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LOCAL AND GLOBAL CARLEMAN ESTIMATES FOR PARABOLIC OPERATOR S WITH
COEFFICIENTS WITH JUMPS AT INTERFACES

JEROME LE ROUSSEAU AND LUC ROBBIANO

AsstracT. In (0,T) x Q, Q open subset dk", n > 2, we consider a parabolic opera®r= d; — Vx(t, X)Vx,
where the (scalar) céigcients(t, x) is piecewise smooth in space yet discontinuous across athrimerfaces.

We prove a global in time, local in space Carleman estimaté’fm the neighborhood of any point of the
interface. The “observation” region can be chosen indepethyd of the sign of the jump of the ciient 6

at the considered point. The derivation of this estimateesebn the separation of the problem into three
microlocal regions related to high and low tangential fienies at the interface. In the high-frequency regime
we use Calderon projectors. In the low-frequency regiméallew a more classical approach. Because of the
parabolic nature of the problem we need to introduce Weylrtinder anisotropic metrics, symbol classes and
pseudo-dierential operators. Each frequency regime and the assddiathnique require aftérent calculus.

A global in time and space Carleman estimate off {& M, M a manifold, is also derived from the local result.

Keyworps: Parabolic equation; Non-smooth ¢beient; Transmission problem; Carleman estimate; Micraloc
analysis; Calderon projectors.
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1. INTRODUCTION AND NOTATION

LetQ be a bounded regular connected open subskf.ofet T > 0. We consider the parabolic operator
P = dc + Awith A = —V,(6Vy) on (O T) x Q. The dtfusion codicients depends on both time and space
and satisfies

(1.2) 0 < Gmin < (t, X) < Omax < 00,

which ensures uniform ellipticity, and is smooth in time amdooth in space apart from across a smooth
interfaceS, where it may jump. More precisely, we I8tbe a smooth hypersurfacednthat does not cross
the boundaryQ and such tha®© \ S is composed of two connected componeldisandQ,. We assume
thatslomyxe, € ([0, T] x ;). Note thaws is bounded.

The Carleman estimate we first aim to prove is of the form

h||n%eﬂw/hw||§ + h3||n%ew/hvxv\4|§ < CHYlper/Mf12, Pw= fin(0,T)x(Q\S), h>0,

for handh’ = h/T suficiently small, wherw is smooth on both sides & and suppf) c (0, T) x V,
with V a small neighborhood of a point &, and with boundary conditions at the interface that concern
the continuity ofw and that of the associated normal flé,w. This estimate is thus global in time and
local in space. We shall refer to this type of estimate as tocallCarleman estimate. Here, following
Fursikov-Imanuvilov [FI96], the weight function we coneids chosen singular at tinte= 0 andt = T,
and of the formm(t)¢(X)/h, wherep(x) is negative and satisfies a sub-ellipticity condition, (i)l = ﬁ
Attimest — O* andt — T, the exponential of the weight functiog’®*®/" thus vanishes at all orders.

Carleman estimates for parabolic operators with smootffica@nts were provenin [FI96]. The proofis
based on the construction of a suitable smooth weight fongti The case of piecewise regular gogents
was treated in part in [DOP02]. There non-smooth weightfions are introduced. They are in particular
assumed to satisfy theame transmission conditioas the solution of the parabolic problem. However, a
Carleman estimate is only achieved if a monotonicity caadits imposed on the ffusion codicients.
This condition states that the region of “observation”, where the weight functiog(x) is the largest, has
to coincide with the side of the interface where the trélgas the lowest. The condition thus concerns the
sign of the jump ob at the interface.

In one dimension in space, the monotonicity condition wéesxesl in [BDLO7]. This in particular led to
the possible treatment of cieients with bounded variations in [Le 07]. In higher dimemsi the condition
was relaxed in [Bel03, LR10] in the case of altiptic operator.

Here, we prove that the monotonicity assumption can beedlaxany dimension > 2 for theparabolic
problem: a Carleman estimate is achieved with an arbitiigry af the jump of the dtusion codicients
at the interface. The proof originates from the work of the &uthors on the elliptic case in [LR10]. In
particular, with microlocal cut4ds, high frequencies and low frequencies (with respect taahgential
directions at the interface) are separated. Low frequerasie treated as is usually done for the derivation
of Carleman estimates: the operator is conjugated with xperential of the weight functiore?®#(/h,
and separated into self- and anti-adjoint contributidrfsgstimates, integration by parts and a positivity
argument (e.g. Garding inequality) yield the Carlemamesti. High frequencies are not treated this way.
Integrations by parts yield trace terms at the interfatkat cannot beféiciently estimated. We rely on the
method of Calderdn projectors since the conjugated péicadqzerator is elliptic for these high frequencies;
we obtain a Carleman estimate through a pseufteréintial parametrix of the parabolic operator, which
does not require integration by parts. We thus circumventabhnical dficulty encountered by the authors
of [DOP02]. We also note that the trace terms that prevetedérivation of the Carleman estimate with
the classical method can now be estimaiqubsteriori

As mentioned above, the first result we achieve is a locap@es) Carleman estimate at the interface. In
the case of a compact (Riemannian) manifold, with possihiitipie interfaces, this local estimate can be
stitched together with more classical estimates, away ff@interfaces, in the interior or at the boundary.
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This requires the construction of a global weight functidime estimate we then obtain is global in time
and in space. Here, we shall refer to such an estimate as tbalglarleman estimate. In this case, the
weight function we construct isontinuous and not smooth in general is in fact smooth away from a
small neighborhood of the interfaces.

The method we expose relies heavily on the use several pséfidcential calculi of the Weyl-Hormander
type [Hor85a, Sections 18.4-18.6]. Since we face paralbpierators here, such refined calculi are needed
to compare the action of the time derivative and the secaddrespace derivatives. For such pseudo-
differential calculi, adapted Sobolev spaces were introducfi394]. Here, we use such Sobolev spaces;
the semi-classical setting we follow allows us however tmiduce such spaces without relying on the more
intricate analysis of [BC94]These calculi allow us to perform a microlocal analysis eftbnjugated par-
abolic operator with a characterisation of the behaviohefroots of the principal symbol. This behavior
is central in the separation into high and low frequencymegs that we described above.

Carleman estimates have many applications ranging fromuthastification of unique continuation prob-
lems (see e.g. [HOr63, Chapter 8], [HOr85b, Chapter 28]ig3]), inverse problems (see e.g. [BK81, 1sa98,
II'Y03, KSUOQ7]), to control theory. In control theory, glob@arleman estimates for parabolic operators
yield the null controllability of classes of semi-linearrpbolic equations [FI196, Bar00, FCZ00]. This last
application was the motivation for the proof of a global @arhn estimate in [DOPO02] in the case of a
non smooth diusion codicient. With the global estimate we derive here, the corahility result of
semi-linear parabolic equations of [DOP02] is generalizethe case of arbitrary signs for the jump of
the difusion codicient at interfaces. The geometry we treat is also more géf@anifolds, multiple
interfaces).

There remain some open problems connected to the subjedsdrticle, including the cases of inter-
faces that meet the bounda®, non smooth interfaces, such as interfaces with corneyssirg interfaces.
All these situations forbid the use of the microlocal tecfugis we present here. Here, we have considered a
diffusion codicient. The case of a fiusion matrixs(t, X) = (6ij(t, X)) s is also of relevance. A Carleman

estimate can be achieved in the case of a smodthsiton matrix for which the operatét, - §(t, X)Vy is
uniformly elliptic. In the presence of jumps of the matéift, x) at an interface the derivation of such an
estimate is open.

1.1. Outline. Our main goal is to prove a local Carleman estimate at thefade. In Section 2, we place
ourselves in the vicinity of a point of the interface and méke proper change of variables in space and
time to prepare for the proof. In particular we use geodesional coordinates, which allow us to isolate
the normal coordinate in the second-order elliptic operatahange of variable in time allows us to work
in R instead of in the bounded interval,(0). We present the assumptions that are made on the weight
functiony and we state the local Carleman estimate, first in the locaidinates (Theorem 2.4) and also in
the original space-time coordinates (see Theorem 2.8).

In Section 3.1 we introduce the two main pseudfiedential calculi that we shall use and prove some
basic facts for the associated classes of operators andesadjaces. In Section 3.2 we formulate our
transmission problem at the interface as a system of coyydeabolic equations and we conjugate this
system with the exponential of the weight function. A largetpf the analysis that follows relies on
the properties of the (complex) roots of the polynomial spialof the conjugated system. This analysis is
carried out in Section 3.3. We exhibit the symbol-like bebawf these roots and show that the assumptions
we have made on the weight function yield a precise zerosargscheme for the imaginary parts of these
roots. In Section 3.4, we state and prove a Carleman estiaateéboundary. This estimate assumes no
boundary conditions and is thus characterized by tracestatrthe boundary and we make use of it in the
following sections. As a direct consequence, we also writeal Carleman estimate in the neighborhood
of a boundary in the case of Dirichlet boundary conditions.

In Section 4, we split the problem into microlocal problemdtiree regions&,ﬁ"*, é"g”, and a small
neighborhood ofﬁ”,;’. These are phase-space regions that are identified in 8&c80o In each region we
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obtain a partial Carleman estimate. d“ﬁ’*, which essentially corresponds to tangential high fregiesn
the conjugated operator is elliptic and we use the methodatdeZon projectors. There, only one of the
two pseudo-dterential calculi is used. Iﬁr‘,’”, which essentially corresponds to tangential low freqiesc
the classical Carleman method is used: we apply the bourtgpeyestimate of Section 3.4 on both side
of the interface. In this region the second pseudtedintial calculus is used. The last region, a small
neighborhood o@”pd, is an intermediate region in which both methods are usethisrregion we need to
make the two calculi “communicate”. In Section 4.4, the éhpartial estimates are stitched together and
we prove the local Carleman estimate at the interface of idme@.4.

In Section 5 we explain how local estimates, at the boundsre interface and in the interior of the
domain, can be patched together to form a global estimatst dM@Gection 5 is devoted to the construction
of the phase function that permits such a patching.

To ease the reading of the article, we have gathered manyguwbmtermediate results in Appendix A.

1.2. Notation. We shall use of the notatia@) := (1 + |§|2)% for £ e R". Forn e N, We set
R =% X <0}, R ={xX <0, Rl={xX % >0, K,={X % >0},
For a neighborhooW of a point of{x, = 0} we set
VI=VNR", Vi=VNR]
For a compact sef of V we setk9 = {x € K, x, < 0} andK? = {x € K, x, > 0}. We then denote by
%€= (K9) (resp.£°(KY)) the space of functions that a&° in R (resp.R.) with support inK? (resp.K¢).
We shall denote by”(RP) the usual Schwartz space of smooth functions that decrapg#ly ateo in
RP. If sdenotes a variable iR, we furthermore define the following half-space Schwartzrsp
FSRXRY) = {f e ¥°®RxR.); VkeN,a € N™, |sup_ , = (s X)*0%, f(s X)| < co).
For functionsu, v defined inR™* (resp.R x R"), we define thé-? norm
Iuli? = Jf lu?dsdx (respllul® = ff uf*dsdy,
RxR}

RN+L
originating from the inner products
(u,v)= [fuvdsdx (resp(,v)= f[ uvdsdj.
R+ RxRY

In the case of a function definediox R", we shall sometimes writi|, 2z g0y to make clear on which set
theL? norm is computed.
For functionu, v defined inR x R, for which a restriction oifix, = 0%} is properly defined, we set

2 2 v
|u|xn:0* |0 = ff |u|xn:0+ | dsd X, (U|xn:0+ > V|xn:0+ )0 = ff U|xn:0+ V|xn:0+ dsd )(,
{X.=0} {X2=0}

wherex = (X, x,) € R". In addition we introduce the following notation for thé norms on (0T) x V and
(0,T)xS

T T
llull? = ({\{lu(t, X2 dtdx |uls|? =({Sf|u|3+(t, x)| dt dX.
We shall denote by, .} the Poisson bracket, and shall often use partial Poissakdis namely,
n
{f,g}s = (0-1)dsg — (9sT)0-0, {f,g}x = Zl(aéj f)6ng - (axi f)aéjg-
J:

We shall use both} = Vye.

In this article, when the consta@tis used, it refers to a constant that is independent of thé skassical
parameteh. Its value may however change from one line to another. If watio keep track of the value
of a constant we shall use another letter.
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1.3. Semi-classical operators.We now introduce (resp. tangential) semi-classical psalifferential op-
erators ¢DOs) and start by briefly recalling the notation and basicnitédns for the Weyl-Hormander
calculus ofyDOs [H0r85a, Sections 18.4-18.6]. We denotehtihe semi-classical parameters, which is
assumed to be small, shye (0, hg]. For ac-tempered metricg onW = R™! x R™! and ac, g-tempered
order functionu = u(z ¢) onW, we set

d,az £, 0 (ya, - (ko
aeon= sup elEENOLLD, BN

Widi)eW T4 9o (i £1)?
We then denote b$(u, g), the space of smooth functioaz, 7, h), (z ¢) € W, defined forh € (0, h] for
somehg > 0, that satisfy the following property:
la)(z ¢, h)
wz )
If we denote byg” the dual metric, we then set

ke(z0)* = SUP 9oy (¥s 1)/ (Y- m)-
(ymeW

Yk e N, <Ck<oo, (2 eW he(0,hg.

We assumég < 1. For all sequences(z ¢, h) € S(k);,u, 0), j € N, there exists a symbalz ¢, h) € S(u, g)
such thata(z ,h) ~ 3 hlaj(z £, h), in the sense that(z £, h) — 3.y hiaj(z £, h) € hNS(kyw. g) (see for
instance [Mar02, Proposition 2.3.2] or [H0r85a, Propositl8.1.3]), withag as principal symbol.

We now define semi-classicaDOs operators adapted to the parabolic problem we conséter We
seth’ = h/T and assumb’ € (0, hg]. With W = R™ x R™ z= (5 X), ¢ = (1, &), wheres, T € R, X, & € R",
we set¥(u, g) as the space @fDOsA = Op(a), for a € S(u, g), m € R, formally defined by

Au(s x) = (2r) ™ th- (D ()L ffff T OMHCY.D/NG(5 x 7, £, h) u(t,y) dtdy drdg,  ue .7’ (R™Y).

We shall denote the principal symbay by o-(A). We shall use techniques ¢DO calculus in this article,
such as construction of parametrices, composition forpfatanula for the symbol of the adjoint opera-
tor, etc. We refer the reader to [Tay81, Hor85a, Mar02]. dhkerent metrics we shall use are listed in
Section 3.1 below. With the quantization we have introdugedave

A2 =6 =1 oMo

ho)
We setDy, = —* andDs = 2%,

i
We also define tangential symbols and tangential operafews.ao-tempered metricsgr on Wy =
R™! x R" and ac, gr--tempered order functiom- = us(z ') onWi- (z€ R™! and?” € R"), we set

|dk /a(29 g,» hv (y]-’ é,/)» cees (yk» g,))l
af ¢ )= sup IR
V54 W [11 9o (yi- 7)?

We then denote b8+ (ur, g7), the space of smooth functioa&, , h), (z, ¢’) € Wy, defined forh € (0, hg]
for somehg > 0, that satisfy the following property:

laly (z £, h)
ur(z)
If we denote byg7 the dual metric, we then sk{+(z )? = SURy.new, 97@2) (Ys n’)/gg(z (,)(y, n’). We as-

sumekys < 1, which as above allows to define asymptotic seylas; hia;, if aj(z ¢, h) € ST(ké,,r U7, 97),
with ag as principal symbol.

vk e N, <Ci<oo, (2¢)eWyr, he (0 h.

IHere, the dual metric and the temperance only refer to the tangential variable((r, ¢’) even though a dependency R
exists.
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The tangentiayDOs we shall consider are defined in the case(s, X', x,) € R™! and/” = (r, &), with
sTeR, X,& € R andx, € R. We define¥+(u, g) as the space of tangentiaDOs’ A = op(a), for
a € Sy(ur, gr), formally defined by

Au(s X) = (27) Th ()7L [fff S VT MHAX =Y D ha(g x 7, & h) u(t, Y, x,) dtdy dr de’,

for u e .7/(R™?) andx = (X, x,). They are in particular continuous oA (R x R7) or .7 (R™1). If we let
them act on a function that does not depend og, they can be considered as regul@Os if we only
consider the restriction AAuonx, = 0.

We shall also denote the principal symlaglby o-(A). In the case where the symbol is polynomiatin
andh, we shall denote the space of associated tangetffatentialoperators byZ:(us, 9r).

The composition formula for tangential symba@ss S+ (ur, g:), b € S+(o7, 9-), is given by

(1.2) (a#rb)(sx7.¢.h)

-N(ny-1 ) ) )
= %ﬂff g ito/(hh)=i<y .y )/ha(s, X 1+0,& +17,Nb(S+t,X +Y, X7, &, h) dt do dy dny’
—j)lel
= 5 iy 0 g arab)(s x )
la]<M ! ¢

+| |:Zr\:/|+1 hlol=n(hya-1 (?2)7:;:1 ({l M+ 1()1(!1_ )" [fff e/ am=icy a/h

X (0707 a) (s X, 7+ 0, & + 1, h) (0507 b)(s+ vt X' + Y, X, 7.€", h) dt do- dy diy’ dv,

with @ = (@1, a2), @1 € N, a € N1, and yields a tangential symbol 8y-(urp7, 9;).

2. LocaL SETTING, WEIGHT FUNCTION AND STATEMENT OF THE MAIN RESULT

2.1. Local change of variables.In a neighborhood of a poinyy of S, we denote by, the variable that

is normal to the interfac& and byx’ the remaining spacial variables, i.&.= (X, ). The interface is
now given byS = {X; X, = 0}. In particularyo = (y;, 0). The transmission conditions at the interface we
consider are

(TC) vt, X, Wlx,=0- = Wlx,—0+ + 6, (56on)|xn:O‘ = (56on)|xn:O+ + 0,

i.e., the continuity ofw at the interface as well as the continuity of the normal fluodolo some error
termsé and®. It should be noted that, even for a smooth functigrwe may not havéw in L? in the
neighborhood ofy, for a function satisfying these transmission conditioh8,and® do not vanish. It will
however be irL.2 on both sides of the interface.

In a suficiently small neighborhood c R" of yp, we place ourselves in normal geodesic coordinates.
For convenience, we shall take the neighborhwodf the formVy, x (-, &) whereVy, is a suficiently
small neighborhood of;,. In such coordinate system, thencipal partof the elliptic diferential operator
A = —V,(6Vy) can take the form

(2.2) Az = =0y 6(t, X)dx, — (1, X)r(X, dx),
on both sides of the interface witkix, £) a homogeneous second-order polynomiafithat satisfies
(2.2) r(x&)eR, and CilEP <r(x¢&)<Cilé'l’, xeVy x(-¢&8), & e R™,

for some 0O< C; < C, < . Note that the transmission conditions (TC) remain unckdng this change
of variables.

20Observe that the notation we adopt in the tangential casés djfferent from that used above, Op, to avoid confusion in the main
text.
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To work onR for the time variable, instead of the finite interva) {0, we make the following change of
variable
nt 71)

(2.3) S(t) = tan(? -3)-

We note that); = @65, with a(s) = 7(s)? with (s) = (1 + 52)%. The parabolic operator we consider
become® = Lg, + AonR x Q. The function(t) = T2(t(T - t))~* changes into

(T -1/ -1
(2.4) n(s) =n (5 + arctang)) (E — arctang)) .
In particular we have
(2.5) C(s) <n(s) <C(s), seR, and C(s* < p®¥(g) <C(s9¥*, keN.

We setc(s(t), X) = d(t, X). We however keep the notatiofs , § and® in an abusive way. Note that
Clasys (S X) € (R x V), and

O < (Smin < C(S, X) < 5max,

and that the time and space derivativeg @fre bounded (on both sides of the interface). In particukar w
haveldsc| < CT(s)~2. The transmission conditions become

(TCS) Vs, X, Wlx,—0- = Wlx,=0+ + 0, (Cﬁon)|xn:O‘ = (Cﬁon)|xn:O+ + 0.

This change of variable will allow us to use positivity argemts such as the Garding inequality in all
tangential directions, including when in the neighborhood of the interface. At one point wedlshove
back to time variabléto take advantage of the compactness oT[[see Assumption 2.2 and the proof of
Lemma 3.27 below).

The Carleman estimate we shall first obtain will be statethén(s, x) variables and we shall move back
to the original coordinates,(x) afterwards.

2.2. Assumptions on the weight function and main result.We introduce the following parabolic op-
eratorP, = @85 + Ay = @85 — dx,C(S, X)0x, — (S, X)r(x, dx) on both sides of the interface, i.e., only
considering the principal part for the action of the operatdhe spacial directions.

We let ¢ be a (weight) function in the spatial varialste In the Carleman estimate we shall prove,
we shall “observe” the solution of the parabolic equatiym = f on the sidex, > 0 and thus choose
Oy, (X0, X', Xn = 0F) > 0. We set

@6) s (e 1) 100k < Sl B = (s (€ + )
(2.7) 81 = o + T E g, B = 20(8 X)(Endg + A1)

" 20(s %)
wherer(x, &, ") is the symmetric bilinear form ig’, ¢’ associated with the real quadratic forn{g, &').
Here,h’ = h/T. The connection between the symbajs &; and the operatoP will be made clear in
Section 3.3.

Let0< y < 1 be such that
(2.8) (X, =X, &) =y (X %, &) > CIE'P, X € Vy, X €[0,8), & e R™™.
Note thaty can be chosen as close to 1 as needed by taking the neighlddftsaficiently small.We shall
make the following assumptions on the weight function
Assumption 2.1. The weight functiop(x) € €(V) satisfiesplz» € %>(V%) and

p<-C<0, |¢;|Rg|>C>O, Ox, > 0, inV_%,
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Furthermore, we have
Y (Ox,flx=0) = (Ox,#l=0)* 2 C >0, 0<y <y, (COxP)lxm0r — (D @)lx,=0- 2 C >0,
and
6xn90|x:0- = min(axn90|xn:0+’axn90|x:0-) >L |ax’90|xn:0|»
with L syficiently large.
The value ofL will be determined below in Section 3.3 (see the proof of Beijon 3.24). This last

assumption means that the weight functinis chosen sfliciently flat in the tangent direction.
Observe thatzlh-o(s(t), X, 7, &) anday (s(t), x, 7, £) are well defined fot =0 andt = T.

Assumption 2.2. The weight functiog(x) satisfies

(2.9) Y(t,x 17,8 €0, T x VIxRxR", (resp.[0,T] x VI x R x R"),
Aolh=o(S(t), X, 7,¢) = 0 and &i(s(t), x, 7,£) =0 = {&2lh-0, Aa}x(S(), X, 7€) > O,
which is the so-called sub-ellipticity conditigHor63].

Functions that satisfy Assumptions 2.1 are quite simpleotwstruct. Functions that satisfy both As-
sumptions 2.1 and 2.2 can be obtained by the following lemimatwproof can be found in Appendix A.

Lemma 2.3. Lety/(x) be a function that fulfills Assumptions 2.1. Ther e — e¥, with K > sup,y ¥,
satisfies both Assumptions 2.1 and 2.2for O syficiently large.

Note thaty is chosen continuous across the interface. In particularhavedy ¢lx,-o- = Ix¢lx,=o+,
which we shall simply writéy ¢|x o+ in the sequel.
One of our main purpose is to prove the following local Caderestimate.

Theorem 2.4. Let the neighborhood V be figiently small according to Proposition 3.24 below. Let K be
a compact subset of V. Lets) be given as ir{2.4). With the weight functiop satisfying Assumptions 2.1
and 2.2, there exist G 0 and hy > 0 such that

(2.10) hiierMw|” + W) e v, + W) de Maa|” + hoilcs -t Awi|”
3 _no/h 2 13,02 e/h 2 13,0l ge/h 2
+ DIy _orlo + WD Wiy e o + N2, W0y

< C (e 1 + ity "ol + ()2 e astly + () e MV el
+ R ieriol + h5(h’)2|<s>%aseﬂ¢/h®|§),

for0 < h < hpand0 < I < hy, (W = h/T), and for w satisfyindTCs), with W, =0 € (R x ﬁ;),
W(s, )z € 6°(K%), for all s € R, anddkw bounded for all ke N, and f € L?(R x V) with f = Pow in

Rx (V\S).

Remark 2.5. An inspection of the proof of the theorem at the end of Sectishows that the last term in
the r.h.s. of (2.10)|,15(h’)2|<s>%35e"“’/h®|§, can be omitted if we renounce the estimation of the highdeio
terms,h~°‘(h’)2||<s>%e"*"/h6svv||2 andh5||(s)‘%e"*"/hAZWH2 in the I.h.s. of (2.10) (see Equation (4.78)).

Remark 2.6. The previous Carleman estimate yields the same estimatiedfparabolic operatdt making
use of the insensitivity of such estimates to additionadparder terms. We may thus carry on the analysis
of the subsequent sections by simply usi®¥gn place ofP. We may also replacA; by V,(cVy) in one of

the terms of the |.h.s. of the Carleman estimate siaces the principal part oV,(cVy). In fact, in both
cases, the lower-order terms in theiffdiences can be dealt with by takihguficiently small.
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Remark 2.7. Note also that the Carleman estimate is in fact insensitivehanges of variables. In par-
ticular, the conditions we impose on the weight function\abare coordinate invariant, including the
sub-ellipticity condition of Assumption 2.2 [Hor63, Skxt 8.1, page 186]. The local Carleman estimate
can thus be stated in the original spacial coordinates. Mogeisely, we state Assumptions 2.1 and 2.2
with dx ¢lx,—0+ replaced byonhyls: (the normal derivative of on each side of the interface) andy by
the tangential component &y at the interfaces. Here the normal direction is the direction that points
to the region in which the solution is “observed”, i.e., ietfegion where the weight functias(x) is the
largest. By abuse of notation we still denote this regiofvBy The other side is denoted M#. We obtain
a Carleman estimate of the same form as (2.10)
2 2 2 2
(2.11) hiK9) 2wl + hl(s) 2V, + h3()2I(S) 2 e/ ol + hFIKs) 2!V, (cV,m)|
2 2 2
+ hi(s)?e¥Mig. | + h(8)2 €MV wis: g + hPl() 2 €7/, Wis:
2 2 2
< C(h4||e"th||2 +h(s) 2 e/Mgl + M)A (s)2 €Ml + h3(s)2 /MY, 0],
2 2
+ hgterihel + h5(h')2|<s>%ase"¢/“®|o),
for h andh’ taken sificiently small, and for smooth functions on both sides of titerface and satisfying
the transmission conditions (TC

We now proceed with writing the local Carleman estimate weehabtained with the original time
variablet € (0,T). From (2.3) we havels = @dt = %(s(t))zdt. As was done in the introduction, by
abuse of notation, we do not change the names of the funatibather we consider that they dependton
or s. It thus follows that, for a functioph and fora € R, we have

(9" &I = [ (53 (s P ds dx= % T [0 M1, P dit dx
RV ov

C

= ZIKsO) e Mg,

recalling the notatiofi.||; introduced in Section 1.2, and we also have
2 C " 2
()" €™M Plx-0-lp = THS(D)* e s .
whereg|s: denotes the restriction @fon either side of the interfac® In addition we have
R (N2 e/ Maspl” = h3(N)? [ (92 €21 W Mag(s, X) ds dx

RV
Cost 20-22n(t)¢(3)/h 2 Cis a-1gme/hg 4112
= h° [ [ O Mae(t 0 dt dx= RIS e g,

with a similar result for surface integrals. From (2.5) weda

n(t)/C < (s(t)) < Cn(t)
In the ¢, x) coordinates the local Carleman estimate is thus of the form

2 2 2 2
(2.12) hilp2e®/™wifr + h3lln? &MV wil + hlln2 €My + holin? €'V (5V, )it
2 3 2 3 2
+ hi2e/Mwis. |7 + W2 €#/"V, Wis: |7 + hln2 e/, Wis- |
2 2 2 2 2
= C(h“uneﬂwhfui +hin2 e/l +holy 2 e/Mg 61 +h3|77%e”“’/hVX/9lT+h3|77%e”“’/h®lT+h7|77_%e”“’/h3t®|T)’

for0 < h+ h/T < h;. We now note that sincg (t(T — t)w) = (T — 2t)w + t(T — t)o;w and sinceT — 2t is
bounded, by taking the constdntsuficiently small, i.e.handh’ = h/T suficiently small, we can subtract
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1 to the power of; in all the terms of (2.12). In particular we obtaieIW/hﬂﬁ in the r.h.s. of the Carleman
estimate, which is the form usually encountered.

Theorem 2.8. Let the neighborhood V be figiently small according to Proposition 3.24 below. Let K be
compact subset of V. With the weight functiosatisfying Assumptions 2.1 and 2.2, there exist Cand
h; > O such that

(2.13) hllpie ™ wily + WitV iy + bl 2oy + ¥yt MY, sVl

+ hinf e Mwis. s + Wt €Y owis s + hPint €479, wis: -
<C (h4||e"¢/hf||$ +hin @G + bl 2,0 + R Y ) + Wi @ +h7|n*%e”*”/“3t®|i),
for 0 < h+h/T < hy, and for w satisfyindTC), with W, 1, s € €((0,T) x V&), w(t, Mo € 6 (Kh),
forall't € (0, T), anddkw bounded for all ke N, and fe L2((0, T) x V) with f = Pwin(0,T) x (V \ S).

Carleman estimates are often stated with large parameitiier ithan with small parameters as we have
done here. Introducing= T?/handy = (t(T - t))* we have

214 31,3 arve 2 1 ve 2 1)y, % a7V 2 ~1y,,~ 5 a7V 2
(2.14) Tolv2e™Wlt + 7lvZe™?Vawlly + 7 Il 2€0Wlr + 7y 2€P VR (6V W)l
3.2 sve 2 L v 2 L ve 2
+7v2eWis: |t + T|v2eY Ve Wis: |1 + T]v2e"Y 0y Wis: |+
TV £112 3.3 TV 2 -1, —% sve 2 L v 2 L v 2 -3, -2 TVY 2
sC(He FI2 + 2 ie™ by + v Ee™ o ly + thvie™ Vbl + thvie 0l + v 3y fe at®|T),

for v > 7o(T + T?), for 7o > 0 suficiently large.

Remark 2.9. If needed, classical density arguments can be used to tetalsdundedness and regularity
assumptions made anin Theorem 2.8. In fact, these assumptions are made for keeodahe proof below.

3. PRELIMINARY RESULTS
3.1. Symbol classes.n the following sections, We shall use the (resp. tang@rdrder functionavi, A, m
andA (resp.M¢, A7, my- andAs) given by
M? := (9)2 + (%72 + €%, resp. M2 = (9)? + (%12 + £,

M= 1+ 7%+ 6P, resp. me- = 1+ 72 + &',
A4 = <S>4 + <S)4T2 + |§|4, resp. Aé‘ = <S>4 + <S>4T2 + |§,|47
=1+ +1E4, resp. A3 = 1+ 72+ &%
associated with the following metrics &1 x R™1! (respR™?! x R") [Hor85a, Section 18.4]
_ lds? <s>2\dr|2 |déf? _ 1 _ lds? (9t | |’ _ 1
Owm - <S>2 + |dx? + + vz kgM =N Omg7 = <S>2 + |dx? + qu_ + M_;’ kgM\T = T
Om = <S>2 +iax + 9 = Ko = 75 Om7 = <S>2 + 1ot + o+ o Koy = 72
. ldg? (9ldr? \d 2, |de? _1 . |ds? (s> ‘d |2 ld¢2 o
O = B e+ ST L L g =1 a7 = 0%+ o + LT &, Koy = &
|ds? [de? _ |dg? _1 |ds? \drl Idé'f? _ 1
g/l <S>2 + |dX12 T + Tal) kQA T g/l‘T <S>2 + ‘d)qz + ?’ kg/LT — ;

Lemma 3.1. The metric g (resp. G, da, 9y) is slowly varying and the order function M (resp. M, 1) is
gm-continuous (resp..g da, g:-continuous) with similar results for tangential metriascborder functions.

Lemma 3.2. The metric g (resp. g da, 01) is o-temperate and the order functions M (resp. M,
A) is o,gv-temperate (respr-gm, da, 9a-temperate) with similar results for tangential metricsdaorder

functions.
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The proofs of the two lemmata are left to the reader. The readlenote thatA is notgy continuous.
The two calculi do not “intersect” well. For simplicity we atwrite S(u, gr7) in place of Sy(u, gr.7),
I'=A,4,Morm.

We shall often make use of the following trace formula

_ 1
(3.1) (9 Plx,=0lp < Ch 2 (IDx, Il 2(gocpry + I Bl zseny), K € R.
All the remaining results in this section are proven in ApghigrA.

Lemma 3.3. Let (T, y) be (M, m) or (A, ). Letv(s) € S((s),gs), with gs = |dg?/(s)?, be elliptic, i.e.
[v(s)| > C(s). Letk| e R. If p(s, X, 7, &) andu(s, X, 7, £) are such thap(s, X, 7, &) := u(s, X, 7, &/v(s)) then

p ST a) & neS(9Y.g)
with a similar result for tangential symbols, with assoeidbrder functions and metrics.
We define the maps
(3.2) K (8X%TE) P (S X7 2T 77E).
(3.3) R (sx1.8) P (s X 2a(9r. 7718,
The previous result gives
peS9Y.g) e muoR) eS(9T g, (I,y)=(A,) or (M,m),

with similar relations in the case of tangential symbols.
In the following lemmata we shall use the notatigy to denoteR x R or R™1,

Lemma 3.4. Letk| € R andI" = A or M. Then, for h sfiiciently small, R= (s)™op("™") op(")(s)*
(resp. R= (s)™* op(T;!) op(T’)(5)¥) is an homeomorphism of(R™?) onto L*(R™?) (resp. I>(Rsx) onto
L2(Rsx).

Lemma 3.5. LetT be M orA. Let k, k, | € R. There exist C> 0 and hy > 0 such that for all
u e .Z(R™) (resp..”(Rsy)), there exists v L2(R™?) (resp. 12(Rsx)) such that u= (s’ Op(')(s)*ev
(resp. u= (s op(!-)(s)*2v) and

1/CIKsy™ ™ op)ull < IVl < CIKsy ™M™ OpCull,  0<h<hy,
(resp. 1/CIK9) ™M™ opCA)ull < M < CIKsy M opCA)ul,  0<h<hy).

Lemma 3.6. LetT' beA or M. Letk | € R. Forae S(9 T, gr) (resp. S-((ST-. gr.7)) there exist C> 0
and hy > 0 such that for all0 < h < hy, we have

IOp@ull < CIK* Op@)ull, ue #(R™") (resp. [lop@)ull < CI(S) opE)ull. u € 7 (Rsx).
With the previous lemma we can improve the result of Lemma 3.5

Lemma 3.7. LetT be M or A. With the notation of Lemma 3.5, for all,H’ € R, we furthermore have
(9 Op(™)v € L2(R™?) (resp(s)¥ op(T-)v € L?(Rsx)) and

1/ClKs* ™ opull < [K9)¥ Op@" il < ClK9* M~ Opyul. ~ 0<h<hy,
(resp. 1/CI(s)* 7 op@)ull < [K9) op@ VI < CIKs* 7 op@yHull,  0<h<hy).
Lemma 3.8. LetI" be M orA. Let ke R and be S(I'%, gr) (resp. be S(TX., gr.7)). If k' + k” = k, we have
(Op@)u. v)| < COpT*)ull OpT* W, u,ve #(R™?),

(resp. [(op®)u, V)| < Cllop@T)ull lopT¥ VI,  u,ve Z(Rsy).

for h syficiently small. We have a similar result in the case of the émtigl inner product(.,.)o and
associated norm|y and functions restricted to,x 0.
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In fact, the Garding inequality holds for the present calas its proof in the semi-classical case (see
e.g. [Mar02]) applies with Lemma 3.8. We shall only use ithie following tangential form.

Lemma 3.9(Garding inequality) LetI’ = A or M. Let ke R and ac S(I'., grs), with principal part &,
such thatReay(s X, 7, &) > Cl"kT with C > 0. For 0 < C’ < C, there exists h> 0 such that
2
Re(op@)u, u) > C'llopT¥?ul”, ue .#(Rsy), 0<h<hy
For each calculus we introduce the following Sobolev spaces
Definition 3.10. Letk, | € R. ForI" = A or M, and forh small, we set
SR = (90T ue LAR™)), A (Rsy) = (9K opT)u; u e LA(Rg,)}
We introduce
Ul = K9 Op@ull, Ul ro = 1K op@)ul.

Proposition 3.11. Let k| € R and letI’ = A or M. The function space7* (R™?) (resp. /" (Rsx))

equipped withl.[l - (resp.ll.lik;.r.7) is a Hilbert space with? (R™?) (resp..#(Rsx)) as a dense subspace.
In particular, ifk” < kandl” < | we have

SR ¢ AR € AR, (resp.S (Rex) © 45 (Rex) © I (Rsy).

By density we deduce the following regularity result fronrmuma 3.6.

Lemma 3.12. LetT' be A or M. Letkl € R. For a € S(ST",gr) (resp. S- (ST, gr.+)) there exist
C > 0and h > O such that for all0 < h < h;, we have
IOp@)ull < CIKs* Op)ull, ue 4 ®R™) (resp. [|op@ull < CIKS* op)ull, U € A5 (Rsy)).

It shall often be useful to obtain classical Sobolev normaifthe norms we have introduced.

Lemma 3.13. Let ke R. There exist G 0and hy > O such that all0 < h < hy,

1 n
(3.4) E||<s>k opM)ull < [K) ™ ull + <" Dgull + zl||<s>kaju|| < ClKs* op(M)ull,
]:
for allu e .7(R™?), and
1 n-1
(3.5) 5||<s>kop(lvl¢)u|| < K ull + K Dsull + _21||<s>kaj ull < CllKs)* op(My-)ull,
]=
1 kel ok K
(3.6) 5(||<s> Ul + 3 1K ijun)s K9 op(As)ull,
]=

for all u € Y (Rsx). By density these inequalities can be extended H)&f,\',f'l(R””), %h';:,lr(Rsx) and

%”A";}(RSX) respectively. For the last two inequalities, we have sintiésults for trace normg| at {xn =
0*}.

Lemma 3.14. Let ke R. There exist C> 0 and hy > 0 such that for all ue .#(Rgy) and ve .#(R™?) and
all0< h<hy,

n-1

B.7) (/O opAZull < [K9)"ull +[KKs)"*Dsull + _zl||<s>kD§ju|| < CI9)* op(AZ)ul,
J:

(3.8)  (/O)K9OpAAVIl < K9V + () *Dsvi] + _§1||<s>kD§jv|| < CI(s) Op(A)M.
]=

By density these inequalities can be extendedeto%fj\k’:ﬁ(R&x), and ve %f\k’z(R“+1) respectively.
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Lemma 3.15. LetI’ = A or M. Let k € N. There exists C> 0 such that if ue jf}k’z(R“*l) then
Dy, U € N R™Y) and ue £%2(R™!) and moreover

(9 op(C7)Dy,ull + [[{$* opZ2)ull < CIKSOp[ull, u e HAXAR™D).

The following lemma yields by density continuous injecaf Sobolev spaces of the two families we
have introduced. We observe that in general, switching fsogDO calculus to the other does not preserve
operator orders.

Lemma 3.16. For allk € R and | e R* we have
(s OpA"ull < CIK9OpMHull, K9 Op(M"?)ull < CIKOpA)ull, ue.Z(R™D),
{9 op(Al-)ull < CIK9 opMiull, K9 op(M/2)ull < CIKSK opA UL, U € .7 (Rey).
We have similar results for trace normig at {x, = 0"}.

The proof given in Appendix A requires the introductions afiatermediateyDO calculus in which
both order functiong andM belong.

The following two lemmata will allows us to switch from onel@aus to the other, yet preserving the
operator order, in the low frequency regime.

Lemma 3.17. Let(y,I,y,T") = (4, A,m, M) or (m, M, 4, A) and let
)(a(s’ Xy T» f) € 8(77”9 g’y)7 V/J € R
Then, for any: € R, xya € S((y')™. gy).
Fork, le R, if o € S(9y', g,) then

oxa and o#ya € S((9',9,) N S(9()'. 9).
If we further sety = ya o k € ST, gr) N S(S(T) ™, gr), 4 € R, with k as defined in3.2), and if
T e S((9FT, gr) then

Ty and E#y € S(9T', gr) N ST, gr).
We have similar results for tangential operators.
Remark 3.18. The reader will note that we do not aim at giving optimal r&sirn the previous lemma.
We content ourselves with the ability to switch from one ohls to the other, but we do not try to improve
operator orders as could easily be done at places. Suchmefirie are not necessary for the sequel.
Lemma 3.19. Let(y,T,y,T") = (1, A,m,M) or (m M, A, A) and letya € S(1, g,.+) with compact support
in the(x, 7,¢') variables. Lefy = yao k. Letk, K|, I’ e Rand Ne N. If £ € S()¥ A, ga.7), there exists
C > Osuch that

K op(M}-) opE)uly,o+ly < CKS ™ op(A" ulx—o+I, + CHN(IIVI| + [IDx, Vi),
<9 op(M!) opE)ull < CIK* op(A")ull + ChY|vil,
if u = op(y)v, with ve . (Rs).

3.2. A system formulation. Let K be a compact subset vf We consider a function(s, x) as described
in the statement of Theorem 2.4, i.e., satisfying {T&hd such that its restrictiong(s, .)|z» are N (K%)

and are bounded iR x @2, along with all their derivatives w.r.s andx.

We introducef by fh = flrxan = PaWirxzn. We shall consider the transmission problem as a system of
two equations inv® coupled at the boundamy, = 0*. We thus make the change of variablggo —x, in
V9. This yields the following system W¢:

{(@as — 05,89(S, X)dx, — C9(s, Yro(x, dx)) we = f9,

(3.9) a9q _ 9 d A d WA = fd
(205 - 05,69(s. )y, — (s )ré(x dy)) Wl = 9,
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with

(TC*) Vs X, Wg'xn:O+ = V\/j|xn:0+ +0, Cg&ong|xn:0+ + Cd&an\mxn:O* =0,

where for a functiony defined inV, we set® := ylye andy9(X, x,) = ¥(X, —x,) for x, > 0. In particular,
we haver9(x, dy) = (X, —Xn, dx), andrd(x, dx) = r(x, dx) for x, > 0. If there is no possible confusion,

we shall now writay = (9, y9).
From Assumption 2.1 we have

(3.10) 05, x=0r <0, O @ im0 > 0, ¥/ (0%, Ix=0+)” = (B, %lx,=0+)° = C > 0,
(3.11) (€059 Ix,=0r + (10 9YIx,=0r = C >0,

and

(3-12) |axn99g|xn:0+| = min(axn‘;9d|xn:0+a |6xn¢g|xn:0+|) >L |ax’¢|xn:0+|,

with L sufficiently large.
We denote byp* the symbols of the operators actingwh in (3.9). We also denote biy# the symbol
of the tangential operatd&as — c¥ (s, X)r¥(x, dx ). We set

P2(s X, Ds, Dy) := Op(diag®, p%),  K(s x, Ds, Dy) := op(diagk®. k%), and ¢ := diag?, ¢*).
We setv = t(vg,vd) = e®/"w, The entries of satisfy the following boundary condition

(TC,) W cor = Vi cor + 6, C(Dy, + indx,¢®Vx,—0- + C(Dy, + indx ¢ W lx0r = O,,
where

h
(3.13) 0, = €¥My _0:0 and O, = Te'w/“m:w@.

Because of the negative signgfve then observe that € .7 (R x R?).
We define the following conjugated operators

hZer](D/hP e n®/h _ dlag(Pg ) h2ei](D/hK e n®/h _ d|ag(sz Kd)

which we shall, in the sequel, treat as a seml-classufmréntlal operator, witth andh’” = h/T as small
parameters. The principal symbol®j is of the form

Pe(S X, 7, &, &) = diag(pd(s X, 7, €', &), PA(S. X, 7, &, &n)).
We sefc,, = diag(c?, ¢%) and we have
(3.14) P, = Dy,CmDx, + 2iCmi(9x, @)Dy, — Cm(1x, ®)? + (D, (Cmdx, @) + Ko
We define the following operators
Q=(P,+P))/2,  Qi=(P,-P)/Q), Qj=diag@.qQ), j=12

with

Q2 = Dy,CmDy, + tmQz. Q1 = Dy Cm(05,®) + 7Cm(Jx, @)Dy, + 26mQ1.  Q; = diag@%, Q7). j = 1.2
We have

pY = OF + iy = cB(& + o + 2w " + 2ig}),

where the principal symbotﬁ = o-(Qj.’d), qj = o-(Q?"), j = 1,2 are given by

(B15) ¥ = ~(nug B0 E) ~U(enaeg®) ~ i gy g = MG )

g a9
(3.16) qy = (%)

T+ F%(X7 6/7 n@x/tp%), q]_ ZC%(fnT] 6Xn‘70 + q )
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Note that we have® € S(1,gx) N S(1, gv) (resp.S(1,ga.7) N S(1, gmr)) and
(3.17) gy € S(AZ,gr7) N S(MZ, gur). G € S(A% ga) N S(MZ, gw).

(3.18) CI% € S(A%.gr7) N SUSHMy7, gmr), GI% € S(A% ga) N S((SHM. gw).
Finally we note thalDsc*(s, x)| < ChHT(s)"2 = Ch¥(s)2.

3.3. Symbol-like behavior of the roots; elliptic and non elliptic regions. We setazﬁ’ = z”ag’ + iéZ" with

4 / a S ’ =
A = (O H 08 = X 0 h) - W g a = oM ),

W T

3 = 2ck

(adapting the definitions @f;;anda;, j = 1,2 in (2.6)—(2.7)). With the mapsandx defined in (3.2)—(3.3),
we haveal o & = 72p¥, anda“;/d oK = nfij.’d, j = 1,2. Note that we have

a¥ € S(12,917) N S(ME, gmr), A% € S(4% g;) N S(TP, Gm),

ay € S, Gur) N SMy-. gmy), &Y' € S(4°,62) N S(M. g).
which is consistent with (3.17)—(3.18) and Lemma 3.3.

Here, we shall study the properties of the two complex robtaid(nnd p?,f’ at x, = 0* when considered
as polynomials i¥,. Depending on the signs of the imaginary parts of the rootsskall adopt dferent
strategies for the proof of partial Carleman estimates. Bartial” we actually mean that the resulting
estimate will only hold in some microlocal region (see Smt#). Once collected together, the partial
estimates will yield the result of Theorem 2.4.

We note thap = ck(&, — pf™*)(& — pf ") andal = c¥(& — p&*) (& - p¥") and

+PH(X, &, Oxp®), B = 201 (Endy, @t + aZ“)’

(3.19) PR (K(s %7, €), 0) = pf*(s %, 7., ).
The dependency of the roots bhcomes from that oé, andq,. Following [LR97], we introduce
%2 %2
o . %, (&) %o (ar) A 22
(3.20) My =)+ O pp =03+ —(naxntp%)z’ with u ok =n~"ug,

and define, forr = aor p,
EFT = (S X&) e RXVIXRXR™ x (0, h]; (s x,7.€. 1) > 0},
ERT = (s %1 &, N) e Rx VI xR x R x (0, ho]; (s x,7,¢,h) <0},
Zh = (s x7,&,h) e Rx VI X R x R™ x (0, ho); h(s x,7,&,h) =0}
We have the following lemma, which proof is given in Appen#ix
Lemma 3.20. We have the following root properties.
(1) In the regioné‘:.,f’/"’+ (resp.é"j“’*), the polynomial @ (resp. p) has two distinct roots that satisfy

Imp&* > 0andimp®~ <0 (resp.Impp™ > Oandlmp%"‘ <0).
Moreover we have

pi>C>0 e Impht>C >0andImpk~ <-C' <0,
(respul >C(s?> o Imph* >C/(s)andImph~ < -C/s)).

(2) Inthe regioné’f"" (resp.é’g""), the imaginary parts of the two roots have the same sign atsah
—3Xn¢p%.
(3) Inthe region%% (resp.&‘”,?"), one of the roots is real.
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d pd pd
Pe Imé&, g . d+ ¢ Im &y ¢ Imé&,
*Pp d.+
| .}pp
4 . d,
§ Reéy ’X § Reén ’pr+ Reé&,
x ~0,— >~ d,—
Pp Pp Pp
pg pg Pg
¢ IMé&ny o4 ¢ Imé&ny 44 ¢ Imé&ny 4o
xpp xpp xpp \
9’7 :'
y Refn g’_XA Reé‘:n pp X Refn
9 Pp
Pp X
(a) Root config- (8) Root config- (c) Root config-
uration in &5, uration in 2, uration in &5,
;1%>0; p%:O; ;1%<0.

Ficure 1. The roo';o‘,’)’+ crosses the real axis before the rp%f does, aga% decreases.

Moreover, there exist G 0 and H > 0 such thail,oZ”+ —pZ""| > [Imp2™ — ImpZ"‘l > C > 0in the region
il = —H).

Remark 3.21. Note that § x, 7,¢', ) € EX for |(r,&)| suficiently large, say(r,&)| > R, uniformly in
(s, X) € R x V4 and forh’ bounded. Note also that in the regi{,‘afz{j > —H}, the rootsoz;"i are smooth since
they do not cross.

For the polynomiag (resp.pd), for |(r.£)| > R, we have Inp* > 0 and Imp§ ™ < O (resp. Inpy™ > 0
and Imp,~ < 0). As the value ofud (resp.yg) decreases, the ropg’+ (resp.,o%*) moves towards the real
axis, and crosses it in the regicf¢ (resp.a@”,;’). In the regioné’ad" (resp.é"g") the two roots both have
negativeimaginary parts.

For the polynomiad (resp.p?) , for |(r,¢’)| > R, we have Inp3™ > 0 and Imp3~ < 0 (resp. Inpp* > 0
and Impp~ < 0). As the value ofi (resp.uj) decreases, the rop§ ™~ (resp.py) moves towards the real
axis, and crosses it in the regicy’ (resp.2y) . In the regionsy~ (resp.&y") the two roots both have
positiveimaginary parts. The “motion” of the roots pg and pg is illustrated in Figure 1.

Lemma 3.22. Let H be as given in Lemma 3.20. Lét € S(1,g,) with support in{yZ{j > —H}. Then
)(%pzj’i € S(A7,0.9). Let G > 0, there exists C> 0 such that |mpZ”i| > CAs in {uZ" > Cp}. It follows
that for some C> 0 we have

& = P31 2 1M = p37) 2 Cldr, in {uf = Col.

See Appendix A for a proof. By (3.20), note that the ajefined in (3.2) is one-to-one from, > Cr?}
onto{ua > C}. From (3.19) and Lemma 3.3 we thus have the following result.

Corollary 3.23. Let H be as given in Lemma 3.20. i€t € S(1, ga ) with support in{;f’/,;1 > —Hn?}. Then
Y¥ol* € S(Ar,grg). Let G > 0, there exists G 0such that Im p*| = CAs in {u > Con?). It follows
that for some C> 0 we have

ol — pl=| > Im(pk* — pk7) > C'Ar, i {uff > Con}.

With the condition we have imposed on the weight function Bsémption 2.1 we now prove the fol-
lowing Proposition.
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Proposition 3.24. We haves®* c £2*, anddist(&>*, 22) > C > 0, if the neighborhood V ofgyis
syficiently small. We have thaf > C’ > Oimpliesu§ > C” > 0.

The result of the proposition implies that the r@@f (resp.,a%*) crosses the real axis before the root
pa~ (resppp”) does, agg (resp.u) decreases from positive to negative values. This is itatiet! in Fig-
ure 1. We enforce this root configuration because of the igols we shall use to prove partial Carleman
estimates in Section 4.

In the sequel we shall also need the following lemma.

Lemma 3.25. For all C > 0there exists Csuch that
Mi<C = [l+El<C.

3.4. A Carleman estimate at the boundary. Here, we place ourselves on one side of the interface, say
VY, and we treat the interface as a boundary. We momentarily tthey,” notation.

Proposition 3.26. Let K be a compact subset of V. If the weight functieatisfies Assumption 2.2, there
exist C> 0 and h, > 0 such that

5 1 2 1 2
(3.21) [IP,vII” > Ch([Ks)? op(My)VII™ + K2 DMl )

+hRe#(v) + h? Re(Dy,Vix,=0+ + L1Vix,=0» LoVlx,=0+)g »

for0O<h<h;and0 <l < hy, forve .Z(R x RY), with (s, .) € €°(KY), for all s € R, and where
(322)  A(V) = (QuVix,=0» (S X)Dx,Vlx=0+ ) + (68 )D, Q1 — 2¢(S, X1(05,¢) Q2)Vlx=0+» Vixg0+ ),
and L4 € Z(Mg,gmy) and Lo € Y((S), gm.7)-

The reader should note that in the definitionZa(v) we havecDy, Q1 — 2c7(9x,¢)Qz = L; Dy, + Lj with
Lj € YUSM, gmr), | = 1,2, with (L)) = 2¢%qs ando(Ly) = —2¢%(dyx,¢)dz- An alternative expression
for #(v) that we shall use in the sequel is the following

(3.23) B(V) = ((S: E;) (D’“V"“O*) : (D’“V"“O*))O,

Vlx,=0* Vlx,=0*

with o(Bo) = 2¢?ndx,¢, o(B1) = o°(B}) = 2c%qy ando(B,) = —2¢%n(dx,¢) 0 (see (3.15)—(3.16)).
Note that in the proposition, we purposely do not impose amynidary condition ak, = 0* on the
functionv here. The result of Lemma 2 in [LR95] is the counterpart of firioposition in the elliptic case.

Proof. We setg := P,v, i.e.,Q,v +iQ;v = g. We note that
(Wl’ QZWZ) = (szl, Wz) —ih [(W1|xn:o+, CDx, Walx,=0+ ) + (CDx,Wilx,=0+ Wzlxn:0+)o] )
(Wl’ QlWZ) = (Qlwl, Wz) — 2ih (cn(0x,9)W1lx,=0 » Walx,=0+)g »
forw; e (R x R7), with wj(s,.) € (K9 for all se R, j = 1,2, and we thus obtain
gl = G2Vl + 11QM” + i([ D2, Qulv, V) + h(Y).
We observe that we have
i[Q2. Q1] = h(HNODXnCDXn + HiDy, + |:|2),

whereH; € Y(9M),gur), | = 0,1,2. We then note thaDy,cDy, - Q> € W(MZ,gws) and Dy, —
m@ € Y(ML, gwr). By (2.5) we thus have

i[Q2, Q] = h(HOQZ +H1 Q1 + Hz), Hj € Y(SHML, gur). j=0,2, andH; € ¥(Mr, gur).



18 JEROME LE ROUSSEAU AND LUC ROBBIANO
From the sub-ellipticity condition (2.9) in Assumption 212 have the following lemma (see Appendix A
for a proof).
Lemma 3.27. For u syficiently large and h and’hsyficiently small we have
2
(0 + (105, 0)°2)
(9°M2

Applying the Garding inequality (see Lemma 3.9) in the tarigé directions (including the time direc-
tion) we thus obtain, foh sufficiently small,

S(SMZ,gm7) > p +0(Hz) > C(9MZ.

(3.24) 1igl® > Qu* + Qov” + hReZ(v) + hRe(HoQav. v) + hRe(H1Grv. v)
+Chi()? opMA VI~ hRe((Q + (£ QV. GV).

whereG € ¥((s)™1, gu.s) ando(G) = y%‘,ﬁz%.

We first see that we have
(3.25) h|(HoQ2v. v)| < hIQavilIKsVIl < ChE (I Qavl® + C'hE K s)V2,
(3.26) h|(H1Quv. v)| < hliQuvilll opMr )Ml < ChEIQuvi® + C'hE [ op (M )Vi[2.
We have the following lemma.
Lemma 3.28. We have|(s)z D vi| < C||Q1V]| + Cl(S)z op(Ms)V.
Proof. We observe that sind®; = 2cngl, Dx, + n[Dx,, ¢ | +2¢Qq, we can write

(97 (9?2 L (92
ZCncp’anl ZCsoxn[ el = g XnQ

which yields||(s)% Dy VIl < C(||<s)*%(§1v|| + ||<s>% op(Mfr)v||), by Lemma 3.6, from which we concludem

(9)7Dy, =

Following [LR95], since

1/~
(3.27) Q1 = 5(Q1 ~ 7[Dx,. 0] = 7(0¢)Dsi.

we now write

QG + (1,9°Q2 = o (G1 ~ 1Dy, i g]) ~ Qundr)Ds, +
Using (3.27) a second time we have

2
W) (6, - Dy D).

1 -
Q@ + (194,9)°Qz = (1(0:#)Ds, ~ 5(Q1 = 1D, D, 2])) 1(0x,¢)Dx,

(no xncp)

+ % (Ql — 1[Dyx,» Caxn‘P]) (Q Dy,cDy,),

which reads

(’Iﬁxn‘P)z X 1 Ox9
W A, - ZpD, 22
. Q2 D% Q:

+PUSOM7, gur) Q1 + hP((92, gms) Dy, + NP(S*My, g7 ).

(3.28) QI+ (ndx,¢)°Qz €

We note that

0 Tollle
'((n ch¢) < hiC||QvlI” + hiCIKoVZ,

sz Gv)
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and

1 Ox, ¢
h Re(Eann XC

by integration by parts. With Lemma 3.8 we thus obtain

6Xn¢
2ic

Qwv, GV) =h Re(%ﬂa)%p Qw, DanV) -h Re( QuVix—o+ UGV1xn=o+)o,

Oy ~
(3.29) —hRe((Q? + (ndx,¢)*Q)V, GV) > —I? Re(ZXT”: GiVly-or. 1GVx-0°),
1~ 1~ 1 2 1 2
~C(HIQuF + hE I Qv + hili(e) DV + h ) OV ).

From (3.24), (3.25), (3.26) and (3.29), and Lemma 3.28, weelkemle by choosing suficiently small. =

In Section 4, we shall use the result of Proposition 3.26 angitie angbr the other side of the interface
S. However, we may also apply it to a small neighborhood of apof the boundary of the open set
Q. It then yields the following proposition in the case of hayeaeous Dirichlet boundary conditions.
In a suficiently small neighborhootlV of a pointy of the boundansQ, we may use normal geodesic
coordinates. Without changing the statement of Assumgian(the proof of) Lemma 2.3 shows that this
assumption can be fulfilled by choosipg= e — e, with K > sup_g ¢ and withVy(x) # 0 in W. If we

choosey such thabylsanw < 0 thendnelsonw < 0. We state the proposition in the same setting as that of
Theorem 2.8.

Proposition 3.29. Let y € 9Q and W be a sficiently small neighborhood of y 0. Let K be a compact
subset of2 such that W is a neighborhood of K §& Lety be defined in W that satisfies the sub-elliptic
condition(2.9)in W anddnplsanw < 0, where n is the outer unit normal @ on9Q. Then there exist G 0
and hy > Osuch that
2 2 2 2
(3.30) hilpZeMwif + h3|ln? /" Wil + hlly2e/ Mol + holln2€/PV (VW) Il
+ Bt Mamiaaly < CHiIE™ I,

for 0 < h+h/T < hy, and for we €=((0, T) x Q), supp@(t, .)) c K, for all t € (0, T), WoT)x@anw) = O,
anddkw bounded for all ke N, and f e L?((0, T) x W) with f = Pwin (0, T) x W.

Proof. As above, we use local normal geodesic coordinates at thedaoyand we perform the change of
variable in timef — s, of Section 2.1. For simplicity we use the same lett¢o denote the function under
consideration after the change of variable.

With the x,-axis pointing inward we havénglx o+ = —dx,¢lx,-0-. Settingv = €¥/"w, (3.21) holds for
h andh’ suficiently small (because of the negative sigrpafote thaty € (R x R7)). Sincevisq = 0 the
last term in (3.21) vanishes and the quadratic fo#ifv) reduces to

2 2
BV) = (Zczn(axnﬂxn:O*)Dan|xn:0*’ Dan|xn:0*)O > Clp? D, Vix=0+lo = C|77%9W/thnW|xn:o+|o,
with C > 0. By Lemma 3.13, we thus obtain
5 1 2 1 2 1 po/h 2
IV = Ch(IKS)Z op(Mr M + K82 DMl + 172 €7D W=+ o)
3 2 3 2 n 1 2 1 _no/h 2
> Ch(I(9)>V” + ()2 DMl + 3, (9D vl + e D Wh,=0°lo) -
]:
We note that
IKs)2€™/" D, Wil < [I(5)2 Dy, (€7"W) | + I(9) 210, ) €| < CI(S)* Dy VIl + CIKS) VI,
and
k)2 €™ Dewlly < ()2 Ds (€7%"W) I, + N II(s)2 €/ (@gm)ewlly < 1K) DMlo + CIKS)2Vilo,
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since O< h’ < hg. We thus obtain

2 2 n 1 2 1 2
(3.31) h({(®) 2™l + () e/ Daw + 3, ()2 Dyl + In?/MDy Wiy, -0 o) < ClI/ Py’
=1

SinceA, = —%4, + P, anda(s) = n(s)? we have
2
(3.32) hel(s) e/ < hC||<s>%e"W“h$aswn + 8| e inpy

< C (i ie Dl + hier"Pov’).
With (3.31) and (3.32), after changing back to the origimece coordinates, we obtain

hiKs Ee/mwil” + W9 ey, + W) EeMaqn” + hl(s)e/hy eV, W)

1 2
+ h3(s) /Mgl < CHAeM ),

The replacement d?, by P and of A; by V,(cVy) can be done according to Remark 2.6. Finally, arguing
as above Theorem 2.8 we achieve the result. ]

4. MicroLocAL CARLEMAN ESTIMATES AND PROOF OF THE MAIN RESULT

Based on Lemma 3.20 and Proposition 3.24 we now place oessilthree dierent microlocal regions
and prove each time a partial Carleman estimate. The thtieeadss will be gathered and patched together
in Section 4.4, which will provide a proof for Theorem 2.4.

4.1. Estimate in regioné‘f’*: a Calderon projector method. The following lemma enables the construc-
tion of the microlocal cut-fi functions we shall use. The proof can be found in Appendix A.

Lemma4.1. Lety, € ¢~ (R) suchthay, € ¢:°(R). The functiongga"(s X T1,&) =X,,ouzd(s X 1,&, 0 =0)

belong to §1,9a.7) N S(1, gmy). If moreovery, € €.°(R) thenXZ" € S(A7, dar) N S(M, gmy) for all
veR.

Let yZ(s x1.&") € S(1,9.7), with compact support with respect tocontained inV, be such that
(s, x, 7,&,h" = 0) > C; > 0in supp(y}). By Lemma 4.1 this can be achieved by setting

Xa(S X T.8) = 0¥ (b © pg)(s X 7.6, = 0),
with yx € €5°(V) andy, € €°(R), 0 < y, < 1, such thaf, = 0in (—c0,Cy) andy, = 1 in (Cy, +0)
with C; > Cy. Asu — ulv—o = O(1), for v > 0 sufficiently small, we havgd(s, x, 7,¢’,h’) > C > 0 in
supp(yy). We also haved(s, x,7,£, ") > C’ > 0 in supp(}), by Proposition 3.24 and Assumption 2.1
if the neighborhood/ is chosen sfliciently small. We set* = x2 o «, with the map defined in (3.2),
and havey* € S(1,gas) by Lemma 3.3. From the remark preceding Corollary 3.23 vwela% > Cp?in
supp(y*). In supp(z) we havelaffg’l2 > C2%. In turn we have}pZﬁ’l2 > CA%in supp(y*). The region we
consider is thus an elliptic region for the conjugated ofueiR,.

Proposition 4.2. Let K be a compact subset of V, with the neighborhood V chaggaiently small ac-
cording to Proposition 3.24. Lett € S(1,0a.7), with compact support in X, be as introduced above with
support in{,ug > Cn?}. There exist G 0 and h, > 0 such that

(4.1) I(S)*Dx, 0p(x* I + [(9)? 0p(A7) op(x*)Vi
+h3((9)} (D, 0P(Y Wl + K9 (OP(T) 0pLr W0 )
< C(umvu + h(IIDx, VIl + [ op(A7I) + h Dy, Vix-orlo + h? ({9 0p(A7 )8 |, + |<S)%®¢|o)),
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for0 < h < hy, 0 < h < hy, and for v=t(W,v9), vk ¢ .7 (R x R"), with (s, )% € €°(KY), for all s € R,
satisfying transmission conditiof$C,).

In the microlocal region we consider here, through the stpgfoy*, because of Assumption 2.1, the
root configuration o‘pfﬁ’ corresponds to that illustrated in Figure 1a.

Remark 4.3. Note that the first two terms in the partial estimate (4.Heds from the equivalent term in
the Carleman estimate (2.10) by a fadter Here, a “better” estimate is actually obtained becauseave h
restricted ourselves microlocally to an elliptic regiortleé symbolp,. The Carleman estimate (2.10), for
the second-order operatBs, in fact corresponds to a sub-elliptic estimate.

Proof. In supp(y*) we have
(4.2) Impk* > CA7 >0, Imph~ <-CAr <0, andy*pk* € S(Ar,0as),

by Lemma 3.20, and Corollary 3.23.
We setu = op(y*)v. We haveP,u = g with g = op(x*)PyV + [Py, op(x")]v, and P,,op(x*)] €
hDy, ¥ (1, ga.7) + h¥Y(A7, ga.7). In particular, we have

(4.3) llgll < C(IP,VIl + hiIDy, VIl + hil op(Avil) -
Following (TG,) the transmission conditions satisfied iyandu® are
(TCY) W)y —or = W0 +Opyrs  C(Dx, + indx,¢%)WClx=0r + CU(Dy, + indx,¢?)Wlx,-0 = G1,
with ,,+ = 0p(x™*)b,lx,—0- and
G1 = [¢(Dy, + indx,¢%), 0p(x )] V=0 + [€'(Dx, + indx,¢™), 0p(x*)] Vix=0+ + 0p(x")Oylx,=o-

eh?(Lgas) eh?(1,ga.7)

that satisfies
(4.4) (9)2G1ly < Ch(S)2Vix<0+ o + CH(S) 2O, ;-

We denote by the zero-extension of a functigne ¢ (R x VY) to R™1. Considering the form P, in
(3.14) we then have

, h
P,u=g- h2Cayo(u) & + T (cmyl(u) - 0op(Q,) cmyo(u))é, vo(U) := Ulx,=0+» y1(U) := Dy Ulx,=0*»
, j e . . _ . .
wheres®) = ()" 6,0, anda, = diagp$™ +p§*. o~ + o) sincepf™ + pf~ = ~2i ndx,¢*. Since

y1(U) = (0P ) Dy V)lxy=0+ + ([P 0P )W)li=0+»  With [Dy,, 0p(x™)] = Thop(ﬁxn)f) € h¥(L,9a7),

note that, we have

(4.5) yo(U), y2(U) € S (R x R"™),

sincevk € .7 (R x R7). Setting

(4.6) Wy 1= Cmyo(U), and Wo = Cmy1(U) — 0P(G) Cmyo(U),
we write

(4.7 P,u=g-h?w ¢ + ihwoé.

We now chooseg (s, X, 7,£) € S(1,9,) equal to one for dticiently large|(r, £)| as well as in a neigh-
borhood of suppf(z) with moreover suppga) N (af;’,)*l({O}) = 0 and suppfa) N (ag)*l({O}) = (. These
conditions are compatible from the choice made for sygjp@nd Proposition 3.24. We set:= v, o &,
with the correspondence maplé&fined in (3.3), and havee S(1, ga).
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From the ellipticity ofp, on suppf), for largep € N, there exists aDO E, = Op(g), with e €
S(A72,g,), of the form

P 4
(4.8) e= Y hlg, with e € S(A™27),ga), eZ" =X/pfﬁ’ and suppé?“) C supp(y),
j=0
that satisfies
Epo P, =0p(x) + h""'Ry, Ry € (AP, ga).
Note that the parametrix construction yields the symlagfﬁlsg =0,...,p, in the form of rational functions

in &, for largen~2|&,|, with p%"* andp%"‘ for only poles.
With such a parametrik, we obtain

h
(4.9) u=Epg+Ep (—h2W1 &+ i—woé) +01, 01 = (I1d-Op(x))u- hP*Ryu.
With Lemma 2.10 in [LR10], which proof can be adapted to thelsgl classes we consider here, we have
(1d = Op(x)) © op(x*) € NNewhNW(A™N, ga). Noting thatu = op(y*) v, we obtain, for all, I’ € R,
(4.10) I<s)' OP(A")gull < CHPVI.
In particularg; € %\"Z(R“”) and with Lemma 3.15 we have
(4.11) () Dy, @1l + () op(A7)gall < C'HPvll.
We compute the action in the regian > 0 of the parametri¥, on the terms defined on the interface in
(4.9). We find
Ep (i—hWoé) (8.X) = (2nh) ()L [ EITOMAKZENNG(s 7 £ )wo(t, ) d(t. Z) d(r.&).

Ep(-h?w16") = (2xh) (i)™ [ @S0/ OMACZOME (5 x 7, & )wi(s Z) d(t, Z2) d(r. &),
where

~ 1 ; . 1 :
fo(s x,7,&) = o H{e'xnf"/he(s X, 7, &) dén, fis x,7,&) = o H{e'xﬂf"/he(s X, T, E)&n dén.

Note that the integral defininfy is absolutely converging. The integral definifads however to be under-
stood in the sense of oscillatory integrals [Hor90, Sec#d@]. Note that we have

. 1 ,
(4.12) fi(s x,7,&) = o D,, [ €%é/Ne(s, x, 7, &) dé,
T R Zy=Xn

The choice we have made for the cut-function y makes the symbdai(s, x, 7, £) holomorphic for large
7 Yénl, &n € C. In %, > 0, we thus obtain
- 1 ;
(4.13) fo(s &)= 5= goin/Ne(s X, 7,£) dén,
Ty
wherey is the union of the segmef#, € R; |&,] < CoAs} and the half circldé, € C; |&,| = CoAr, IMEp >
0}, where the constar@, is chosen sfiiciently large so as to have the rogmti%* inside the domain with
boundaryy (recall thal,;y*;)?‘,”* i in S(Ag, ga.7)). From (4.12), we obtain similarly
- 1
(4.14) fi(s % 7€) = 5 [&aiihe(s x 1, 8)én dény, %o > 0.
Y
The expressions (4.13) and (4.14) above are valig,in 0 but admit a trace at, = 0*. In particular, we
note that, fowr, 81 € N, anda,, B2 multi-indices, we have

(4.15) D} 0292 < Capanprpo( 9P ATV x>0, j=01 TeN
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We now choosg(s, %, 7,¢&") € S(1,9a.7), satisfying the same requirementy@s equal to one in a neigh-
borhood of supp(™) and such that the symbglbe equal to one in a neighborhood of supp( We set

tj = xatj, j = 0,1 andgz = op((1- x1)to)Wo + op((1— x1)tr)wa. This yields

(4.16) u = Epg + op(to)Wo + opt1)wi + g1 + G

From the composition formula of tangential operators (In2jing that it does not involve derivations w.r.t.
the variablex,, and estimate (4.15), fd¢ 1,1’ € R*, |” € N, we obtain

(4.17) ()" OPAGIDY (G2l 2zzny < Cic(IVIo + Dy Vix,-0+ o),

since supp(t y1) Nsupp(™) = 0, with C > 0, wherel = {(xn) € 6:°(—¢,€) is equal to 1 in suppf*)
(recall the form of the neighborhoddin Section 2.1). Note thay, is defined inR x R". Yet (4.15) allows
us to only provide estimates fgp in the regionx, > 0. By the trace formula (3.1) we obtain, for &l R,

(4.18) ()" OP(AF)DY £Gll oz zny < C' (D, VIl + IVI] + D Vix,0- o).
We now observe that the symbas, x, 7, ¢) is holomorphic w.r.t&, in the support of;. We can then

write

. N ‘ .
(4.19) ;= d|ag(t‘]?’,t?| , t?"(a X7,&) = x1(s X, 7, & )Fn 4 gxéin/hegh(s x 7, £)&l dgn,  j=0,1,

Yo

Whereyzd is a direct contour surrounding the ropﬁ# in the region In¥, > coAs, for cp > 0.
We note that in suppf1) we have

1 1 1 1
e%j = — = —_ .

Pyt —pE) e —ppt En-pl”
The residue formula then yields

%ty j
. Y.+ . oL
(4.20) g xof" /h t?d = % +hak, j=01 ake S(/\Tzﬂ,g/\,fr)-
cH(ok™ —pb)

From (4.19) we obtain the estimate

|D|Xn(9‘s’13‘;,28516§2tj| < Copazprfol e*CO(Xn/h)AT<S>231*01A;1+i+|—2.31—¥32\ % >0, j=01 leN,

again by the residue formula, which yielefg*/"(Dy )'t; bounded irS(A,}“j*', Oa.7) uniformly w.r.t. x, >
0. It follows that,

1 2 1 2
(4.21) (92 0P(AT) o OPWilzoll = [ € (9% op(ar) o opE™ M) () dx,
X >
1 i 2
< Chi(9)2 op(A) Wi,
and
1 2 1 2 1 i 2
(4.22) I(9)*(Dx, OPGIW ol = S &2/ |(9)% opE /"Dy )W (%) A0 < Ch(9) op(AL Wyl
Xn>

As g e L3(R™Y), Epg € 2 %(R™Y). By Lemma 3.15D, Epg € 71 (R™?) andEpg € 07 (R™?)
and

192 Dy, Epgll + I(9)? 0p(A7)Epgll < C(Il0p(A7)Dx, Epdll + | 0p(A2)Epgll) < C'll Op(A)Egll,
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where the first inequality follows from Lemma 3.12. From @).fnultiplied by the smooth functiof, and
estimates (4.3), (4.11), (4.18), (4.21), (4.22) we thusiobt

(4.23) (92Dl + (9% op(Ar)ul < C(IPI + (DM + [[op(AT V)

+ hE((9 B wolo + K9 op(As)Wilo) + h2|Dxnv|xn:o+|o).

We shall now address the boundary temgsandw;. We take the trace at, = 0" of (4.16) which gives

(4.24) vo(U) = op(@)yo(u) + op)y1(U) + G,
wherea € S(1,95.4) andb € S(A;l, ga.7), With principal symbols
%'_
ao = diag@l, ad), with al = -|x1 %:’p_ %_] ,
p p Xp=07"

b_; = diag?®,,b%;), with b¥ =

1 ]

Xl g g-

ook
by (4.20) and (4.6). Note that the symbalandb arediagonal The operators opj and opb) are called
Calderon projectors (see e.g. [CP82]). The func@ans given byG, = (Epg + 01 + G2)Ix,=0+- Note that
The trace ofE,g at X, = 0* makes sense sin@&,g € #*(R™?) and (3.8) in Lemma 3.14 gives enough
regularity for the trace to be taken.

With the trace formula (3.1) we write

(9% 0p(A7)Gal < Ch3(|IDy, © 0p(A7)(Epg + 01 + (G2l

Xp=0"

L2(RXRY)
+149) 0p(AT)(Epg + Q1 + L@, ..o )
SinceEp € W(A72,g,), arguing as above with Lemmata 3.12 and 3.15 we obtain
(4.25) K(S)? 0p(A)Galy < Ch’%(ll Op(A?)(Epg + 0u)ll+IIDx, © Op(AT)(£92)ll 2z ceny
+ 18 OP(AT) (¢l 2 ey
< C"h72 (P + h(IIDx VI + 1| op(A7 W) + h?Dx Vi -o+lo) -

making use of estimates (4.3), (4.10) and (4.18).
The transmission conditions (TEgive

(4.26) Yo(U%) = yo(U®) + Oy, y2(U9) = —Bya(u?) + kyo(u®) + Gy
whereg = (¢9/9)lx0r, K = —in(0x,¢lx=0- + BOx @ Ix=0r) € S(A7,Org) andGy = —ind,¢%,,+ +
—Cg\x::w Gl with
(4.27) ()2 Gl < Ch(S) 2 Vlxcor |y + CI(S)F 6,1, + 2O, ),
by (4.4). From (4.24) we thus obtain
D) + 6, —By1(u?) + kyo(ud) + G

Id - op(@ yo(u?) + cp,x):o ( Y1 Yo l)+G.

(- op@) () 55 ) = op o :
We thus have

Id - op@?) — op®?) ok op®) o B) (vo(u)) _ op@?) - Id op®?)) =
e e M A R S
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whereps andk stand here for the associated multiplication operators.(B¥) and Lemmata 3.5, fdr
sufficiently small, there existgo{u?) andyi(ug) € LA(R x R™1) such thatyo(u) = (s)~% op(A;2)Fo(u?),
andy1(u%) = (s)"29,(u%). We thus obtain a system of the form

~ d -
(4.28) op() ZO(“(,) = Gy + 0p(@)f,.,,+ + op(()Gy,
y1(u)
wherex is a 2x 2 matrix with entries irS((s)‘%A;l, 0a.7), With principal symbol

AF(1-ag-kb) B bg_’l)

SRUA R e,

ands andII are 2x 1 matrices with entries i5(1,ga ) and S(A,;l, Oa.7) respectively, with principal

symbols
g _ 1 bg
o = (aoo ) and 11, = ( Ol).

We now chooseg(s, %, 7,&") € S(1,9a.7), satisfying the same requirementy@s equal to one in a neigh-
borhood of suppt*) and such that the symbgh be equal to one in a neighborhood of supg( In
supp(y2), we obtain

g,+
P =
I A A A
1
Kolsupp@z) = (S 2 s
A—l pp _ 1
T d+ d,— d,+ d,—
Pp ~Pp Pp =Pp Jly=0

This yields

~1/.0 d,
AZ " +Bps" - K)

} -~/ 0. d.- ’
(p%+—,0% )(Pp+_.0p )xn:0+

detQ(O)|supp(x2) = _<3>71

Since-2indy, ¢t = p%”* +p?§’*’, we then have
9.+ + d+ K = }(pgf _ 9»*) + }ﬂ(pd,+ _ d,—)
Pp Pp =5Wp ~Pp >PWp T Pp )

We thus have In;(‘f‘;+ +,8p%*+ - k) > CAsr > 0in suppfyz) by (4.2). We find that| deto)lsuppgo) =
C(s)‘lA,‘rZ, with C > 0 by Corollary 3.23. It follows thak is elliptic in supp2). Then, there exists
lp € S((9)? A, ga7), such that o) o op(k) = op(x2) + PRy, with Ry € W((9 "2 A, P, gus), forpe N
large. This yields

~ . L5
4:29)(1%043) = opts)Gz + 0D0) 0 opE). + 0Pl o OPNG + op(1-x2) PRy (12659

We have the following lemma which proof can be found in Apprrd

Lemma 4.4. We have

(4.30) ) | < CI (D VIl + IVl + Dy Vlx=0rlo) -

~
op(1-1a) (124
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By Lemma 3.5, we then obtain
(4.31) K9 op(Ar)yo(uDlo + K ya(uhly < Clo(UDly + F2(uh)l
< C' (9% 0p(AT)G2lo + 9)? OP(AT)o:lg + (9)2 Gl + P (1D Vil + IVl + Dy V=0 b))
< C" (2 [PVl + h (JIDy VI + [ 0p(A7 Il ) + 2 Dy, Vix-orlo + ()2 OP(AT)8,lo + (92O, )
by (4.27) and (4.25) and the trace formula (3.1). From (4.2®&) same estimate holds for
K92 op(Ar)yo(U9)lo + K92 y2(Ule,  and also for [(s)2wolo + ()2 Op(A7)Wil,,
by (4.6). We thus have

(4.32) 02 ((9)% (Dx, OP(Y W)lxy=0+ o + (9)2 (OP(AT) OP(X W) =0+l + () #Wolo + ()7 Op(AT)Wilo)
< C(IIPVl + h(IDy Ml + 1 0p(A7)VI) + h?Dx V=0 lo + h2[($)* OP(AT )Gyl + N2 )2 O,).
We conclude the proof by combining estimates (4.23) anc{4.3 ]

4.2. Estimate in region @@;". Lety;(s X 7,&) € S(1, gm), With compact support w.r.x contained inv,

be such thatd(s, x, 7,&’,h" = 0) < —C < 0 in supp(y;)- This remains valid foh' > 0 with i’ sufficiently
small with possibly a dferent constan€. The construction of such a symbol can be done similarly to
that of y} in Section 4.1 with Lemma 4.1. Note that suppj is compact in the variables(r, ¢’) by
Lemma 3.25. We sgt™ := y; ok, with the map« defined in (3.2), and haye € S(1, gus) by Lemma 3.3.
From the remark preceding Corollary 3.23 we hﬁ%eg —Cn? in supp(y").

Proposition 4.5. Let K be a compact subset of V, with the neighborhood V chaggciently small ac-
cording to Proposition 3.24. Let™ € S(1, gus), with compact support in X, be as introduced above with
support in{,u?J < —Cn?}. With the weight function satisfying Assumption 2.2, there exist@ and hy > 0
such that

(4.33) h(I(9)2Dx, 0p( W + 1K) 0pCr) op(e M)
+h(K(9) (D, 0P(r W0l + £ (0PT7) OP(Y Wh-07lo)
< C(IPMI? + R2(ID P + 11 0P VIP)+Ds, Vheor F + N{i(S)* 0PI )6 + [(920,15)),
with I,LT" = Aor M, forO < h < h;, 0 < i < hg, and for v = t(vg,vd), Vi e Z(R x R7), with
v(s, )% e g2 (KY), for all s € R, satisfying transmission conditio(EC,).

In the microlocal region we consider here, through the stpgfoy~, because of Assumption 2.1, the
root configuration opr? corresponds to that illustrated in Figure 1c. With the mimeal cut-df y~ we
place ourselves in the regitﬁﬁ”, finitely away from&‘”pd. In the proof we shall make use of the Carleman
estimate at a boundary proved in Section 3.4 for both cotgubyaperator$? andPg.

Proof. We setu = op(y~)v. Because of the compact support)gf in the variables X, r,£) we have
X~ € S((s)”/\;”,g,\f) N S((s)”M,}”,gM;r) foranyu € R by Lemma 3.17. TherP,u = g with g =

op(x")PyV + [Py, 0p(xy7)]v. By Lemma 3.17, we haveP|,, op(xy~)] € hDy,¥(1, grr) + 'Y (I'r, grs) and
we have

(4.34) llgll < C(IPVIl + hIDy VIl + hilop@A)VIl), T = A or M.
The transmission conditions satisfied ifyandu? are

(TC,) W)y =0+ = Wikzor + O,y  C¥(Dx, + indx,¢%)WClx=0- + C¥(Dy, + indx,¢?)Wlx,=0 = G1,
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with 6, := 0p(x~)b,lx,=0- and withG; given by
G1 = [¢%(Dx, + indx,¢°), 0p(x )Vl=0- + [€*(Dx, + indx,¢"), 0p(x NVlx,=0+ + OP(x)Oyly0r
and satisfying
(4.35) (9)2G1lp < Ch(S) Vs o0l + CHS) 2@,

We apply the Carleman method to the conjugated operﬁﬁmnd Pg. By Assumption 2.2 and Proposi-
tion 3.26, we then have

2 2
(4.36) h(Iks)? opM7)u¥||” + (9)> Dy u¥|") + hReZ* (uk)
+ W2 Re(Dy Ul oo + L¥UM v, YUMo ), < Clighll”,

for h andh’ sufficiently small, WhereLZd € 2(Ms, gug) and L?;‘ € Y((9), gu.r). We setyo(ut) = utly _o
andyy(u¥) = Dy ut| _o-. Observe that we have

2 2
(437)  |((Dsut + LEu) oo, LUble0r) | < CH (Iya(u)ig + [ op(ir)yo(ut)l)

The quadratic formsg% are given by (see (3.23))

@39 Aav=((5 g0 G,
:=B%

with o(BY) = 2(c%)ndx %, o(BY) = o(BY) = 2(c*)?q¥ ando(BY) = —2(c%)2(9x,¢")q.
We make use of transmission conditions (J@nd write

s ()= (3 60 ()
:=Ho

whereg = (c?/c% -0+ € S(Lgur), K = —i(n0x,¢ lx=0+ + B¢ Ix=0+) € S((S).gur) andG; =
—in(0%,9%)0,.,- + C%n;o G: that satisfies the estimate

(4.40) (2G|, < ChZ(IDy VIl + IKSVII) + C(( 20, 4|, + K 2O,y),

by (4.35) and the trace formula (3.1). We obtain

e = (89700). (760 + VorB e, o,

whereo(B9) = lo(H9)o(BY)o(HY), and

e T e e

G/ G,
(oot et ),
( O~ ) " \Oox- 0
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which, by Lemma 3.8, can be estimated as follows, with (4.40)
(4.41) U (ra(u), yo(u), 6., GY)I
1 2 1 2 1 2 1 2
< C(I()? op(M7)yo(ulp + k)2 y2 (g + )2 Gy + ()2 Op(M7)b,- o)
s dy? 1 iy 2 2
<C (|<s>z Op(M7)yo(U®l + KS)2y2(u?)lo + h(IIDx, VI + IKSVI?)
1 2 1 2
+1(9)! 0PI g + (910,15

From theyDO calculus we find

BY = ( é’g é’?)
=~ \per PO
Bl BZ

with o(BY) = 2o (BY) € S((S),gmr), o(BY) = o(BY) = —B(o(BYk + o(BY)) € S((SMy,gms) and
o(B)) = K2 (BY) + 2 ReR)o(BY) + o(BY) € S((SKMZ, gw7). By Lemma 3.8, it follows that

w e )

With Lemmata 3.5 and 3.7 we chooggu®) andy;(uf) in L(R x R™1) such that

1 d 2 1 d 2
< C(K92ya(uly + (9)% op(M7)yo(ulo )-

1

you?) = (972 opM;H70(U?),  ya(u?) = (9725 (u).

The quadratic forn#%(u?) can thus be written as

BY  BY\ (y1(ud)) (52(ue
(4.43) %’d(“d)z((éff/ Bé)(zégﬂd;)(zégﬂd;))o
\’:—-—/
:=Bd

whereo(BY) = 2(c%)2(s) ndy,¢% o (B) = o(BY) = 2(c)X9) oM * ando(BY) = —2(c?)%(s) (0, ¢*)agM;2.
We haveB € ¥(1, gwr) and we find det¢(B%) = —4(c%)*(ndx,¢%)?(s)M7) 2 8, with 1§ as defined in

Section 3.3. It follows that in supp() we have detf(B%) > C > 0. Sincedy ¢ > 0 it follows thato(B)

is positive definite. From the Garding inequality (see Len®183 we deduce that for arly > 0 there exists

a > 0 andh, such that for O< h < h; we have

(4.44)  aRes(u) 2 K'( 17Ul + oI5 )~CH(IMI + IDx VI + D, Vix,-o-12)
1 2 1 2
> K((9)2y2(uDlo + K92 0pMy)yo(ulg )CH(IVII” + 1Dy V> + 1D, Vlx=o+5)-

by Lemma 3.5.In fact, introducing an additional microlocal cuffdunction 0< y, < 1 that satisfies the
same properties as and equal to 1 on supp(), we write

cBY =0 +7, B =0c(BY2+ (L—yx2)ld, = (1-x2)(c(BY - Id).

We see thab? > C Id, with C > 0, and supp("n supp(y~) = 0. Arguing as we did for (4.29) in the proof
of Lemma 4.4 we obtain the remainder terms in (4.44om (4.41), (4.42), and (4.44) we find that

(4.45) aReZ () + ReZ%(u) > C(I(9) 2ya(ulp + (9 0p(Mr)yo(uhly)

1 2 1 2
= C'h(IID VI” + I(VIP)~C' DDy M=o+ 13 = C'(KKS)? 0p(M7)by- I + (92Ol
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for a sufficiently large. From the transmission conditions (4.39) W&am

1 o2 1 o2 1 N 1 NG
(4.46) (K92y1(u)lo+ K2 0p(Mr)yo(W)ly ) < C(KS)2ya(Ulo + ()2 0p(M7)yo(u®)lg )
+ C(ID VI + IKMI) + € ((9)2 0Py Iy + (920,15 ).

With the linear combination(4.36¥ + (4.369, for « sufficiently large, and (4.34), (4.37), (4.45) and (4.46),
we can thus obtain

(4.47) h(I(92Dx, 0p(e W + ()% 0p(M) 0p(x )
+h(K(9) 2 (Ds, 0P(r Whi-0rlg + ()% (0PM7) 0P(r W07l
< c(upwvu2 + WD VI + | op@ V) +h* Dy Vi —o+ 3 + h([(9)? OP(M7 )|y + |(s)%®¢|§)),

withT = A or M, by takingh sufficiently small. With Lemma 3.19 we can repladg- by A+ in the I.h.s. of
(4.47). By Lemma 3.17 we havés)? op(M7 )6, |, < KS)2 opr)b,l, with T' = A or M. We thus obtain
the sought microlocal Carleman estimate. ]

4.3. Estimate in the neighborhood of the regiona%"’pd. Let (s x, 7,&') € S(1,9,7), with compact sup-
port w.r.t.x contained inV, be such that in the support gf we haveu3(s x,7,&,h = 0) > C > 0 and

(0% 9% 2Ix=0r — 3lxm0r =0 = C' > 0, in supp(x?).

These two properties remain valid fior> 0 with i’ sufficiently small. The construction of such a symbol
can be done similarly to that gf: in Section 4.1 with Lemma 4.1. Note that supf) is compact in the
variables &, 7, £) by Lemma 3.25 ag is bounded. We set® := x9 o «, with the mapx defined in (3.2),
and have® € S(1,gw.s) by Lemma 3.3. From the remark preceding Corollary 3.23 Wﬂﬁh% > Ci?in
supp(®). We also have

(4.48) (10x,9") P x=0+ — Kalx=0- > C'n? > 0, in supp(®).

Proposition 4.6. Let K be a compact subset of V with the neighborhood V choggaisntly small ac-
cording to Proposition 3.24. Let® € S(1, gms), with compact support in X, be as introduced above with
support in{y% > Cp?} and satisfying4.48) With the weight functio satisfying Assumption 2.2, there
exist C> 0 and h, > O such that

1 0 2 1 0 2
(4.49) h(l(s)2Dx, op(xMI" + I($)Z 0p(T7) op(x V")
+ h([(9 (D, 0P k<0rlg + (9 (OPIT7) 0P x<or )
< C(IPME + WE(ID MI? + 11 0PI VIP) + WD Vot 3 + h{K(9)F 0PIy + (9 O41g)),

whereIl, I” = Aor M, for0O < h < h;,0 < h < hyg, and for v= t(vg,vd), Vi e (R x RY), with
v(s, )t e €= (KY), for all s € R, satisfying transmission conditiogsC,).

With the properties we require arf, we may microlocally focus on a small neighborhood of theéameg
D@”Ff’ In particular, close tcﬁ”,,fj we have)u?J small, which allows to have (4.48) by the properties assuomed
the weight function (see Assumption 2.1). In such a smatjmedrhood ofZ, the root configuration of

pZE corresponds to that illustrated in Figure 1b.
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Proof. Because of the compact supportydfin the variablesX, 7, £) we havey® e SUHAL, grr) N
S((s)/‘M;”, gms) for anyu € R by Lemma 3.17. In supp®), for someC > 0, we have

Impp* >CI'7, Impy~ <-CI'y, T=AorM.

We setu = op(xy°)v. Then,P,u = g with g = op(x°)P,Vv + [P, 0p(x%)]v. By Lemma 3.17 we have
[P,.op(x%)] € hDy,¥(1,gr.7) + h¥(T'r, gr7) and

(4.50) Ig¥|| < C(IP¥V¥|| + hIDx VIl + hilop@7)vll), T =AorM.
The transmission conditions satisfied ifyandu? are
(TC?) W)k cor = Wlxm0 + 6,0,  C(Dx, + indy,¢®)Wlx,—0+ + €Dy, + indy,¢* )0+ = G1,
with 6,0 1= 0p(x°)f,lx,—0- and withG; given by

Gy = [c%(Dx, + indx,¢%), 0p(x ")V x,=0- + [Cd(Dxn + inawd), Op(/\,/o)]vd|xn:0+ + Op(/\/o)®¢|xn:0+,
and satisfying
(4.51) (9)2G1lo < CHI(S)2Vix,-orl + CKS) Oyl

Because of the root configuration ﬂéi, we may apply to this operatﬁﬁ and tou? the method of Calderon
projectors of Section 4.1 and follow the notation of the fifd®roposition 4.1. We thus obtain an estimate
of the form of (4.23), namely,

(4.52) K2 Dyl + 1K) op(Ar)ull < C(IPVE] + h(IIDx Ml + [l opE7 M)
+ 2 ((92y1(W)ly + K9 0p(Ar)yo(U)lo) + N2IDxVix-0lp).  T'= A or M,

since estimate (4.3) is now replaced by (4.50). We recalhth@®) = u*|y —o- andy(u¥) = Dy u*|y o+
We also have the following trace equation, of the same for(d 2gl),

(4.53) yo(u) = 0p@®)yo(u) + op®?)y1(u¥) + G3,
with the operators opf) and opp?) with principal symbols

o

9 _ Pp 9 _ 1

8 = - (Xl wi] . b= ()(1 ﬁ]
¥o=0* Pp ~Pp

Py -y
wherey1(s, x, 7, &), satisfies the same requiremengésand is equal to one in a neighborhood of sygh)(
In fact, by Lemma 3.17, we haw € S(1,gr) andb? € SO Y, grr), I = A or M. We haveG) =
(Epg® + 07 + 09)Ix,-0+, With g1 andg; satisfying the same estimates as in (4.10) and (4.18). I ligc
Lemma 3.16, we have, for dlke R,

>

Xn=0"

(4.54) IKs) Op(M?)gull < CIKS) Op(A*)aull < C'M2|vlI,
and
(4.55) 1K9)' Dy, OPM#)Gall 2qezny + 19 OPMZ)ZGell 25z

< C(I(9)' Dx, OP(AZ){Gall ogaczny + (S OPATZGal, ozny)
< C'h?(|IVIl + IDaVIl + |Dx,Vix,=0lo)-

Lemma 4.7. We have € S(A2,gx) N S(M~2,gu)
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Proof. We use the notation of Proposition 4.2 here. We now chgg&ex, 7, £) € S(1, g,) equaltooneina
neighborhood of supp) and tozerofor |(r, £)| sufficiently large, with moreover suppg)m(ag)‘l({O}) =0.
These conditions are compatible from the choice made fqo(sf) and Proposition 3.24. In fact for any
U ER, ya€ S(A#, 0)) NS(MH, gm). We sety := ya o k, with the correspondence mapléfined in (3.3),
and havey € S((SA™,ga) N SKSHHM™,gm) by Lemma 3.3.

The analysis of Proposition 4.2 carries through; the synabdtr is defined according to (4.8). In
particular we findgy € S(A=2,gx) N S(M~2, gu) by Lemma 3.17. The iterative construction of the symbol
of Ep, gives the result with Lemma 3.17. m

Continuation of the proof of Proposition 4.6. With the trace formula (3.1), Lemma 3.15, (4.50) and (4.54)—
(4.55), the functiorG3 thus satisfies

(4.56)
K$)2 op(T7)Gl, < Ch#(1IDy, op(T7r)(Epg® + of + O 2 gy *+ (9 0PI ) (Epg? + g?+§gS)I|L2(RxRQ))
< C'h3 (|| OpT?)(Epg® + G + 1D, OPT7) O 2z + (S OPCA)EEl 2 gz
< CH2 (|IPOVA] + h(IDy VIl + [ op@ V) + M2IDy Vi -0rlp) . T.T7 = A or M.
We now use relation (4.53) in connection the transmissiomnlitmns (TC{?). With (TCf’), we first write
op®?)y1(W?) = - op®)(Bya(U%)) + op®?)(kyo(U?)) + 0p®H)G1,  yo(UF) = yo(u?) + 6,0,
whereg = (¢?/c9)y,=0+, K = —in(dx,¢%x=0+ +8 I, ¢ Ix=0+) aNAG1 = —indy, %, o0 + ﬁ G; that satisfies
(4.57) ()2 Gl < ChE (IDy VIl + IKII) + CK() 26,0l + (9)F Oly).
by (4.51) and the trace formula (3.1). From (4.53), we obtain

(1d - op(@®) - op(?) o K) yo(u) = - op(E°) (B y1(U)) + 0p®?)G1 + (0p@®) — )60 + G,
‘=0pk)

wherek stands here for the multiplication operator by the funcl@iven above. Let(s X, 7, &) satisfy
the same requirement g¢, and be equal to one in a neighborhood of sydpénd be such that the symbol
x1 is equal to one in a neighborhood of supp). In supp(y2), the principal symbol of is given by

9+ _

o k
kolsupptrz) = —gr—g= € S(L.9a7) N S(L gur).-

Pp ~Pp

Since —2indx¢% = pp’ + pp , we then haven™ — k = (op" — pp )/2 + inB dx.¢%x=0+, Which yields
Im(p%* — k) = CI' in supp(y2), with T = A or M, because of the root configuration and the sigéi,of.
We thus see that is elliptic in suppfy2) for bothyDO calculi. We choos& = A or M. There exists

| € S(1,9r7), with | = Z?:o hilj, with I € S(T;!, gr.r), andlo = x2/xo, such that
0p(p) © 0p(k) = 0p(x2) + h*'R,,
with R, € (I, ", gr.7), for p large. We thus obtain

(4.58) yo(u®) = —op(l) o op®%)(By1(U%)) + G,
with
Gs = op() o op®?) Gy + op() © (0p@E°) — 1d) 6,40 + 0p() G3 + (Id — 0p(x2))yo(u) — hP Ryyo(u?).
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From theyDO calculus, since suppEy2) N supp(®) = 0, we obtain
(4.59) (9% 0p(L;)Gsly <C(h2IP2VA]| + h2 (IDV| + | op(C)VI) + h Dy Vix,-0- o
+ K92 0pE )b, 400 + (970, L)). T'=AorM.
by (4.57) and (4.56). We thus have
(4.60) [(9)? opC)yo(u)ly <C(I(S)2ya(U)lo + h™2IPAVA|| + h (IDVI + [ op 7)) + h# Dy, Voo
+ K92 0P )b, 000 + ()70, l). LT =Aor M.
We now apply the Carleman method to the operag)and toud. By Proposition 3.26 we have
(4.61) Il > Ch{is) opMAWI” + k92 Dy )
+ hRe#(U) + W Re(Dy, Wlx-0 + LU o, LA o0+ ), -

for h andh’ sufficiently small, where.9, Lg, and % are as given in the proof of Proposition 4.5. We
observe that we have

(4.62) N |((Di U + LU0, LW oo ) | < CHP (Iya(u)lg + | 0P M) yo(u)g )
< C2 (Iya(U®ly + [0pE7)yo(Ulo ) + V(M + Dy VI, T = A or M,
by Lemma 3.19. WittBY defined in (4.38), and (4.58) we obtain
2 = (8" 0 BT o Sya(u), ya(u)), + U(ra(u?), Ga),
with

5= [optyooptn
—op() o op(?) o BJ°
with B standing here for the associated multiplication operatwd, where

N AR MK RCRI

With Lemma 3.8 and Young'’s inequality we obtain

1 2 1 2
U (y1(u%), Gs)l < el(9)2y1(u%)lp + Ccl(S)Z 0p(Ms)Galos
which by (4.59) yields

(4.63) UG, Go)l < sl ya(uhly + Co(HIPSEIR + h(IDAME + | 0P VD) + 1D Vo2
+ ()2 op(Mq—)9Wo|(2) + |<s)%®¢|(2)), I'=AorM.
In supp(x?), the principal symbol 08* o BY o S is given by
% = ()2 (200" - 408 Relob?,) - 262 lob?, (@, 6"
In supp(®) we have
(4.64) 0Bl Zyeor = |8 lsmor — K = ((Repf™)2 + (Impd™ + nd g + B ™)

Xn=0%
-2 ,+
Re(ob?,) llob®;[Ix,=0- = Repd Iy, o+-

" € S(<S>» gM,’T)'

Xn=0



CARLEMAN ESTIMATE FOR NON SMOOTH COEFFICIENTS 33

We then obtain

z

@ = PN (67 1ok, 17 - 20fj5 o) Repf” - o)

Xn=0*

2
= 26 10b, (10,6 (5 (lob,172 = (Rep ")) = + (i)~ 7 Repf ™))

> 287 [l Pndx, ¢ (7 05" —ﬂ%)'xn:0+ >C(9)>0, in suppf?),

Xp=0"

by (4.48) and since
106%1 e = (Rep"Vhuco: = (5UmpB” = Im o) + o)’ = @i Pheor
as Impp” +Impp~ = —2ndy,¢% and for someC > 0, by (4.64), we have
(4.65) l0b® =0 = 172 (017 Repg™)? + (7t Impg ™ + B¢ +ﬂ5wd)z)_l'xﬁo+ > Cn
asps” ok = n1py" remains bounded in suppf). Hence, the Garding inequality (see Lemma 3.9) yields

1 2
(4.66) Re(S" 0 BY 0 Sya(u), ya(u?)), = CK92y2(U")lo—C"h?Dx, Vix,=o+ i3,

for hsufficiently small andC > 0. The remainder terms are obtained by introducing an additimicrolocal
cut-of function as we did for (4.44) in the proof of Proposition 4Gmbining (4.66) and (4.63) we thus
obtain

1 2
(4.67) Re#%(u%) > Cl(s)2y1(u%)] — C’(h—1||F>§iv@’||2 + h(IDaVI? + [l op@C7)VII?) + h®|Dy, Vix,—o 2
1 2 1 2
+ (9% 0p(M7 )b, 00y + ()2 O,l). T'=AorM.

by choosing: sufficiently small in (4.63).
From (4.50), (4.60), (4.61), (4.62), and (4.67), and by Len8119, sincei = op(y°)v, we obtain

(4.68) h(I(9)% opCAWI + (9 Dy t¥Il') + h(S)2 0pTr )70l + (92 (uH)
< C(IPVI” + W2(IDVIP + 0Py M) + WDy V=013
+ (9 OpAT), ]y + K9 0PI Yy p0ly + (910,10,

with I,T” = A or M. From the transmission conditions (j*()we obtain

1 g 2 1 g 2 1 d 2 1 , d 2
(4.69) (K92y1(W)lo+ K2 0pCr)yo(ulg ) < K2y (uDlo + K2 0p(Ty-)yo(u)ly)
+ CR(IDVIP + IKMI) + C (692 0pT7 )0, ly + (90,1

with I,T” = A or M, by Lemma 3.19. With Lemma 3.19 and (4.69) we thus see thabpepiinear
combination of (4.52) and (4.68) yields the sought part@il€nan estimate fdr sufficiently small, since
|(s)% opI7)b, 40l < C|<s)% OP(F})GWIO, I,I” = AorM, by Lemma 3.17. [

4.4. Proof of the local Carleman estimate of Theorem 2.4We choosg ™, y~ andy® with values in [Q1]
that satisfy the properties listed in Propositions 4.2 ¢h& 4.6 respectively and furthermaresy = +x° = 1
in a neighborhood oK x R", which can be achieved by Proposition 3.24 and Assumptibn 2.
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We recall thatd = diag(?, ¢%) andv = €®"w. Since 1- (v* + x~ + x°) = 0 in a neighborhood of
suppv), we have

(S92 D, Vlx=0+ I < 192 D, 0P(x W0+l + 1(9)2 Dy, OP(x W0+l
+ ()% Dy, 0p(x)Vlx,=0+ lg + NPI(S)2 Dy, RoVl=0+ s

with R, € ‘P(A,}p, Oa7), foranyp e N. SinceDy R, = RyDy, + [Dy,, Rp] we find

(S Dy, Vlxy=0+ Iy < 1(9)% Dx, 0p(x Wlx,o+lo + ()% Dx, OP(x " Whxe=olo
+ (82 Dy, 0p(x°WVhx,=0+ Iy + Ch(I(S)2 Dy, Vg + K92 Vo).
We also have
(92 Op(A7VIx,=o0+l < (92 OP(AT) OP(x Wxec0+ly + (S OP(AT) OP(x “Wx=0lo
+K9)? 0p(A7) OP(XWixy=0+ o + ChI(S)*Vixy=0t s
and similarly
()2 Dy, Vil + 1()Z Op(As VI < (S Dy, op(x VIl + (S 2 op(As-) op(x VI
+ ()2 Dy, 0p(x VI + 11(S)2 0p(As) op(x VIl + (S Dy, Op(x WMl + 11(S)Z 0p(As) op(x )l
+ Ch(I()Z Dy, VIl + (S 2 Vix,=0+11)-
These three inequalities together with (4.1), (4.33), @) (the latter two expressed inthe cBsE = A)
then yield
1 2 1 2 1 2 1 2
(4.70) (|9 ?Dx V" + K97 0p(A7)VI) + h((S)2 D Vixy=0+ o + ()2 OP(ATWix,=0+ o)
1 2 1 2
<C (||F>¢,v||2 +h(|()? op(M7 )8, I, + |<s>f®¢|0)),
for h sufficiently small, since by Lemma 3.16. we ha(/xi}% OP(AT)blg < C|<s)% op(M7)8,l,-

We now aim to introduce the terhﬁs)g Dgv|| in the L.h.s. of the previous inequality. To do so we make
further use of Proposition 3.26. By Lemma 3.13, on both sadeke interface we have

2 2 n 1 2
(4.71) (KA +IK DN + 3 193D v*I)
J:

+ hReZ% (V%) + h? Re(Dy V¥l -0 + LiV¥lx0r, LiV¥l0 ), < ClIPEVH%,

with %% defined in (3.22) antlizd € (Mg, gms) and LZ“ € Y({s),Om)- By Lemmata 3.8 and 3.16 we
have
(4.72)

1 2
02 |(D V¥lgeor + LEVEL oo, LVl o) | < CIP (I(9)2 0PV Wheyoor |y + (9 D Vily-01ol(9) s lo)

) 1 2 1 9 2
(4.73) < C'1? ()2 OP(AT)VIx=0+ o + ()2 D, VElx,=01lo) -
and
(4.74) hRe % (V) = 2h Re(a(s)Ds(c* Dy, V) ¥lx,-0+ v%|xn:0+)0 +hReZ%(vh),
with

~ 2 n 1 2.
(4.75) hIZ%(W%)] < Ch([(S)2 V-0l + _zl|<s>fijv|xn:o+|o).
J:
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For the treatment of the first term in the r.h.s. of (4.74) wieW [BDLO7, Equation (1.14)] and we sum
the contributions of thed andd sides”:

2h Re(a(s)Ds(c? Dxnvg)|xn=0+,vg|xn=0+)o + 2h Re(a(9) Ds(C* Dy, V) =0 vd|Xn:0+)0

= 2hRe(a(5)Ds(cD5 VP + "Dy V) o0+, V0 ), + 2N Re(a(8)D(CDs, V) 0 ),

= —2hRei (a(8)Ds((C%0x,¢° + €05, ¢ lxy=0-Vlx,=0). vd|,wzo+)O + 2hRe(a(s)D<O,,, Vizo),

— 2hRei (a(8) D705, #%) =0+ ), Vix,=0+ ), + 2h Re(CIDx,P)lx,-0+» Ds(a(98)) -
making use of transmission conditions (JJCWe note that
2h ‘Re(a(s)Ds@)w, Vx=0- ), = Rei (a(8)Ds((C0x,9%) =0+ ), Vixi=o- ), + RE(CPDy V) o Ds(a(s)9¢))0‘
3 2 1 2 3 2 3 2 1 2
< Ch(|<s)zv|Xn:0+|o + (S)2 D, Vix,=0+lg + {S)20,ly + {S) 2 Dbyl + [(S)2 Ds®¢|0).

and, agc99y, @9 + c“axntpd)L(n:O+ > C > 0 (see (3.11)),

— 2hRei (a(8) D705, ¢? + 0,6 lx,=0Vlxi=01), V=0t ),

a(s) dq d 2 ,

- _hR hH 9¢l(c98y ¢ —0Vx-0¢| dsd

o 0+ o O(0i6? + Cnacor o[ ds ok
a(S

= h?h Re [ n?(c%y, ¢ + cdawd)@zoﬁs( S )|vd|,wzo+|2 ds dx,

Tl(cgaxn‘Pg + (;d((jxn‘ﬁd)|xn:0+

by integration by parts. It follows that the sum of &l first terms in the r.h.s. of (4.74) can be estimated
by

(4.76) 2| Re(a(S)Ds(CODx,V?)lx=0+» Vlx,=0-Jo + Re@(9) Ds(C Dy, V)lxy=0+, VIx,=0+ ol
2 1 2 2 2 1 2
< Ch((9Vlx=0+lo + K9 D, Vlx=o+l + (92,1 + (92D ly + (92 DsO, o).

From (4.74), (4.75) and (4.76) we thus obtain
2 n 1 2
(4.77) h| Re9(\9) + Re (V)| sCh(|<s)§v|xn=o+|o + _zl|<s>a Dy Vlx,=0+ Iy
]:

3 2 3 2 1 2
+ ()26l + ()2 Dbyl + |<S>2Ds®¢|o)-

With (4.71), (4.72) and (4.77) we have
(4.78) hike D" < C(IPMAI7 + IPAVI” + h((9) 0p(ATIVheorly + (9 Do Vioeorl)
+h(K9* 0p(M7)ALly + [(93DB,1p))-
With Lemma 3.13, combining this estimate with (4.70) we abta
4.79) h(Ke M + k9D + j§l||<s>% D VI') + W (9 Dy Vix,corlp + (9 OP(AT W0 lo)

2 1 2 12 1 2
< C(IPME + (9 0P~ + ()0, + 19/ Ds0,y))-
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Ficure 2. (a) General geometrical configuratiav: is a compact manifold with bound-
ary. (b) A particular caseM is an bounded open subsetit.

Again with Lemma 3.13 we obtain
3 2 3 2 0 1 2 3 2 N 1 2
h(II(S)ZVII +(s)2DgVI| + lel<5)2DxiV|| )+ h(I<S>2V|>g1:o+|o + le<S>2ijV|xn:o+|o)
= =
2 32 3 2 n-1 1 2 1 2 1 2
<C (I|P¢VI| + h(|<S)29¢|0 + (9)2Dsbylg + _Zl [(8)2Dx; b4l + K92 Oyly + [(S)2 Ds®¢|0))-
J:

Sincev = €"*/"'w and observing that we have
k)27 "Dawllg < 1K(9)% Ds (€ W) 1| + N1I($) 2 €7/ (D7) Wil < IS Devllg + CIKS) Vi,
and
K 2™ Dy Wil < [K8)2 Dy, (7°/"W) || + () 21(9, @) €/"wi| < CI()? Dy VIl + CIKS) 3Vl
and similar inequalities for the norms at the interfége = 0%}, and recalling the forms &, and®, in
(3.13), which gives
(92 Dab Iy < (WY P&/ (aan)eblo + ()P Mactly < C(9 e ey + C(HH)2(s) e Mo,

and similarly

1 2 1 2 1 2
(9)2Ds@,l, < CHP(9)2€/"@), + CH(N')?(s)2€7/"38),
we can conclude the proof of Theorem 2.4 (moving back to thatiom before the change of variable

Xn — —Xn in V9 that was performed in Section 3.2). The addition of the tla?ers)‘%e"*"/hAZWH2 in the
l.h.s. of (2.10) is performed as in the proof of Propositia?a3 ]

5. A GLOBAL CARLEMAN ESTIMATE

Let M be a compact connecté&™ manifold with 4> boundary, and foj e L = {1,--- ,N}, letQ; c M
be an open subset di. We assume tha_nj is a compact connectefl™ manifold with 4> boundary and
thatM = Jjo. Q;. Fori # j we setli; = Q N Qj, and we assumg; c dQ; N 9Q; andlij € M \ oM.
We also sel’j = 0Qj N M. We assuméQj = I'j U Uiejy Tij anddM = (Jje T'j. We also lefl'jj € Q;
be a¢> manifold without boundary such that dif; = dimM — 1 andQ; \ Tj; is connected. Finally, we
assume thab is an open subset @1; satisfyingw € Q;. The geometric configuration we have described
is illustrated in Figure 2.
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Lets; € ([0, T] x Qj \ Tj;, R). We furthermore assume that, on both sideEpfs; is smooth up to
;. The codficients; can thus exhibit a jump acro$s; in Q; (see Figure 2a wher® can have a jump
acrosd s4). We defines € L¥([0, T] x M) by 6ljo.1jx(@\r;;) = ¢j- We assume that @ min < 6 < dmax < 0.

Let nowg be a%> metric onM and setA = % ik D% (9" 1/Gd0y;). In local coordinates, the operator

A has the form (2.1), modulo lower order terms. ke j we denote bya;,’—ij a non vanishing vector field

defined in a neighborhood of; and normal td’jj. By d, we denote the normal derivative oM. If vis a
function defined in a neighborhood B, for xo € I'jj, we shall write

Vir (%) = lim v(X), andVvlr-(X) = lim v(x).
4 X—Xo, XEQ; Y X—Xo, XEQ;

Lety be a function such thato,\r;, € ¢*((0, T) x ﬁ, \ T'j;) and assume that on both sidedgf, y is
smooth up td’j;. We further assume thsitsatisfies the following problem,

Py=0oy+Ay= fjin (0, T)xQjforall j, YyloTxem =00n(QT)xaIM,
Ylomxr; = Ylomxr; + 6j, (51%)|(O,T)xl‘i"j = (&%N(O,T)xrﬁ +0jj, on(QT)x T, foralli<j,

(5.1)

Theorem 5.1. There exist a continuous weight functigrn M, and C> 0, h; € (0, hg], such that for all
h > 0, with h+ h/T < hy, and for all y satisfyind5.1)we have

2 2 2 2
(5.2) hilgEe®Myily + Mt/ Myl + bl 2 ayly, + ol 2 e M Ayl
2 2 2
+ S hnt eyl + 3 Rt (Y[ + P It arylawly
i i<j i

i<

3 2 3 2 1 2 1 2
< C(hllpze™/Myll,, + W)€/ fl, ) + cz (hinze™/M 6l + Pl 205, + h*mze/"vey .
1 2 _3 2

+ W¥zehey |, + hp2e 0@yl ),

T T

wheren = T2((T - 1))~ and|WllZ = [/ W, X)[Pdxdt, W2 = [fw|r|?dS dt, where dS is the surface
ou or

measure off.

We denote by a complete set of vector fields. The form of the inequalitysioet change if we choose
a different set of vector fields. The covariant derivatives aresaipte choice.

Remark 5.2. Below, for all j € L we shall construct a weight functigr, on each open s€l; (or rather in
a somewhat larger set), and then we shall define the globghivieinctiony as the supremum of thg’s,
which is continuous but will not be smooth in a small neighitmard of the interfaces.

Note however that if the geometry permits the constructianglobal continuous weight functianthat
is smooth except at the interfaces and satisfies the sytti@tly condition everywhere and Assumption 2.1
at the interfaces, the global Carleman estimate can bersatén a much simpler way by patching together
local estimates that are derived directly with the weighictiony (see for instance [HOr63, Lemma 8.3.1]
or [LLO9]). The cases presented in [DOP02] permit the carasion of such a global weight functidriThe
construction below allows to address more general geoesefdiote however that we do not construct a
global weight function that is valid for the proof of all thecial estimates. The final global weight function
results from the supremum of the weight functions used feldlcal estimates, hence the non-smoothness
at places.

To prove Theorem 5.1 we construct weight functions allowim@pply the local Carleman estimates
proven in the previous sections.

3Some of the cases presented in [DOP02] can be treated byttbduntion of two global weight functions. Then for both wfei
functions local estimates can be obtained and patchedheget
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Ficure 3. The open subse\éfj, ¢=0,1,2, 3, in the neighborhoow;; of [§;.

We place ourselves in a neighborhogglof the interfacd’j; in M. ForV;; sufficiently small there exist
> 0andg;j : Vij — Tij X (—¢, €) a€¢*-diffeomorphism such that

¢ij(x) = (x,0) for alli, j € L and allx € Tj,
¢ij(Vij N Qi) = Tjj x (&, 0), $ij(Vij N Q) =T x (0,&) fori # j,

We write ¢ij = (¢}, 47) wheregl : Vij — Tjj and¢? © Vij — (~¢,¢). In the casé # j we may assume
Vij = Vj andgj = (¢}, ~¢7). Note that the choice of the sign ¢f; on both sides of j; is arbitrary.

In a similar way, there exis¥j, a neighborhood ofj in M, ¢ > 0 and¢; : Vj — I'j x [0,&) a €*-
diffeomorphism such that;j(x) = (x,0) for all x € I'j and we writeg; = (¢j1, ¢l?) Where¢} :V; —»Tjand
¢12 . Vj e [0, 8).

We choose small enough such that the distance between any two/get,, i, j, k € L, is positive. We
introduce
—(+ 1)

5
The local geometry we have described in the neighboriod illustrated in Figure 3. For eaghe L we
shall construct a weight functiaf, on a domain related tQ; such that, firstlyy; satisfies Assumptions 2.1
(and thenp; = e¥i — e with K > supy; will satisfy both Assumptions 2.1 and 2.2 for> 0 suficiently
large by Lemma 2.3), and, secondly, local Carleman estsree be patched together.

Vi‘jz{eri,-; <¢i2j(x)<_?€8}, £=0,1,2.3.

We define sets of indices in the following way. Ugt= {1} andJy = {1}. If Jx_1 # L we set
Ik ={j e L\ Jk-q; i € i1, Iij # 0} and Jx= J-1U Ik

In the example of Figure 2a we hale= (2,4}, J; = {1, 2,4} thenl, = {3}, J» = L. In Figure 2b we have
1 =1{2}, J1 = {1, 2}, thenl, = {3,4}, J» = {1, 2,3, 4}, and finallylz = {5}, J3 = L.
This sequence of sets satisfies the following propositidre @roof can be found in Appendix A.

Proposition 5.3. (1) The sequence is finite: there exisgsekN such that ¢, = L.
(2) The setsy, 0 < k < ko, form a partition of L.
(3) Yk e{0,...,ko} we have | # 0. By convention we sef 1 = 0.
(4) Vke{0,...,ko}, if j € Iy and if i is such thal’j; # 0 thenie lx_1 U I U lii1.

We now state the proposition that establishes the existefmgpropriate weight functiong;, j € L.
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Theorem 5.4. Forallk € {1,...,ko} and all j € Iy there existgj : Qj U Uie,ui,., Vij = R, @€~ Morse
function, that satisfies

(1) {xe QU Uiayut, Viis V¥i(¥) =0} C Uia,, lei if j #1(@andc wif j = 1).

(2) The functiony; satisfies Assumption 2.1 igVor i € I U ly.1.

(3) Fori # j,ifi € Iy, theninfxe\,& i(x) > SUBcev Ui(X) andsug(e\,iaj ¥i(x) < im‘xe\,isj vi(X).

(4) Fori# j,ifi el thenim‘xe\,ilj vi(X) > SUBev: ¥i(x) andsup(e\,ili i(X) < ianE\,ili vi(X).

(5) The functiony; satisfied the conditiofl,y; < 0onT;.

Proof. We start by recalling some facts on Morse Functions. WUebe a domain of a manifold, let
Yo € €~ (U,R). In any neighborhood afo in (U, R), there exists a Morse functiofy. Actually, the
construction of such a Morse function can be done by onlyupleirig the functionyo in a neighborhood of
its critical points.

The Morse functiony; has only a finite number of critical points. We recall how tleay be all “moved”
to a particular location: le¢’ c U, we can construct a Morse functign € *(Q) out of 1 such that
the critical points of), are in#'. It is suficient to explain how one critical point @f; can be “moved” to
0. Letx; be such a critical point, and letbe a%’> path betweernx; and a pointxy of &, with a chosen
such that Vy1)(a(t)) # 0if t € [0,1). Let X be a smooth vector field with support in a neighborhvoaf
a([0, 1]) and such thaX(a(t)) = a(t) (we choosex(t) # O for all t € [0, 1]) and withV suficiently small
to haveVy(x) # 0 if x € V \ {x1}. We solvex(t, 2) = X(x(t, 2)) with the initial conditionx(0,2) = z. The
solution exists for alt € R andz — X(t,2) is a smooth dfeomorphismx(t,2) = x(-t,2). From the
unigueness of the solutions we hax(g X) = a(t). We then set/»(2) = ¥1 o X(1, 2). Observe then that the
critical pointx; has be pulled back tey € &.

For the construction of the weight functiops, j € L, we proceed by induction and assume that for all
j€ U';‘;kﬂ I, there exists a functiop; satisfying the properties listed in theorem 5.4. et Iy, we shall
now constructyj. First, we definey; in neighborhoods of j, I';; andTjj, fori € Iy U ly,1 when these sets
are non empty.

Casel'j # 0: we setyj(x) = ¢12(x) for x € Vj. We haveVy(x) # 0 for x € V; andy; satisfies
property (5) of Theorem 5.4 .
Casel'j; # 0: we set

vi(¥) = A () if ¢5(0 >0, yi(x) = g5 if ¢500 <0, xe V.

For A > 0 suficiently largeyj(X) satisfies property (2) of Theorem 5.4\,
Casel'j; # Owith i € Iy, i # j: we set

(5.3) Ui = Agf (%), if () >0 (lLe.xe Q). ¥j(¥) =¢7(X) if ¢7(x) <0 (i.e.xe Q).
For A > 0 suficiently large,yj(x) satisfies properties (2) and (4) of Theorem 5.4/jn The
functiony; is actually constructed the same wayp = Vjj, i.e. following (5.3), and we have
(5.4) Uj(¥) = Ae/5> —&/5 2 yi(x), XeVjCQ;

The construction of; in this region is illustrated in Figure 4a.
Caserlj; # @ with i € l41: In the induction process we descrilyg,has been constructed & U
Upelaute., Vpi @nd its critical points in/jj N Q; are in fact located ih/ilj. We set
m=supyi(x), m= inf yi(X).
xeVt eri3j
For¢Z(X) € (-,0], i.e. inQ; N Vij, we seeky; in the dfine formy(x) = A(¢7(x) + 5) + B. The
constantsA > 0 andB € R are chosen such that L@f,ilj ¥i(x) > mand SUReve ¥i(X) < mwhich
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Ficure 4. (a) Construction ofy; andy; in Vjj for i, j € Iy, i # j; (b) Construction ofy;
in Vij fori e Iki+1'

implies property (3) of Theorem 5.4. This is satisfied if

—-2& ¢ _ -3 ¢
A(?+§)+B>m andA(?+§)+B<m.
Such a constar® exists ifm— % < m+ %, thatis, if 5fN—m) < Ag, which can always be achieved
by some positivéA regardless of the values Bfandm.
Forg7(x) > 0. i.e.inQj N Vij, we setyj(x) = Cof(x) + £ + B. ForC suficiently large the
functiony; satisfies property (2) of Theorem 5.4. The constructiop;an this region is illustrated
in Figure 4b.

The functiony; is now defined in the neighborhoodsIof T'j;, andTj, i € Ix U li.1, for these sets that
are non empty. Next we can smoothly extendto a function inQ; U Uietu,,, Vij (or simply choose a
smooth function oveﬁj in the case where the previous sets were empty — such an exarapld beQs
in Figure 2b). As explained above, the function we have olethican be changed into a Morse function in
the neighborhood of its critical points. This local chanf&nction does notfiiect the local definitions of
¥; we made above in the neighborhoods of the interfaces anddlaoies as these regions do not contain
critical points. Finally, the finite number of remainingtaral points can be pulled back to the regidff&
for g € ly-1 if T'jq # 0. Such ag always exists from the definition of if j # 1. If j = 1 we can pull back
the critical points into the observation region These pullbacks do noffact the local definitions af; we
made above. ]

We may now prove the global Carleman estimate.
Proof of Theorem 5.1. To lighten the notation we introduce

2 2 2 2
V2, =hiin?e™/Myly + Wzl + bl 2 Myl + WPl 2e/ P Ay,

3 2 1 2 1 0 2
+ X h|;7§e'7tﬁ/hy|l_ij |1"ij + FZ h3|n2e'7tp/h(vy)|rij |1"i- + 3 _h3|’72€”¢/h(3—2//)|r,»|r ,
J

i,j,rich ], ijCU J is ]"J.EU i
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Ficure 5. The setdJ; (light colored regions) andjj (light and dark colored regions).
Herej € ly, io € k-1, il € ly, andiz € lke1.

and , ,
3 1
VG, = hilnz€™/ iy + bllnZ e "V yily.

whereU is a subset oM andy a weight function.

We now introduce the open sets and weight functions we skall betj € Iy, j # 1, we denote by
Vi€ Ui, lei a neighborhood of the critical points #f and byV; € w, for j = 1, a neighborhood of the
critical points ofy1. If j € I, we denote this uniquieby k;. Let

K > supsupy;(x), with Q;=Q;u U Viju U Vi,

Jeb xe@y; i€l il
and defingpj(x) = e — e and
¥xeM\w, o(X)= ‘_maa(’tpj(x), VX e w, ¢(X)=p1(X),
J, XeUj

with
U= (e (U FOVB)o (Y )u( Y WTOVIORR). et

ielg 1 iely; ielk; 1
Up = (Q\w)UuVo U (.Eﬂm)
We also introduce
0y (00104, ) V) ) OO o

i€|k,1 i€|kj iEij+l

Uy

(Qu\ V) UVE UVE U ( gl VO UVE UVZ U vfl).

i€

We haveU; = U;j U0, j # 1, andU; = U; U Oy, where we have set

i€l

(5.5) 0 = (IEngv_},)u(IELlJ VHu( U V2)\V] and 0y =V_111U(ig2V_ﬁ)Uw\Vi-
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Forallj e L, we letyj € %C""(Uj) such that 0< yj < 1 andy; = 1 in U;. We setw; = xjy, we have
oW + Aw; = xj(0ty + AY) + [A xjly in each open s&®, k € L. We can patch the local Carleman estimates
of Theorem 2.8 at the interface and that of Proposition 3t #@sboundary together with classical estimates
in the interior (see for instance [Hor63, Lemma 8.3.1] ok(QR]). We remark thatR, y;] is a first order
differential operator and is supporteddn. We havey; = 1 in Uj then we obtain the following estimate
(5.6) IVIG, 4, < RHS+ChyiIg, . jeL.

where we denote, here and in the sequel, by RHS the right-sigiecbf the sought Carleman estimate (5.2).
Ifi €ly-gandj e Iy we haverli c Uj and by theorem 5.4(3) (see Figure 4b, exchanging the roles of

andj) we obtain,

(5.7) IVllve ¢, < ClIYlivz o, < Clllly -

Ifi,jely, Vilj c Qi N U;. By Theorem 5.4(4) (See also Figure 4a), we have,

(5.8) IVl ¢, < ClIYlivz o, < CllYlly -

Ifi€lg,jelcwe haveVi?j’ c Q; N U;. By Theorem 5.4(3) (See also Figure 4b), we obtain,

(5.9) IVllvs ¢, < ClIYlive o, < Clllly -

By the definition ofO;, j € L, in (5.5) and following (5.7), (5.8) and (5.9) we have,

ko 2 k 2 ’ 2 2 ” 2
(5.10) S IM1B,, < C 3, UG, < CGs,. and VI, < IV

For all x € M there existg such thatp(x) = ¢j(X), then if we denote bW, = {x € Uj, ¢(X) = ¢;(X)},
we haveM \ w = [ J; W; and

(5.11) Ve = ;uyuévj,% < gnyna,.,%.

Let yo € 6:°(Q4) such that O< yo < 1 andyo = 1 in w. Noting thaty, is a smooth function of, the
following classical local estimate holds (see [FI96]), ficandh/T suficiently small,

2
(5.12) M2, < llxoylI2,., < CHIE™ P(voy)lie, + Chiln? e /Myl

w,P1 w1

2 3 2
< C(h*1e™™P(y)liy + hllyil, , + hllz>€#/™y,),

by invoking a first-order commutator as above. In partiguiate that the observation termm%eﬂv’/hyni,
does not involve first-order derivatives of the functior-rom (5.11) and (5.12) we have

2 3 2
Iy, < S IVI3, 4, + (NI Pl + hlIVIIR, , + hiln? €/ i),
J
which by (5.6) gives

IVIi%,, < RHS+ Ch(l hy Iy, 4, + IYIIE, ,)-
<J<

We conclude by choosingsuficiently small to “absorb” the last two terms by the .h.sw({.10). =
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APPENDIX A. SOME INTERMEDIATE AND TECHNICAL RESULTS
A.1. Proof of Lemma 2.3. We setR(t, X, &) = d(t, X)(&2 + r(x, &) = {jjzl @i j(t, X)&&j andR(t, X, &) =
6(t, X)(Enmn + F(x. &, 1)) = X'j_q @i (L. X)ém;. Then
Bolh-o(S(t), %, 7.€) = Rt x.&) ~ Rt x.¢}) and &(s(t). % 7.€) = 7+ 2Rt X &,4)).
We find that{8z|n-0, &1 }x(S(t), X, 7, &) = Ay + Az with

A= i jzn::la)z(g,xj<p ((6§i R) (t’ X, f)(6m ﬁ) (t’ X, f? ‘)O;() + (6§i ﬁ)(t7 X, é‘:’ ‘p;()(éfj R)(L X, ‘)0;()) s

Ao = 3 (@RI X @RI X £.63) + ORI X £.63) (xRIE X ) — BuRI(L X))
With the exponential form we have chosen §pwe havedy ¢ = Aoy Y andai,xjgo = /129“0(6xil//)(6xj¢/) +
/hlvaii,xixp with & = e'. Introducings(t, X, &) = 2o Bijéié with g j = YRi-1 (@ x )ik, we find
%Al = VER(, %, Y5)7 + PER( %, £, 0)° + LB X, ¢') + AGB(L, X, ).
If Zolh-o(S(t), X, 7, &) = 0 we then havi(t, x, &) = R(t, X, ¢}) = 123°R(t, X, ) and in particular

1/ClEl < aglyl < Clél.
It follows that
AL > CAP* - C 2.
It also follows thatAy| < C(A@w}])°. We have thus obtained
{Belh-o. B)x(S(D), X, 7.€) = CA'P°y* ~ C' PGl ~ C'(Aglw)°,

if Qalh=0(S(t), X, 7, &) = 0. Recalling thaky}| > C > 0in V%, the result hence follows for sufficiently large.
[

Remark A.1. Note that we did not use the assumpta{s(t), x, 7, £) = 0 here. Comments on thefu
ciency and necessity of the sub-ellipticity condition cafdund in [LLO9].

A.2. Proof of Lemma 3.3. We write the proof for[, y) = (M, m). The result follows the same in the case
(T,y) = (A, Q). First we have

lo(s X, 7, &)l < (ML, X, 7, £/v)* < TV K2 + 2% + |62 < C(9)' "Mk,
Leta’ > 0 ands’ > 0 ande” andB” be multi-indices. An induction oa’ + |3”| shows that
0705 L 9 p(s % 1.€) = {(s X 7. £/(9)),
where? € S((s)= B Im#"-18"l g.). We thus have
10205 02 3 p(s % 7.8)l < C(8)' ™ T Im(t, x, 7, /()< T < C(g)! T MA,

We have thus obtained the desired estimate. The convelsg$olhe same and so does the result for
tangential symbols. m

A.3. Proof of Lemma 3.4. We treat the tangential case in the proof &g = R x R}. The other cases
follow the same. From the symbolic calculus we flRd= (s)™op(T;!) op(, () = Id +hS; with S; €
(', gr.7) (recall that O< h' < hg). FromL? regularity [Hor85a, Theorem 18.6.3] we haSe : LA(R x
R7) — L2(R x R?) continuously. Hence fan sufficiently small Io+hS; is invertible inL(L?, L?).
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A.4. Proof of lemma 3.5. We write the proof in the case = M4 andRsx = R x R}. The other cases
follow the same. Working witks)™u € . (R x R?), we see that it sices to conS|der the cake= 0 and
ko = k.

Letr € R. We first prove that op{l.-) : L2(R x R?) — 2’(R x R?) is injective. Letw € L? and let
op(MZ-)w = 0. By Lemma 3.4 og(1") op(M) is invertible inL(L?, L?). It follows thatw = 0.

Letu € .7(R x R7) and seR = (s)~ kop(M 7)op(M!)(s)*. By Lemma 3.4 and its proof, the operator

= Id +hS;, with S € W(M_*, gur), is invertible |nL(L2 L?). We setv = R™(s)™ op(M_!)u which is in

LZ(R x R1), sincew = (s)~ kop(M Aue (R xR c L3R x R}). Moreover, for som€ > 0,

1/CIw < Ml < Cliwll.

We haver = R*w = limy 31, hlS'wm L%(RxRT). Since opW!)(s)* is continuous from.2(RxR?)
into 2’(R x R) we see that

n L
(A1) opML N9V = lim 3} op(My)(s*hiSiw in 7/(R x RY).
— 00 jZO
Forj > 1+ kwe have
llop(My-)(9*hIShwil < hICiCL'Iwil,  C1 = lopM-X( 9 S5 212, Co = IISIIe.

It follows that the series in (A.1) actually converged fi{R x Ei) and thus o@(/l,',.)(s)kv € L2(R x EZ)
Observe now thats)™op(M_!) (op(M )(s)kv) (9 op(M)u. We conclude thati = op(M},)(s)*v
with the injectivity of opM~ " from L2(R x R+) into 2’(R x RY). ]

A.5. Proof of Lemma 3.6. We write the proof in the case = My andRgsx = R x R".. The other cases
follow the same. Leu € (R x R7). For h suficiently small, there exists LZ(R x R7) such that
u = opM;)(s) v and|vi < C||<s>k0p(l\/l )ull by Lemma 3.5. Thefiop@)ull = |op@) op(M')(s)™ V| <
C|v|| by L2 regularity [Hor85a, Theorem 18.6.3] since ajpdp(M_- ')(s) Ke w1, gmr). ]

A.6. Proof of lemma 3.7. As in the proof of Lemma 3.5, it stices to consider the cake= 0 andk; = k.
We havev = R'w = limp_. o hiSjwin L2(R x RT) with w = (s) op(M)u. Letk’, I’ € R. Since
(¥ op(M ) is continuous fronL?(R x R7) into 2’(R x R7) we see that

(A2) (9% opM!)v = lim 3, hi¢9¥ opM)Shw in (R x RY).
Nn—oo jZO

Since(s)¥ op(M})S; € ¥((9) Ml gwr), by Lemma 3.6, there exis@; > 0 such that
K9 opMi)Sagll < Crlk9 opMigll, 1K op(My)Sell < ClIKS)¥ op(Mi)¢ll,
for ¢ € .(R x R}) by induction onj € N. We thus have
K9 opMi)SIwil < C1IKS)¥ op(My)wil < CICIK9¥ *op(My™ul,  j e N,
It follows that the series in (A.2) convergeslif(R x R?), for h suficiently small, and

K op(MiVIl < C (% WCE) () ™ op(My-)ull,
J

which concludes the proof. ]
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A.7. Proof of Lemma 3.8. We write the proof in the casE = Ms. andRgx = R x R}. The other
cases follow the same. Letv € .#(R x R?). From Lemma 3.5, there existg € L?(R x R") such that
v = op(M_¥")w with [w]| < C|lop(M¥")vil. We then have

(opb)u, V) = (op)u, op(M*")w) = ) J {op®)u, OP(M 7 W), () 7 (zr) A%

=/ O<OD(M}k”)* OpB)U, W) (zn). 7z A% = (OP(M*")* op)u, w).
Since OPM¢ ")* op() € ‘P(M ", gw.7) this yields the result by Lemma 3.6. ]

A.8. Proof of Proposition 3.11. We write the proof in the tangential case 1o= M andRgx = R X R.
The other cases follow the same. let ¢ (R x R). Thenu = (s*op(M;')v with v € L2(R x

R7). SettingR = () op(M )(S) ™ op(M I) we see as in the proof of Lemma 3.4, tiRais invertible in
L(L?,L2). It follows that|l.[l; v iS @ norm on#; fr(R x R7), since(s)* op(M})u € L3R x R}) and since
(9 op(M))u = 0 impliesu = 0. Setting ¢, u )jfkl = (9 op(M))u, (s)* op(M!)u) we obtain an inner
product for. 7y (R x RY).

Let us now considelug), a Cauchy sequence i% (RXRD), l.ll1.m7)- We haved, = (9™ op(M> ')vn
with v, € L%(R x R?). Then the sequencg = R l((s)" op(M Ju,, N € N, is a Cauchy sequence in
L2(R x RT) which converges to € L2(R x R7). Introducingu = (s)™op(M;')v € 'T(R x R), since
llun = Ullma = IRV, = V)Il, we see thatif,), converges tarin (47 (R X R7), ||, MT)

Letnowu € %”,\'; (RxR?) be such thati = (s op(M!)vwith v e L2(RxR]) and let {n)n € .7 (RXR])
be convergent tv in L2(R x R}). We setu, = (™ op(M)v, € #(R x R}). Then|un — Ul s =
IR(vs — V)|| and we see that the sequenag{ c .- (R xR") converges ta in (%”k RXRD), [l me)- m

A.9. Proof of lemma 3.13. We treat the tangential cases here. On the one hand, o calculus we
observe that

Iks'* op(My7)ull” = (0p(M7)" (9 0p(My)u. U) = ((5)* 0p(MZ)u. ) + h(op(@)u. u)
-1
= (9%*2u,u) + ((9%*2D%u, u) + b ((%D%,u, u) + h(op@)u, u),
21
wherea € S((9*Mg,gws). On the other hand, we havg)**?D2 = D()**?Ds + hi op(b) where
b € S(($)*My, gms). From Lemma 3.8, foh sufficiently small we have
(op@+ hb)u, u) < CIK9* op(My)ull”.

We thus obtain the norm equivalence (3.5) by takinguficiently small. In (3.6), the inequality follows
from Lemma 3.6. ]

A.10. Proof of lemma 3.14. We sketch the proof in the tangential case &g = R x R7. Since(s)**?,
(9*2Ds, (94D, € Y((9*AZ, g 7) we have

K" 2ull + () *2Dsul] + z ||<s>kD2 ul < Clks op(AZ)ull, ue . #(RxRY),

by Lemma 3.6 foih suficiently small. Then we proceed as in the proof of Lemma 3.18. ddain for
instance

K9 op(AZ)ull = ((9%*u, u) + ((***D2u, ) + (%D |*u, u) + (R, U), Ry € PUSH*AZ, gr )



46 JEROME LE ROUSSEAU AND LUC ROBBIANO

We note thatDy [* = 31 DY + ©,2; D% D% . We thus obtain
K 23,112 k+2, 112 k2 2 N K2 R L S k2 k2
<9 opAPUIl™ = [KS) ™ ull” + [ “Dsull” + le|(3> Dy ul + _g}l«s) D, U, (9D W) + h(Rpu, U),
J= )K=
with R; € P(($)*A2., ga 7). We conclude with Lemma 3.8 and by takingufficiently small. n

A.11. Proof of Lemma 3.15. We consider the casec .#(R™1). The extension ta e %”F"*Z(R””) follows
by density. We write

IK*Dy, 0PI = (9 0p(As)u, DZ (S 0p(A)U) = (¥ Op(A7)U, (9 op(As)DE L)
= (op(Ar) (9™ op(As)u, D2 u) = ((9)* op(AZ)u, (9)*D? u) + h(Ryu, D u),

with Ry € Y(($)*As, ga.7). We have
(9 op(AZ)u, (D2 u)] < 2IKs)* op(AZ)ull’ + 21K D2 ull®

n
<c (||<s>k+2u||2 + K9 2Dl + _zl||<s>kD§ju||2) < C"|Ks* Op(AAull’,
]:

by Lemma 3.14. We also hayiés)“ op(A2)ul| < Cl(s)* Op(A?)ull by Lemma 3.14. It follows that

(Ru, D2 U) < CIK(9* op(AZ)ull [I(9*D2 ull < C'll(9* OpA)ull”

by Lemma 3.8.
For thegm.+, gm calculi, we obtain

9Dy, op(M7)ull + K9 op(M2)ul| < CIK* Op(M?)ull,

in the casai € .7 (R™?) by simply applying Lemma 3.13. ]

A.12. Proof of Lemma 3.16. We give the proof in the non tangential case. We introducddhewing
additional metric

(9%de?  |dé) 1

_ldg? 3
g Mo M T e

= @ +|dX|2+

Lemma A.2. The metric g is slowly varying and the order functions M a@ndre g-continuous.
Lemma A.3. The metric g isr-temperate and the order functions M andare o-,g-temperate.

The proofs of the two lemmata are left to the reader.
The order functionsl and A are thus admissible for thgecalculus. SinceYM < A < M, we thus
obtain, fork e R, andl > 0

(M2 e s((9*A',g), (9A' € S((9*M', g).

We then haves)*M'/2#A~(s)™ e S(1,g) and(s)*A' #M~'(s)™ e S(1, g) which allows to proceed as in
the proof of Lemma 3.6. ]
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A.13. Proof of Lemma 3.17. First observe that the proof of Proposition 18.1.4 in [HEaBadapts to the
order functions and metrics we consider here.

Lemma A.4. Let(T,y) = (M,m) or (A, 2) and let ke R. Let g € S((S)XT™, gr) (resp. I(*y™, g,)) and
assume the m— —co when j— co. Let ae ¥ (R™! x R™?) and assume that for aft, a’, 3,5 we have
for some Cy, andu depending om, o', 3, andp’

0205 959 al < (9T, (resp. Q9. (3%, (n.é) R
If there is a sequengg, — —co such that

la— 3 ajl < C(9 T, (resp. &),
I=p

it follows that ae S((SKTSUR™, gr) (resp. (YA ™M, g,)), and that a~ ¥ a;. We have a similar result
for tangential symbol classes.

Let (y,T,7,T") = (1,A,m M) or (m M, 2, A). We provide the proof for the tangential case. We note
that

Ar <Cmy and my < C'AZ.
which givesya € S((y;-)*,9,) foranyu € R. Also, for alla, o, 8, 8’, both
0205 &% (o xa)l and 19305 8207, (o #r xa))
can be estimated @(s)"“’y?r andC'(s)"‘“(y’T)V’ for anyv,v’ € R and the first result follows.
By Lemma 3.3, we have € S(ST ™, gr.7) N SKS*() ™, gr ), for anyu € R. We note that
(A.3) A7 <CMs  and My < C'AZ.
Foralle,o’, 8.8, 10205 8297 (Z#7 x)| can be estimated b§(s)’ T, for somev, u € R sincey € S(L.gr.7).

By (A.3) it can also be estimated l@l<s)v(l"’¢)f" for someu’ € R.
From the composition formula (1.2), we have

e - 3 e o ooz o xne n) < o'y,
al<p
with @ = (a1,@2) € Nx N1 andv, - —co asp — oo sincey € S(1,gr7). By (A.3) it can also be
estimated byC'()*(I",-)"» with v, - —co asp — oo
As T € ST gr.r) we haved? d?s e S((skImry 1™ gr7), with j = 1if ' = M and] = 2 if
I' = A. We also havés'd? x € S((s¥ I, gr.r), for anyu. With Lemma 3.3 we thus have

(07'07T) 0 7 € STy T g ), (931052 x) 0 k7 € STV Gyr)-
Arguing as above, sinags)(ds' 5’ x) o «~* satisfies the same properties@swe obtain
((6“160[22) (6?(9(;,2/\/)) ° K—l c S(<S>k+| \04 - \a\’gy(r) a S(<S>k+l |a|(,yT)I | . Oy 7')

We thus haved;'d,’X) (0505 x) € S((s)k(l"’ )=, gr +), again by Lemma 3.3. The second result thus
follows by Lemma AA4. ]

The reader should note that the argumentation we have matie second part does not apply to the
calculus of the composition of operators but rather on theh éarm of the resulting symbol asymptotic
expansion.
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A.14. Proof of Lemma 3.19. We letyl(x,7,&") € S(1,9,7), with compact support in thex(r, &) vari-
ables, be such that = 1 on suppf.) and we set! = y2 o «, with « as defined in (3.2). We write the proof
for the tangential norms of the restrictionsxp= 0*. The other case follows the same. By Lemma 3.17
we havey andy?! in S(1, gm.r) N S(1, ga.7).

From theyDO calculus and Lemma 3.17, for apye N, we findy! #7 = #7 xy = £ #7 x + hPrp with
rp € S(M,*, gms) N S(A,P, ga.r). Hence opf)u = op(y1) opE)u — hP op(rp)v, which yields

K9 0p(My-) OP(E)Ulx,=0+ ]y < (9 OP(M) 0Pp(x1) OPE)Ulx=0+ o + Cprh” Mx=0-lg
< CK9 ™ op(At" Yulor | + Cly AP 2(IV| + Dy Vi),

for anyp’ € N, by Lemma 3.6, sincés) op(M!-) op(x1) € P((S)*Al-, gr ) by Lemma 3.17, and by using
the trace formula (3.1). ]

A.15. Proof of Lemma 3.20. .

The proof we give extends that of Lemma 3 page 480 in [LR97].dVp the %" notation here since
the same argument holds for both cases. We lagve c(s, X)(¢2 + 2i(dx,¢)én + @ + 2ia;). We set € C
such tha? = (9x,¢)? + & + 2ia;. Then the imaginary parts of the two rootsayfare—dy ¢ + Ref) and
have opposite signs if and only|iRe(@)| > |dx,¢|. We note that

(Im(2%))?

4A2
with a similar equivalence in the case of equalities on bathss Substitutingr for z, and|dy, ¢| for A,
we thus obtain that the imaginary part of the roots have dppegns if and only ifus > 0, asu, =
a + ai/(axngv)z. In the casei, = 0 only one of the roots is real and the imaginary part of theséone is
of the opposite sign afx ¢. In the casgw, < 0 both imaginary parts of the roots have the same sign equal
to the opposite sign afy, ¢.

If we have Imp}) > Cp > 0 and Imp;) < —Co then| Re)| > |dx,¢l + Co and by (A.4) we obtain

&
(10x,¢l + Co)?’

(A.4) |IRe@|>A o Re@)>A%- eC,

(0x.9)* + @ = Re@?) > (I0x,¢| + Co)?

which gives

1
(0% (95,61 + Co)?
Conversely, let us assume that> C; > 0. We then have
(Im(a?))?
4(6xn‘;9)2
Recalling that Ref?) = (dx,¢)? + a; and the form of, in (2.6) we observe that Ref) > —C, holds forh’
bounded for som€, > 0. We setA = {Re@ > —-C,} c C. Letx e V4 and introduce

(Im(2))*

4(6xn<p(><))2} ’

Im(2))2
w007 * S
We can find a sfliciently small constant; = C3(x) > 0 such that

(Im(2)*
4(0x,p(X)| + C3)?
since we work in the compact set, Px. This is illustrated in Figure 6. By continuity, the set insion

fta 2 C§ + 2Coly, ¢l + 85 (

)>C>o0.

(A.5) Re@?) 2 (9x.¢)* - +Cy.

Pu=AnzeC; Re@ < (94 9(¥) -

and
7¢,Px = AN {z€ C; Re) < (95,(X)* -

(A.6) P« AN ze C; Re@) < (105, + Ca)® - } €1, P,
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Im(2)

C1

-C, \ \ Re@)

Px

TCy Px

Ficure 6. Portions of the parabolae considered in the proof of Lergraa.

(A.6) holds in a neighborhood of SinceVd is compact, there exis6; > 0 such that (A.6) holds for all
x € V4 with Cs replaced byCy,.
We hence obtain that, > C; > 0 implies (A.5), which in turn implies
(Im(@?))?
4(10x ¢! + Clg)z.
By (A.4) it follows that Ref) > |0x,¢| + C; and thus Im¢;) > C; > 0 and Imp;) < -C;.

We now address the last point of the lemma. Let 0 < L < infi5ldx¢l and letH = L2 —12. We
consider the regiofu, > —H}. In this region we have

Re@?) > (|9x,¢l + C5)* -

a2 1 1
2 2 2 2 1 _ 12 2 2
a2 P = @) 2 (= Ou 1+ ) = P = GngP + {5~ 1)
Sinceua = a + a3/(dx,¢)* we then havex, + (9x,¢) > 12 - ?1—22 which by (A.4) yields|Re@)| > I. We
conclude by observing thgt} — pz| > [Impf — Impz| = 2| Re(@)|. ]

A.16. Proof of Lemma 3.22. We follow the notation of the proof of Lemma 3.20 above and wepd
the “4” notation here since the same argument holds for both caseschooser € C such thate? =
(Ox, )% + @ + 2iag = 1(X, &) —r(X, dx ) — h’c(&‘—;Wn’go + i@ + 2iF (%, &, dx @) which yields the roots to be
—i0y,p + ia. We write @/A7)? = vy + v, with

1 , . T 1 ’ a ’
= /13. (r(x,§)+ IC(S, x))’ and v, = /13_( r(x,dx¢) —h G X)r]zn
To prove the first result, i.eyp: € S(17, g19), it suffices to considets large, as we already know that the
two roots are smooth in supp). Note that there exists > 0 such thatv;| > 3L, and|v,| < L for A+ large,
say Ay > Ry. In this region we havir|?/12 > 2L.

Let us now assume thaltrn(a2)|//l?r < L, then sincdImy,| < L we have Imyy| < 2L. It follows that
Rev; = |[Revq| > VOL2 — 412 > 2L and Re¢?)/12 > Revy — |Revy| > 2L — L > 0. If A+ > Ry, we have
thus obtained that(/15-)? remains away from a neighborhood of the braiichfor the complex square
root and we may thus choos¢ds = F((a/17)?) with F = € (C). Since (/A7)? € S(L, g..7), it follows
from Theorem 18.1.10 in [HOr85a] thay A+ € S(1, g,), for 4+ > Ry, and it yields the first conclusion.

LetCo > 0 and let us place ourselves in a regighr > Co}. By Lemma 3.20 we have Iipf) > C > 0
and Imp;) < —C. The roots are given byidy ¢+i. It thus sdfices to prove thgRea|/A+ > C > 0 for A+
large, sayls > Ry > R;. Let us assume thélRea|/1+ > C > 0 does not hold. Then there exists a sequence

Vi 0+ 2F(x. &, 6)(/4,0)).
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Yn = (S, Xn» Tny €ny N )nere SUCh that (Rer/A7-)(yn) converges to zero. By the first part of the proof we know
that (@/A7)(yn) is bounded and thus converges up to a subsequence. It folfat ¢/ 17-)(y,) converges

to a point of the imaginary axis, up to that subsequence, winicurn implies that¢/15)?(y,) converges

to a non positive real number. As we have seen abaye,()?> remains away from a neighborhood of the
branchR_ in the regioMs > R;. We have thus reached a contradiction. ]

A.17. Proof of Proposition 3.24. We takeh = h" = 0. The result remains however true if we chobsand
h" sufficiently small since“%n’ is boundedIt suffices to prove thai — yud > C > 0, withy as introduced
in (2.8). We have

7% %
/ (—q— +P0(x, &, dyg ))
o0 = 1H0CE) = TH(x Deh) - (D pt)? + =2 (Ox,0%)? ’
Xn

which gives
(A7) 18— yDlherv=o = 19X, &) — yrAX, &) + TUX &, ug?/ 0%, ¢%)? — YT (X &, Oy 0% /05, 0%)?

+ (05,92 — (05,097 — (9%, x¢?) — yr¥(x, dx¢?))
2

T 1 y
+ _( 2~ 2)
(Cgaxn‘Pg) (C?0,67)
-
o 6 R S L R e “(x, &, 0x¢" 105, ¢").

Note that conditions (3.10)-(3.12) statedxatz 0* remain true fon<n > 0 suficiently small, hence fow
chosen sfiiciently small. By (2.8) and (3.12), with sufficiently large, we find that the first line in (A.7) is
greater thaC|¢’|* with C > 0. By (3.10) we have

Y(0x8")? = (0x,9%)7 2 C + (y =7 )0x,¢")°, C>0,
and by (3.12) folL sufficiently large the second line of (A.7) is larger that somestantC. We thus have

(A.8) (1 — YD) lhetv—0 > C + CI&'|* + 2( - . 2)
(995,69 ()

PO € D909 — Y@

09(9 d’rd(x’ é:,?aX"pd/&Xn‘pd)'
X

Xn

Observe that by (3.11)

1 - Y >(1-v) max( 1 1 )
(€994, 99)°  (cy )’ (C90x,9)° (i 09)? )

Hence, forl_ sufficiently large, the r.h.s. in (A.8) can be made larger @@t + |¢')* + 72). n

A.18. Proof of Lemma 3.25. By definition ofa, if u is bounded thef¥’| anda¥* are bounded. We have
seen that

(A.9) LI o] ay! +1£1), uniformlyinse R
' Vx| = NV | |
in the proof of Proposition 3.24. The result follows. ]

Remark A.5. Note that we can furthermore prove that Rsuficiently large, we have
pEzC+ @)+, @k eN=R
which by (A.9) yields, for som& > 0,
b>c@+2+1€P),  Ine)=R.
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A.19. Proof of Lemma 3.27. We set

2
(02 + (0x,9) %)
(s°MZ

pP=HU +O'(H2).

With the change of variablesintroduced in (3.2) we define = 73(p o k1) andB, = 773(c(H2) 0 k1) .
We have

5 (a2 + (6Xn<p)2a2)2

v=ﬂ@ M,ZTOK*1

+ Bo.

By (2.5), sinceC(s)ym; < My o k% < C’(symy, it is sufficient to prove that

2 4 (5. oVa)
(A.10) y = Mw + B2 > szr»

me-
for u sufficiently large.
Sincep, € S(MZ., gms) by Lemma 3.3, and sinc& + (9x,¢)’a2 € S(M%,gmy) is elliptic for large

I(r, &) by Remark A.5, then (A.10) in fact holds fofr,£’)] > R, with R suficiently large and withu
suficiently large. We thus work witl(z,¢')l < R, i.e., with (x,7,£") in a compact seK. We note that
o (£[Q2, Q1]) = '{G2, G1}s + (G2, Gu}x where
/(5 =4 / o~ =4 / ’ 7 7 / AY / 1~
N/ (8. Guls = ~N 0o = 20/l a)(9) (6}, )7 + T (% 5)) = (W) a(S)(arr ) (8) — W (3s)a(9) e
(A.11) € (9°N'S(L gu.r) + hd2S(L, gwr).
We shall first consider the cabe= h" = 0. We have

U(lh[éz, Ql])’hzo = {Gzlh-o, Ga}x = o(Ho)lh=0 Gzln-0 + o"(H1)ln-0bx + o(H2)In-o.
Observe now that we have
{Bolheo, Bu)x = &30 + &nl1 + T2, with [j € S(M, gmr), | =1,2,3.
As we have; 3{@alh-o, G1}x = {B2lh=0, A1} © X, it follows that
o(Fjlheo = pV* M 0k, j=1,2,3.

Note thaté2 = Zplh-0/C — aglh=0 aNdén = &1/(2C0x, @) — a1 /x, . This yields

{Bzlh-0, B)x = Holnoolo + &uly + 12, with 1j € S(M)-, gm7), j = 1,2,3,
and we have

nlo o k = o(Ho)lh-o0 € S((S), gm.7),  nl1 ok = o(H1)lh-o0 € S(M7, gm.7),

and 7%l 0 k = o(H2)lheo € S(SHMZ, gy7).

In particular we note thdp = B2|h-o.
Here we shall use the time variatile [0, T] instead ofs for compactness reasons. Assume that
(t, x, 7, &) is such that

(a2 + (9x,9)°@2l=0)((V), X, 7. €') = 0.
Then, choosing, = —(a1/(#5 ))(S(), X, 7,&") we haveai(s(t), X, 7,€) = aln-o(S(1), X, 7,€) = 0. It follows

thatl, = B2lh-0 > O at the considered pointby Assumption 2.2. Sincd, (X, 7, £) is in the compact set
[0, T] x K, we thus obtain|n—o > C for u sufficiently large.
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We now relax the conditioh = ¥ = 0 and leth, " > 0. First note that the generated perturbatioragn
is i a(9)17 (9e(X)/(c(s, X)n(9)?) € S(1, gms) and corresponds to a bounded perturbatidri8((s)?, gm.7)
for gz. This perturbation ira, yields a perturbation iph’S(1, gmy) fory%.

Note that we have
{02, Gutx — {G2lh=0, G }x € N'S((S)%, gm7).

In the computation o£[Q,, Q1] in the formHoD2 + HiDy, + H letting b’ > 0 thus only &ectso(H>)
by a term in'S((s)%, gw.r) + hS(M2, gw+) making also use of (A.11). Writing[Q., Q1] in the form
HoQ: + H1Q; + Hy transfers that perturbation to(H) with an additional term i/ S((s)2, gm.7-)o-(Ho)
thus inh'S((s)3, gm.7-). We finally obtain a perturbation iV S(1, gmr)) + hS(S)™*Me., gmy) for B2. In
particular, this perturbation is bounded with respecs,tasmy- is bounded in the casér, £')| < R. Since
we havev|,-o > C > 0 we obtain that > C’ > 0 for h andh’ suficiently small. This concludes the case
I(r&)N <R L

A.20. Proof of Lemma 4.1. We have[XZﬂ < C. Next, let us consider the derivativep%j with respect to
s. We have
/14

0sx¥i(s X 7.8 = (s x, 7. €, h = 0)| |y, o (s X, 7.&",h = 0)] < Céw;, o (s x,7,¢&,h=0),

sinceyZj € S(A%, g1.7). As the support of, is compacpzd is bounded in the support of the expression and
so argr| and|¢’| by Lemma 3.25. It follows that
OB X&) <CA LY, veR.

A similar reasoning is applied to other partial derivativéis the casey, € 65°(R) we then furthermore
havel)(z"l < C,a7 foranyv € R. The same applies to timer, gms-calculus. ]

A.21. Proof of Lemma 4.4. We shall write the proof for op(* Xz))”/o(ud). It follows very similarly for
op(1- x2)¥1(u). )

We setyp(u?) = (s)2y0(u?). Thenyp(u?) = op(A;1)yo(u?). Following the notation of the proof of
Lemmata 3.5 and 3.7, we hayg(i%) = R™* op(A7)7o(u?), whereR = op(A7) op(A;) € W(L,grs). We
write

op(1- x2)70(u?) = R*Rop(1- x2)R* op(Ar)Fo(u) = y1 + 1,

where

y1 = RMR op(1- x2)[R ™ op(A7)Fo(U?), 1 = R op(1- x2) op(Ar)Fo(ud).
We find
(A.12) 12110 < Clop(L- x2) Op(A7)(9) 2 yo(Ulo < C'MiVix=o+l < C'N"2 IV + IDx, Vi

for anyk € N, from the tangentiayDO calculus (see formula 1.2) since supp(i2) N supp(y*) = 0 and
yo(ud) = udly o+ = Oop(x*)VIx,=0+, and by use of the trace formula (3.1).
We have R, 0p(1- x2)] = hRi € hy(A7*, ga7) andy: = hR?RRIR ™ 0p(As)yo(u?) = y2 + 22 with
y2 = hR?[R RiJR M op(Ar)o(u?). 2 = hR?Ry op(Ar)Fo(ud).

Similarly we have an estimate f(®|, of the same form as that ¢# |, in (A.12) and by induction for any
k > 2 we find op(1- y2)yo(u) = yk + 1 + - - - + z With z, . . ., Z also satisfying such an estimate and

Yk = "R*RR™ op(A7)o(u) = HRH“ReFo(u?),
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with R € W(AZX, ga.7)- It follows that

I¥lo < CHIRFo(UYlp < C'hVlx-o'lo,
by Lemma 3.7 and Lemma 3.6 for aky N. We conclude by using the trace formula (3.1). ]

A.22. Proof of Proposition 5.3. We begin by proving Points (1) and (3). (Point (2) is a consege of
(2).) If I3 = 0 this simply means tha®; = M andJ; = L = {1}. Assume now that for somle > 1
we haveJ; # Landl, # 0forall £ < k—1. Letji1 € L\ Jqg, let x; € Qj, and we fixxg € Q.
By connexion, there exists a continuous pafh) in M such thate(0) = %o anda(1l) = x;. Denote by
Q={tel0,1], a(t) ¢ Ujes., 5,—}, we have le Q, Q; being a neighborhood of, 0 ¢ Q we deduce that
to = inf Q > 0. Obviously there existf € Jk_1 such that(tp) € 5,—2 and there exist > 0, j3 ¢ J1 such
thatVt € (to, to + 6), a(t) € Qj,. This means that(tp) € T'j,j,.

We havej; € ly_1. Infact, if j2 ¢ lk_1, @asj2 € -1, we havej, € |y, for somek, < k- 2. However
Tj,j, # 0; this impliesjz € ly,+1, which in turn givesjz € J-1. This thus yields a contradiction.

It then follows thatjz € Ix andlx # 0. Hence, we have proved thak]x is a increasing sequence of
subset in the finite sét. This implies that there existg such thatl, = L.

Proof of (4). Letj € I and leti be such thal’j; # 0. If i € I, wheref < k-2 asIj; # 0 we then have
j € lgy1, Which is in contradiction with € Iy as¢ + 1 < k—1. Now, ifi € Jx we have € l,1 U l; if i ¢ Jg,
asTij # 0 andj € Iy, we have € I, by the definition of the setd ). ]
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