org/10.1007/978-3-642-19748-2_8

– Add a 6= b in V equation of Definition 9 (Hitless Graph).

1 Introduction

Modelling, analysis and numerical or stochastic simulations are a usual means
to predict the behaviour of complex living systems such as interacting genes.

Regulations between genes (activation or inhibition) are generally represented
by Gene Regulatory Network (GRN) graphs. However, a GRN graph is not
enough to describe dynamics. In continuous frameworks such as ordinary dif-
ferential equations, parameters for differential equations are needed. In logical
(or qualitative) frameworks such as boolean or discrete networks, dynamics are
driven by René Thomas’ parameters or equivalent [1].

Hybrid modelling brings quantitative aspects — such as temporal or stochas-
tic parameters — to logical modelling. In the field of formal languages, κ lan-
guage [2] or Stochastic π-Calculus [3,4,5] bring theoretical Computer Science
frameworks for biological modelling. In the field of formal verifications of bio-
logical systems, frameworks like Time or Stochastic Petri Nets [6,7], Biocham
[8], Timed Automata [9], Charon (Hybrid Modelling) [10] and Linear Hybrid
Modelling [11] bring the first bricks for verifying and controlling dynamics of
such systems.

2 L. Paulevé, M. Magnin and O. Roux

Inference of temporal and stochastic parameters is still challenging as the
domain of parameters is continuous and its volume generally grows exponen-
tially with the number of genes. Compositional approaches, inherent to process
algebras, aspire at reducing this complexity by allowing a local reasoning.

Our aim is temporal parameters synthesis for verifying formal properties on
hybrid models.

Our contribution consists in the introduction of both temporal and stochastic
parameters into process algebra models of GRNs through a new Stochastic π-
Calculus framework: the Process Hitting framework.

Starting from a GRN without any other parameters, its largest dynamics
are expressed in Process Hitting and then are refined to match the expected
behaviour. Such a refinement is achieved by constructing cooperativity between
genes and by creating stable states. As we will show, detecting stable states of a
Process Hitting is straightforward, as well as infering the René Thomas’ discrete
parameters K.

Moreover, the Stochastic π-Calculus naturally brings time and stochasticity
into our Process Hitting framework. We introduce a stochasticity absorption fac-
tor to highlight either the temporal or stochastic aspect of reactions. The direct
translation of Process Hitting to the Stochastic π-Calculus allows simulations of
such models by softwares like BioSpi [3] or SPiM [12].

Several points motivate the choice of the Stochastic π-Calculus framework
for introducing the Process Hitting. The Stochastic π-Calculus can be consid-
ered as a “low-level” process algebra: there are very few operators compared,
for instance, to the Beta Workbench [13] or Bio-PEPA [14]. This makes the
presentation of the Process Hitting as a Stochastic π-Calculus framework more
generic. Moreover, the Stochastic π-Calculus comes with a bunch of established
tools as previously cited and translations into various framework have already
been formalized, such as to PRISM, a probabilistic model checking tool [15,16].

This paper is structured as follows. Section 2 introduces our framework and
how it is used to build the generalised dynamics of a GRN. Section 3 presents
dynamics refinement techniques and Section 4 shows how infering the René
Thomas’ parameters leading to such dynamics. Introduction of both temporal
and stochastic parameters within Process Hitting models is addressed in Sec-
tion 5. The overall approach is illustrated by two applications in Section 6. The
first applies the refinement method to a toy GRN involved in biological segmen-
tations phenomena. The temporal and stochastic parameters are then infered to
bring a particular behaviour to the system. The second application shows the
scalability of the Process Hitting framework by modelling a large GRN composed
of 20 genes.

Notations Given a set S,

n
︷ ︸︸ ︷

S × · · · × S, will be abbreviated as Sn. If S is finite
and countable, we note |S| its cardinality. Given a n-tuple C, C[x/y] refers to
the n-tuple C within the element y has been substituted by x. Belonging and
cartesian product for n-tuples are defined similarly to sets. [xi;xi+n] refers to
the interval {xi, xi+1, . . . , xi+n}. ’∧’ stands for the logical and connector.

Refining Dynamics of Gene Regulatory Networks 3

2 Generalised Dynamics for Gene Regulatory Networks

First, we recall the basis of the René Thomas’ discrete modelling framework
from which we designed our refinement approach. This method is described in
subsections 2.2 and 2.3. This leads to a straightforward translation into the
π-Calculus which makes it possible to express generalised dynamics of GRNs.

2.1 Gene Regulatory Networks

GRNs are often described by interaction graphs where nodes are genes with acti-
vation and inhibition relations respectively represented by positive and negative
edges [1,17].

In the discrete framework of René Thomas, each gene has at least two qual-
itative levels. The influence of an activating (resp. inhibiting) gene on its target
depends on a threshold value: when the level of the gene is greater or equal than
the threshold, the gene holds a positive (resp. negative) effect; when the level of
the gene is lower than the threshold, the gene holds a negative (resp. positive)
effect [1].

Definition 1 (Gene Regulatory Network Graph). A Gene Regulatory
Network graph is a triple (Γ,E+, E−) where Γ is the finite set of genes and

a
t
−→ b ∈ E+ (resp. E−), t positive integer, if and only if the gene a above level t

is an activator (resp. inhibitor) for b. We note ai the level i of the gene a.

Given a GRN graph (Γ,E+, E−), the maximum qualitative level for gene
a ∈ Γ is noted ala where la is the highest threshold involved in its regulations:

la = max({t | ∃b ∈ Γ, a
t
−→ b ∈ E+ ∪ E−}) . (1)

We denote levels+(a, b) (resp. levels−(a, b)) the set of levels of a where a
effectively activates (resp. inhibits) b.

Definition 2 (Effective Levels). If a
t
−→ b ∈ E+, levels+(a, b) = [at; ala] and

levels−(a, b) = [a0; at−1]. If a
t
−→ b ∈ E−, levels+(a, b) = [a0; at−1] and

levels−(a, b) = [at; ala]. Else levels+(a, b) = levels−(a, b) = ∅.

2.2 The Process Hitting Framework

We want to describe the action of a gene at a given level on another one. If
the gene a at a given level i is an activator for b, it has a positive action on b,
meaning the level of b will tend to increase. Conversely if a at a level i′ is an
inhibitor for b, it has a negative action on b and then the level of b will tend to
decrease.

The action is “a at level i making b at level j increase (or decrease) to level
k”. We say ai hits bj to make it bounce to bk and note this action ai → bj � bk.
In the process hitting framework, ai, bj , bk are refered as processes and a, b as
sorts. Sorts can represent genes, but also logical entities, as described in further
sections.

4 L. Paulevé, M. Magnin and O. Roux

Definition 3 (Action). An action is noted ai → bj � bk where ai is a process
of sort a and bj 6= bk two processes of sort b. ai → bj is the hit part, and bj � bk
the bounce part. When ai = bj, such an action is refered as a self-action and ai
is called a self-hitting process.

In this paper, one and only one process of each sort is present at any instant.
Hence, hits between different processes of a same sort are prohibited. The set of
these living processes gives the state of the Process Hitting.

Definition 4 (Process Hitting). A Process Hitting PH is a triple (Σ,L,H):

– Σ = {a, b, . . . } is the finite countable set of sorts,
– L =

∏

a∈Σ La is the set of states for PH, with La = {a0 . . . ala} the finite and
countable set of processes of sort a ∈ Σ and la a positive integer, a 6= b ⇒
ai 6= bj ∀(ai, bj) ∈ La × Lb,

– H = {ai → bj � bk, · · · | (a, b) ∈ Σ2, (ai, bj , bk) ∈ La × Lb × Lb, bj 6= bk, a =
b ⇒ ai = bj}, is the finite set of actions.

At a given state s ∈ L, an action ai → bj � bk is playable if both processes ai
and bj are present in s. When this action is played, the process bk replaces bj .

Definition 5 (Next States). Let (Σ,L,H) be a Process Hitting and s ∈ L be
one of its states. The set of the next possible states for s are computed as follows:

next(s) = {s[bk/bj] | ∃(ai, bj) ∈ s2, ∃bk ∈ Lb, ai → bj � bk ∈ H} .

Definition 6 (Stable state). Let PH = (Σ,L,H) be a Process Hitting and
s ∈ L be a state, s is a stable state for PH if and only if next(s) = ∅.

2.3 Graphical Representations of a Process Hitting

We set up two complementary graphical representations of a Process Hitting.
The first one exhibits the actions between process levels, the second one points
out the absence of hits between them. We finally define the State Graph of a
Process Hitting. Figure 1 shows an instance for each of these three representa-
tions.

Given a Process Hitting (Σ,L,H), its Hypergraph represents each action
ai → bj � bk ∈ H by a directed hyperedge from ai to bk passing by bj . The hit
part (ai to bj) is drawn as a plain edge and the bounce part (bj to bk) as a dotted
edge.

Definition 7 (Process Hitting Hypergraph). The Hypergraph of a Process
Hitting (Σ,L,H) is a couple (P,A) where P =

⋃

a∈Σ La are the vertices and
A ⊆ P 3 the directed hyperedges given by A = {(ai, bj , bk) | ai → bj � bk ∈ H}.

In the following we introduce a complementary representation we call Hitless
Graph. It will allow us to obtain extra results such as the stable states of a
Process Hitting (Section 3.2). The Hitless Graph of a Process Hitting (Σ,L,H)

Refining Dynamics of Gene Regulatory Networks 5

relates two processes of different sorts if and only if they hit neither each other
nor themselves. Vertices of a Hitless Graph may be split into n ≤ |Σ| partitions
having no element inside related to each other: a partition is, for any sort, a
subset of its processes without self-actions. Such a graph is called n-partite.

Definition 8 (n-Partite Graph). A graph G = (V,E) is n-partite if and only
if V =

⋃n
k=1 Vk, Vk 6= ∅, ∀1 ≤ k, k′ ≤ n, Vk ∩ Vk′ = ∅ and (ai, bj) ∈ E ⇒

∃1 ≤ k 6= k′ ≤ n, ai ∈ Vk ∧ bj ∈ Vk′ .

Definition 9 (Hitless Graph). Given a Process Hitting PH = (Σ,L,H), its
Hitless Graph PH = (V,E) is defined as a non-directed graph where the vertices
V and edges E are computed as follows:

V =
⋃

a∈Σ

{ai ∈ La | ∀ai′ ∈ La ∄ ai → ai � ai′ ∈ H}

E = {(ai, bj) ∈ V 2 | a 6= b ∧∀bj′ ∈ Lb ∄ ai → bj � bj′ ∈ H

∧ ∀ai′ ∈ La ∄ bj → ai � ai′ ∈ H} .

Property 1. By construction of V and E, PH is a n-partite graph, n ≤ |Σ|,
where each partition is a subset of processes for one and only one sort and to
each sort corresponds at most one partition.

We also define the n-cliques of a graph which are subsets of n vertices such
that each element is related to each other.

Definition 10 (n-Clique). Given a graph G = (V,E), C ⊆ V is a |C|-clique
of G if and only if ∀(ai, bj) ∈ C2, {ai, bj} ∈ E.

Property 2. n-cliques of a n-partite graph have one and only one vertex in each
partition.

Finally, the State Graph of a Process Hitting represents the possible transi-
tions between each couple of its states.

Definition 11 (State Graph). Given a Process Hitting (Σ,L,H), its State
Graph is a directed graph S = (L,E ⊆ L2) with (s, s′) ∈ E ⇔ s′ ∈ next(s).

2.4 From Process Hitting to the π-Calculus

A main advantage of our approach is its natural translation to the π-Calculus.
In this subsection we propose a method to translate any Process Hitting into a
π-Calculus expression.

We briefly present the fragment of the π-Calculus which is sufficient for trans-
lating a Process Hitting. The full syntax for π-Calculus and examples can be
found in [5,18]. π-Calculus expressions compose two kinds of objects: indepen-
dently defined processes and channels shared by some processes. A process P
has the capability to output (resp. input) on a channel γ and then become P ′,

6 L. Paulevé, M. Magnin and O. Roux

a0

a1

b0

b1

b2

a0

a1

b0

b1

b2

a0b0 a1b0

a0b1 a1b1

a0b2 a1b2

(a) Hypergraph (b) Hitless Graph (c) State Graph

Fig. 1. Graphical representations for the Process Hitting PH = ({a, b}, {a0, a1} ×
{b0, b1, b2},H) with H = {b0 → a0 � a1, a1 → b0 � b1, a1 → b1 � b2}.

noted !γ.P ′ (resp. ?γ.P ′). Output and input are synchronized operations, i.e. an
outputting process is blocked until another process inputs on the same chan-
nel. A process can also execute an internal action (τ), nil operation (0) or one
amongst several (P ′ + P ′′).

Let PH = (Σ,L,H) be a Process Hitting. For each process ai of PH, a π-
Calculus process Ai is defined as follows. For each action ai → bj � bk ∈ H where
a 6= b, a new channel γα is created. The π-Calculus process Ai has the ability to
output on this channel and the π-Calculus process Bj has the ability to input
on this channel so as to become Bk (2). For each self-action ai → ai � aj ∈ H,
Ai has the ability to become Aj after performing an internal action τα (3).

Ai ::=
∑

α=ai → bj � bk∈H

a 6=b

!γα.Ai +
∑

α=bj → ai � ak∈H

a 6=b

?γα.Ak (2)

+
∑

α=ai → ai � ak∈H

τα.Ak (3)

2.5 Generalised Dynamics for Gene Regulatory Networks

Our method to analyse GRNs takes benefit from the use of refinement techniques.
Starting from the largest set of possible dynamics for the GRN, we gradually
take into account only the specified behaviours and exclude the other ones, thus
leading to a restrictive process.

We call this largest set of dynamics the generalised dynamics for the GRN
graph. It is described by the following rules: the level of a gene increases (resp.
decreases) if and only if at least one of its activators (resp. inhibitors) is present.
The absence of activators is equivalent to the presence of one inhibitor.

Let G = (Γ,E+, E−) be a GRN graph. For all (a, b) ∈ Γ 2, we build the set
of actions Hb

a from a to b reflecting the rules above:

– If a
t
−→ b ∈ E+, all processes of sort a below the threshold t hit all processes

of sort b but b0 to make them decrease to the level below. Moreover, all
processes of sort a above the threshold t hit all processes of sort b but blb to

Refining Dynamics of Gene Regulatory Networks 7

make them increase to the level above:

Hb
a = {ai → bj � bj−1 | 0 ≤ i < t, 1 ≤ j ≤ lb}

∪ {ai′ → bj′ � bj′+1 | t ≤ i′ ≤ la, 0 ≤ j′ < lb} .

– If a
t
−→ b ∈ E−, the actions are defined similarly to the previous case except

for the bounce directions which are reversed:

Hb
a = {ai → bj � bj+1 | 0 ≤ i < t, 0 ≤ j < lb}

∪ {ai′ → bj′ � bj′−1 | t ≤ i′ ≤ la, 1 ≤ j′ ≤ lb} .

– If b = a and ∄c ∈ Γ, c
t
−→ b ∈ E− ∪E+, gene b lives in absence of activators:

all processes of sort b but b0 hit themselves to decrease to the level below.

Hb
b = {bi → bi � bi−1 | 1 ≤ i ≤ lb} .

– Obviously, if a
t
−→ b /∈ E−∪E+ for any t and the previous case does not hold,

we define Hb
a = ∅.

The Process Hitting for the generalised dynamics of G is given by

PH = (Γ,
∏

a∈Γ

{a0, . . . , ala},
⋃

(a,b)∈Γ 2

Hb
a) .

3 Refining Dynamics of Gene Regulatory Networks

We present two methods which aim at narrowing the set of dynamics of a Process
Hitting for a GRN: the first one is based on cooperativity between genes, the
other one deals with the knowledge of the stable states.

3.1 Cooperative Hits

Given two genes c and f regulating a gene a, the action of c on a may depend
on the level of f : there exists a cooperativity between c and f on a. In discrete
frameworks, the cooperativity is often described by a boolean function between
genes levels [1,19]. We show how to build cooperativity within Process Hitting.

Let (Σ,L,H) be a Process Hitting and σ ⊂ Σ be a set of sorts cooperating
on a given process ak to make it bounce to ak′ . The set of all states of the
cooperating sorts is denoted by S =

∏

z∈σ Lz. The subset of states where the
cooperativity is effective is defined by ⊤ ⊂ S.

For applying this cooperation, a new sort is added to the Process Hitting.
This sort is called a cooperative sort and is refered as υ. The set of processes of
sort υ is defined by Lυ = {υς , ∀ς ∈ S}. Each process zi of sort z ∈ σ hits processes
υς of the cooperative sort υ where zi /∈ ς to make it bounce to υς[zi/zj], zj ∈ ς.
We denote Hσ the set of such actions (4). In this way, the process of sort υ
reflects the current state of its representatives.

8 L. Paulevé, M. Magnin and O. Roux

The cooperativity between υ processes is added into the Process Hitting by
replacing hits Hcoop from processes of sorts present in σ to ck (5) by hits H′

coop

from processes of the cooperative sort υ selected in ⊤ (6).

Hσ = {zi → υς � υς[zi/zj] | ∀z ∈ σ, ∀(zi, zj) ∈ L2
z, ∀υς ∈ Lυ, zj ∈ ς} (4)

Hcoop = {zi → ak � ak′ ∈ H | ∀z ∈ σ} (5)

H′
coop = {υς → ak � ak′ | ∀ς ∈ ⊤} . (6)

The resulting Process Hitting is (Σ ∪{υ}, L×Lυ, (H\Hcoop)∪Hσ ∪H′
coop).

Example 1. Let ({f, c, a}, {f0, f1} × {c0, c1} × {a0, a1},H) be a Process Hitting
where {f1 → a0 � a1, c0 → a0 � a1} ⊂ H. The creation of a cooperativity be-
tween f1 and c0 on a0 (σ = {f, c}, ⊤ = {f1c0}) is illustrated by Figure 2.

c0 c1

f1

f0

a0

a1

f1

f0

c0 c1

a0

a1

fc01 fc00 fc11 fc10

Fig. 2. Construction of a cooperative hit between f1 and c0 on a0 (thick lines):
σ = {f, c}, ⊤ = {f1c0}, υ = fc. fc01 stands for the process corresponding to the state
f0c1 of the cooperating processes σ.

3.2 Stable State Pattern

Given a Process Hitting (Σ,L,H), we prove the |Σ|-cliques of its Hitless Graph
are exactly its stable states. Thus, stable states may be created by removing
from the Process Hitting the very hits that make such patterns appear.

Theorem 1. Let PH = (Σ,L,H) be a Process Hitting and PH its Hitless
Graph. A state s ∈ L is stable if and only if s is a |Σ|-clique for PH.

Proof. By definition, next(s) = ∅ if and only if there is no hit between any
couple of processes present in s. This is equivalent to have s a clique of PH.

Figure 3 shows an instance of Process Hitting having one stable state.
We outline an algorithm for finding the n-cliques of a Hitless Graph PH =

(V,E) where n = |Σ|.
Thanks to Prop. 1, we split V into n partitions corresponding to each process:

V = ∪a∈ΣVa, Va ⊆ La. If one of this partition is empty, there can not be n-
cliques as it requires to have at least one vertex in each partition. We will assume
Va 6= ∅, ∀a ∈ Σ.

Refining Dynamics of Gene Regulatory Networks 9

For each partition a ∈ Σ and each vertex ai ∈ Va, we define Eb
ai

= {bj ∈
Vb | (ai, bj) ∈ E} for each other partition b ∈ Σ, b 6= a, the set of vertices in Vb

related to ai. If there exists b ∈ Σ such that Eb
ai

= ∅, the vertex ai is removed
from candidates as it can not belong to a n-clique. Finally, we set Ea

ai
= {ai}.

Once this pruning is performed, we enumerate potential n-cliques. To reduce
this enumeration, we choose the partition a sharing the least number of edges.
For each vertex ai ∈ Va we test for all s ∈

∏

b∈Σ Eb
ai

if s is a clique of PH.

For instance in Figure 3(b), a1 is removed from the Hitless Graph (Eb
a1

= ∅),
the partition associated to c is chosen (involved into only 4 edges), two states
are tested: a0b0c1 and a2b1c0 and the latter reveals to be the only 3-clique.

a0 a1 a2

b0

b1

c0 c1

a0 a1 a2

b0

b1

c0 c1

(a) Hypergraph (b) Hitless Graph

Fig. 3. A Process Hitting represented by its Hypergraph (a) and its Hitless Graph (b).
The Hitless Graph contains only one 3-clique between a2, b1 and c0 (thick lines): this
is the only stable state of this system.

4 From Process Hitting to René Thomas’ Parameters

A René Thomas’ discrete parameter gives the attractor levels for a gene when
its regulators are in a given configuration. Many frameworks and tools dedicated
to the study of GRNs take the full set of René Thomas’ parameters as essential
input [1,9,11]. In this section, we give a formal method to infer René Thomas’
parameters for a GRN modelled in the Process Hitting framework.

Let (Γ,E+, E−) be a GRN graph. A René Thomas’ parameter Ka,A,B , a ∈
Γ,A∪B ⊆ Γ, A∩B = ∅, gives the interval of attracting levels for a when genes
in A are activating a and genes in B are inhibiting a. In this configuration, if
the level of a is in Ka,A,B , then it will never change; otherwise the level of a will
tend to a level in Ka,A,B .

Let (Σ,L,H) be a Process Hitting where sorts are standing either for genes
or for cooperative sorts, i.e. Σ = Γ ∪ {σ1, . . . , σu} with ∀1 ≤ v ≤ u, σv ⊂ Γ .
Let Ka,A,B be the René Thomas’ parameter to infer. For each sorts b ∈ A ∪ B,
its context Cb

a,A,B is defined as the subset of processes Lb imposed by the René
Thomas’ parameter: if b ∈ A (resp. B) only processes corresponding to positive
(resp. negative) effective levels (Def. 2) are allowed. For each process b ∈ Γ

10 L. Paulevé, M. Magnin and O. Roux

not regulating a (i.e. b /∈ A ∪ B), its context Cb
a,A,B is simply Lb (7). The

context Cσ
a,A,B for cooperative sorts σ ∈ {σ1, . . . , σu} is the set of states of its

representatives in their context (8).

∀b ∈ Γ, Cb
a,A,B =

levels+(b, a) if b ∈ A,

levels−(b, a) if b ∈ B,

Lb otherwise.

(7)

∀σ ∈ {σ1, . . . , σu}, Cσ
a,A,B = {σς | ∀ς ∈

∏

b∈σ

Cb
a,A,B} . (8)

We denote Ha,A,B the subset of the set of actions H on a that may be
performed by processes of the context of any sort (9). A process of sort a is
reachable if it belongs to the context of a or is the result of any action in Ha,A,B .
The set of such processes is noted L?

a,A,B (10). The set of reachable processes
of sort a not hit by any other processes is noted L∗

a,A,B (11). Thus, as long
as present processes are in the context of their sort, if a process of sort a is
in L∗

a,A,B , it will not be bounced. In this way, L∗
a,A,B is called the set of focal

processes of a.

Ha,A,B = {bi → aj � ak ∈ H | bi ∈ Cb
a,A,B ∧ aj ∈ Ca

a,A,B} (9)

L?
a,A,B = Ca

a,A,B ∪ {ak | ∀bi → aj � ak ∈ Ha,A,B} (10)

L∗
a,A,B = L?

a,A,B \ {aj | ∀bi → aj � ak ∈ Ha,A,B} . (11)

Finally, we check that the focal processes are attractors, i.e. all actionsHa,A,B

make processes of sort a bounce in the direction of the focal processes. If such a
condition is satisfied, the focal processes correspond to the value of the requested
René Thomas’ parameter. We point up that all these operations are linear with
the number of actions in the Process Hitting.

Condition 1 (Focal processes are attractors). ∀bi → aj � ak ∈ Ha,A,B , ∀af ∈
L∗
a,A,B , |f − k| < |f − j| .

Property 3. If L∗
a,A,B satisfies Cond. 1, L∗

a,A,B is an interval.

Proof. If L∗
a,A,B = {af , . . . , af ′} is not an interval, there exists bi → aj � ak ∈

Ha,A,B such that f < j < f ′. If Cond. 1 applies, we have |f − k| < |f − j| ⇒
k < j ⇒ |f ′ − k| > |f ′ − j| which contradicts Cond. 1.

Theorem 2. If L∗
a,A,B 6= ∅ and Cond. 1 holds, then Ka,A,B = L∗

a,A,B .

Proof. By construction of L∗
a,A,B and application of Cond. 1 and Prop. 3, it

immediately appears that if L∗
a,A,B 6= ∅, it is the set of attracting levels for a.

Consequently, there might exist configurations without any correspondence
with René Thomas’ parameters. First, L∗

a,A,B = ∅ means the gene a is unstable
in the fixed context, i.e. its level is changing forever. Second, Cond. 1 is violated
when there exists opposite focal processes, i.e. the fate of a is not deterministic.

Refining Dynamics of Gene Regulatory Networks 11

One of the main reasons for non-determinism of Process Hitting is the absence
of cooperativity between hits to a same target which may then independently
be bounced to both higher and lower processes. We leave as an open question
the problem to know whether such unstable and/or non-deterministic dynamics
are biologically relevant.

5 Temporal and Stochastic Parameters

Further dynamics refinements may be achieved by taking into account the tem-
poral and stochastic dimensions of biological reactions. On the one hand, we may
consider the probability of a reaction to occur at a given state. By introducing
stochastic parameters into discrete models, we aim at computing the probabil-
ity of observing an expected behaviour. On the other hand, because they are
faster, some reactions always apply before others. By introducing temporal pa-
rameters into discrete models, we aim at reducing their dynamics to match such
behaviours.

5.1 From Process Hitting to the Stochastic π-Calculus

The Stochastic π-Calculus [20] adds the capability to attach use rates to channels
and internal actions of the π-Calculus. This gives a natural introduction for
temporal and stochastic aspects in our Process Hitting framework.

A use rate controls both the duration and the probability of a reaction (com-
munication on a channel or internal action). It is associated to a probability
distribution for firing reaction along the time. The usual probability distribu-
tion is the exponential one, allowing efficient simulations through a Gillespie-like
algorithm [12,21]. This is the one we consider for the rest of this paper.

The probability along time t of firing a reaction with use rate r is given by
F (t) = 1− e−rt. The average duration of this reaction is r−1 with a variance of
r−2. When x reactions are possible having use rates of r1, . . . , rx respectively,
the probability that the yth reaction is fired is given by

ry
r1+···+rx

.
The translation of Process Hitting (Σ,L,H) into the Stochastic π-Calculus

is the same as the one presented in Section 2.4. Additionally, to each channel
γα, or internal action τα, a use rate rα is attached.

5.2 Stochasticity Absorption

Use rates are both temporal and stochastic parameters. Nonetheless, these two
aspects are closely tied: the lower a use rate is, the higher the variance around its
mean duration is. We introduce a stochasticity absorption factor to control this
variance to favour either the stochastic or the temporal behaviour of an action.

We propose to replace the exponential distribution of a reaction with a rate
r by the distribution of the sum of sa random variables each having an ex-
ponential distribution of parameter r.sa. The resulting probability distribution
is also known as the Erlang distribution. The average duration is unchanged:

12 L. Paulevé, M. Magnin and O. Roux

(r.sa)−1sa = r−1, but the variance is divided by sa: (r.sa)−2sa = r−2sa−1. sa
stands for the stochasticity absorption factor. Based on the previously presented
translation from the Process Hitting to the Stochastic π-Calculus, we supply a
simple method to achieve this stochasticity absorption factor which do not re-
quire to adapt simulation algorithms based on the memoryless property of the
exponential law [22].

Basically, to each channel γα, or internal action τα, a use rate rα and a
stochasticity absorption factor saα is attached. To each component α of the sum
defined by the π-Calculus process Ai in the expressions (2),(3), a counter cα is
attached, initially, cα = 1. This counter is given as a parameter for Ai. As long
as this counter is not equal to saα, Ai is restarted and the counter is incremented
by one. When the counter reaches the stochasticity absorption factor value, the
next process replaces Ai, having all its counters reset to 1. Let (Σ,L,H) be a
Process Hitting, for each process ai of PH, a π-Calculus process Ai is defined
as follows.

Ai(c̃) ::=
∑

α=ai → bj � bk∈H

a 6=b

!γα.Ai(c̃)

+
∑

α=bj → ai � ak∈H

a 6=b

[cα < saα]?γα.Ai(c̃[cα + 1]) + [cα = saα]?γα.Ak(1̃)

+
∑

α=ai → ai � ak∈H

[cα < saα]τα.Ai(c̃[cα + 1]) + [cα = saα]τα.Ak(1̃)

where ĉ = c1, . . . , cn with n = |{bj → ai � ak ∈ H}|. ĉ[cα + 1] = c1, . . . , cα +
1, . . . , cn. Ak(1̃) is an abbreviation for the recursive call to Ak with all parameters
set to 1. [cond]π.P stands for an action π enabled only when cond is satisfied.

6 Applications

6.1 Metazoan Segmentation

In this section, we illustrate our method and its benefits on a case study in
which our aim is to control the final state of the corresponding GRN. The GRN
we chose has been established in silico by François et al. [23] but in a differ-
ential equations framework. It aims at generalizing a common motif present in
biological segmentation networks such as the Drosophila.

The GRN (Figure 4(a)) is composed of three genes. A wavefront gene f
activates the gap-gene a whose products are responsible or stripes. Gene f also
activates a gene c whose products repress the gene a. The auto-inhibition of
c generalizes a chain of repressors on a. The apparition of stripes has to be
regular. We attach to each gene two processes representing their qualitative levels
(missing or present) — for instance c0 (absence) and c1 (presence) are processes

Refining Dynamics of Gene Regulatory Networks 13

for c. When f switches off, c goes to process c0 and a has two fates, ending either
at process a0 or a1. We are interested in controlling the final process for a.

The Process Hitting for generalised dynamics of the GRN (Section 2) is
computed first. Figure 4(b) shows its hypergraph. The specification of dynamics
implies two cooperative hits in the Process Hitting: first, c0 needs products
of f to bounce to process c1; second, expression of a only increases if both
f activates it (i.e. process f1 is present) and c does not inhibit it (i.e. c0 is
present). Consequently, we create a cooperative sort fc reflecting the state of f
and c (Section 3.1) and replace the independent hits from c0 and f1 to c0 and a0
by hits from fc10. The resulting Process Hitting is represented in Figure 5(a).

By looking at the Hitless Graph of the Process Hitting (Figure 5(b)), only
one stable state is present: f0c0fc00a0. The stability of the state f0c0fc00a1 is
controlled by the absence of inhibition by f0 on a1. By removing the action
f0 → a1 � a0 from the Process Hitting, we make the state f0c0fc00a1 stable. The
full set of corresponding René Thomas’ parameters for the genes a and c is
inferred by applying the method depicted in Section 4. We get:

Ka,∅,{a,c,f} = 0 Ka,{a,c},{f} = 1 Kc,∅,{c,f} = 0
Ka,{a},{c,f} = 0 Ka,{a,f},{c} = 0 Kc,{c},{f} = 0
Ka,{c},{a,f} = 0 Ka,{c,f},{a} = 1 Kc,{f},{c} = 0
Ka,{f},{a,c} = 0 Ka,{a,c,f},∅ = 1 Kc,{c,f},∅ = 1 .

We are interested in controlling the final process of sort a — either a0 or
a1 — when f goes down to f0. Looking at the Process Hitting hypergraph on
Figure 5(a) and considering f0 is present, we deduce that the more c1 is present,
the more a1 may be hit by c1 to bounce to a0; similarly, the more fc10 is present,
the more a0 may be hit by it to bounce to a1. We tune actions only triggered by
f0: we reduce the presence of c1 by increasing the rate of the action f0 → c1 � c0
and extend the presence of fc10 by reducing the rate of f0 → fc10 � fc00. This
leads to an increase of the probability for a to bounce to process a1.

Finally, to obtain regular stripes, we set a high stochasticity absorption factor
to actions responsible of the bounces of processes of sort c and a when f1 is
present. Figure 6 plots the evolution of the genes a,c and f during a simulation
under SPiM [24] of the Process Hitting illustrated by Figure 5(a) with initial
state f1c0fc10a0 and a fast rate for the action f0 → c1 � c0 compared to the rate
of c1 → a1 � a0. The rate values have been arbitrarily choosen and respect the
infered relations between them. Appendix B.1 details the Process Hitting used
for the simulation.

From the obtained simulation trace, we observe that f0 hits c1 before c1 had
time to hit a1: the final state is then f0c0fc00a1.

Thanks to the Process Hitting framework, it has been easy to build a qual-
itative model of the biological system by refining the generalised dynamics of
the GRN. Using a simple reasoning on the Process Hitting structure, relation
between regulation delays to favour a final state have been infered. These results
are coherent with those obtained using differential equations as done in [23].

14 L. Paulevé, M. Magnin and O. Roux

f

c a
c1

c0

a1

a0

f0

f1

(a) (b)

Fig. 4. The starting Gene Regulatory Network graph (a), arrow-ended edges represent
the positive regulations, and bar-ended edges the negative ones. All regulation thresh-
olds are 1. The Process Hitting (b) for its generalized dynamics. Cooperativity between
f1 and c0 on a0 and c0 will be applied in the same way as in example. 1.

c1

c0

f0

f1

a1

a0

fc11

fc10

fc01

fc00

c0

f0

a1

a0

fc11 fc10 fc01 fc00

(b)(a)

Fig. 5. The final Process Hitting (a) resulting from the refinement of the generalized
dynamics depicted on Fig. 4(b). Cooperativity between f1 and c0 on a0 and c0 has
been built in the same way as in example 1. Absence of hit from f0 to a1 (dashed lines)
controls the presence of the relation between f0 and a1 in the Hitless Graph (b). If such
a relation exists, two 4-cliques are presents: c0f0fc00a0 and c0f0fc00a1 (thick lines).

Refining Dynamics of Gene Regulatory Networks 15

0

1

0 5 10 15 20 25 30 35 40

0

1

0 5 10 15 20 25 30 35 40

0

1

0 5 10 15 20 25 30 35 40

Fig. 6. Simulation of the Process Hitting for segmentation: evolution of the expressions
of the gap-gene a (top), the autonomous clock c (middle) and the wavefront f .

6.2 ERBB Receptor-Regulated G1/S Transition

The aim of this section is to demonstrate the scalability of the refining approach
on Process Hittings modelling large GRNs.

The selected GRN relates regulations between 20 genes. This GRN models
the ERBB receptor-regulated G1/S transition involved in the breast cancer. It
has been extracted from published data by Sahin et al. [25] and is reproduced
in Figure 7. This network acts as an activation cascade for the gene pRB which
controls the G1/S transition involved in cell divisions. The gene EGF then acts
as an input of this cascade: when expressed, pRB will be potentially activated.
Based on the literature, Sahin et al. have also established a set of logical rules
controlling the activation of the various genes present in the network.

Starting from the GRN, its generalised dynamics expressed in Process Hitting
is first computed. Then, cooperations between the different sorts are built from
the logical rules. The Process Hitting obtained contains 670 actions and stands
for 264 (≈ 2.1019) states that has hopefully not be built. This model is fully
detailled in Appendix B.2.

The computation of all the stable states present in the dynamics is done
using the algorithm sketched by Section 3.2. It results in 5 stables states (also
detailled in the appendix) that are computed in less than one second.

It is worth noticing that no assumption is made on the initial state of the
system. All the stable states of the model are computed. This is a major differ-
ence with the approach presented in [25] where only dynamics starting from a
fixed state can be studied.

7 Conclusion

We introduced the Process Hitting framework for modelling qualitative dynamics
of GRNs with temporal and stochastic features. Temporal and stochastic param-

16 L. Paulevé, M. Magnin and O. Roux

EGF

ERBB2ERBB1 ERBB3

ERBB1 2 ERBB1 3 ERBB2 3 IGF1R

MEK1AKT1

ERalpha MYC

CycD1 p27 p21 CycE1

CDK6 CDK2CDK4

pRB

Fig. 7. ERBB receptor-regulated G1/S transition GRN reproduced from

Refining Dynamics of Gene Regulatory Networks 17

eters determine probabilities, durations and temporal variance of reactions in the
model. We exhibited a direct translation from Process Hitting to the Stochastic
π-Calculus. Detection of stable states and inference of René Thomas’ parame-
ters for dynamics derive from this framework. The methods we offered work by
successive refinements of generalised dynamics for GRNs, by specifying both the
cooperativity between genes and the expected stable states. We illustrated this
method by inferring temporal parameters for the dynamics of a GRN generaliz-
ing metazoan segmentation processes (with the aim of controlling its final state).
The scalability of the presented approach has been experimented on a Process
Hitting modelling a GRN composed of 20 genes and computing its stable states.

The Process Hitting brings a formal framework for progressively adding
knowledge of the dynamics of a GRN by refining an abstracted behaviour.
The compositionality of the framework and the presence of particular structure
patterns lead to scalable methods for dynamics analyses (stable states, René
Thomas’ parameters, etc.). Mainly, thanks to these Process Hitting patterns, it
becomes possible to perform a local analysis, which has the major advantage to
prevent us from exploring the full state and parameter space.

In future works, we aim at identifying more Process Hitting patterns leading
to the emergence of particular behaviours (e.g. oscillations) and especially hybrid
patterns coupling both discrete structure and continuous temporal and stochas-
tic parameters. The verification of Process Hittings could be performed by using
a translation into Petri Nets or into PRISM. Translating Process Hittings into
more sophisticated process aglebras (Beta Workbench, Bio-PEPA, etc.) may also
be of interest. Finally, techniques have to be developed to infer automatically
temporal and stochastic parameters of Process Hittings modelling GRNs.

Supplementary Material

The Process Hitting compiler to SPiM, a stable states computer and presented
models are available at the following URL:
http://www.irccyn.ec-nantes.fr/~pauleve/processhitting-refining.tar.

gz .

References

1. Richard, A., Comet, J.P., Bernot, G.: Formal Methods for Modeling Biological
Regulatory Networks. In: Modern Formal Methods and Applications. (2006) 83–
122

2. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling
of Cellular Signalling. In: CONCUR 2007 Concurrency Theory. (2007) 17–41

3. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Inf. Process. Lett. 80(1) (2001) 25–31

4. Kuttler, C., Niehren, J.: Gene regulation in the pi calculus: Simulating cooper-
ativity at the lambda switch. Transactions on Computational Systems Biology
4230(VII) (2006) 24–55

18 L. Paulevé, M. Magnin and O. Roux

5. Blossey, R., Cardelli, L., Phillips, A.: A compositional approach to the stochastic
dynamics of gene networks. Transactions in Computational Systems Biology 3939

(Jan 2006) 99–122
6. Popova-Zeugmann, L., Heiner, M., Koch, I.: Time petri nets for modelling and

analysis of biochemical networks. Fundamenta Informaticae 67(1) (2005) 149–162
7. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic

Biology. In: Formal Methods for Computational Systems Biology. (2008) 215–264
8. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction

of temporal logic formulae with applications to systems biology. In Heiner, M.,
Uhrmacher, A., eds.: Computational Methods in Systems Biology. Volume 5307 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2008) 251–268

9. Siebert, H., Bockmayr, A.: Incorporating time delays into the logical analysis of
gene regulatory networks. In Priami, C., ed.: Computational Methods in Systems
Biology. Volume 4210 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg (2006) 169–183

10. Alur, R., Belta, C., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.:
Modeling and analyzing biomolecular networks. Computing in Science and Engi-
neering 4(1) (2002) 20–31

11. Ahmad, J., Bernot, G., Comet, J.P., Lime, D., Roux, O.: Hybrid modelling and
dynamical analysis of gene regulatory networks with delays. Complexus 3(4) (2006)
231–251

12. Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the
stochastic pi-calculus. In: Computational Methods in Systems Biology. Volume
4695 of LNCS., Springer (2007)

13. Dematte, L., Priami, C., Romanel, A.: The Beta Workbench: a computational tool
to study the dynamics of biological systems. Brief Bioinform (2008) bbn023

14. Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and analysis
of biological systems. Theoretical Computer Science 410(33-34) (2009) 3065 –
3084

15. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: 12th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Volume 3920
of LNCS., Springer (2006)

16. Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model checking probabilistic
and stochastic extensions of the π-calculus. IEEE Trans. on Software Engineering
35(2) (2009) 209–223

17. Bernot, G., Cassez, F., Comet, J.P., Delaplace, F., Müller, C., Roux, O.: Seman-
tics of biological regulatory networks. Electronic Notes in Theoretical Computer
Science 180(3) (2007) 3 – 14

18. Milner, R.: A calculus of mobile processes, parts. I and II. Information and
Computation 100 (1992) 1–77

19. Bernot, G., Comet, J.P., Khalis, Z.: Gene regulatory networks with multiplexes. In:
European Simulation and Modelling Conference Proceedings. (Oct 2008) 423–432

20. Priami, C.: Stochastic π-Calculus. The Computer Journal 38(7) (1995) 578–589
21. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The

Journal of Physical Chemistry 81(25) (1977) 2340–2361
22. Priami, C.: Stochastic π-calculus with general distributions. In: Proc. of the 4th

Workshop on Process Algebras and Performance Modelling, CLUT. (1996) 41–57
23. François, P., Hakim, V., Siggia, E.D.: Deriving structure from evolution: metazoan

segmentation. Mol Syst Biol 3 (2007)

Refining Dynamics of Gene Regulatory Networks 19

24. Phillips, A.: SPiM - Stochastic Pi Machine. (SPiM) http://research.microsoft.
com/en-us/projects/spim.

25. Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., Mattern,
J., Schupp, I., Chaouiya, C., Thieffry, D., Poustka, A., Wiemann, S., Beissbarth,
T., Arlt, D.: Modeling ERBB receptor-regulated G1/S transition to find novel
targets for de novo trastuzumab resistance. BMC Systems Biology 3(1) (2009)

A Process Hitting Related Tools

This appendix briefly presents currently available implementations of tools ma-
nipulating Process Hittings. They are available at the following URL:
http://www.irccyn.ec-nantes.fr/~pauleve/processhitting-refining.tar.

gz .

Implemented in the OCAML language, these tools have a command-line user
interline.

A.1 Process Hitting Specification

A basic language has been setup to specify Process Hitting using a text file. Main
features are presented here, more details can be found in the provided archive.
Full examples of Process Hitting specifications are given in Appendix B.

Sort definition A sort is declared by giving the process with the highest rank
(i.e. ala for the sort a, with the notations used in Section 2).

process a X

Action specification An action ai → bj � bk is added by the following instruction:

a i -> b j k @ rate ~ absorption

Generalised dynamics of GRNs The GRN macro computes the generalised dy-
namics of the specified GRN according to Section 2.5. An activating (resp. in-

hibiting) edge a
X
−→ b from gene a to gene b active with a threshold X is noted

as a X -> + b (resp. a X -> - b).

Hereafter is an instance of the use of the GRN macro for the GRN having

activating edges a
1
−→ b and a

2
−→ a, and inhibiting edge b

1
−→ b.

GRN([a 1 -> + b; b 1 -> - a; a 2 -> + a])

Refinement: cooperations The COOPERATIVITY([a1;...;an] -> b j k, [s1;...;sp])

macro creates a cooperative sort σ = {a1, . . . , an} for the bounce bj � bk. This
cooperation is effective for every state s1, . . . , sp.

The following instruction creates a cooperativity between sorts a and b to
bounce process c0 to c1 only if a1b0 or a0b1 are present.

COOPERATIVITY([a;b] -> c 0 1, [[1;0];[0;1]])

20 L. Paulevé, M. Magnin and O. Roux

Refinement: action removing An action ai → bj � bk can be deleted by using the
macro RM:

RM({a i -> b j k})

A.2 Compiler to SPiM

This tool translates a Process Hitting specification into a SPiM model according
to Section 5.2.

phc -spim <model.ph> <output.spi>

A.3 Stable States Listing

The stable states of a Process Hitting are determined used an implementation
of the algorithm sketched in Section 3.2. This algorithm computes the n-cliques
of the hitless graph for the given Process Hitting, where n is the number of
sorts. The efficiency of this computation heavily relies on the order of sorts
when building cliques. Currently, basic heuristics are used to select the order of
the sorts. More sophisticated analyses may conduct to dramatically improve the
efficiency of this algorithm.

This tool is compiled into the executable ph-stable-states and takes as
argument the filename of the Process Hitting specification :

ph-stable-states <model.ph>

B Process Hitting Examples

This appendix details the Process Hittings used in Section 6. They are specified
in the language presented in the previous appendix.

B.1 Metazoan Segmentation

The following Process Hitting models the metazoan segmentation presented
in Section. 6.1. Actions are specified separately and rates have been assigned
to values matching the relations infered in the application case study. The
directive sample and initial state instructions are of use for SPiM only. A result of
the execution of this Process Hitting translated into SPiM is given by Figure 6.

directive sample 40.

process a 1 process c 1 process f 1
process fc 3 (* cooperative sort {f,c} *)
c 1 -> fc 0 1 @5.
c 1 -> fc 2 3 @5.
c 0 -> fc 1 0 @10.
c 0 -> fc 3 2 @5.
f 1 -> fc 0 2 @10.
f 1 -> fc 1 3 @10.
f 0 -> fc 2 0 @0.1
f 0 -> fc 3 1 @0.1

Refining Dynamics of Gene Regulatory Networks 21

(* actions on c *)
fc 2 -> c 0 1 @0 .5~50 (* only if (f1 ,c0) *)
c 1 -> c 1 0 @0 .5~50
(* actions on a *)
fc 2 -> a 0 1 @1.~50 (* only if (f1 ,c0) *)
c 1 -> a 1 0 @1.~50
(* actions on f *)
f 1 -> f 1 0 @0 .034~100 (* auto -off *)
f 0 -> c 1 0 @0.1

init ial state f 1, c 0, a 0

B.2 ERBB Receptor-Regulated G1/S Transition

The following Process Hitting results from the case study presented in Sec-
tion 6.2. It starts by specifying the GRN depicted by Figure 7 to compute its
generalised dynamics. The logical rules setup by Sahin et al. [25] are then applied
by using sorts cooperativity.

This Process Hitting contains 670 actions and 264 (≈ 2.1019) states. Only
5 stable states exist and are determined in less than a second using the tool
presented in the previous appendix.

Below is the list of stable states present in the Process Hitting. For each
stable state, only genes at level 1 are written.

– AKT1, CDK2, CDK4, CDK6, CycD1, CycE1, EGF, ERBB1, ERBB1 2, ERBB1 3, ERBB2,

ERBB2 3, ERBB3, ERalpha, MEK1, MYC, pRB.

– AKT1, CDK2, CDK4, CDK6, CycD1, CycE1, ERalpha, IGF1R, MEK1, MYC, pRB.

– AKT1, CDK2, CycE1, EGF, ERBB1, ERBB1 2, ERBB1 3, ERBB2, ERBB2 3, ERBB3, ERal-

pha, MEK1, MYC.

– AKT1, CDK2, CycE1, ERalpha, IGF1R, MEK1, MYC.

– ∅ (all genes have level 0).

process AKT1 1
process CDK2 1 process CDK4 1 process CDK6 1
process CycD1 1 process CycE1 1
process EGF 1 process ERalpha 1
process ERBB1 1 process ERBB1_2 1 process ERBB1_3 1
process ERBB2 1 process ERBB2_3 1 process ERBB3 1
process IGF1R 1 process MEK1 1 process MYC 1
process p21 1 process p27 1
process pRB 1

GRN([
ERBB2_3 1 -> + AKT1; ERBB2_3 1 -> + MEK1; ERBB2_3 1 -> - IGF1R;
ERBB2 1 -> + ERBB2_3; ERBB2 1 -> + ERBB1_2; ERBB3 1 -> + ERBB2_3;
ERBB3 1 -> + ERBB1_3;
CycE1 1 -> + CDK2;
MEK1 1 -> + CycD1; MEK1 1 -> + ERalpha; MEK1 1 -> + MYC;
CDK4 1 -> + pRB; CDK4 1 -> - p21; CDK4 1 -> - p27;
ERalpha 1 -> + CycD1; ERalpha 1 -> + IGF1R; ERalpha 1 -> + p21;
ERalpha 1 -> + MYC; ERalpha 1 -> + p27;
MYC 1 -> + CycE1; MYC 1 -> - p21; MYC 1 -> + CycD1; MYC 1 -> - p27;
CDK6 1 -> + pRB;
ERBB1 1 -> + ERBB1_2; ERBB1 1 -> + ERBB1_3; ERBB1 1 -> + AKT1;
ERBB1 1 -> + MEK1;
IGF1R 1 -> + AKT1; IGF1R 1 -> + MEK1;

22 L. Paulevé, M. Magnin and O. Roux

ERBB1_3 1 -> + AKT1; ERBB1_3 1 -> + MEK1;
p27 1 -> - CDK2; p27 1 -> - CDK4;
CDK2 1 -> - p27; CDK2 1 -> + pRB;
p21 1 -> - CDK2; p21 1 -> - CDK4;
CycD1 1 -> + CDK4; CycD1 1 -> + CDK6;
EGF 1 -> + ERBB1; EGF 1 -> + ERBB2; EGF 1 -> + ERBB3;
AKT1 1 -> + CycD1; AKT1 1 -> + MYC; AKT1 1 -> - p27; AKT1 1 -> + ERalpha;
AKT1 1 -> + IGF1R; AKT1 1 -> - p21;
ERBB1_2 1 -> + AKT1; ERBB1_2 1 -> + MEK1;

])

COOPERATIVITY([ERBB1;ERBB2] -> ERBB1_2 0 1, [[1;1]])
COOPERATIVITY([ERBB1;ERBB3] -> ERBB1_3 0 1, [[1;1]])
COOPERATIVITY([ERBB2;ERBB3] -> ERBB2_3 0 1, [[1;1]])

COOPERATIVITY([ERBB2_3;AKT1] -> IGF1R 0 1, [[0;1]])
COOPERATIVITY([ERBB2_3;ERalpha] -> IGF1R 0 1, [[0;1]])
COOPERATIVITY([AKT1;ERalpha] -> IGF1R 1 0, [[0;0]])

COOPERATIVITY([AKT1;MEK1] -> ERalpha 1 0, [[0;0]])
COOPERATIVITY([AKT1;MEK1;ERalpha] -> MYC 1 0, [[0;0;0]])
COOPERATIVITY([ERBB1;ERBB1_2;ERBB1_3;ERBB2_3;IGF1R] -> AKT1 1 0,

[[0;0;0;0;0]])
COOPERATIVITY([ERBB1;ERBB1_2;ERBB1_3;ERBB2_3;IGF1R] -> MEK1 1 0,

[[0;0;0;0;0]])
COOPERATIVITY([CycE1;p21;p27] -> CDK2 0 1, [[1;0;0]])
COOPERATIVITY([CycD1;p21;p27] -> CDK4 0 1, [[1;0;0]])
COOPERATIVITY([ERalpha;MYC;AKT1;MEK1] -> CycD1 0 1, [[1;1;1;0];[1;1;0;1]])
COOPERATIVITY([AKT1;MEK1] -> CycD1 1 0, [[0;0]])
COOPERATIVITY([ERalpha;AKT1;MYC;CDK4] -> p21 0 1, [[1;0;0;0]])
COOPERATIVITY([ERalpha;CDK4;CDK2;AKT1;MYC] -> p27 0 1, [[1;0;0;0;0]])
COOPERATIVITY([CDK2;CDK4;CDK6] -> pRB 0 1, [[0;1;1];[1;1;1]])
RM({CDK2 0 -> pRB 1 0})
RM({EGF 1 -> EGF 1 0}) (* prevent self -degradation (input) *)

