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LOCAL AND GLOBAL CARLEMAN ESTIMATES FOR PARABOLIC OPERATOR S WITH
COEFFICIENTS WITH JUMPS AT INTERFACES

JÉRÔME LE ROUSSEAU AND LUC ROBBIANO

Abstract. In (0,T) × Ω, Ω open subset ofRn, n ≥ 2, we consider a parabolic operatorP = ∂t − ∇xδ(t, x)∇x,
where the (scalar) coefficientδ(t, x) is piecewise smooth in space yet discontinuous across a smooth interfaceS.
We prove a global in time, local in space Carleman estimate for P in the neighborhood of any point of the
interface. The “observation” region can be chosen independently of the sign of the jump of the coefficient δ
at the considered point. The derivation of this estimate relies on the separation of the problem into three
microlocal regions related to high and low tangential frequencies at the interface. In the high-frequency regime
we use Calderón projectors. In the low-frequency regime wefollow a more classical approach. Because of the
parabolic nature of the problem we need to introduce Weyl-H¨ormander anisotropic metrics, symbol classes and
pseudo-differential operators. Each frequency regime and the associated technique require a different calculus.
A global in time and space Carleman estimate on (0,T)×M, M a manifold, is also derived from the local result.

Keywords: Parabolic equation; Non-smooth coefficient; Transmission problem; Carleman estimate; Microlocal
analysis; Calderón projectors.
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1. Introduction and notation

LetΩ be a bounded regular connected open subset ofR
n. Let T > 0. We consider the parabolic operator

P = ∂t + A with A = −∇x(δ∇x) on (0,T) × Ω. The diffusion coefficientδ depends on both time and space
and satisfies

0 < δmin ≤ δ(t, x) ≤ δmax < ∞,(1.1)

which ensures uniform ellipticity, and is smooth in time andsmooth in space apart from across a smooth
interfaceS, where it may jump. More precisely, we letS be a smooth hypersurface inΩ that does not cross
the boundary∂Ω and such thatΩ \ S is composed of two connected componentsΩ1 andΩ2. We assume
thatδ|(0,T)×Ω j ∈ C∞([0,T] × Ω j). Note that∂tδ is bounded.

The Carleman estimate we first aim to prove is of the form

h‖η 5
2 eηϕ/hw‖20 + h3‖η 3

2 eηϕ/h∇xw‖
2

0 ≤ Ch4‖ηeηϕ/h f ‖20, Pw= f in (0,T) × (Ω \ S), h > 0,

for h andh′ = h/T sufficiently small, whenw is smooth on both sides ofS and supp(w) ⊂ (0,T) × V,
with V a small neighborhood of a point ofS, and with boundary conditions at the interface that concern
the continuity ofw and that of the associated normal fluxδ∂nw. This estimate is thus global in time and
local in space. We shall refer to this type of estimate as to a local Carleman estimate. Here, following
Fursikov-Imanuvilov [FI96], the weight function we consider is chosen singular at timet = 0 andt = T,
and of the formη(t)ϕ(x)/h, whereϕ(x) is negative and satisfies a sub-ellipticity condition, andη(t) = T2

t(T−t) .

At timest→ 0+ andt → T−, the exponential of the weight function,eη(t)ϕ(x)/h, thus vanishes at all orders.
Carleman estimates for parabolic operators with smooth coefficients were proven in [FI96]. The proof is

based on the construction of a suitable smooth weight functionϕ. The case of piecewise regular coefficients
was treated in part in [DOP02]. There non-smooth weight functions are introduced. They are in particular
assumed to satisfy thesame transmission conditionsas the solution of the parabolic problem. However, a
Carleman estimate is only achieved if a monotonicity condition is imposed on the diffusion coefficientδ.
This condition states that the region of “observation”, i.e., where the weight functionϕ(x) is the largest, has
to coincide with the side of the interface where the traceδ|S is the lowest. The condition thus concerns the
sign of the jump ofδ at the interface.

In one dimension in space, the monotonicity condition was relaxed in [BDL07]. This in particular led to
the possible treatment of coefficients with bounded variations in [Le 07]. In higher dimensions the condition
was relaxed in [LR09] in the case of anelliptic operator.

Here, we prove that the monotonicity assumption can be relaxed in any dimensionn ≥ 2 for theparabolic
problem: a Carleman estimate is achieved with an arbitrary sign of the jump of the diffusion coefficientδ
at the interface. The proof originates from the work of the two authors on the elliptic case in [LR09]. In
particular, with microlocal cut-offs, high frequencies and low frequencies (with respect to thetangential
directions at the interface) are separated. Low frequencies are treated as is usually done for the derivation
of Carleman estimates: the operator is conjugated with the exponential of the weight function,eη(t)ϕ(x)/h,
and separated into self- and anti-adjoint contributions;L2 estimates, integration by parts and a positivity
argument (e.g. Gårding’s inequality) yield the Carleman estimate. High frequencies are not treated this way.
Integrations by parts yield trace terms at the interfaceS that cannot be efficiently estimated. We rely on the
method of Calderón projectors since the conjugated parabolic operator is elliptic for these high frequencies;
we obtain a Carleman estimate through a pseudo-differential parametrix of the parabolic operator, which
does not require integration by parts. We thus circumvent the technical difficulty encountered by the authors
of [DOP02]. We also note that the trace terms that prevented the derivation of the Carleman estimate with
the classical method can now be estimateda posteriori.

As mentioned above, the first result we achieve is a local (in space) Carleman estimate at the interface. In
the case of a compact (Riemannian) manifold, with possibly multiple interfaces, this local estimate can be
stitched together with more classical estimates, away fromthe interfaces, in the interior or at the boundary.
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This requires the construction of a global weight function.The estimate we then obtain is global in time
and in space. Here, we shall refer to such an estimate as to a global Carleman estimate. In the global case,
the weight function we construct is continuous. It is in factsmooth away from a small neighborhood of the
interfaces.

The method we expose relies on the use several pseudo-differential calculi of the Weyl-Hörmander
type [Hör85a, Sections 18.4–18.6]. Since we face parabolic operators here, such refined calculi are needed
to compare the action of the time derivative and the second-order space derivatives. For such pseudo-
differential calculi, adapted Sobolev spaces were introduced in [BC94]. Here, we use such Sobolev spaces;
the semi-classical setting we follow allows us however to introduce such spaces without relying on the more
intricate analysis of [BC94].

Carleman estimates have many applications ranging from thequantification of unique continuation prob-
lems (see e.g. [Hör63, Chapter 8], [Hör85b, Chapter 28], [Zui83]), inverse problems (see e.g. [BK81, Isa98,
IIY03, KSU07]), to control theory. In control theory, global Carleman estimates for parabolic operators
yield the null controllability of classes of semi-linear parabolic equations [FI96, Bar00, FCZ00]. This last
application was the motivation for the proof of a global Carleman estimate in [DOP02] in the case of a
non smooth diffusion coefficient. With the global estimate we derive here, the controllability result of
semi-linear parabolic equations of [DOP02] is generalizedto the case of arbitrary signs for the jump of
the diffusion coefficient at interfaces. The geometry we treat is also more general (manifolds, multiple
interfaces).

There remain some open problems connected to the subject of this article, including the cases of inter-
faces that meet the boundary∂Ω, non smooth interfaces, such as interfaces with corners, crossing interfaces.
All these situations forbid the use of the microlocal techniques we present here. Here, we have considered a
diffusion coefficient. The case of a diffusion matrixδ(t, x) = (δi j (t, x)) 1≤i≤n

1≤ j≤n
is also of relevance. A Carleman

estimate can be achieved in the case of a smooth diffusion matrix for which the operator∇x · δ(t, x)∇x is
uniformly elliptic. In the presence of jumps of the matrixδ(t, x) at an interface the derivation of such an
estimate is open.

1.1. Outline. Our main goal is to prove a local Carleman estimate at the interface. In Section 2, we place
ourselves in the vicinity of a point of the interface and makethe proper change of variables in space and
time to prepare for the proof. In particular we use geodesic normal coordinates, which allow us to isolate
the normal coordinate in the second-order elliptic operator. A change of variable in time allows us to work
in R instead of in the bounded interval (0,T). We present the assumptions that are made on the weight
functionϕ and we state the local Carleman estimate, first in the local coordinates (Theorem 2.4) and also in
the original space-time coordinates (see Theorem 2.8).

In Section 3.1 we introduce the two main pseudo-differential calculi that we shall use and prove some
basic facts for the associated classes of operators and Sobolev spaces. In Section 3.2 we formulate our
transmission problem at the interface as a system of coupledparabolic equations and we conjugate this
system with the exponential of the weight function. A large part of the analysis that follows relies on
the properties of the (complex) roots of the polynomial symbols of the conjugated system. This analysis is
carried out in Section 3.3. We exhibit the symbol-like behavior of these roots and show that the assumptions
we have made on the weight function yield a precise zero-crossing scheme for the imaginary parts of these
roots. In Section 3.4, we state and prove a Carleman estimateat a boundary. This estimate assumes no
boundary conditions and is thus characterized by trace terms at the boundary and we make use of it in the
following sections. As a direct consequence, we also write alocal Carleman estimate in the neighborhood
of a boundary in the case of Dirichlet boundary conditions.

In Section 4, we split the problem into microlocal problems in three regions,E d,+
p , E

d,−
p , and a small

neighborhood ofZ d
p . These are phase-space regions that are identified in Section 3.3. In each region we

obtain a partial Carleman estimate. InE
d,+
p , which essentially corresponds to tangential high frequencies,
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the conjugated operator is elliptic and we use the method of Calderón projectors. There, only one of the
two pseudo-differential calculi is used. InE d,−

p , which essentially corresponds to tangential low frequencies,
the classical Carleman method is used: we apply the boundary-type estimate of Section 3.4 on both side
of the interface. In this region the second pseudo-differential calculus is used. The last region, a small
neighborhood ofZ d

p , is an intermediate region in which both methods are used. Inthis region we need to
make the two calculi “communicate”. In Section 4.4, the three partial estimates are stitched together and
we prove the local Carleman estimate at the interface of Theorem 2.4.

In Section 5 we explain how local estimates, at the boundary,at the interface and in the interior of the
domain, can be patched together to form a global estimate. Most of Section 5 is devoted to the construction
of the phase function that permits such a patching.

To ease the reading of the article, we have gathered many proofs of intermediate results in Appendix A.

1.2. Notation. We shall use of the notation〈ξ〉 := (1+ |ξ|2)
1
2 for ξ ∈ Rn. Forn ∈ N, We set

R
n
− = {x; xn < 0}, R

n
− = {x; xn ≤ 0}, R

n
+ = {x; xn > 0}, R

n
+ = {x; xn ≥ 0},

For a neighborhoodV of a point of{xn = 0} we set

Vg = V ∩ Rn
−, Vd = V ∩ Rn

+.

For a compact setK of V we setKg = {x ∈ K, xn ≤ 0} andKd = {x ∈ K, xn ≥ 0}. We then denote by
C∞c (Kg) (resp.C∞c (Kd)) the space of functions that areC∞ in R

n
− (resp.R

n
+) with support inKg (resp.Kd).

We shall denote byS (Rp) the usual Schwartz space of smooth functions that decreaserapidly at∞ in
R

p. If sdenotes a variable inR, we furthermore define the following half-space Schwartz space:

S (R × Rn
+) = { f ∈ C

∞(R × Rn
+); ∀k ∈ N, α ∈ Nn+1, |sups∈R,x∈Rn

+
〈(s, x)〉k∂αs,x f (s, x)| < ∞}.

For functionsu, v defined inRn+1 (resp.R × Rn
+), we define theL2 norm

‖u‖2 = ∫∫
Rn+1

|u|2 ds dx (resp‖u‖2 = ∫∫
R×Rn

+

|u|2 ds dx),

originating from the inner products

(u, v) = ∫∫
Rn+1

uv ds dx (resp (u, v) = ∫∫
R×Rn

+

uv ds dx).

For functionu, v defined inR × Rn
+, for which a restriction on{xn = 0+} is properly defined, we set

|u|xn=0+ |20 = ∫∫{xn=0}
|u|xn=0+ |2 ds dx′, (u|xn=0+ , v|xn=0+ )0 = ∫∫

{xn=0}
u|xn=0+v|xn=0+ ds dx′,

wherex = (x′, xn) ∈ Rn. In addition we introduce the following notation for theL2 norms on (0,T)×V and
(0,T) × S

‖u‖2T =
T

∫
0
∫
V
|u(t, x)|2 dt dx, |u|S+ |2T =

T

∫
0
∫
S
|u|S+(t, x′)|2 dt dx′.

We shall denote by{., .} the Poisson bracket, and shall often use partial Poisson brackets, namely,

{ f , g}s = (∂τ f )∂sg− (∂s f )∂τg, { f , g}x =
n∑

j=1
(∂ξ j f )∂x j g− (∂x j f )∂ξ j g.

We shall use bothϕ′x = ∇xϕ.
In this article, when the constantC is used, it refers to a constant that is independent of the semi-classical

parameterh. Its value may however change from one line to another. If we want to keep track of the value
of a constant we shall use another letter.
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1.3. Semi-classical operators.We now introduce (resp. tangential) semi-classical pseudo-differential op-
erators (ψDOs) and start by briefly recalling the notation and basic definitions for the Weyl-Hörmander
calculus ofψDOs [Hör85a, Sections 18.4–18.6]. We denote byh the semi-classical parameters, which is
assumed to be small, sayh ∈ (0, h0]. For aσ-tempered metricsg onW = Rn+1 × Rn+1 and aσ, g-tempered
order functionµ = µ(z, ζ) onW, we set

|a|gk(z, ζ, h) = sup
(y j ,ζ j )∈W

|dk
z,ζa(z, ζ, h; (y1, ζ1), . . . , (yk, ζk))|

∏k
1 g(z,ζ)(y j, ζ j)

1
2

.

We then denote byS(µ, g), the space of smooth functionsa(z, ζ, h), (z, ζ) ∈ W, defined forh ∈ (0, h0] for
someh0 > 0, that satisfy the following property:

∀k ∈ N, |a|
g
k(z, ζ, h)

µ(z, ζ)
≤ Ck < ∞, (z, ζ) ∈W, h ∈ (0, h0].

If we denote bygσ the dual metric, we then set

kg(z, ζ)2 = sup
(y,η)∈W

g(z,ζ)(y, η)/g
σ
(z,ζ)(y, η).

We assumekg ≤ 1. For all sequencesa j(z, ζ, h) ∈ S(k j
gµ, g), j ∈ N, there exists a symbola(z, ζ, h) ∈ S(µ, g)

such thata(z, ζ, h) ∼ ∑

j h ja j(z, ζ, h), in the sense thata(z, ζ, h) − ∑

j<N h ja j(z, ζ, h) ∈ hNS(kN
g µ, g) (see for

instance [Mar02, Proposition 2.3.2] or [Hör85a, Proposition 18.1.3]), witha0 as principal symbol.
We now define semi-classicalψDOs operators adapted to the parabolic problem we consider here. We

seth′ = h/T and assumeh′ ∈ (0, h0]. With W = Rn+1×Rn+1, z= (s, x), ζ = (τ, ξ), wheres, τ ∈ R, x, ξ ∈ Rn,
we setΨ(µ, g) as the space ofψDOsA = Op(a), for a ∈ S(µ, g), m ∈ R, formally defined by

A u(s, x) = (2π)−n+1h−(n+1)(h′)−1 ∫∫∫∫ ei(s−t)τ/(hh′)+i〈x−y,ξ〉/ha(s, x, τ, ξ, h) u(t, y) dt dy dτdξ, u ∈ S
′(Rn+1).

We shall denote the principal symbola0 by σ(A). We shall use techniques ofψDO calculus in this article,
such as construction of parametrices, composition formula, formula for the symbol of the adjoint opera-
tor, etc. We refer the reader to [Tay81, Hör85a, Mar02]. Thedifferent metrics we shall use are listed in
Section 3.1 below. With the quantization we have introducedwe have

σ(
h∂x j

i
) = ξi , i = 1, . . . , n, σ(

hh′∂s

i
) = τ.

We setDx j =
h∂xj

i andDs =
hh′∂s

i .
We also define tangential symbols and tangential operators.For aσ-tempered1 metricsgT on WT =

R
n+1 × Rn and aσ, gT -tempered order functionµT = µT (z, ζ′) onWT (z ∈ Rn+1 andζ′ ∈ Rn), we set

|a|gTk (z, ζ′, h) = sup
(y j ,ζ

′
j )∈WT

|dk
z,ζ′a(z, ζ′, h; (y1, ζ

′
1), . . . , (yk, ζ

′
k))|

∏k
1 g(z,ζ′)(y j, ζ

′
j)

1
2

.

We then denote byST (µT , gT ), the space of smooth functionsa(z, ζ′, h), (z, ζ′) ∈WT , defined forh ∈ (0, h0]
for someh0 > 0, that satisfy the following property:

∀k ∈ N, |a|
gT
k (z, ζ′, h)

µT (z, ζ′)
≤ Ck < ∞, (z, ζ′) ∈WT , h ∈ (0, h0].

If we denote bygσT the dual metric, we then setkg,T (z, ζ′)2 = sup(y,η′)∈WT gT (z,ζ′)(y, η′)/gσT (z,ζ′)(y, η
′). We as-

sumekg,T ≤ 1, which as above allows to define asymptotic series
∑

j∈N h ja j, if a j(z, ζ′, h) ∈ ST (k j
g,T µT , gT ),

with a0 as principal symbol.

1Here, the dual metric and theσ temperance only refer to the tangential variables (s, x′, τ, ξ′) even though a dependency inxn

exists.



6 JÉRÔME LE ROUSSEAU AND LUC ROBBIANO

The tangentialψDOs we shall consider are defined in the casez= (s, x′, xn) ∈ Rn+1 andζ′ = (τ, ξ′), with
s, τ ∈ R, x′, ξ′ ∈ Rn−1 andxn ∈ R. We defineΨT (µ, g) as the space of tangentialψDOs2 A = op(a), for
a ∈ ST (µT , gT ), formally defined by

A u(s, x) = (2π)−nh−n(h′)−1 ∫∫∫∫ ei(s−t)τ/(hh′)+i〈x′−y′ ,ξ′〉/ha(s, x, τ, ξ′, h) u(t, y′, xn) dt dy′ dτdξ′,

for u ∈ S ′(Rn+1) andx = (x′, xn). They are in particular continuous onS (R × Rn
+) or S (Rn+1). If we let

them act on a functionu that does not depend onxn, they can be considered as regularψDOs if we only
consider the restriction ofA uon xn = 0.

We shall also denote the principal symbola0 byσ(A). In the case where the symbol is polynomial inζ′

andh, we shall denote the space of associated tangentialdifferentialoperators byDT (µT , gT ).
The composition formula for tangential symbols,a ∈ ST (µT , gτ), b ∈ ST (ρT , gτ), is given by

(a#T b)(s, x, τ, ξ′, h)(1.2)

=
h−n(h′)−1

(2π)n ∫∫∫∫ e−itσ/(hh′)−i〈y′ ,η′〉/ha(s, x, τ + σ, ξ′ + η′, h) b(s+ t, x′ + y′, xn, τ, ξ
′, h) dt dσ dy′ dη′

=
∑

|α|≤M
h|α|(h′)α1

(−i)|α|

α!
(∂α1
τ ∂

α2
ξ′ a) (∂α1

s ∂
α2
x′ b)(s, x, τ, ξ′, h)

+
∑

|α|=M+1
h|α|−n(h′)α1−1 (−i)M+1

(2π)n

1

∫
0

(M + 1)(1− ν)M

α! ∫∫∫∫ e−itσ/(hh′)−i〈y′ ,η′〉/h

× (∂α1
τ ∂

α2
ξ′ a)(s, x, τ + σ, ξ′ + η′, h) (∂α1

s ∂
α2
x′ b)(s+ νt, x′ + νy′, xn, τ, ξ

′, h) dt dσ dy′ dη′ dν,

with α = (α1, α2), α1 ∈ N, α2 ∈ Nn−1, and yields a tangential symbol inST (µTρT , gτ).

2. Local setting, weight function and statement of the main result

2.1. Local change of variables.In a neighborhood of a pointy0 of S, we denote byxn the variable that
is normal to the interfaceS and byx′ the remaining spacial variables, i.e.,x = (x′, xn). The interface is
now given byS = {x; xn = 0}. In particulary0 = (y′0, 0). The transmission conditions at the interface we
consider are

∀t, x′, w|xn=0− = w|xn=0+ + θ, (δ∂xnw)|xn=0− = (δ∂xnw)|xn=0+ + Θ,(TC)

i.e., the continuity ofw at the interface as well as the continuity of the normal flux, modulo some error
termsθ andΘ. It should be noted that, even for a smooth functionw, we may not havePw in L2 in the
neighborhood ofy0 for a function satisfying these transmission conditions, if θ andΘ do not vanish. It will
however be inL2 on both sides of the interface.

In a sufficiently small neighborhoodV ⊂ Rn of y0, we place ourselves in normal geodesic coordinates.
For convenience, we shall take the neighborhoodV of the formVy′0 × (−ε, ε) whereVy′0 is a sufficiently
small neighborhood ofy′0. In such coordinate system, theprincipal partof the elliptic differential operator
A = −∇x(δ∇x) can take the form

A2 = −∂xnδ(t, x)∂xn − δ(t, x)r(x, ∂x′),(2.1)

on both sides of the interface withr(x, ξ′) homogeneous second-order polynomials inξ′ that satisfy

r(x, ξ′) ∈ R, and C1|ξ′|2 ≤ r(x, ξ′) ≤ C2|ξ′|2, x ∈ Vy′ × (−ε, ε), ξ′ ∈ Rn−1,(2.2)

for some 0< C1 ≤ C2 < ∞. Note that the transmission conditions (TC) remain unchanged in this change
of variables.

2Observe that the notation we adopt in the tangential case, op, is different from that used above, Op, to avoid confusion in the main
text.



CARLEMAN ESTIMATE FOR NON SMOOTH COEFFICIENTS 7

To work onR for the time variable, instead of the finite interval (0,T), we make the following change of
variable

s(t) = tan
(πt
T
− π

2

)

.(2.3)

We note that∂t =
a(s)
T ∂s, with a(s) = π〈s〉2 with 〈s〉 = (1 + s2)

1
2 . The parabolic operator we consider

becomesP = a(s)T ∂s+ A onR ×Ω. The functionη(t) = T2(t(T − t))−1 changes into

η(s) = π2
(π

2
+ arctan(s)

)−1 (π

2
− arctan(s)

)−1
.(2.4)

In particular we have

C〈s〉 ≤ η(s) ≤ C′〈s〉, s ∈ R, and C〈s〉1−k ≤ |η(k)(s)| ≤ C′〈s〉1−k, k ∈ N.(2.5)

We setc(s(t), x) = δ(t, x). We however keep the notationsP, η, θ andΘ in an abusive way. Note that
c|
R×V

g/d (s, x) ∈ C∞(R × Vg/d), and

0 < δmin ≤ c(s, x) ≤ δmax,

and that the time and space derivatives ofc are bounded (on both sides of the interface). In particular we
have|∂sc| ≤ CT〈s〉−2. The transmission conditions become

∀s, x′, w|xn=0− = w|xn=0+ + θ, (c∂xnw)|xn=0− = (c∂xnw)|xn=0+ + Θ.(TCs)

This change of variable will allow us to use positivity arguments such as Gårding’s inequality in all tan-
gential directions, includings, when in the neighborhood of the interface. At one point we shall move
back to time variablet to take advantage of the compactness of [0,T] (see Assumption 2.2 and the proof of
Lemma 3.27 below).

The Carleman estimate we shall first obtain will be stated in the (s, x) variables and we shall move back
to the original coordinates (t, x) afterwards.

2.2. Assumptions on the weight function and main result.We introduce the following parabolic op-
eratorP2 =

a(s)
T ∂s + A2 =

a(s)
T ∂s − ∂xnc(s, x)∂xn − c(s, x)r(x, ∂x′) on both sides of the interface, i.e., only

considering the principal part for the action of the operator in the spacial directions.
We let ϕ be a (weight) function in the spatial variablex. In the Carleman estimate we shall prove,

we shall “observe” the solution of the parabolic equationPw = f on the sidexn > 0 and thus choose
∂xnϕ(x0, x′, xn = 0±) > 0. We set

a2 = −(∂xnϕ)2 + r(x, ξ′) − r(x, ∂x′ϕ) − h′
a(s)

c(s, x)η2
η′ϕ, ã2 = c(s, x)(ξ2

n + a2),(2.6)

a1 =
τ

2c(s, x)
+ r̃(x, ξ′, ∂x′ϕ), ã1 = 2c(s, x)(ξn∂xnϕ + a1),(2.7)

where ˜r(x, ξ′, ζ′) is the symmetric bilinear form inξ′, ζ′ associated to the real quadratic formsr(x, ξ′). Here,
h′ = h/T. The connection between the symbols ˜a2, ã1 and the operatorP will be made clear in Section 3.3.

We shall make the following assumptions on the weight functionϕ.

Assumption 2.1. The weight functionϕ(x) ∈ C (V) satisfiesϕ|
R

n
∓
∈ C∞(Vg/d) and

ϕ < −C < 0, |ϕ′x|Rn
∓
| > C > 0, ∂xnϕ > 0, in Vg/d ,

Furthermore, we have

∂xnϕ|xn=0+ − ∂xnϕ|xn=0− ≥ C > 0, (c∂xnϕ)|xn=0+ − (c∂xnϕ)|xn=0− ≥ C > 0,

and
∂xnϕ|xn=0+ ≥ L (|∂x′ϕ|xn=0| + ∂xnϕ|xn=0−),

with L sufficiently large.
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The value ofL will be determined below in Section 3.3 (see the proof of Proposition 3.24).
Observe that ˜a2|h=0(s(t), x, τ, ξ) andã1(s(t), x, τ, ξ) are well defined fort = 0 andt = T.

Assumption 2.2. The weight functionϕ(x) satisfies

(2.8) ∀(t, x, τ, ξ) ∈ [0,T] × Vd × R × Rn, (resp.[0,T] × Vg × R × Rn),

ã2|h=0(s(t), x, τ, ξ) = 0 and ã1(s(t), x, τ, ξ) = 0 ⇒ {ã2|h=0, ã1}x(s(t), x, τ, ξ) > 0,

which is the so-called sub-ellipticity condition[Hör63].

Functions that satisfy Assumptions 2.1 are quite simple to construct. Functions that satisfy both As-
sumptions 2.1 and 2.2 can be obtained by the following lemma which proof can be found in Appendix A.

Lemma 2.3. Letψ(x) be a function that fulfills Assumptions 2.1. Thenϕ = eλψ − eλK , with K > supx∈V ψ,
satisfies both Assumptions 2.1 and 2.2 forλ > 0 sufficiently large.

Note thatϕ is chosen continuous across the interface. In particular, we have∂x′ϕ|xn=0− = ∂x′ϕ|xn=0+ ,
which we shall simply write∂x′ϕ|xn=0+ in the sequel.

One of our main purpose is to prove the following local Carleman estimate.

Theorem 2.4. Let the neighborhood V be sufficiently small according to Proposition 3.24 below. Let K be
a compact subset of V. Letη(s) be given as in(2.4). With the weight functionϕ satisfying Assumptions 2.1
and 2.2, there exist C> 0 and h1 > 0 such that

(2.9) h‖〈s〉 3
2 eηϕ/hw‖2 + h3‖〈s〉 1

2 eηϕ/h∇xw‖
2
+ h3(h′)2‖〈s〉 3

2 eηϕ/h∂sw‖
2
+ h5‖〈s〉− 1

2 eηϕ/hA2w‖2

+ h|〈s〉 3
2 eηϕ/hw|xn=0± |

2

0 + h3|〈s〉 1
2 eηϕ/h∇x′w|xn=0± |

2

0 + h3|〈s〉 1
2 eηϕ/h∂xnw|xn=0± |

2

0

≤ C
(

h4‖eηϕ/h f ‖2 + h|〈s〉 3
2 eηϕ/hθ|20 + h3(h′)2|〈s〉 3

2 eηϕ/h∂sθ|
2

0 + h3|〈s〉 1
2 eηϕ/h∇x′θ|

2

0

+ h3|〈s〉 1
2 eηϕ/hΘ|20 + h5(h′)2|〈s〉 1

2∂se
ηϕ/hΘ|20

)

,

for 0 < h ≤ h1 and 0 < h′ ≤ h1, (h′ = h/T), and for w satisfying(TCs), with w|
R×Rn

∓
∈ C∞(R × Rn

∓),
w(s, .)|

R
n
∓
∈ C∞c (K

g/d), for all s ∈ R, and∂k
sw bounded for all k∈ N, and f ∈ L2(R × V) with f = P2w in

R × (V \ S).

Remark 2.5. An inspection of the proof of the theorem at the end of Section4 shows that the last term in

the r.h.s. of (2.9),h5(h′)2|〈s〉 1
2∂seηϕ/hΘ|20, can be omitted if we renounce the estimation of the higher-order

terms,h3(h′)2‖〈s〉 3
2 eηϕ/h∂sw‖2 andh5‖〈s〉− 1

2 eηϕ/hA2w‖2 in the l.h.s. of (2.9) (see Equation (4.77)).

Remark 2.6. The previous Carleman estimate yields the same estimate forthe parabolic operatorP making
use of the insensitivity of such estimates to additional lower-order terms. We may thus carry on the analysis
of the subsequent sections by simply usingP2 in place ofP. We may also replaceA2 by ∇x(c∇x) in one of
the terms of the l.h.s. of the Carleman estimate sinceA2 is the principal part of∇x(c∇x). In fact, in both
cases, the lower-order terms in their differences can be dealt with by takingh sufficiently small.

Remark 2.7. Note also that the Carleman estimate is in fact insensitive to changes of variables. In par-
ticular, the conditions we impose on the weight function above are coordinate invariant, including the
sub-ellipticity condition of Assumption 2.2 [Hör63, Section 8.1, page 186]. The local Carleman estimate
can thus be stated in the original spacial coordinates. Moreprecisely, we state Assumptions 2.1 and 2.2
with ∂xnϕ|xn=0± replaced by∂nϕ|S± (the normal derivative ofϕ on each side of the interface) and∂x′ϕ by
the tangential component of∇xϕ at the interfaceS. Here the normal direction is the direction that points
to the region in which the solution is “observed”, i.e., in the region where the weight functionϕ(x) is the
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largest. By abuse of notation we still denote this region byVd. The other side is denoted byVg. We obtain
a Carleman estimate of the same form as (2.9)

(2.10) h‖〈s〉 3
2 eηϕ/hw‖2 + h3‖〈s〉 1

2 eηϕ/h∇xw‖
2
+ h3(h′)2‖〈s〉 3

2 eηϕ/h∂sw‖
2
+ h5‖〈s〉− 1

2 eηϕ/h∇x(c∇xw)‖2

+ h|〈s〉 3
2 eηϕ/hw|S± |

2

0 + h3|〈s〉 1
2 eηϕ/h∇x′w|S± |

2

0 + h3|〈s〉 1
2 eηϕ/h∂xnw|S± |

2

0

≤ C
(

h4‖eηϕ/h f ‖2 + h|〈s〉 3
2 eηϕ/hθ|20 + h3(h′)2|〈s〉 3

2 eηϕ/h∂sθ|
2

0 + h3|〈s〉 1
2 eηϕ/h∇x′θ|

2

0

+ h3|〈s〉 1
2 eηϕ/hΘ|20 + h5(h′)2|〈s〉 1

2∂se
ηϕ/hΘ|20

)

,

for h andh′ taken sufficiently small, and for smooth functions on both sides of the interface and satisfying
the transmission conditions (TCs).

We now proceed with writing the local Carleman estimate we have obtained with the original time
variablet ∈ (0,T). From (2.3) we haveds = a(s(t))

T dt = π
T 〈s(t)〉2dt. As was done in the introduction, by

abuse of notation, we do not change the names of the functionswhether we consider that they depend ont
or s. It thus follows that, for a functionφ and forα ∈ R, we have

‖〈s〉αeηϕ/hφ‖2 = ∫
R

∫
V
〈s〉2αe2η(s)ϕ(x)/h|φ(s, x)|2 ds dx=

C
T

T

∫
0
∫
V
〈s(t)〉α+2e2η(t)ϕ(x)/h|φ(t, x)|2 dt dx

=
C
T
‖〈s(t)〉α+1eηϕ/hφ‖2T ,

recalling the notation‖.‖T introduced in Section 1.2, and we also have

|〈s〉αeηϕ/hφ|xn=0± |20 =
C
T
|〈s(t)〉α+1eηϕ/hφ|S± |2T .

whereφ|S± denotes the restriction ofφ on either side of the interfaceS. In addition we have

h3(h′)2‖〈s〉αeηϕ/h∂sφ‖2 = h3(h′)2 ∫
R

∫
V
〈s〉2αe2η(s)ϕ(x)/h|∂sφ(s, x)|2 ds dx

=
C
T

h5
T

∫
0
∫
V
〈s(t)〉2α−2e2η(t)ϕ(x)/h|∂tφ(t, x)|2 dt dx=

C
T

h5‖〈s(t)〉α−1eηϕ/h∂tφ‖2T ,

with a similar result for surface integrals. From (2.5) we have

η(t)/C ≤ 〈s(t)〉 ≤ Cη(t)

In the (t, x) coordinates the local Carleman estimate is thus of the form

(2.11) h‖η 5
2 eηϕ/hw‖2T + h3‖η 3

2 eηϕ/h∇xw‖
2

T + h5‖η 1
2 eηϕ/h∂tw‖

2

T + h5‖η 1
2 eηϕ/h∇x(δ∇xw)‖2T

+ h|η 5
2 eηϕ/hw|S± |

2

T + h3|η 3
2 eηϕ/h∇x′w|S± |

2

T + h3|η 3
2 eηϕ/h∂xnw|S± |

2

T

≤ C
(

h4‖ηeηϕ/h f ‖2T+h|η 5
2 eηϕ/hθ|2T+h5|η 1

2 eηϕ/h∂tθ|
2

T+h3|η 3
2 eηϕ/h∇x′θ|

2

T+h3|η 3
2 eηϕ/hΘ|2T+h7|η− 1

2 eηϕ/h∂tΘ|
2

T

)

,

for 0 < h+ h/T ≤ h1. We now note that since∂t(t(T − t)w) = (T − 2t)w+ t(T − t)∂tw and sinceT − 2t is
bounded, by taking the constanth1 sufficiently small, i.e.,h andh′ = h/T sufficiently small, we can subtract
1 to the power ofη in all the terms of (2.11). In particular we obtain‖eηϕ/h f ‖2T in the r.h.s. of the Carleman
estimate, which is the form usually encountered.

Theorem 2.8. Let the neighborhood V be sufficiently small according to Proposition 3.24 below. Let K be
compact subset of V. With the weight functionϕ satisfying Assumptions 2.1 and 2.2, there exist C> 0 and
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h1 > 0 such that

(2.12) h‖η 3
2 eηϕ/hw‖2T + h3‖η 1

2 eηϕ/h∇xw‖
2

T + h5‖η− 1
2 eηϕ/h∂tw‖

2

T + h5‖η− 1
2 eηϕ/h∇x(δ∇xw)‖2T

+ h|η 3
2 eηϕ/hw|S± |

2

T + h3|η 1
2 eηϕ/h∇x′w|S± |

2

T + h3|η 1
2 eηϕ/h∂xnw|S± |

2

T

≤ C
(

h4‖eηϕ/h f ‖2T+h|η 3
2 eηϕ/hθ|2T+h5|η− 1

2 eηϕ/h∂tθ|
2

T+h3|η 1
2 eηϕ/h∇x′θ|

2

T+h3|η 1
2 eηϕ/hΘ|2T+h7|η− 3

2 eηϕ/h∂tΘ|
2

T

)

,

for 0 < h+ h/T ≤ h1, and for w satisfying(TC), with w|(0,T)×V
g/d ∈ C∞((0,T) × V

g/d), w(t, .)|
V

g/d ∈ C∞c (K
g/d),

for all t ∈ (0,T), and∂k
t w bounded for all k∈ N, and f ∈ L2((0,T) × V) with f = Pw in (0,T) × (V \ S).

Carleman estimates are often stated with large parameters rather than with small parameters as we have
done here. Introducingτ = T2/h andν = (t(T − t))−1 we have

(2.13) τ3‖ν 3
2 eτνϕw‖2T + τ‖ν

1
2 eτνϕ∇xw‖

2

T + τ
−1‖ν− 1

2 eτνϕ∂tw‖
2

T + τ
−1‖ν− 1

2 eτνϕ∇x(δ∇xw)‖2T
+ τ3|ν 3

2 eτνϕw|S± |
2

T + τ|ν
1
2 eτνϕ∇x′w|S± |

2

T + τ|ν
1
2 eτνϕ∂xnw|S± |

2

T

≤ C
(

‖eτνϕ f ‖2T + τ3|ν 3
2 eτνϕθ|2T + τ−1|ν− 1

2 eτνϕ∂tθ|
2

T + τ|ν
1
2 eτνϕ∇x′θ|

2

T + τ|ν
1
2 eτνϕΘ|2T + |ν−

3
2 eτνϕΘ|2T

)

,

for τ ≥ τ0(T + T2), for τ0 > 0 sufficiently large.

Remark 2.9. If needed, classical density arguments can be used to relax the boundedness and regularity
assumptions made onw in Theorem 2.8. In fact, these assumptions are made for the sake of the proof below.

3. Preliminary results

3.1. Symbol classes.In the following sections, We shall use the (resp. tangential) order functionsM,Λ, m
andλ (resp.MT ,ΛT , mT andλT ) given by

M2 := 〈s〉2 + 〈s〉2τ2 + |ξ|2, resp. M2
T := 〈s〉2 + 〈s〉2τ2 + |ξ′|2,

m2 := 1+ τ2 + |ξ|2, resp. m2
T := 1+ τ2 + |ξ′|2,

Λ4 := 〈s〉4 + 〈s〉4τ2 + |ξ|4, resp.Λ4
T := 〈s〉4 + 〈s〉4τ2 + |ξ′|4,

λ4 := 1+ τ2 + |ξ|4, resp. λ4
T := 1+ τ2 + |ξ′|4.

associated to the following metrics onRn+1 × Rn+1 (resp.Rn+1 × Rn) [Hör85a, Section 18.4]

gM := |ds|2
〈s〉2 + |dx|2 + 〈s〉

2|dτ|2
M2 +

|dξ|2
M2 , kgM =

1
M , gM,T := |ds|2

〈s〉2 + |dx|2 + 〈s〉
2|dτ|2
M2
T
+
|dξ′ |2
M2
T
, kgM,T =

1
MT
,

gm := |ds|2
〈s〉2 + |dx|2 + |dτ|

2

m2 +
|dξ|2
m2 , kgm =

1
m, gm,T := |ds|2

〈s〉2 + |dx|2 + |dτ|
2

m2
T
+
|dξ′ |2
m2
T
, kgm,T =

1
mT
,

gΛ := |ds|2
〈s〉2 + |dx|2 + 〈s〉

4|dτ|2
Λ4 +

|dξ|2
Λ2 , kgΛ =

1
Λ
, gΛ,T := |ds|2

〈s〉2 + |dx|2 + 〈s〉
4|dτ|2
Λ4
T
+
|dξ′ |2
Λ2
T
, kgΛ,T =

1
ΛT
,

gλ := |ds|2
〈s〉2 + |dx|2 + |dτ|

2

λ4 +
|dξ|2
λ2 , kgλ =

1
λ
, gλ,T := |ds|2

〈s〉2 + |dx|2 + |dτ|
2

λ4
T
+
|dξ′ |2
λ2
T
, kgλ,T =

1
λT
.

Lemma 3.1. The metric gM (resp. gm, gΛ, gλ) is slowly varying and the order function M (resp. m,Λ, λ) is
gM-continuous (resp. gm, gΛ, gλ-continuous) with similar results for tangential metrics and order functions.

Lemma 3.2. The metric gM (resp. gm, gΛ, gλ) is σ-temperate and the order functions M (resp. m,Λ,
λ) is σ,gM-temperate (resp.σ-gm, gΛ, gλ-temperate) with similar results for tangential metrics and order
functions.

The proofs of the two lemmata are left to the reader. The reader will note thatΛ is notgM continuous.
The two calculi do not “intersect” well. For simplicity we shall write S(µ, gΓ,T ) in place ofST (µ, gΓ,T ),
Γ = Λ, λ,M or m.
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We shall often make use of the following trace formula

|〈s〉kφ|xn=0+ |0 ≤ Ch−
1
2 (‖Dxnφ‖ + ‖〈s〉2kφ‖), k ∈ R.(3.1)

All the remaining results in this section are proven in Appendix A.

Lemma 3.3. Let (Γ, γ) be (M,m) or (Λ, λ). Let ν(s) ∈ S(〈s〉, gs), with gs = |ds|2/〈s〉2, be elliptic, i.e.
|ν(s)| ≥ C〈s〉. Let k, l ∈ R. If ρ(s, x, τ, ξ) andµ(s, x, τ, ξ) are such thatρ(s, x, τ, ξ) := µ(s, x, τ, ξ/ν(s)) then

ρ ∈ S(〈s〉l−kΓk, gΓ) ⇔ µ ∈ S(〈s〉lγk, gγ),

with a similar result for tangential symbols, with associated order functions and metrics.

We define the maps

κ : (s, x, τ, ξ′) 7→ (s, x, η−2
a(s)τ, η−1ξ′).(3.2)

κ̃ : (s, x, τ, ξ) 7→ (s, x, η−2
a(s)τ, η−1ξ).(3.3)

The previous result gives

µ ∈ S(〈s〉lγk, gγ) ⇔ ηk(µ ◦ κ̃) ∈ S(〈s〉lΓk, gΓ), (Γ, γ) = (Λ, λ) or (M,m),

with similar relations in the case of tangential symbols.
In the following lemmata we shall use the notationRs,x to denoteR × Rn

+ orRn+1.

Lemma 3.4. Let k, l ∈ R andΓ = Λ or M. Then, for h sufficiently small, R= 〈s〉−k op(Γ−l) op(Γl)〈s〉k
(resp. R= 〈s〉−k op(Γ−l

T ) op(Γl
T )〈s〉k) is an homeomorphism of L2(Rn+1) onto L2(Rn+1) (resp. L2(Rs,x) onto

L2(Rs,x).

Lemma 3.5. Let Γ be M or Λ. Let k1, k2, l ∈ R. There exist C> 0 and h1 > 0 such that for all
u ∈ S (Rn+1) (resp.S (Rs,x)), there exists v∈ L2(Rn+1) (resp. L2(Rs,x)) such that u= 〈s〉k1 Op(Γl)〈s〉k2v
(resp. u= 〈s〉k1 op(Γl

T )〈s〉k2v) and

1/C‖〈s〉−k1−k2 Op(Γ−l)u‖ ≤ ‖v‖ ≤ C‖〈s〉−k1−k2 Op(Γ−l)u‖, 0 < h < h1,

(resp. 1/C‖〈s〉−k1−k2 op(Γ−l
T )u‖ ≤ ‖v‖ ≤ C‖〈s〉−k1−k2 op(Γ−l

T )u‖, 0 < h < h1).

Lemma 3.6. LetΓ beΛ or M. Let k, l ∈ R. For a ∈ S(〈s〉kΓl , gΓ) (resp. ST (〈s〉kΓl
T , gΓ,T )) there exist C> 0

and h1 > 0 such that for all0 < h ≤ h1, we have

‖Op(a)u‖ ≤ C‖〈s〉k Op(Γl)u‖, u ∈ S (Rn+1) (resp. ‖op(a)u‖ ≤ C‖〈s〉k op(Γl
T )u‖, u ∈ S (Rs,x)).

With the previous lemma we can improve the result of Lemma 3.5.

Lemma 3.7. Let Γ be M orΛ. With the notation of Lemma 3.5, for all k′, l′ ∈ R, we furthermore have
〈s〉k′ Op(Γl′)v ∈ L2(Rn+1) (resp.〈s〉k′ op(Γl′

T )v ∈ L2(Rs,x)) and

1/C‖〈s〉k′−k1−k2 Op(Γl′−l)u‖ ≤ ‖〈s〉k′ Op(Γl′ )v‖ ≤ C‖〈s〉k′−k1−k2 Op(Γl′−l)u‖, 0 < h < h1,

(resp. 1/C‖〈s〉k′−k1−k2 op(Γl′−l
T )u‖ ≤ ‖〈s〉k′ op(Γl′

T )v‖ ≤ C‖〈s〉k′−k1−k2 op(Γl′−l
T )u‖, 0 < h < h1).

Lemma 3.8. LetΓ be M orΛ. Let k∈ R and b∈ S(Γk, gΓ) (resp. b∈ S(Γk
T , gΓ,T )). If k′ + k′′ = k, we have

|(Op(b)u, v)| ≤ C‖Op(Γk′ )u‖ ‖Op(Γk′′)v‖, u, v ∈ S (Rn+1),

(resp. |(op(b)u, v)| ≤ C‖op(Γk′
T )u‖ ‖op(Γk′′

T )v‖, u, v ∈ S (Rs,x)),

for h sufficiently small. We have a similar result in the case of the tangential inner product(., .)0 and
associated norm|.|0 and functions restricted to xn = 0.

In fact, the Gårding inequality holds for the present calculi, as its proof in the semi-classical case (see
e.g. [Mar02]) applies with Lemma 3.8. We shall only use it in the following tangential form.
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Lemma 3.9(Gårding inequality). LetΓ = Λ or M. Let k∈ R and a∈ S(Γk
T , gΓ,T ), with principal part a0,

such thatRea0(s, x, τ, ξ) ≥ CΓk
T with C > 0. For 0 < C′ < C, there exists h1 > 0 such that

Re(op(a)u, u) ≥ C′‖op(Γk/2
T )u‖2, u ∈ S (Rs,x), 0 ≤ h ≤ h1.

For each calculus we introduce the following Sobolev spaces.

Definition 3.10. Let k, l ∈ R. ForΓ = Λ or M, and forh small, we set

H
k,l
Γ

(Rn+1) = {〈s〉−k Op(Γ−l)u; u ∈ L2(Rn+1)}, H
k,l
Γ,T (Rs,x) = {〈s〉−k op(Γ−l

T )u; u ∈ L2(Rs,x)}.
We introduce

‖u‖k,l,Γ = ‖〈s〉k Op(Γl)u‖, ‖u‖k,l,Γ,T = ‖〈s〉k op(Γl
T )u‖.

Proposition 3.11. Let k, l ∈ R and letΓ = Λ or M. The function spaceH k,l
Γ

(Rn+1) (resp.H k,l
Γ,T (Rs,x))

equipped with‖.‖k,l,Γ (resp.‖.‖k,l,Γ,T ) is a Hilbert space withS (Rn+1) (resp.S (Rs,x)) as a dense subspace.

In particular, ifk′ ≤ k andl′ ≤ l we have

S (Rn+1) ⊂H
k,l
Γ

(Rn+1) ⊂H
k′,l′
Γ

(Rn+1), (resp.S (Rs,x) ⊂H
k,l
Γ,T (Rs,x) ⊂H

k′,l′
Γ,T (Rs,x)).

By density we deduce the following regularity result from Lemma 3.6.

Lemma 3.12. Let Γ beΛ or M. Let k, l ∈ R. For a ∈ S(〈s〉kΓl , gΓ) (resp. ST (〈s〉kΓl
T , gΓ,T )) there exist

C > 0 and h1 > 0 such that for all0 < h ≤ h1, we have

‖Op(a)u‖ ≤ C‖〈s〉k Op(Γl)u‖, u ∈H
k,l
Γ

(Rn+1) (resp. ‖op(a)u‖ ≤ C‖〈s〉k op(Γl
T )u‖, u ∈H

k,l
Γ,T (Rs,x)).

It shall often be useful to obtain classical Sobolev norms from the norms we have introduced.

Lemma 3.13. Let k∈ R. There exist C> 0 and h1 > 0 such that all0 < h ≤ h1,

1
C
‖〈s〉k op(M)u‖ ≤ ‖〈s〉k+1u‖ + ‖〈s〉k+1Dsu‖ +

n∑

j=1
‖〈s〉kDx j u‖ ≤ C‖〈s〉k op(M)u‖,(3.4)

for all u ∈ S (Rn+1), and

1
C
‖〈s〉k op(MT )u‖ ≤ ‖〈s〉k+1u‖ + ‖〈s〉k+1Dsu‖ +

n−1∑

j=1
‖〈s〉kDx j u‖ ≤ C‖〈s〉k op(MT )u‖,(3.5)

1
C

(

‖〈s〉k+1u‖ +
n−1∑

j=1
‖〈s〉kDx j u‖

)

≤ ‖〈s〉k op(ΛT )u‖,(3.6)

for all u ∈ S (Rs,x). By density these inequalities can be extended to u∈ H
k,1

M (Rn+1), H
k,1

M,T (Rs,x) and

H
k,1
Λ,T (Rs,x) respectively. For the last two inequalities, we have similar results for trace norms|.|0 at {xn =

0+}.
Lemma 3.14. Let k∈ R. There exist C> 0 and h1 > 0 such that for all u∈ S (Rs,x) and v∈ S (Rn+1) and
all 0 < h ≤ h1,

(1/C)‖〈s〉k op(Λ2
T )u‖ ≤ ‖〈s〉k+2u‖ + ‖〈s〉k+2Dsu‖ +

n−1∑

j=1
‖〈s〉kD2

x j
u‖ ≤ C‖〈s〉k op(Λ2

T )u‖,(3.7)

(1/C)‖〈s〉k Op(Λ2)v‖ ≤ ‖〈s〉k+2v‖ + ‖〈s〉k+2Dsv‖ +
n∑

j=1
‖〈s〉kD2

x j
v‖ ≤ C‖〈s〉k Op(Λ2)v‖.(3.8)

By density these inequalities can be extended to u∈H
k,2
Λ,T (Rs,x), and v∈H

k,2
Λ

(Rn+1) respectively.
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Lemma 3.15. Let Γ = Λ or M. Let k ∈ N. There exists C> 0 such that if u∈ H
k,2
Γ

(Rn+1) then
Dxnu ∈H

k,1
Γ

(Rn+1) and u∈H
k,2
Γ,T (Rn+1) and moreover

‖〈s〉k op(ΓT )Dxnu‖ + ‖〈s〉k op(Γ2
T )u‖ ≤ C‖〈s〉k Op(Γ2)u‖, u ∈H

k,2
Γ

(Rn+1).

The following lemma yields by density continuous injections of Sobolev spaces of the two families we
have introduced. We observe that in general, switching fromonψDO calculus to the other does not preserve
operator orders.

Lemma 3.16. For all k ∈ R and l ∈ R+ we have

‖〈s〉k Op(Λl)u‖ ≤ C‖〈s〉k Op(Ml)u‖, ‖〈s〉k Op(Ml/2)u‖ ≤ C‖〈s〉k Op(Λl)u‖, u ∈ S (Rn+1),

‖〈s〉k op(Λl
T )u‖ ≤ C‖〈s〉k op(Ml

T )u‖, ‖〈s〉k op(Ml/2
T )u‖ ≤ C‖〈s〉k op(Λl

T )u‖, u ∈ S (Rs,x).

We have similar results for trace norms|.|0 at {xn = 0+}.
The proof given in Appendix A requires the introductions of an intermediateψDO calculus in which

both order functionsΛ andM belong.
The following two lemmata will allows us to switch from one calculus to the other, yet preserving the

operator order, in the low frequency regime.

Lemma 3.17. Let (γ, Γ, γ′, Γ′) = (λ,Λ,m,M) or (m,M, λ,Λ) and let

χa(s, x, τ, ξ) ∈ S(γ−µ, gγ), ∀µ ∈ R.
Then, for anyµ ∈ R, χa ∈ S((γ′)−µ, gγ′).

For k, l ∈ R, if σ ∈ S(〈s〉kγl , gγ) then

σχa and σ#χa ∈ S(〈s〉kγl , gγ) ∩ S(〈s〉k(γ′)l , gγ).

If we further setχ = χa ◦ κ̃ ∈ S(〈s〉µΓ−µ, gΓ) ∩ S(〈s〉µ(Γ′)−µ, gΓ′), µ ∈ R, with κ as defined in(3.2), and if
Σ ∈ S(〈s〉kΓl , gΓ) then

Σχ and Σ#χ ∈ S(〈s〉kΓl , gΓ) ∩ S(〈s〉k(Γ′)l , gΓ′).

We have similar results for tangential operators.

Remark 3.18. The reader will note that we do not aim at giving optimal results in the previous lemma.
We content ourselves with the ability to switch from one calculus to the other, but we do not try to improve
operator orders as could easily be done at places. Such refinements are not necessary for the sequel.

Lemma 3.19. Let (γ, Γ, γ′, Γ′) = (λ,Λ,m,M) or (m,M, λ,Λ) and letχa ∈ S(1, gγ,T ) with compact support
in the(x, τ, ξ′) variables. Letχ = χa ◦ κ. Let k, k′ l, l ′ ∈ R and N∈ N. If Σ ∈ S(〈s〉k′Λl′

T , gΛ,T ), there exists
C > 0 such that

|〈s〉k op(Ml
T ) op(Σ)u|xn=0+ |0 ≤ C|〈s〉k+k′ op(Λl+l′

T )u|xn=0+ |0 +ChN(‖v‖ + ‖Dxnv‖),
‖〈s〉k op(Ml

T ) op(Σ)u‖ ≤ C‖〈s〉k+k′ op(Λl+l′
T )u‖ +ChN‖v‖,

if u = op(χ)v, with v∈ S (Rs,x).

3.2. A system formulation. Let K be a compact subset ofV. We consider a functionw(s, x) as described
in the statement of Theorem 2.4, i.e., satisfying (TCs) and such that its restrictionsw(s, .)|

R
n
∓

are inC∞c (K
g/d)

and are bounded inR × Rn
∓, along with all their derivatives w.r.t.sandx.

We introducef by f
g/d = f |R×Rn± = P2w|R×Rn± . We shall consider the transmission problem as a system of

two equations inVd coupled at the boundaryxn = 0+. We thus make the change of variablesxn to −xn in
Vg. This yields the following system inVd:






(
a(s)
T ∂s− ∂xnc

g(s, x)∂xn − cg(s, x)rg(x, ∂x′)
)

wg = f g,
(
a(s)
T ∂s− ∂xnc

d(s, x)∂xn − cd(s, x)rd(x, ∂x′)
)

wd = f d,
(3.9)
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with

∀s, x′, wg|xn=0+ = wd|xn=0+ + θ, cg∂xnw
g|xn=0+ + cd∂xnw

d|xn=0+ = Θ,(TC∗)

where for a functionψ defined inV, we setψd := ψ|Vd andψg(x′, xn) = ψ(x′,−xn) for xn > 0. In particular,
we haverg(x, ∂x′) = r(x′,−xn, ∂x′), andrd(x, ∂x′) = r(x, ∂x′) for xn > 0. If there is no possible confusion,
we shall now writeψ = t(ψg, ψd).

From Assumption 2.1 we have

∂xnϕ
g|xn=0+ < 0, ∂xnϕ

d|xn=0+ > 0, ∂xnϕ
d|xn=0+ + ∂xnϕ

g|xn=0+ ≥ C > 0,(3.10)

(cg∂xnϕ
g)|xn=0+ + (cd∂xnϕ

d)|xn=0+ ≥ C > 0,(3.11)

and

∂xnϕ
d|xn=0+ ≥ L (|∂x′ϕ|xn=0+ | + |∂xnϕ

g|xn=0+ |),(3.12)

with L sufficiently large.
We denote byp

g/d the symbols of the operators acting onw
g/d in (3.9). We also denote byk

g/d the symbol
of the tangential operatora(s)T ∂s − c

g/d(s, x)r
g/d(x, ∂x′). We set

P2(s, x,Ds,Dx) := Op(diag(pg, pd)), K(s, x,Ds,Dx) := op(diag(kg, kd)), and Φ := diag(ϕg, ϕd).

We setv = t(vg, vd) = eηΦ/hw. The entries ofv satisfy the following boundary condition

vg|xn=0+ = vd|xn=0+ + θϕ, cg(Dxn + iη∂xnϕ
g)vg|xn=0+ + cd(Dxn + iη∂xnϕ

d)vd|xn=0+ = Θϕ,(TCϕ)

where

θϕ = eηϕ/h|xn=0+θ and Θϕ =
h
i
eηϕ/h|xn=0+Θ.(3.13)

Because of the negative sign ofϕ we then observe thatv
g/d ∈ S (R × Rn

+).
We define the following conjugated operators

Pϕ = h2eηΦ/hP2 e−ηΦ/h = diag(Pg
ϕ,P

d
ϕ), Kϕ = eηΦ/hK e−ηΦ/h = diag(Kg

ϕ,K
d
ϕ),

which we shall, in the sequel, treat as a semi-classical differential operator, withh andh′ = h/T as small
parameters. The principal symbol ofPϕ is of the form

pϕ(s, x, τ, ξ′, ξn) = diag(pg
ϕ(s, x, τ, ξ

′, ξn), pd
ϕ(s, x, τ, ξ

′, ξn)).

We setcm =

(

cg 0
0 cd

)

and we have

Pϕ = DxncmDxn + 2icmη(∂xnΦ)Dxn − cm(η∂xnΦ)2 + hη(∂xn(cm∂xnΦ)) + Kϕ.(3.14)

We define the following operators

Q̃2 = (Pϕ + P∗ϕ)/2, Q̃1 = (Pϕ − P∗ϕ)/(2i), Q̃ j = diag(Q̃g
j , Q̃

d
j ), j = 1, 2,

with

Q̃2 = DxncmDxn + cmQ2, Q̃1 = Dxnηcm(∂xnΦ) + ηcm(∂xnΦ)Dxn + 2cmQ1, Q j = diag(Qg
j ,Q

d
j ), j = 1, 2.

We have

p
g/d
ϕ = c

g/d(q̃
g/d
2 + iq̃

g/d
1 ) = c

g/d(ξ2
n + q

g/d
2 + 2iξnη ∂xnϕ

g/d + 2iq
g/d
1 ),



CARLEMAN ESTIMATE FOR NON SMOOTH COEFFICIENTS 15

where the principal symbolsq
g/d
j = σ(Q

g/d
j ), q̃

g/d
j = σ(Q̃

g/d
j ), j = 1, 2 are given by

q
g/d
2 = −(η ∂xnϕ

g/d)2 + r
g/d(x, ξ′) − r

g/d(x, η ∂x′ϕ
g/d) − h′

a(s)
cg/d

ϕ
g/dη′, q̃

g/d
2 = c

g/d(ξ2
n + q

g/d
2 ),(3.15)

q
g/d
1 =

a(s)
2cg/d(s, x)

τ + r̃
g/d(x, ξ′, η ∂x′ϕ

g/d), q̃
g/d
1 = 2c

g/d(ξnη ∂xnϕ
g/d + q

g/d
1 ).(3.16)

Note that we havec ∈ S(1, gΛ) ∩ S(1, gM) (resp.S(1, gΛ,T ) ∩ S(1, gM,T )) and

(3.17) q
g/d
2 ∈ S(Λ2

T , gΛ,T ) ∩ S(M2
T , gM,T ), q̃

g/d
2 ∈ S(Λ2, gΛ) ∩ S(M2, gM),

(3.18) q
g/d
1 ∈ S(Λ2

T , gΛ,T ) ∩ S(〈s〉MT , gM,T ), q̃
g/d
1 ∈ S(Λ2, gΛ) ∩ S(〈s〉M, gM).

Finally we note that|Dsc(s, x)| ≤ Chh′T〈s〉−2 = Ch2〈s〉−2.

3.3. Symbol-like behavior of the roots; elliptic and non elliptic regions. We seta
g/d
ϕ := ã

g/d
2 + iã

g/d
1 with

a
g/d
2 = −(∂xnϕ

g/d)2 + r
g/d(x, ξ′) − r

g/d(x, ∂x′ϕ
g/d) − h′

a(s)
cg/dη2

η′ϕ
g/d , ã

g/d
2 = c

g/d(ξ2
n + a

g/d
2 ),

a
g/d
1 =

τ

2cg/d
+ r̃

g/d(x, ξ′, ∂x′ϕ
g/d), ã1 = 2c

g/d(ξn∂xnϕ
g/d + a

g/d
1 ),

(adapting the definitions of ˜a j , anda j, j = 1, 2 in (2.6)–(2.7)). With the mapsκ andκ̃ defined in (3.2)–(3.3),
we havea

g/d
ϕ ◦ κ̃ = η−2p

g/d
ϕ , anda

g/d
j ◦ κ = η−2q

g/d
j , j = 1, 2. Note that we have

a
g/d
2 ∈ S(λ2

T , gλ,T ) ∩ S(m2
T , gm,T ), ã

g/d
2 ∈ S(λ2, gλ) ∩ S(m2, gm),

a
g/d
1 ∈ S(λ2

T , gλ,T ) ∩ S(mT , gm,T ), ã
g/d
1 ∈ S(λ2, gλ) ∩ S(m, gm),

which is consistent with (3.17)–(3.18) and Lemma 3.3.
Here, we shall study the properties of the two complex roots of a

g/d
ϕ andp

g/d
ϕ at xn = 0+ when considered

as polynomials inξn. Depending on the signs of the imaginary parts of the roots, we shall adopt different
strategies for the proof of partial Carleman estimates. By “partial” we actually mean that the resulting
estimate will only hold in some microlocal region (see Section 4). Once collected together, the partial
estimates will yield the result of Theorem 2.4.

We note thatp
g/d
ϕ = c

g/d(ξn − ρ
g/d,+
p )(ξn − ρ

g/d,−
p ) anda

g/d
ϕ = c

g/d(ξn − ρ
g/d,+
a )(ξn − ρ

g/d,−
a ) and

ρ
g/d,±
a (κ(s, x, τ, ξ′), h′) = η−1ρ

g/d,±
p (s, x, τ, ξ′, h′).(3.19)

The dependency of the roots onh′ comes form that ofa2 andq2. Following [LR97], we introduce

(3.20) µ
g/d
a := a

g/d
2 +

(a
g/d
1 )2

(∂xnϕ
g/d)2

, µ
g/d
p := q

g/d
2 +

(q
g/d
1 )2

(η ∂xnϕ
g/d)2

, with µ
g/d
a ◦ κ = η−2µ

g/d
p ,

and define, forα = a or p,

E
g/d,+
α :=

{

(s, x, τ, ξ′, h′) ∈ R × Vd × R × Rn−1 × (0, h0]; µ
g/d
α (s, x, τ, ξ′, h′) > 0

}

,

E
g/d,−
α :=

{

(s, x, τ, ξ′, h′) ∈ R × Vd × R × Rn−1 × (0, h0]; µ
g/d
α (s, x, τ, ξ′, h′) < 0

}

,

Z
g/d
α :=

{

(s, x, τ, ξ′, h′) ∈ R × Vd × R × Rn−1 × (0, h0]; µ
g/d
α (s, x, τ, ξ′, h′) = 0

}

.

We have the following lemma, which proof is given in AppendixA.

Lemma 3.20. We have the following root properties.
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ρd,−
p

Reξn

Im ξn
Pg
ϕ

Reξn

Im ξn
Pd
ϕ

ρd,+
p

ρ
g,+
p

ρ
g,−
p

(a) Root configuration inE d,+
p , µd

p > 0;

ρd,−
p

Reξn

Im ξn
Pg
ϕ

Reξn

Im ξn
Pd
ϕ

ρ
g,+
p

ρ
g,−
p

ρ
d,+
p

(b) Root configuration inZ d
p , µd

p = 0;

ρd,−
p

Reξn

Im ξn
Pg
ϕ

Reξn

Im ξn
Pd
ϕ

ρ
g,+
p

ρd,+
p

ρ
g,−
p

(c) Root configuration inE d,−
p , µd

p < 0.

Figure 1: The rootρd,+
p crosses the real axis before the rootρ

g,−
p does, asµd

p decreases.

(1) In the regionE
g/d,+
a (resp.E

g/d,+
p ), the polynomial aϕ (resp. pϕ) has two distinct roots that satisfy

Im ρ
g/d,+
a > 0 andIm ρ

g/d,−
a < 0 (resp.Im ρ

g/d,+
p > 0 andIm ρ

g/d,−
p < 0).

Moreover we have

µ
g/d
a ≥ C > 0 ⇔ Im ρ

g/d,+
a ≥ C′ > 0 and Im ρ

g/d,−
a ≤ −C′ < 0,

(resp.µ
g/d
p ≥ C〈s〉2 ⇔ Im ρ

g/d,+
p ≥ C′〈s〉 and Im ρ

g/d,−
p ≤ −C′〈s〉).

(2) In the regionE
g/d,−
a (resp.E

g/d,−
p ), the imaginary parts of the two roots have the same sign as that of

−∂xnϕ
g/d.

(3) In the regionZ
g/d

a (resp.Z
g/d
p ), one of the roots is real.

Moreover, there exist C> 0 and H > 0 such that|ρg/d,+
a − ρg/d,−

a | ≥ | Imρ
g/d,+
a − Im ρ

g/d,−
a | ≥ C > 0 in the region

{µg/d
a ≥ −H}.

Remark 3.21. Note that (s, x, τ, ξ′, h′) ∈ E
g/d,+
a for |(τ, ξ′)| sufficiently large, say|(τ, ξ′)| ≥ R, uniformly in

(s, x) ∈ R × Vd and forh′ bounded. Note also that in the region{µg/d
a ≥ −H}, the rootsρ

g/d,±
a are smooth since

they do not cross.

For the polynomialad
ϕ (resp.pd

ϕ), for |(τ, ξ′)| > R, we have Imρd,+
a > 0 and Imρd,−

a < 0 (resp. Imρd,+
p > 0

and Imρd,−
p < 0). As the value ofµd

a (resp.µd
p) decreases, the rootρd,+

a (resp.ρd,+
p ) moves towards the real

axis, and crosses it in the regionZ d
a (resp.Z d

p ). In the regionE d,−
a (resp.E d,−

p ) the two roots both have
negativeimaginary parts.

For the polynomialag
ϕ (resp.pg

ϕ) , for |(τ, ξ′)| > R, we have Imρg,+
a > 0 and Imρg,−

a < 0 (resp. Imρg,+
p > 0

and Imρg,−
p < 0). As the value ofµg

a (resp.µg
p) decreases, the rootρg,−

a (resp.ρg,−
p ) moves towards the real

axis, and crosses it in the regionZ g
a (resp.Z g

p ) . In the regionE g,−
a (resp.E g,−

p ) the two roots both have
positiveimaginary parts. The “motion” of the roots ofpg

ϕ andpd
ϕ is illustrated in Figure 1.

Lemma 3.22. Let H be as given in Lemma 3.20. Letχ
g/d ∈ S(1, gλ,T ) with support in{µg/d

a ≥ −H}. Then
χ

g/dρ
g/d,±
a ∈ S(λT , gλ,T ). Let C0 > 0, there exists C> 0 such that| Im ρ

g/d,±
a | ≥ CλT in {µg/d

a ≥ C0}. It follows
that for some C′ > 0 we have

|ρg/d,+
a − ρg/d,−

a | ≥ | Im(ρ
g/d,+
a − ρg/d,−

a )| ≥ C′λT , in {µg/d
a ≥ C0}.

See Appendix A for a proof. By (3.20), note that the mapκ defined in (3.2) is one-to-one from{µp ≥ Cη2}
onto{µa ≥ C}. From (3.19) and Lemma 3.3 we thus have the following result.
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Corollary 3.23. Let H be as given in Lemma 3.20. Letχ
g/d ∈ S(1, gΛ,T ) with support in{µg/d

p > −Hη2}. Then
χ

g/dρ
g/d,±
p ∈ S(ΛT , gΛ,T ). Let C0 > 0, there exists C> 0 such that| Im ρ

g/d,±
p | ≥ CΛT in {µg/d

p ≥ C0η
2}. It follows

that for some C′ > 0 we have

|ρg/d,+
p − ρg/d,−

p | ≥ Im(ρ
g/d,+
p − ρg/d,−

p ) ≥ C′ΛT , in {µg/d
p ≥ C0η

2}.
With the condition we have imposed on the weight function in Assumption 2.1 we now prove the fol-

lowing Proposition.

Proposition 3.24. We haveE d,+
a ⊂ E

g,+
a , and dist(E d,+

a ,Z
g

a ) ≥ C > 0, if the neighborhood V of y0 is
sufficiently small. We have thatµd

a ≥ C′ > 0 impliesµg
a ≥ C′′ > 0.

The result of the proposition implies that the rootρ
d,+
a (resp.ρd,+

p ) crosses the real axis before the root
ρ

g,−
a (resp.ρg,−

p ) does, asµd
a (resp.µd

p) decreases from positive to negative values. This is illustrated in Fig-
ure 1. We enforce this root configuration because of the techniques we shall use to prove partial Carleman
estimates in Section 4.

In the sequel we shall also need the following lemma.

Lemma 3.25. For all C > 0 there exists C′ such that

|µg/d
a | ≤ C ⇒ |τ| + |ξ′| ≤ C′.

3.4. A Carleman estimate at the boundary. Here, we place ourselves on one side of the interface, say
Vd, and we treat the interface as a boundary. We momentarily drop the “g/d” notation.

Proposition 3.26. Let K be a compact subset of V. If the weight functionϕ satisfies Assumption 2.2, there
exist C> 0 and h1 > 0 such that

(3.21) ‖Pϕv‖2 ≥ Ch
(

‖〈s〉 1
2 op(MT )v‖2 + ‖〈s〉 1

2 Dxnv‖
2)

+ hReB(v) + h2 Re
(

Dxnv|xn=0+ + L1v|xn=0+ , L0v|xn=0+
)

0 ,

for 0 < h ≤ h1 and0 < h′ ≤ h1, for v ∈ S (R × Rn
+), with v(s, .) ∈ C∞c (Kd), for all s ∈ R, and where

(3.22) B(v) =
(

Q̃1v|xn=0+ , c(s, x)Dxnv|xn=0+
)

0
+

(

(c(s, x)DxnQ̃1 − 2c(s, x)η(∂xnϕ)Q̃2)v|xn=0+ , v|xn=0+
)

0
,

and L1 ∈ D(MT , gM,T ) and L0 ∈ Ψ(〈s〉, gM,T ).

The reader should note that in the definition ofB(v) we havecDxnQ̃1 − 2cη(∂xnϕ)Q̃2 = L′1Dxn + L′2 with
L′j ∈ Ψ(〈s〉M j

T , gM,T ), j = 1, 2, withσ(L′1) = 2c2q1 andσ(L′2) = −2c2η(∂xnϕ)q2. An alternative expression
for B(v) that we shall use in the sequel is the following

B(v) =

((

B0 B1

B′1 B2

) (

Dxnv|xn=0+

v|xn=0+

)

,

(

Dxnv|xn=0+

v|xn=0+

) )

0

,(3.23)

with σ(B0) = 2c2η∂xnϕ, σ(B1) = σ(B′1) = 2c2q1 andσ(B2) = −2c2η(∂xnϕ)q2 (see (3.15)–(3.16)).
Note that in the proposition, we purposely do not impose any boundary condition atxn = 0+ on the

functionv here. The result of Lemma 2 in [LR95] is the counterpart of this proposition in the elliptic case.

Proof. We setg := Pϕv, i.e.,Q̃2v+ iQ̃1v = g. We note that
(

w1, Q̃2w2

)

=
(

Q̃2w1,w2

)

− ih
[(

w1|xn=0+ , cDxnw2|xn=0+
)

0 +
(

cDxnw1|xn=0+ ,w2|xn=0+
)

0

]

,
(

w1, Q̃1w2

)

=
(

Q̃1w1,w2

)

− 2ih
(

cη(∂xnϕ)w1|xn=0+ ,w2|xn=0+
)

0 ,

for w j ∈ S (R × Rn
+), with w j(s, .) ∈ C∞c (Kd) for all s ∈ R, j = 1, 2, and we thus obtain

‖g‖2 = ‖Q̃1v‖2 + ‖Q̃2v‖2 + i([Q̃2, Q̃1]v, v) + hB(v).
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We observe that we have

i[Q̃2, Q̃1] = h
(

H̃0DxncDxn + H̃1Dxn + H̃2

)

,

whereH̃ j ∈ Ψ(〈s〉M j
T , gM,T ), j = 0, 1, 2. We then note thatDxncDxn − Q̃2 ∈ Ψ(M2

T , gM,T ) and Dxn −
1

2cη∂xnϕ
Q̃1 ∈ Ψ(M1

T , gM,T ). By (2.5) we thus have

i[Q̃2, Q̃1] = h
(

H0Q̃2 + H1Q̃1 + H2

)

, H j ∈ Ψ(〈s〉M j
T , gM,T ), j = 0, 2, andH1 ∈ Ψ(MT , gM,T ).

From the sub-ellipticity condition (2.8) in Assumption 2.2we have the following lemma (see Appendix A
for a proof).

Lemma 3.27. For µ sufficiently large and h and h′ sufficiently small we have

S(〈s〉M2
T , gM,T ) ∋ µ

(

q2
1 + (η∂xnϕ)2q2

)2

〈s〉3M2
T

+ σ(H2) ≥ C〈s〉M2
T .

Applying Gårding’s inequality (see Lemma 3.9) in the tangential directions (including the time direction)
we thus obtain, forh sufficiently small,

(3.24) ‖g‖2 ≥ ‖Q̃1v‖2 + ‖Q̃2v‖2 + hReB(v) + hRe
(

H0Q̃2v, v
)

+ hRe
(

H1Q̃1v, v
)

+Ch‖〈s〉 1
2 op(MT )v‖2 − hRe

(

(Q2
1 + (η∂xnϕ)2Q2)v,Gv

)

,

whereG ∈ Ψ(〈s〉−1, gM,T ) andσ(G) = µ
q2

1+(η∂xnϕ)2q2

〈s〉3M2
T

.

We first see that we have

h
∣
∣
∣

(

H0Q̃2v, v
)∣
∣
∣ ≤ h‖Q̃2v‖‖〈s〉v‖ ≤ Ch

1
2 ‖Q̃2v‖2 +C′h

3
2 ‖〈s〉v‖2,(3.25)

h
∣
∣
∣

(

H1Q̃1v, v
)∣
∣
∣ ≤ h‖Q̃1v‖‖op(MT )v‖ ≤ Ch

1
2 ‖Q̃1v‖2 +C′h

3
2 ‖op(MT )v‖2.(3.26)

We have the following lemma.

Lemma 3.28. We have‖〈s〉 1
2 Dxnv‖ ≤ C‖Q̃1v‖ +C‖〈s〉 1

2 op(MT )v‖.
Proof. We observe that sincẽQ1 = 2cηϕ′xn

Dxn + η[Dxn, cϕ
′
xn

] + 2cQ1, we can write

〈s〉 1
2 Dxn =

〈s〉 1
2

2cηϕ′xn

Q̃1 − 〈s〉
1
2

2cϕ′xn

[Dxn, cϕ
′
xn

] − 〈s〉
1
2

cηϕ′xn

Q1,

which yields‖〈s〉 1
2 Dxnv‖ ≤ C

(

‖〈s〉− 1
2 Q̃1v‖ + ‖〈s〉 1

2 op(MT )v‖
)

, by Lemma 3.6, from which we conclude.�

Following [LR95], since

Q1 =
1
2c

(

Q̃1 − η[Dxn, c∂xnϕ]
)

− η(∂xnϕ)Dxn,(3.27)

we now write

Q2
1 + (η∂xnϕ)2Q2 =

Q1

2c

(

Q̃1 − η[Dxn, c∂xnϕ]
)

− Q1η(∂xnϕ)Dxn +
(η∂xnϕ)2

c
(Q̃2 − DxncDxn).

Using (3.27) a second time we have

Q2
1 + (η∂xnϕ)2Q2 =

(

η(∂xnϕ)Dxn −
1
2c

(Q̃1 − η[Dxn, c∂xnϕ])
)

η(∂xnϕ)Dxn

+
Q1

2c

(

Q̃1 − η[Dxn, c∂xnϕ]
)

+
(η∂xnϕ)2

c
(Q̃2 − DxncDxn),
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which reads

(3.28) Q2
1 + (η∂xnϕ)2Q2 ∈ (η∂xnϕ)2

c
Q̃2 − 1

2
ηDxn

∂xnϕ

c
Q̃1

+ Ψ(〈s〉MT , gM,T ) Q̃1 + hΨ(〈s〉2, gM,T ) Dxn + hΨ(〈s〉2MT , gM,T ).

We note that

h

∣
∣
∣
∣
∣
∣

(

(η∂xnϕ)2

c
Q̃2v,Gv

)∣
∣
∣
∣
∣
∣
≤ h

1
2 C‖Q̃2v‖2 + h

3
2 C‖〈s〉v‖2,

and

hRe
(1
2
ηDxn

∂xnϕ

c
Q̃1v,Gv

)

= hRe
(1
2
η
∂xnϕ

c
Q̃1v,DxnGv

)

− h2 Re
(∂xnϕ

2ic
Q̃1v|xn=0+ , ηGv|xn=0+

)

0
,

by integration by parts. With Lemma 3.8 we thus obtain

(3.29) − hRe
(

(Q2
1 + (η∂xnϕ)2Q2)v,Gv

)

≥ −h2 Re
(∂xnϕ

2ic
Q̃1v|xn=0+ , ηGv|xn=0+

)

0

−C
(

h
1
2 ‖Q̃1v‖2 + h

1
2 ‖Q̃2v‖2 + h

3
2 ‖〈s〉 1

2 Dxnv‖
2
+ h

3
2 ‖〈s〉 1

2 Op(MT )v‖2
)

.

From (3.24), (3.25), (3.26) and (3.29), and Lemma 3.28, we conclude by choosingh sufficiently small. �

In Section 4, we shall use the result of Proposition 3.26 on one side and/or the other side of the interface
S. However, we may also apply it to a small neighborhood of a point of the boundary of the open set
Ω. It then yields the following proposition in the case of homogeneous Dirichlet boundary conditions.
In a sufficiently small neighborhoodW of a pointy of the boundary∂Ω, we may use normal geodesic
coordinates. Without changing the statement of Assumption2.2, (the proof of) Lemma 2.3 shows that this
assumption can be fulfilled by choosingϕ = eλψ − eλK , with K > supx∈W ψ and with∇ψ(x) , 0 in W. If we
chooseψ such that∂nψ|∂Ω∩W < 0 then∂nϕ|∂Ω∩W < 0. We state the proposition in the same setting as that of
Theorem 2.8.

Proposition 3.29. Let y ∈ ∂Ω and W be a sufficiently small neighborhood of y inΩ. Let K be a compact
subset ofΩ such that W is a neighborhood of K inΩ. Letϕ be defined in W that satisfies the sub-elliptic
condition(2.8) in W and∂nϕ|∂Ω∩W < 0, where n is the outer unit normal toΩ on∂Ω. Then there exist C> 0
and h1 > 0 such that

(3.30) h‖η 3
2 eηϕ/hw‖2T + h3‖η 1

2 eηϕ/h∇xw‖
2

T + h5‖η− 1
2 eηϕ/h∂tw‖

2

T + h5‖η− 1
2 eηϕ/h∇x(δ∇xw)‖2T

+ h3|η 1
2 eηϕ/h∂nw|∂Ω|

2

T ≤ Ch4‖eηϕ/h f ‖2T ,
for 0 < h+ h/T ≤ h1, and for w∈ C∞((0,T) × Ω), supp(w(t, .)) ⊂ K, for all t ∈ (0,T), w|(0,T)×(∂Ω∩W) = 0,
and∂k

t w bounded for all k∈ N, and f ∈ L2((0,T) ×W) with f = Pw in (0,T) ×W.

Proof. As above, we use local normal geodesic coordinates at the boundary and we perform the change of
variable in time,t → s, of Section 2.1. For simplicity we use the same letterw to denote the function under
consideration after the change of variable.

With the xn-axis pointing inward we have∂nϕ|xn=0+ = −∂xnϕ|xn=0+ . Settingv = eηϕ/hw, (3.21) holds for
h andh′ sufficiently small (because of the negative sign ofϕ note thatv ∈ S (R × Rn

+)). Sincev|∂Ω = 0 the
last term in (3.21) vanishes and the quadratic formB(v) reduces to

B(v) =
(

2c2η(∂xnϕ|xn=0+)Dxnv|xn=0+ ,Dxnv|xn=0+
)

0
≥ C|η 1

2 Dxnv|xn=0+ |
2

0 = C|η 1
2 eηϕ/hDxnw|xn=0+ |

2

0,
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with C > 0. By Lemma 3.13, we thus obtain

‖Pϕv‖2 ≥ Ch
(

‖〈s〉 1
2 op(MT )v‖2 + ‖〈s〉 1

2 Dxnv‖
2
+ |η 1

2 eηϕ/hDxnw|xn=0+ |
2

0

)

≥ Ch
(

‖〈s〉 3
2 v‖2 + ‖〈s〉 3

2 Dsv‖
2
+

n∑

j=1
‖〈s〉 1

2 Dx j v‖
2
+ |η 1

2 eηϕ/hDxnw|xn=0+ |
2

0

)

.

We note that

‖〈s〉 1
2 eηϕ/hDx j w‖ ≤ ‖〈s〉

1
2 Dx j

(

eηϕ/hw
)

‖ + ‖〈s〉 1
2η(∂x jϕ) eηϕ/hw‖ ≤ C‖〈s〉 1

2 Dx j v‖ +C‖〈s〉 3
2 v‖,

and

‖〈s〉 3
2 eηϕ/hDsw‖0 ≤ ‖〈s〉

3
2 Ds

(

eηϕ/hw
)

‖
0
+ h′‖〈s〉 3

2 eηϕ/h(∂sη)ϕw‖0 ≤ ‖〈s〉
3
2 Dsv‖0 +C‖〈s〉 3

2 v‖0,
since 0< h′ ≤ h0. We thus obtain

h
(

‖〈s〉 3
2 eηϕ/hw‖2 + ‖〈s〉 3

2 eηϕ/hDsw‖
2
+

n∑

j=1
‖〈s〉 1

2 eηϕ/hDx j w‖
2
+ |η 1

2 eηϕ/hDxnw|xn=0+ |
2

0

)

≤ C‖eηϕ/hP2v‖2.(3.31)

SinceA2 = − a(s)T ∂s+ P2 anda(s) = π〈s〉2 we have

h5‖〈s〉− 1
2 eηϕ/hA2v‖2 ≤ hC‖〈s〉 3

2 eηϕ/hh
h
T
∂sw‖

2

+ h5‖〈s〉− 1
2 eηϕ/hP2v‖2(3.32)

≤ C′
(

h‖〈s〉 3
2 eηϕ/hDsw‖

2
+ h4‖eηϕ/hP2v‖2

)

.

With (3.31) and (3.32), after changing back to the original space coordinates, we obtain

h‖〈s〉 3
2 eηϕ/hw‖2 + h3‖〈s〉 1

2 eηϕ/h∇xw‖
2
+ h3(h′)2‖〈s〉 3

2 eηϕ/h∂sw‖
2
+ h5‖〈s〉− 1

2 eηϕ/h∇x(c∇xw)‖2

+ h3|〈s〉 1
2 eηϕ/h∂nw|∂Ω|

2 ≤ Ch4‖eηϕ/h f ‖2,
The replacement ofP2 by P and ofA2 by ∇x(c∇x) can be done according to Remark 2.6. Finally, arguing
as above Theorem 2.8 we achieve the result. �

4. Microlocal Carleman estimates and proof of the main result

Based on Lemma 3.20 and Proposition 3.24 we now place ourselves in three different microlocal regions
and prove each time a partial Carleman estimate. The three estimates will be gathered and patched together
in Section 4.4, which will provide a proof for Theorem 2.4.

4.1. Estimate in regionE
d,+
p : a Calderón projector method. The following lemma enables the construc-

tion of the microlocal cut-off functions we shall use. The proof can be found in Appendix A.

Lemma 4.1. Letχµ ∈ C∞(R) such thatχ′µ ∈ C∞c (R). The functionsχ
g/d
a (s, x, τ, ξ′) = χµ◦µ

g/d
a (s, x, τ, ξ′, h′ = 0)

belong to S(1, gλ,T ) ∩ S(1, gm,T ). If moreoverχµ ∈ C∞c (R) thenχ
g/d
a ∈ S(λ−νT , gλ,T ) ∩ S(m−νT , gm,T ) for all

ν ∈ R.

Let χ+a (s, x, τ, ξ′) ∈ S(1, gλ,T ), with compact support with respect tox contained inV, be such that
µd

a(s, x, τ, ξ′, h′ = 0) ≥ C1 > 0 in supp(χ+a). By Lemma 4.1 this can be achieved by setting

χ+a (s, x, τ, ξ′) = χx(x)
(

χµ ◦ µd
a
)

(s, x, τ, ξ′, h′ = 0),

with χx ∈ C∞c (V) andχµ ∈ C∞(R), 0 ≤ χµ ≤ 1, such thatχµ = 0 in (−∞,C1) andχµ = 1 in (C2,+∞)
with C2 > C1. As µ − µ|h′=0 = h′O(1), for h′ > 0 sufficiently small, we haveµd

a(s, x, τ, ξ′, h′) ≥ C > 0 in
supp(χ+a ). We also haveµg

a(s, x, τ, ξ′, h′) ≥ C′ > 0 in supp(χ+a ), by Proposition 3.24 if the neighborhoodV
is chosen sufficiently small. We setχ+ := χ+a ◦ κ, with the mapκ defined in (3.2), and haveχ+ ∈ S(1, gΛ,T )
by Lemma 3.3. From the remark preceding Corollary 3.23 we have µ

g/d
p ≥ Cη2 in supp(χ+). In supp(χ+a )
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we have|ag/d
ϕ |2 ≥ Cλ4. In turn we have|pg/d

ϕ |2 ≥ CΛ4 in supp(χ+). The region we consider is thus an elliptic
region for the conjugated operatorPϕ.

Proposition 4.2. Let K be a compact subset of V, with the neighborhood V chosen sufficiently small ac-
cording to Proposition 3.24. Letχ+ ∈ S(1, gΛ,T ), with compact support in x, be as introduced above with
support in{µd

p ≥ Cη2}. With the weight functionϕ satisfying Assumption 2.1, there exist C> 0 and h1 > 0
such that

(4.1) ‖〈s〉 1
2 Dxn op(χ+)v‖ + ‖〈s〉 1

2 op(ΛT ) op(χ+)v‖
+ h

1
2

(

|〈s〉 1
2 (Dxn op(χ+)v)|xn=0+ |0 + |〈s〉

1
2 (op(ΛT ) op(χ+)v)|xn=0+ |0

)

≤ C
(

‖Pϕv‖ + h(‖Dxnv‖ + ‖op(ΛT )v‖) + h2|Dxnv|xn=0+ |0 + h
1
2

(

|〈s〉 1
2 op(ΛT )θϕ|0 + |〈s〉

1
2Θϕ|0

))

for 0 < h ≤ h1, 0 < h′ ≤ h1, and for v= t(vg, vd), v
g/d ∈ S (R × Rn

+), with v(s, .)
g/d ∈ C∞c (Kd), for all s ∈ R,

satisfying transmission conditions(TCϕ).

In the microlocal region we consider here, through the support of χ+, the root configuration ofp
g/d
ϕ

corresponds to that illustrated in Figure 1a.

Remark 4.3. Note that the first two terms in the partial estimate (4.1) differs from the equivalent term in
the Carleman estimate (2.9) by a factorh

1
2 . Here, a “better” estimate is actually obtained because we have

restricted ourselves microlocally to an elliptic region ofthe symbolpϕ. The Carleman estimate (2.9), for
the second-order operatorP2, in fact corresponds to a sub-elliptic estimate.

Proof. In supp(χ+) we have

Im ρ
g/d,+
p ≥ CΛT > 0, Im ρ

g/d,−
p ≤ −CΛT < 0, and χ+ρ

g/d,±
p ∈ S(ΛT , gΛ,T ),(4.2)

by Lemma 3.20, and Corollary 3.23.
We setu = op(χ+)v. We have,Pϕu = g with g = op(χ+)Pϕv + [Pϕ, op(χ+)]v, and [Pϕ, op(χ+)] ∈

hDxnΨ(1, gΛ,T ) + hΨ(ΛT , gΛ,T ). In particular, we have

‖g‖ ≤ C
(

‖Pϕv‖ + h‖Dxnv‖ + h‖op(ΛT )v‖
)

.(4.3)

Following (TCϕ) the transmission conditions satisfied byug andud are

ug|xn=0+ = ud|xn=0+ + θϕ,χ+ , cg(Dxn + iη∂xnϕ
g)ug|xn=0+ + cd(Dxn + iη∂xnϕ

d)ud|xn=0+ = G1,(TC+ϕ)

with θϕ,χ+ := op(χ+)θϕ|xn=0+ and

G1 = [cg(Dxn + iη∂xnϕ
g), op(χ+)]

︸                              ︷︷                              ︸

∈hΨ(1,gΛ,T )

vg|xn=0+ + [cd(Dxn + iη∂xnϕ
d), op(χ+)]

︸                              ︷︷                              ︸

∈hΨ(1,gΛ,T )

vd|xn=0+ + op(χ+)Θϕ|xn=0+

that satisfies

|〈s〉 1
2 G1|0 ≤ Ch|〈s〉 1

2 v|xn=0+ |0 +C|〈s〉 1
2Θϕ|0.(4.4)

We denote byφ the zero-extension of a functionφ ∈ C∞(R×Vd) toRn+1. Considering the form ofPϕ in
(3.14) we then have

Pϕ u = g− h2cmγ0(u) δ′ +
h
i

(

cmγ1(u) − op(qρ) cmγ0(u)
)

δ, γ0(u) := u|xn=0+ , γ1(u) := Dxnu|xn=0+ ,

whereδ( j) =
(

d
dxn

) j
δxn=0, andqρ = diag(ρg,−

p + ρ
g,+
p , ρ

d,−
p + ρ

d,+
p ) sinceρ

g/d,+
p + ρ

g/d,−
p = −2i η∂xnϕ

g/d. Since

γ1(u) = (op(χ+)Dxnv)|xn=0+ + ([Dxn, op(χ+)]v)|xn=0+ , with [Dxn, op(χ+)] =
h
i

op(∂xnχ
+) ∈ hΨ(1, gΛ,T ),
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note that, we have

(4.5) γ0(u), γ1(u) ∈ S (R × Rn−1),

sincev
g/d ∈ S (R × Rn

+). Setting

w1 := cmγ0(u), and w0 = cmγ1(u) − op(qρ) cmγ0(u),(4.6)

we write

Pϕ u = g− h2w1 δ
′ +

h
i
w0δ.(4.7)

We now chooseχa(s, x, τ, ξ) ∈ S(1, gλ) equal to one for sufficiently large|(τ, ξ)| as well as in a neigh-
borhood of supp(χ+a) with moreover supp(χa) ∩ (ag

ϕ)−1({0}) = ∅ and supp(χa) ∩ (ad
ϕ)
−1({0}) = ∅. These

conditions are compatible from the choice made for supp(χ+a) and Proposition 3.24. We setχ := χa ◦ κ̃,
with the correspondence map ˜κ defined in (3.3), and haveχ ∈ S(1, gΛ).

From the ellipticity ofpϕ on supp(χ), for large p ∈ N, there exists aψDO Ep = Op(e), with e ∈
S(Λ−2, gΛ), of the form

(4.8) e=
p∑

j=0
h jej , with ej ∈ S(Λ−2− j, gΛ), e

g/d
0 = χ/p

g/d
ϕ and supp(e

g/d
j ) ⊂ supp(χ),

that satisfies

Ep ◦ Pϕ = Op(χ) + hp+1Rp, Rp ∈ Ψ(Λ−1−p, gΛ).

Note that the parametrix construction yields the symbolse
g/d
j , j = 0, . . . , p, in the form of rational functions

in ξn for largeη−1|ξn|, with ρ
g/d,+
p andρ

g/d,−
p for only poles.

With such a parametrixEp we obtain

u = Epg+ Ep

(

−h2w1 δ
′ +

h
i
w0δ

)

+ g1, g1 = (Id−Op(χ))u− hp+1Rpu.(4.9)

With Lemma 2.10 in [LR09], which proof can be adapted to the symbol classes we consider here, we have
(Id−Op(χ)) ◦ op(χ+) ∈ ∩N∈NhNΨ(Λ−N, gΛ). Noting thatu = op(χ+) v, we obtain, for alll, l′ ∈ R,

‖〈s〉l Op(Λl′)g1‖ ≤ Ch2‖v‖.(4.10)

In particularg1 ∈H
l,2
Λ

(Rn+1) and with Lemma 3.15 we have

‖〈s〉l Dxng1‖ + ‖〈s〉l op(ΛT )g1‖ ≤ C′h2‖v‖.(4.11)

We compute the action in the regionxn > 0 of the parametrixEp on the terms defined on the interface in
(4.9). We find

Ep

(h
i
w0δ

)

(s, x) = (2πh)−(n+1) ∫∫ ei(s−t)τ/h2+i〈x′−z′,ξ′〉/ht̂0(s, x, τ, ξ′)w0(t, z′) d(t, z′) d(τ, ξ′),

Ep(−h2w1δ
′) = (2πh)−(n+1) ∫∫ ei(s−t)τ/h2+i〈x′−z′,ξ′〉/ht̂1(s, x, τ, ξ′)w1(s, z′) d(t, z′) d(τ, ξ′),

where

t̂0(s, x, τ, ξ′) =
1

2iπ
∫
R

eixnξn/he(s, x, τ, ξ) dξn, t̂1(s, x, τ, ξ′) =
1

2iπ
∫
R

eixnξn/he(s, x, τ, ξ)ξn dξn.

Note that the integral defininĝt0 is absolutely converging. The integral definingt̂1 is however to be under-
stood in the sense of oscillatory integrals [Hör90, Section 7.8]. Note that we have

t̂1(s, x, τ, ξ′) =
1

2iπ
Dzn ∫

R

eiznξn/he(s, x, τ, ξ) dξn

∣
∣
∣
∣
∣
zn=xn

.(4.12)
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The choice we have made for the cut-off functionχ makes the symbole(s, x, τ, ξ) holomorphic for large
η−1|ξn|, ξn ∈ C. In xn > 0, we thus obtain

t̂0(s, x, τ, ξ′) =
1

2iπ
∫
γ

eixnξn/he(s, x, τ, ξ) dξn,(4.13)

whereγ is the union of the segment{ξn ∈ R; |ξn| ≤ C0ΛT } and the half circle{ξn ∈ C; |ξn| = C0ΛT , Im ξn >

0}, where the constantC0 is chosen sufficiently large so as to have the rootsρ
g/d,+
p inside the domain with

boundaryγ (recall thatχ+ρ
g/d,+
p is in S(ΛT , gΛ,T )). From (4.12), we obtain similarly

t̂1(s, x, τ, ξ′) =
1

2iπ
∫
γ

eixnξn/he(s, x, τ, ξ)ξn dξn, xn > 0.(4.14)

The expressions (4.13) and (4.14) above are valid inxn > 0 but admit a trace atxn = 0+. In particular, we
note that, forα1, β1 ∈ N, andα2, β2 multi-indices, we have

|Dl
xn
∂α1

s ∂
α2
x′ ∂

β1
τ ∂

β2

ξ′ t̂ j | ≤ Cα1,α2,β1,β2,l〈s〉2β1−α1Λ
−1+ j+l−2β1−|β2|
T , xn ≥ 0, j = 0, 1, l ∈ N.(4.15)

We now chooseχ1(s, x, τ, ξ′) ∈ S(1, gΛ,T ), satisfying the same requirement asχ+, equal to one in a neigh-
borhood of supp(χ+) and such that the symbolχ be equal to one in a neighborhood of supp(χ1). We set
t j = χ1t̂ j , j = 0, 1 andg2 = op((1− χ1)t̂0)w0 + op((1− χ1)t̂1)w1. This yields

u = Epg+ op(t0)w0 + op(t1)w1 + g1 + g2.(4.16)

From the composition formula of tangential operators (1.2), noting that it does not involve derivations w.r.t.
the variablexn, and estimate (4.15), fork, l, l′ ∈ R, we obtain

‖〈s〉l Op(Λl′ )g2‖ ≤ Ckh
k(|v|0 + |Dxnv|xn=0+ |0),(4.17)

with Ck > 0, since supp(1− χ1) ∩ supp(χ+) = ∅. In particularg2 ∈ H
l,2
Λ

(Rn+1) and with Lemma 3.15 and
by the trace formula (3.1) we obtain, for alll ∈ R,

‖〈s〉l Dxng2‖ + ‖〈s〉l op(ΛT )g2‖ ≤ C′h2(‖Dxnv‖ + ‖v‖ + |Dxnv|xn=0+ |0).(4.18)

We now observe that the symbolse(s, x, τ, ξ) is holomorphic w.r.t.ξn in the support ofχ1. We can then
write

t j = diag(tgj , t
d
j ), t

g/d
j (s, x, τ, ξ′) = χ1(s, x, τ, ξ′)

1
2iπ
∫
γ

g/d
0

eixnξn/he
g/d(s, x, τ, ξ)ξ j

n dξn, j = 0, 1,(4.19)

whereγ
g/d
0 is a direct contour surrounding the rootsρ

g/d,+
p in the region Imξn ≥ c0ΛT , for c0 > 0.

We note that in supp(χ1) we have

e
g/d
0 =

1

p
g/d
ϕ

=
1

cg/d(ρ
g/d,+
p − ρg/d,−

p )





1

ξn − ρ
g/d,+
p

− 1

ξn − ρ
g/d,−
p



 .

The residue formula then yields

e−ixnρ
g/d,+
p /h t

g/d
j =

χ1(ρ
g/d,+
p ) j

cg/d(ρ
g/d,+
p − ρg/d,−

p )
+ hλ

g/d, j = 0, 1, λ
g/d ∈ S(Λ−2+ j

T , gΛ,T ).(4.20)

From (4.19) we obtain the estimate

|Dl
xn
∂α1

s ∂
α2
x′ ∂

β1
τ ∂

β2

ξ′ t j | ≤ Cα1,α2,β1,β2,l e−c0(xn/h)ΛT 〈s〉2β1−α1Λ
−1+ j+l−2β1−|β2|
T xn ≥ 0, j = 0, 1, l ∈ N,
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again by the residue formula, which yieldsec0xn/h(Dxn)
l t j bounded inS(Λ−1+ j+l

T , gΛ,T ) uniformly w.r.t. xn ≥
0. It follows that,

‖〈s〉 1
2 op(ΛT ) ◦ op(t j)w j |xn≥0‖

2
= ∫

xn>0
e−2c0xn/h

∣
∣
∣
∣〈s〉 1

2 op(ΛT ) ◦ op(ec0xn/ht j)w j

∣
∣
∣
∣

2

0
(xn) dxn(4.21)

≤ Ch|〈s〉 1
2 op(Λ j

T )w j |
2

0
,

and

‖〈s〉 1
2 (Dxn op(t j)w j)|xn≥0‖

2
= ∫

xn>0
e−2c0xn/h

∣
∣
∣
∣〈s〉 1

2 op(ec0xn/hDxnt j)w j

∣
∣
∣
∣

2

0
(xn) dxn ≤ Ch|〈s〉 1

2 op(Λ j
T )w j |

2

0
.(4.22)

As g ∈ L2(Rn+1), Epg ∈H
0,2
Λ

(Rn+1). By Lemma 3.15DnEpg ∈H
0,1
Λ,T (Rn+1) andEpg ∈H

0,2
Λ,T (Rn+1) and

‖〈s〉 1
2 DxnEpg‖ + ‖〈s〉 1

2 op(ΛT )Epg‖ ≤ C(‖op(ΛT )DxnEpg‖ + ‖op(Λ2
T )Epg‖) ≤ C′‖Op(Λ2)Epg‖,

where the first inequality follows from Lemma 3.12. From (4.16), and estimates (4.3), (4.11), (4.18), (4.21),
(4.22) we thus obtain

(4.23) ‖〈s〉 1
2 Dxnu‖ + ‖〈s〉

1
2 op(ΛT )u‖ ≤ C

(

‖Pϕv‖ + h
(

‖Dxnv‖ + ‖op(ΛT )v‖
)

+ h
1
2 (|〈s〉 1

2 w0|0 + |〈s〉
1
2 op(ΛT )w1|0) + h2|Dxnv|xn=0+ |0

)

.

We shall now address the boundary termsw0 andw1. We take the trace atxn = 0+ of (4.16) which gives

γ0(u) = op(a)γ0(u) + op(b)γ1(u) +G2,(4.24)

wherea ∈ S(1, gΛ,T ) andb ∈ S(Λ−1
T , gΛ,T ), with principal symbols

a0 = diag(ag
0, a

d
0), with a

g/d
0 = −



χ1
ρ

g/d,−
p

ρ
g/d,+
p − ρg/d,−

p





∣
∣
∣
∣
∣
∣
∣
xn=0+

,

b−1 = diag(bg
−1, b

d
−1), with b

g/d
−1 =



χ1
1

ρ
g/d,+
p − ρg/d,−

p





∣
∣
∣
∣
∣
∣
∣
xn=0+

,

by (4.20) and (4.6). Note that the symbolsa andb arediagonal. The operators op(a) and op(b) are called
Calderón projectors (see e.g. [CP82]). The functionG2 is given byG2 = (Epg+ g1 + g2)|xn=0+ . Note that

The trace ofEpg at xn = 0+ make sense sinceEpg ∈ H
0,2
Λ

(Rn+1) and (3.8) in Lemma 3.14 gives enough
regularity for the trace to be taken.

With the trace formula (3.1) we write

|〈s〉 1
2 op(ΛT )G2|0 ≤ Ch−

1
2 (‖Dxn ◦ op(ΛT )(Epg+ g1 + g2)‖ + ‖〈s〉 op(ΛT )(Epg+ g1 + g2)‖).

SinceEp ∈ Ψ(Λ−2, gΛ), arguing as above with Lemmata 3.12 and 3.15 we obtain

|〈s〉 1
2 op(ΛT )G2|0 ≤ Ch−

1
2 ‖Op(Λ2)(Epg+ g1 + g2)‖(4.25)

≤ C′′h−
1
2

(

‖Pϕv‖ + h(‖Dxnv‖ + ‖op(ΛT )v‖) + h2|Dxnv|xn=0+ |0
)

,

making use of estimates (4.3), (4.10) and (4.17).
The transmission conditions (TC+ϕ) give

γ0(ug) = γ0(ud) + θϕ,χ+ , γ1(ug) = −β γ1(ud) + kγ0(ud) + G̃1(4.26)

whereβ = (cd/cg)|xn=0+ , k = −iη(∂xnϕ
g|xn=0+ + β ∂xnϕ

d|xn=0+ ) ∈ S(ΛT , gΛ,T ) andG̃1 = −iη∂xnϕ
gθϕ,χ+ +

1
cg|xn=0+

G1 with

|〈s〉 1
2 G̃1|0 ≤ Ch|〈s〉 1

2 v|xn=0+ |0 +C(|〈s〉 3
2 θϕ|0 + |〈s〉

1
2Θϕ|0),(4.27)
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by (4.4). From (4.24) we thus obtain

(Id− op(a))

(

γ0(ud) + θϕ,χ+
γ0(ud)

)

= op(b)

(−β γ1(ud) + kγ0(ud) + G̃1

γ1(ud)

)

+G2.

We thus have
(

Id− op(ag) − op(bg) ◦ k op(bg) ◦ β
Id− op(ad) − op(bd)

) (

γ0(ud)
γ1(ud)

)

= G2 +

(

op(ag) − Id
0

)

θϕ,χ+ +

(

op(bg)
0

)

G̃1

whereβ andk stand here for the associated multiplication operators. By(4.5) and Lemmata 3.5, forh
sufficiently small, there exists ˜γ0(ud) and γ̃1(ud) ∈ L2(R × Rn−1) such thatγ0(ud) = 〈s〉− 1

2 op(Λ−1
T )γ̃0(ud),

andγ1(ud) = 〈s〉− 1
2 γ̃1(ud). We thus obtain a system of the form

op(κ)

(

γ̃0(ud)
γ̃1(ud)

)

= G2 + op(π)θϕ,χ+ + op(Π)G̃1,(4.28)

whereκ is a 2× 2 matrix with entries inS(〈s〉− 1
2Λ−1
T , gΛ,T ), with principal symbol

κ0 = 〈s〉− 1
2

(
Λ−1
T (1− ag

0 − kbg
−1) βbg

−1

Λ−1
T (1− ad

0) −bd
−1

)

,

andπ andΠ are 2× 1 matrices with entries inS(1, gΛ,T ) and S(Λ−1
T , gΛ,T ) respectively, with principal

symbols

π0 =

(
ag

0 − 1

0

)

and Π−1 =

(
bg
−1

0

)

.

We now chooseχ2(s, x, τ, ξ′) ∈ S(1, gΛ,T ), satisfying the same requirement asχ+, equal to one in a neigh-
borhood of supp(χ+) and such that the symbolχ1 be equal to one in a neighborhood of supp(χ2). In
supp(χ2), we obtain

κ0|supp(χ2) = 〈s〉− 1
2





Λ−1
T

ρ
g,+
p − k

ρ
g,+
p − ρg,−

p

β
1

ρ
g,+
p − ρg,−

p

Λ−1
T

ρd,+
p

ρ
d,+
p − ρd,−

p

− 1

ρ
d,+
p − ρd,−

p





∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
xn=0+

.

This yields

det(κ0)|supp(χ2) = −〈s〉−1
Λ−1
T (ρg,+

p + β ρ
d,+
p − k)

(ρg,+
p − ρg,−

p )(ρd,+
p − ρd,−

p )

∣
∣
∣
∣
∣
∣
∣
xn=0+

.

Since we have Im(ρg,+
p + β ρ

d,+
p ) ≥ CΛT > 0 in supp(χ2) by (4.2), and since

Im(−k) =
η

cg|xn=0+
(cg∂xnϕ

g + cd∂xnϕ
d)|xn=0+ ≥ 0,

by (3.11), we find that| det(κ0)|supp(χ2)| ≥ C〈s〉−1Λ−2
T , with C > 0 by Corollary 3.23. It follows thatκ is

elliptic in supp(χ2). Then, there existslp ∈ S(〈s〉 1
2ΛT , gΛ,T ), such that op(lp) ◦ op(κ) = op(χ2) + hp+1R̃p,

with R̃p ∈ Ψ(〈s〉− 1
2Λ
−1−p
T , gΛ,T ), for p ∈ N large. This yields

(

γ̃0(ud)
γ̃1(ud)

)

= op(lp)G2 + op(lp) ◦ op(π)θϕ,χ+ + op(lp) ◦ op(Π)G̃1 +
(

op(1− χ2) − hpR̃p

)
(

γ̃0(ud)
γ̃1(ud)

)

.

We have the following lemma which proof can be found in Appendix A.
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Lemma 4.4. We have

(4.29)
∥
∥
∥
∥
∥
op(1− χ2)

(

γ̃0(ud)
γ̃1(ud)

) ∥
∥
∥
∥
∥

0
≤ Ch2

(

‖Dxnv‖ + ‖v‖ + |Dxnv|xn=0+ |0
)

.

By Lemma 3.5, we then obtain

|〈s〉 1
2 op(ΛT )γ0(ud)|0 + |〈s〉

1
2γ1(ud)|0 ≤ C|γ̃0(ud)|0 + |γ̃1(ud)|0(4.30)

≤ C′
(

|〈s〉 1
2 op(ΛT )G2|0 + |〈s〉

1
2 op(ΛT )θϕ,χ+ |0 + |〈s〉

1
2 G̃1|0 + h2

(

‖Dxnv‖ + ‖v‖ + |Dxnv|xn=0+ |0
))

≤ C′′
(

h−
1
2 ‖Pϕv‖ + h

1
2

(

‖Dxnv‖ + ‖op(ΛT )v‖
)

+ h
3
2 |Dxnv|xn=0+ |0 + |〈s〉

1
2 op(ΛT )θϕ|0 + |〈s〉

1
2Θϕ|0

)

,

by (4.27) and (4.25) and the trace formula (3.1). From (4.26), the same estimate holds for

|〈s〉 1
2 op(ΛT )γ0(ug)|0 + |〈s〉

1
2γ1(ug)|0, and also for |〈s〉 1

2 w0|0 + |〈s〉
1
2 op(ΛT )w1|0,

by (4.6). We thus have

(4.31) h
1
2

(

|〈s〉 1
2 (Dxn op(χ+)v)|xn=0+ |0 + |〈s〉

1
2 (op(ΛT ) op(χ+)v)|xn=0+ |0 + |〈s〉

1
2 w0|0 + |〈s〉

1
2 op(ΛT )w1|0

)

≤ C
(

‖Pϕv‖ + h
(

‖Dxnv‖ + ‖op(ΛT )v‖
)

+ h2|Dxnv|xn=0+ |0 + h
1
2 |〈s〉 1

2 op(ΛT )θϕ|0 + h
1
2 |〈s〉 1

2Θϕ|0
)

.

We conclude the proof by combining estimates (4.23) and (4.31). �

4.2. Estimate in regionE
d,−
p . Let χ−a (s, x, τ, ξ′) ∈ S(1, gm,T ), with compact support w.r.t.x contained inV,

be such thatµd
a(s, x, τ, ξ′, h′ = 0) ≤ −C < 0 in supp(χ−a ). This remains valid forh′ > 0 with h′ sufficiently

small with possibly a different constantC. The construction of such a symbol can be done similarly to
that of χ+a in Section 4.1 with Lemma 4.1. Note that supp(χ−a) is compact in the variables (x, τ, ξ′) by
Lemma 3.25. We setχ− := χ−a ◦ κ, with the mapκ defined in (3.2), and haveχ− ∈ S(1, gM,T ) by Lemma 3.3.
From the remark preceding Corollary 3.23 we haveµd

p ≤ −Cη2 in supp(χ−).

Proposition 4.5. Let K be a compact subset of V, with the neighborhood V chosen sufficiently small ac-
cording to Proposition 3.24. Letχ− ∈ S(1, gM,T ), with compact support in x, be as introduced above with
support in{µd

p ≤ −Cη2}. With the weight functionϕ satisfying Assumptions 2.1 and 2.2, there exist C> 0
and h1 > 0 such that

(4.32) h
(

‖〈s〉 1
2 Dxn op(χ−)v‖2 + ‖〈s〉 1

2 op(ΓT ) op(χ−)v‖2
)

+ h
(

|〈s〉 1
2 (Dxn op(χ−)v)|xn=0+ |

2

0 + |〈s〉
1
2 (op(ΓT ) op(χ−)v)|xn=0+ |

2

0

)

≤ C
(

‖Pϕv‖2 + h2
(

‖Dxnv‖2 + ‖op(Γ′T )v‖2
)

+ h
(

|〈s〉 1
2 op(Γ′T )θϕ|

2

0 + |〈s〉
1
2Θϕ|

2

0

))

,

with Γ, Γ′ = Λ or M, for 0 < h ≤ h1, 0 < h′ ≤ h1, and for v = t(vg, vd), v
g/d ∈ S (R × Rn

+), with
v(s, .)

g/d ∈ C∞c (Kd), for all s ∈ R, satisfying transmission conditions(TCϕ).

In the microlocal region we consider here, through the support of χ−, the root configuration ofp
g/d
ϕ

corresponds to that illustrated in Figure 1c. With the microlocal cut-off χ− we place ourselves in the region
E

d,−
p , finitely away fromZ d

p . In the proof we shall make use of the Carleman estimate at a boundary proved
in Section 3.4 for both conjugated operatorsPg

ϕ andPd
ϕ.

Proof. We setu = op(χ−)v. Because of the compact support ofχ−a in the variables (x, τ, ξ) we have
χ− ∈ S(〈s〉µΛ−µT , gΛ,T ) ∩ S(〈s〉µM−µT , gM,T ) for any µ ∈ R by Lemma 3.17. Then,Pϕu = g with g =
op(χ−)Pϕv + [Pϕ, op(χ−)]v. By Lemma 3.17, we have [Pϕ, op(χ−)] ∈ hDxnΨ(1, gΓ,T ) + hΨ(ΓT , gΓ,T ) and
we have

‖g‖ ≤ C
(

‖Pϕv‖ + h‖Dxnv‖ + h‖op(ΓT )v‖
)

, Γ = Λ or M.(4.33)
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The transmission conditions satisfied byud andug are

ug|xn=0+ = ud|xn=0+ + θϕ,χ− , cg(Dxn + iη∂xnϕ
g)ug|xn=0+ + cd(Dxn + iη∂xnϕ

d)ud|xn=0+ = G1,(TC−ϕ)

with θϕ,χ− := op(χ−)θϕ|xn=0+ and withG1 given by

G1 = [cg(Dxn + iη∂xnϕ
g), op(χ−)]vg|xn=0+ + [cd(Dxn + iη∂xnϕ

d), op(χ−)]vd|xn=0+ + op(χ−)Θϕ|xn=0+ ,

and satisfying

|〈s〉 1
2 G1|0 ≤ Ch|〈s〉 1

2 v|xn=0+ |0 +C|〈s〉 1
2Θϕ|0.(4.34)

We apply the Carleman method to the conjugated operatorsPg
ϕ andPd

ϕ. By Assumption 2.2 and Proposi-
tion 3.26, we then have

(4.35) h
(

‖〈s〉 1
2 op(MT )u

g/d‖2 + ‖〈s〉 1
2 Dxnu

g/d‖2
)

+ hReB
g/d(u

g/d)

+ h2 Re
(

Dxnu
g/d |xn=0+ + L

g/d
1 u

g/d |xn=0+ , L
g/d
0 u

g/d |xn=0+
)

0
≤ C‖gg/d‖2,

for h andh′ sufficiently small, whereL
g/d
1 ∈ D(MT , gM,T ) andL

g/d
0 ∈ Ψ(〈s〉, gM,T ). We setγ0(u

g/d) = u
g/d |xn=0+

andγ1(u
g/d) = Dxnu

g/d |xn=0+ . Observe that we have

h2
∣
∣
∣
∣

(

(Dxnu
g/d + L

g/d
1 u

g/d)|xn=0+ , L
g/d
0 u

g/d |xn=0+
)

0

∣
∣
∣
∣ ≤ Ch2

(

|γ1(u
g/d)|20 + | op(MT )γ0(u

g/d)|20
)

.(4.36)

The quadratic formsB
g/d are given by (see (3.23))

B
g/d(u

g/d) =

(



B
g/d
0 B

g/d
1

B
g/d′
1 B

g/d
2





︸       ︷︷       ︸

:=B
g/d

(

γ1(u
g/d)

γ0(u
g/d)

)

,

(

γ1(u
g/d)

γ0(u
g/d)

) )

0

,(4.37)

with σ(B
g/d
0 ) = 2(c

g/d)2η∂xnϕ
g/d, σ(B

g/d
1 ) = σ(B

g/d′
1 ) = 2(c

g/d)2q
g/d
1 andσ(B

g/d
2 ) = −2(c

g/d)2η(∂xnϕ
g/d)q

g/d
2 .

We make use of transmission conditions (TC−ϕ) and write
(

γ1(ug)
γ0(ug)

)

=

(−β k
0 1

)

︸   ︷︷   ︸

:=Hg

(

γ1(ud)
γ0(ud)

)

+

(

G′1
θϕ,χ−

)

,(4.38)

whereβ = (cd/cg)|xn=0+ ∈ S(1, gM,T ), k = −i(η∂xnϕ
g|xn=0+ + β η∂xnϕ

d|xn=0+ ) ∈ S(〈s〉, gM,T ) and G′1 =
−iη(∂xnϕ

g)θϕ,χ− + 1
cg|xn=0+

G1 that satisfies the estimate

|〈s〉 1
2 G′1|0 ≤ Ch

1
2 (‖Dxnv‖ + ‖〈s〉v‖) +C(|〈s〉 3

2 θϕ,χ− |0 + |〈s〉
1
2Θϕ|0),(4.39)

by (4.34) and the trace formula (3.1). We obtain

B
g(ug) =

(

B̂g

(

γ1(ud)
γ0(ud)

)

,

(

γ1(ud)
γ0(ud)

))

0

+ U(γ1(ud), γ0(u
d), θϕ,χ− ,G

′
1),

whereσ(B̂g) = tσ(Hg)σ(Bg)σ(Hg), and

U(γ1(ud), γ0(ud), θϕ,χ− ,G′1) =

(

BgHg

(

γ1(ud)
γ0(ud)

)

,

(

G′1
θϕ,χ−

))

0

+

(

Bg

(

G′1
θϕ,χ−

)

,Hg

(

γ1(ud)
γ0(ud)

))

0

+

(

Bg

(

G′1
θϕ,χ−

)

,

(

G′1
θϕ,χ−

))

0

,
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which, by Lemma 3.8, can be estimated as follows, with (4.39),

|U(γ1(u
d), γ0(ud), θϕ,χ− ,G

′
1)|(4.40)

≤ C
(

|〈s〉 1
2 op(MT )γ0(ud)|20 + |〈s〉

1
2γ1(ud)|20 + |〈s〉

1
2 G′1|

2

0 + |〈s〉
1
2 op(MT )θϕ,χ− |

2

0

)

≤ C′
(

|〈s〉 1
2 op(MT )γ0(ud)|20 + |〈s〉

1
2γ1(ud)|20 + h

(

‖Dxnv‖2 + ‖〈s〉v‖2
)

+ |〈s〉 1
2 op(MT )θϕ,χ− |

2

0 + |〈s〉
1
2Θϕ|

2

0

)

.

From theψDO calculus we find

B̂g =

(

B̂g
0 B̂g

1

B̂g,′
1 B̂g

2

)

,

with σ(B̂g
0) = β2σ(Bg

0) ∈ S(〈s〉, gM,T ), σ(B̂g
1) = σ(B̂g,′

1 ) = −β(σ(Bg
0)k + σ(Bg

1)) ∈ S(〈s〉MT , gM,T ) and
σ(B̂g

2) = |k|2σ(Bg
0) + 2 Re(k)σ(Bg

1) + σ(Bg
2) ∈ S(〈s〉M2

T , gM,T ). By Lemma 3.8, it follows that
∣
∣
∣
∣
∣
∣

(

B̂g

(

γ1(ud)
γ0(ud)

)

,

(

γ1(ud)
γ0(ud)

))

0

∣
∣
∣
∣
∣
∣
≤ C

(

|〈s〉 1
2γ1(ud)|20 + |〈s〉

1
2 op(MT )γ0(ud)|20

)

.(4.41)

With Lemmata 3.5 and 3.7 we choose ˜γ0(ud) andγ̃1(ud) in L2(R × Rn−1) such that

γ0(ud) = 〈s〉− 1
2 op(M−1

T )γ̃0(ud), γ1(ud) = 〈s〉− 1
2 γ̃1(ud).

The quadratic formBd(ud) can thus be written as

B
d(ud) =

( (

B̃d
0 B̃d

1

B̃d′
1 B̃d

2

)

︸      ︷︷      ︸

:=B̃d

(

γ̃1(ud)
γ̃0(ud)

)

,

(

γ̃1(ud)
γ̃0(ud)

) )

0

,(4.42)

whereσ(B̃d
0) = 2(cd)2〈s〉−1η∂xnϕ

d,σ(B̃d
1) = σ(B̃d′

1 ) = 2(cd)2〈s〉−1qd
1M−1
T andσ(B̃d

2) = −2(cd)2〈s〉−1η(∂xnϕ
d)qd

2M−2
T .

We haveB̃d ∈ Ψ(1, gM,T ) and we find det(σ(Bd)) = −4(cd)4(η∂xnϕ
d)2(〈s〉MT )−2 µd

p, with µd
p as defined in

Section 3.3. It follows that in supp(χ−) we have det(σ(B̃d)) ≥ C > 0. Since∂xnϕ
d > 0 it follows thatσ(B̃d)

is positive definite. From Gårding’s inequality (see Lemma 3.9) we deduce that for anyK > 0 there exists
α > 0 andh1 such that for 0< h ≤ h1 we have

αReB
d(ud) ≥ K′

(

|γ̃1(ud)|20 + |γ̃0(ud)|20
)

≥ K
(

|〈s〉 1
2γ1(ud)|20 + |〈s〉

1
2 op(MT )γ0(ud)|20

)

.(4.43)

by Lemma 3.5. From (4.40), (4.41), and (4.43) we find that

(4.44) αReB
d(ud) + ReB

g(ug) ≥ C
(

|〈s〉 1
2γ1(ud)|20 + |〈s〉

1
2 op(MT )γ0(ud)|20

)

−C′h
(

‖Dxnv‖2 + ‖〈s〉v‖2
)

−C′
(

|〈s〉 1
2 op(MT )θϕ,χ− |

2

0 + |〈s〉
1
2Θϕ|

2

0

)

,

for α sufficiently large. From the transmission conditions (4.38) we obtain

(4.45)
(

|〈s〉 1
2γ1(ug)|20 + |〈s〉

1
2 op(MT )γ0(ug)|20

)

≤ C
(

|〈s〉 1
2γ1(ud)|20 + |〈s〉

1
2 op(MT )γ0(ud)|20

)

+C′h
(

‖Dxnv‖2 + ‖〈s〉v‖2
)

+C′
(

|〈s〉 1
2 op(MT )θϕ,χ− |

2

0 + |〈s〉
1
2Θϕ|

2

0

)

.
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With the linear combinationα(4.35)d+ (4.35)g, for α sufficiently large, and (4.33), (4.36), (4.44) and (4.45),
we can thus obtain

(4.46) h
(

‖〈s〉 1
2 Dxn op(χ−)v‖2 + ‖〈s〉 1

2 op(MT ) op(χ−)v‖2
)

+ h
(

|〈s〉 1
2 (Dxn op(χ−)v)|xn=0+ |

2

0 + |〈s〉
1
2 (op(MT ) op(χ−)v)|xn=0+ |

2

0

)

≤ C
(

‖Pϕv‖2 + h2
(

‖Dxnv‖2 + ‖op(ΓT )v‖2
)

+ h
(

|〈s〉 1
2 op(MT )θϕ,χ− |

2

0 + |〈s〉
1
2Θϕ|

2

0

))

,

with Γ = Λ or M, by takingh sufficiently small. With Lemma 3.19 we can replaceMT byΛT in the l.h.s. of
(4.46). By Lemma 3.17 we have|〈s〉 1

2 op(MT )θϕ,χ− |0 ≤ |〈s〉
1
2 op(ΓT )θϕ|0 with Γ = Λ or M. We thus obtain

the sought microlocal Carleman estimate. �

4.3. Estimate in the neighborhood of the regionZ d
p . Let χ0

a(s, x, τ, ξ′) ∈ S(1, gλ,T ), with compact sup-

port w.r.t. x contained inV, be such that in the support ofχ0
a we haveµg

a(s, x, τ, ξ′, h′ = 0) ≥ C > 0
and

(cg∂xnϕ
g + cd∂xnϕ

d)2|xn=0+ − (cd)2µd
a|xn=0+ ,h′=0 ≥ C′ > 0, in supp(χ0

a).

These two properties remain valid forh′ > 0 with h′ sufficiently small. The construction of such a symbol
can be done similarly to that ofχ+a in Section 4.1 with Lemma 4.1. Note that supp(χ0

a) is compact in the
variables (x, τ, ξ) by Lemma 3.25 asµd is bounded. We setχ0 := χ0

a ◦ κ, with the mapκ defined in (3.2),
and haveχ0 ∈ S(1, gM,T ) by Lemma 3.3. From the remark preceding Corollary 3.23 we haveµg

p ≥ Cη2 in
supp(χ0). We also have

η2(cg∂xnϕ
g + cd∂xnϕ

d)2|xn=0+ − (cd)2µd
p|xn=0+ ≥ C′η2 > 0, in supp(χ0).(4.47)

Proposition 4.6. Let K be a compact subset of V with the neighborhood V chosen sufficiently small ac-
cording to Proposition 3.24. Letχ0 ∈ S(1, gM,T ), with compact support in x, be as introduced above with
support in{µg

p ≥ Cη2} and satisfying(4.47). With the weight functionϕ satisfying Assumptions 2.1 and 2.2,
there exist C> 0 and h1 > 0 such that

(4.48) h
(

‖〈s〉 1
2 Dxn op(χ0)v‖2 + ‖〈s〉 1

2 op(ΓT ) op(χ0)v‖2
)

+ h
(

|〈s〉 1
2 (Dxn op(χ0)v)|xn=0+ |

2

0 + |〈s〉
1
2 (op(ΓT ) op(χ0)v)|xn=0+ |

2

0

)

≤ C
(

‖Pϕv‖2 + h2
(

‖Dxnv‖2 + ‖op(Γ′T )v‖2
)

+ h4|Dxnv|xn=0+ |20 + h
(

|〈s〉 1
2 op(Γ′T )θϕ|

2

0 + |〈s〉
1
2Θϕ|

2

0

))

,

whereΓ, Γ′ = Λ or M, for 0 < h ≤ h1, 0 < h′ ≤ h1, and for v = t(vg, vd), v
g/d ∈ S (R × Rn

+), with
v(s, .)

g/d ∈ C∞c (Kd), for all s ∈ R, satisfying transmission conditions(TCϕ).

With the properties we require onχ0, we may microlocally focus on a small neighborhood of the region
Z d

p . In particular, close toZ d
p we haveµd

p small, which allows to have (4.47) by the properties assumedon
the weight function (see Assumption 2.1). In such a small neighborhood ofZ d

p , the root configuration of

p
g/d
ϕ corresponds to that illustrated in Figure 1b.

Proof. Because of the compact support ofχ0
a in the variables (x, τ, ξ) we haveχ0 ∈ S(〈s〉µΛ−µT , gΛ,T ) ∩

S(〈s〉µM−µT , gM,T ) for anyµ ∈ R by Lemma 3.17. In supp(χ0), for someC > 0, we have

Im ρ
g,+
p ≥ CΓT , Im ρ

g,−
p ≤ −CΓT , Γ = Λ or M.

We setu = op(χ0)v. Then,Pϕu = g with g = op(χ0)Pϕv + [Pϕ, op(χ0)]v. By Lemma 3.17 we have
[Pϕ, op(χ0)] ∈ hDxnΨ(1, gΓ,T ) + hΨ(ΓT , gΓ,T ) and

‖gg/d‖ ≤ C
(

‖Pg/d
ϕ v

g/d‖ + h‖Dxnv‖ + h‖op(ΓT )v‖
)

, Γ = Λ or M.(4.49)
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The transmission conditions satisfied byud andug are

ug|xn=0+ = ud|xn=0+ + θϕ,χ0 , cg(Dxn + iη∂xnϕ
g)ug|xn=0+ + cd(Dxn + iη∂xnϕ

d)ud|xn=0+ = G1,(TCZ
ϕ )

with θϕ,χ0 := op(χ0)θϕ|xn=0+ and withG1 given by

G1 = [cg(Dxn + iη∂xnϕ
g), op(χ0)]vg|xn=0+ + [cd(Dxn + iη∂xnϕ

d), op(χ0)]vd|xn=0+ + op(χ0)Θϕ|xn=0+ ,

and satisfying

|〈s〉 1
2 G1|0 ≤ Ch|〈s〉 1

2 v|xn=0+ |0 +C|〈s〉 1
2Θϕ|0.(4.50)

Because of the root configuration forPg
ϕ, we may apply to this operatorPg

ϕ and toug the method of Calderón
projectors of Section 4.1 and follow the notation of the proof of Proposition 4.1. We thus obtain an estimate
of the form of (4.23), namely,

(4.51) ‖〈s〉 1
2 Dxnu

g‖ + ‖〈s〉 1
2 op(ΛT )ug‖ ≤ C

(

‖Pg
ϕv

g‖ + h(‖Dxnv‖ + ‖op(ΓT )v‖)
+ h

1
2 (|〈s〉 1

2γ1(ug)|0 + |〈s〉
1
2 op(ΛT )γ0(ug)|0) + h2|Dxnv|xn=0+ |0

)

, Γ = Λ or M,

since estimate (4.3) is now replaced by (4.49). We recall that γ0(u
g/d) = u

g/d |xn=0+ andγ1(u
g/d) = Dxnu

g/d |xn=0+ .
We also have the following trace equation, of the same form as(4.24),

γ0(ug) = op(ag)γ0(ug) + op(bg)γ1(ug) +Gg
2,(4.52)

with the operators op(ag) and op(bg) with principal symbols

ag
0 = −



χ1
ρ

g,−
p

ρ
g,+
p − ρg,−

p





∣
∣
∣
∣
∣
∣
xn=0+

, bg
−1 =



χ1
1

ρ
g,+
p − ρg,−

p





∣
∣
∣
∣
∣
∣
xn=0+

,

whereχ1(s, x, τ, ξ′), satisfies the same requirement asχ0, and is equal to one in a neighborhood of supp(χ0).
In fact, by Lemma 3.17, we haveag ∈ S(1, gΓ,T ) andbg ∈ S(Γ−1

T , gΓ,T ), Γ = Λ or M. We haveGg
2 =

(Epgg + gg
1 + gg

2)|xn=0+ , with g1 andg2 satisfying the same estimates as in (4.10) and (4.17). In fact, by
Lemma 3.16, we have, for alll ∈ R,

‖〈s〉l Op(M2)g1‖ ≤ C‖〈s〉l Op(Λ4)g1‖ ≤ C′h2‖v‖,(4.53)

‖〈s〉l Op(M2)g2‖ ≤ C‖〈s〉l Op(Λ4)g2‖ ≤ C′h2(‖v‖0 + ‖Dnv‖ + |Dxnv|xn=0+ |0).(4.54)

Lemma 4.7. We have Ep ∈ S(Λ−2, gΛ) ∩ S(M−2, gM)

Proof. We use the notation of Proposition 4.2 here. We now chooseχa(s, x, τ, ξ) ∈ S(1, gλ) equal to one in a
neighborhoodof supp(χ0

a) and tozerofor |(τ, ξ)| sufficiently large, with moreover supp(χa)∩(ag
ϕ)−1({0}) = ∅.

These conditions are compatible from the choice made for supp(χ0
a) and Proposition 3.24. In fact for any

µ ∈ R, χa ∈ S(λ−µ, gλ) ∩ S(m−µ, gm). We setχ := χa ◦ κ̃, with the correspondence map ˜κ defined in (3.3),
and haveχ ∈ S(〈s〉µΛ−µ, gΛ) ∩ S(〈s〉µM−µ, gM) by Lemma 3.3.

The analysis of Proposition 4.2 carries through; the symbolof EP is defined according to (4.8). In
particular we finde0 ∈ S(Λ−2, gΛ) ∩ S(M−2, gM) by Lemma 3.17. The iterative construction of the symbol
of Ep gives the result with Lemma 3.17. �

Continuation of the proof of Proposition 4.6. With the trace formula (3.1), Lemma 3.15, (4.49) and (4.53)–
(4.54), the functionGg

2 thus satisfies

|〈s〉 1
2 op(ΓT )Gg

2|0 ≤ Ch−
1
2

(

‖op(Γ2
T )(Epgg + gg

1 + gg
2)‖ + ‖〈s〉 op(ΓT )(Epgg + gg

1 + gg
2)‖

)

(4.55)

≤ C′h−
1
2 ‖Op(Γ2)(Epgg + gg

1 + gg
2)‖

≤ Ch−
1
2

(

‖Pg
ϕv

g‖ + h(‖Dxnv‖ + ‖op(Γ′T )v‖) + h2|Dxnv|xn=0+ |0
)

, Γ, Γ′ = Λ or M.
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We now use relation (4.52) in connection the transmission conditions (TCZ
ϕ ). With (TCZ

ϕ ), we first write

op(bg)γ1(ug) = − op(bg)(β γ1(ud)) + op(bg)(kγ0(ud)) + op(bg)G̃1, γ0(ug) = γ0(ud) + θϕ,χ0,

whereβ = (cd/cg)|xn=0+ , k = −iη(∂xnϕ
g|xn=0+ +β ∂xnϕ

d|xn=0+ ) andG̃1 = −iη∂xnϕ
gθϕ,χ0+ 1

cg|xn=0+
G1 that satisfies

|〈s〉 1
2 G̃1|0 ≤ Ch

1
2 (‖Dxnv‖ + ‖〈s〉v‖) +C(|〈s〉 3

2 θϕ,χ0 |0 + |〈s〉
1
2Θϕ|0),(4.56)

by (4.50) and the trace formula (3.1). From (4.52), we obtain

(Id− op(ag) − op(bg) ◦ k
︸                        ︷︷                        ︸

:=op(κ)

) γ0(ud) = − op(bg)(β γ1(ud)) + op(bg)G̃1 + (op(ag) − Id)θϕ,χ0 +Gg
2,

wherek stands here for the multiplication operator by the functionk given above. Letχ2(s, x, τ, ξ′) satisfy
the same requirement asχ0, and be equal to one in a neighborhood of supp(χ0) and be such that the symbol
χ1 is equal to one in a neighborhood of supp(χ2). In supp(χ2), the principal symbol ofκ is given by

κ0|supp(χ2) =
ρ

g,+
p − k

ρ
g,+
p − ρg,−

p

∈ S(1, gΛ,T ) ∩ S(1, gM,T ).

In supp(χ2) we have Imρg,+
p ≥ CΓT > 0, Γ = Λ or M, and Im(−k) ≥ Cη by Assumption 2.1. We thus see

thatκ is elliptic in supp(χ2) for bothψDO calculi. We chooseΓ = Λ or M. There existsl ∈ S(1, gΓ,T ), with

l =
∑p

j=0 h j l j , with l j ∈ S(Γ− j
T , gΓ,T ), andl0 = χ2/κ0, such that

op(lp) ◦ op(κ) = op(χ2) + hp+1Rp,

with Rp ∈ Ψ(Γ−1−p
T , gΓ,T ), for p large. We thus obtain

γ0(ud) = − op(l) ◦ op(bg)(β γ1(ud)) +G3,(4.57)

with

G3 = op(l) ◦ op(bg) G̃1 + op(l) ◦ (op(ag) − Id) θϕ,χ0 + op(l) Gg
2 + (Id− op(χ2))γ0(ud) − hp+1Rpγ0(ud).

From theψDO calculus, since supp(1− χ2) ∩ supp(χ0) = ∅, we obtain

|〈s〉 1
2 op(ΓT )G3|0 ≤C

(

h−
1
2 ‖Pg

ϕvg‖ + h
1
2 (‖Dnv‖ + ‖op(ΓT )v‖) + h

3
2 |Dxnv|xn=0+ |0(4.58)

+ |〈s〉 1
2 op(ΓT )θϕ,χ0 |0 + |〈s〉

1
2Θϕ|0

)

, Γ = Λ or M.

by (4.56) and (4.55). We thus have

|〈s〉 1
2 op(ΓT )γ0(ud)|0 ≤C

(

|〈s〉 1
2γ1(ud)|0 + h−

1
2 ‖Pg

ϕv
g‖ + h

1
2 (‖Dnv‖ + ‖op(ΓT )v‖) + h

3
2 |Dxnv|xn=0+ |0(4.59)

+ |〈s〉 1
2 op(ΓT )θϕ,χ0 |0 + |〈s〉

1
2Θϕ|0

)

, Γ, Γ = Λ or M.

We now apply the Carleman method to the operatorPd
ϕ and toud. By Proposition 3.26 we have

‖gd‖2 ≥ Ch
(

‖〈s〉 1
2 op(MT )ud‖2 + ‖〈s〉 1

2 Dxnu
d‖2

)

(4.60)

+ hReB
d(ud) + h2 Re

(

Dxnu
d|xn=0+ + Ld

1ud|xn=0+ , L
d
0ud|xn=0+

)

0
,

for h andh′ sufficiently small, whereLd
1, Ld

0, andBd are as given in the proof of Proposition 4.5. We
observe that we have

(4.61) h2
∣
∣
∣
∣

(

(Dxnu
d + Ld

1ud)|xn=0+ , L
d
0ud|xn=0+

)

0

∣
∣
∣
∣ ≤ Ch2

(

|γ1(ud)|20 + | op(MT )γ0(ud)|20
)

≤ Ch2
(

|γ1(ud)|20 + | op(ΓT )γ0(ud)|20
)

+ hN(‖v‖ + ‖Dxnv‖), Γ = Λ or M,
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by Lemma 3.19. WithBd defined in (4.37), and (4.57) we obtain

B
d(ud) =

(

S∗ ◦ Bd ◦ S γ1(ud), γ1(ud)
)

0
+ U(γ1(u

d),G3),

with

S =

(

1
− op(l) ◦ op(bg) ◦ β

)

,

with β standing here for the associated multiplication operator,and where

U(γ1(ud),G3) =

(

Bd ◦ Sγ1(ud),

(

0
G3

))

0

+

(

Bd

(

0
G3

)

,Sγ1(ud)

)

0

+

(

Bd

(

0
G3

)

,

(

0
G3

))

0

.

With Lemma 3.8 and Young’s inequality we obtain

|U(γ1(ud),G3)| ≤ ε|〈s〉 1
2γ1(ud)|20 +Cε |〈s〉 1

2 op(MT )G3|
2

0,

which by (4.58) yields

|U(γ1(u
d),G3)| ≤ ε|〈s〉 1

2γ1(ud)|20 +Cε

(

h−1‖Pg
ϕv

g‖2 + h(‖Dnv‖2 + ‖op(ΓT )v‖2) + h3|Dxnv|xn=0+ |20(4.62)

+ |〈s〉 1
2 op(MT )θϕ,χ0 |20 + |〈s〉

1
2Θϕ|

2

0

)

, Γ = Λ or M.

In supp(χ0), the principal symbol ofS∗ ◦ Bd ◦ S is given by

Σ = (cd)2
(

2η∂xnϕ
d − 4qd

1β Re(l0b
g
−1) − 2β2 |l0bg

−1|2η(∂xnϕ
d)qd

2

)∣∣
∣
∣
xn=0+

∈ S(〈s〉, gM,T ).

In supp(χ0) we have

|l0bg
−1|−2|xn=0+ =

∣
∣
∣ρ

g,+
p |xn=0+ − k

∣
∣
∣
2
=

(

(Reρg,+
p )2 + (Im ρ

g,+
p + η∂xnϕ

g + β η∂xnϕ
d)2

)∣∣
∣
∣
xn=0+

,(4.63)

Re(l0bg
−1) |l0bg

−1|−2|xn=0+ = Reρg,+
p |xn=0+ .

We then obtain
Σ

(cd)2
= 2β2 |l0bg

−1|2(η∂xnϕ
d)

(

β−2 |l0bg
−1|−2 − 2qd

1β
−1(η∂xnϕ

d)−1 Reρg,+
p − qd

2

)∣∣
∣
∣
xn=0+

= 2β2 |l0bg
−1|2(η∂xnϕ

d)
(

β−2
(

|l0bg
−1|−2 − (Reρg,+

p )2
)

− µd
p +

(

qd
1(η∂xnϕ

d)−1 − β−1 Reρg,+
p

)2
)∣∣
∣
∣
∣
xn=0+

≥ 2β2 |l0bg
−1|2η∂xnϕ

d
(

β−2η2(∂xnϕ
g + β ∂xnϕ

d)2 − µd
p

)∣∣
∣
∣
xn=0+

≥ C〈s〉 > 0, in supp(χ0),

by (4.47) and since

|l0bg
−1|−2|xn=0+ − (Reρg,+

p )2|xn=0+ ≥ η2(∂xnϕ
g + β ∂xnϕ

d)2|xn=0+ ,

and for someC > 0, by (4.63), we have

|l0bg
−1|2|xn=0+ = η

−2
(

(η−1 Reρg,+
p )2 + (η−1 Im ρ

g,+
p + ∂xnϕ

g + β ∂xnϕ
d)2

)−1
∣
∣
∣
∣
xn=0+

≥ Cη−2(4.64)

asρg,+
a ◦ κ = η−1ρ

g,+
p remains bounded in supp(χ0). Hence, Gårding’s inequality (see Lemma 3.9) yields

Re
(

S∗ ◦ Bd ◦ Sγ1(ud), γ1(ud)
)

0
≥ C|〈s〉 1

2γ1(ud)|20,(4.65)

for h sufficiently small andC > 0. Combining (4.65) and (4.62) we thus obtain

ReB
d(ud) ≥ C|〈s〉 1

2γ1(ud)|20 −C′
(

h−1‖Pg
ϕv

g‖2 + h(‖Dnv‖2 + ‖op(ΓT )v‖2) + h3|Dxnv|xn=0+ |20(4.66)

+ |〈s〉 1
2 op(MT )θϕ,χ0 |20 + |〈s〉

1
2Θϕ|

2

0

)

, Γ = Λ or M.

by choosingε sufficiently small in (4.62).
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From (4.49), (4.59), (4.60), (4.61), and (4.66), and by Lemma 3.19, sinceu = op(χ0)v, we obtain

(4.67) h
(

‖〈s〉 1
2 op(ΓT )ud‖2 + ‖〈s〉 1

2 Dxnu
d‖2

)

+ h
(

|〈s〉 1
2 op(ΓT )γ0(ud)|20 + |〈s〉

1
2γ1(ud)|20

)

≤ C
(

‖Pϕv‖2 + h2(‖Dnv‖2 + ‖op(Γ′T )v‖2) + h4|Dxnv|xn=0+ |20
+ h(|〈s〉 1

2 op(ΛT )θϕ,χ0 |20 + |〈s〉
1
2 op(MT )θϕ,χ0 |20 + |〈s〉

1
2Θϕ|

2

0)
)

,

with Γ, Γ′ = Λ or M. From the transmission conditions (TCZ
ϕ ) we obtain

(4.68)
(

|〈s〉 1
2γ1(ug)|20 + |〈s〉

1
2 op(ΓT )γ0(ug)|20

)

≤ C
(

|〈s〉 1
2γ1(ud)|20 + |〈s〉

1
2 op(Γ′T )γ0(ud)|20

)

+C′h
(

‖Dxnv‖2 + ‖〈s〉v‖2
)

+C′
(

|〈s〉 1
2 op(ΓT )θϕ,χ0 |20 + |〈s〉

1
2Θϕ|

2

0

)

,

with Γ, Γ′ = Λ or M, by Lemma 3.19. With Lemma 3.19 and (4.68) we thus see that a proper linear
combination of (4.51) and (4.67) yields the sought partial Carleman estimate forh sufficiently small, since
|〈s〉 1

2 op(ΓT )θϕ,χ0 |0 ≤ C|〈s〉 1
2 op(Γ′T )θϕ|0, Γ, Γ′ = Λ or M, by Lemma 3.17. �

4.4. Proof of the local Carleman estimate of Theorem 2.4.We chooseχ+, χ− andχ0 with values in [0, 1]
that satisfy the properties listed in Propositions 4.2, 4.5and 4.6 respectively and furthermoreχ++χ−+χ0 = 1
in a neighborhood ofK × Rn, which can be achieved by Proposition 3.24.

We recall thatΦ = diag(ϕg, ϕd) andv = eηΦ/hw. Since 1− (χ+ + χ− + χ0) = 0 in a neighborhood of
supp(w), we have

|〈s〉 1
2 Dxnv|xn=0+ |0 ≤ |〈s〉

1
2 Dxn op(χ+)v|xn=0+ |0 + |〈s〉

1
2 Dxn op(χ−)v|xn=0+ |0
+ |〈s〉 1

2 Dxn op(χ0)v|xn=0+ |0 + hp|〈s〉 1
2 DxnRpv|xn=0+ |0,

with Rp ∈ Ψ(Λ−p
T , gΛ,T ), for anyp ∈ N. SinceDxnRp = RpDxn + [Dxn,Rp] we find

|〈s〉 1
2 Dxnv|xn=0+ |0 ≤ |〈s〉

1
2 Dxn op(χ+)v|xn=0+ |0 + |〈s〉

1
2 Dxn op(χ−)v|xn=0+ |0

+ |〈s〉 1
2 Dxn op(χ0)v|xn=0+ |0 +Ch(|〈s〉 1

2 Dxnv|0 + |〈s〉
1
2 v|0).

We also have

|〈s〉 1
2 op(ΛT )v|xn=0+ |0 ≤ |〈s〉

1
2 op(ΛT ) op(χ+)v|xn=0+ |0 + |〈s〉

1
2 op(ΛT ) op(χ−)v|xn=0+ |0

+ |〈s〉 1
2 op(ΛT ) op(χ0)v|xn=0+ |0 +Ch|〈s〉 1

2 v|xn=0+ |0,
and similarly

‖〈s〉 1
2 Dxnv‖ + ‖〈s〉

1
2 op(ΛT )v‖ ≤ ‖〈s〉 1

2 Dxn op(χ+)v‖ + ‖〈s〉 1
2 op(ΛT ) op(χ+)v‖

+ ‖〈s〉 1
2 Dxn op(χ−)v‖ + ‖〈s〉 1

2 op(ΛT ) op(χ−)v‖ + ‖〈s〉 1
2 Dxn op(χ0)v‖ + ‖〈s〉 1

2 op(ΛT ) op(χ0)v‖
+Ch(‖〈s〉 1

2 Dxnv‖ + ‖〈s〉
1
2 v|xn=0+‖).

These three inequalities together with (4.1), (4.32), and (4.48) (the latter two expressed in the caseΓ, Γ′ = Λ)
then yield

(4.69) h
(

‖〈s〉 1
2 Dxnv‖

2
+ ‖〈s〉 1

2 op(ΛT )v‖2
)

+ h
(

|〈s〉 1
2 Dxnv|xn=0+ |

2

0 + |〈s〉
1
2 op(ΛT )v|xn=0+ |

2

0

)

≤ C
(

‖Pϕv‖2 + h
(

|〈s〉 1
2 op(MT )θϕ|

2

0 + |〈s〉
1
2Θϕ|

2

0

))

,

for h sufficiently small, since by Lemma 3.16. we have|〈s〉 1
2 op(ΛT )θϕ|0 ≤ C|〈s〉 1

2 op(MT )θϕ|0.
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We now aim to introduce the term‖〈s〉 3
2 Dsv‖ in the l.h.s. of the previous inequality. To do so we make

further use of Proposition 3.26. By Lemma 3.13, on both sidesof the interface we have

(4.70) h
(

‖〈s〉 3
2 v

g/d‖2 + ‖〈s〉 3
2 Dsv

g/d‖2 +
n∑

j=1
‖〈s〉 1

2 Dx j v
g/d‖2

)

+ hReB
g/d(v

g/d) + h2 Re
(

Dxnv
g/d |xn=0+ + L

g/d
1 v

g/d |xn=0+ , L
g/d
0 v

g/d |xn=0+
)

0
≤ C‖Pg/d

ϕ v
g/d‖2,

with B
g/d defined in (3.22) andL

g/d
1 ∈ D(MT , gM,T ) andL

g/d
0 ∈ Ψ(〈s〉, gM,T ). By Lemmata 3.8 and 3.16 we

have

h2
∣
∣
∣
∣

(

Dxnv
g/d |xn=0+ + L

g/d
1 v

g/d |xn=0+ , L
g/d
0 v

g/d |xn=0+
)

0

∣
∣
∣
∣ ≤ Ch2

(

|〈s〉 1
2 op(M

1
2

T )v|xn=0+ |
2

0
+ |〈s〉 1

2 Dxnv
g/d |xn=0+ |0|〈s〉

1
2 v|xn=0+ |0

)

(4.71)

≤ C′h2
(

|〈s〉 1
2 op(ΛT )v|xn=0+ |

2

0 + |〈s〉
1
2 Dxnv

g/d |xn=0+ |
2

0

)

.(4.72)

and

hReB
g/d(v

g/d) = 2hRe
(

a(s)Ds(c
g/dDxnv)

g/d |xn=0+ , v
g/d |xn=0+

)

0
+ hReB̃

g/d(v
g/d),(4.73)

with

h|B̃g/d(v
g/d)| ≤ Ch

(

|〈s〉 3
2 v|xn=0+ |

2

0 +
n∑

j=1
|〈s〉 1

2 Dx j v|xn=0+ |
2

0

)

.(4.74)

For the treatment of the first term in the r.h.s. of (4.73) we follow [BDL07, Equation (1.14)] and we sum
the contributions of the “g andd sides”:

2hRe
(

a(s)Ds(cgDxnv
g)|xn=0+ , v

g|xn=0+
)

0
+ 2hRe

(

a(s)Ds(cdDxnv
d)|xn=0+ , v

d|xn=0+
)

0

= 2hRe
(

a(s)Ds(c
gDxnv

g + cdDxnv
d)|xn=0+ , v

d|xn=0+
)

0
+ 2hRe

(

a(s)Ds(c
gDxnv

g)|xn=0+ , θϕ
)

0

= −2hRei
(

a(s)Ds(η(cg∂xnϕ
g + cd∂xnϕ

d)|xn=0+v
d|xn=0+), vd|xn=0+

)

0
+ 2hRe

(

a(s)DsΘϕ, v
d|xn=0+

)

0

− 2hRei
(

a(s)Ds(η(cg∂xnϕ
g)|xn=0+θϕ), vd|xn=0+

)

0
+ 2hRe

(

cgDxnv
g)|xn=0+ ,Ds(a(s)θϕ)

)

0
,

making use of transmission conditions (TCϕ). We note that

2h
∣
∣
∣
∣Re

(

a(s)DsΘϕ, v
d|xn=0+

)

0
− Rei

(

a(s)Ds(η(cg∂xnϕ
g)|xn=0+θϕ), vd|xn=0+

)

0
+ Re

(

cgDxnv
g)|xn=0+ ,Ds(a(s)θϕ)

)

0

∣
∣
∣
∣

≤ Ch
(

|〈s〉 3
2 v|xn=0+ |

2

0 + |〈s〉
1
2 Dxnv|xn=0+ |

2

0 + |〈s〉
3
2 θϕ|

2

0 + |〈s〉
3
2 Dsθϕ|

2

0 + |〈s〉
1
2 DsΘϕ|

2

0

)

.

and, as
(

cg∂xnϕ
g + cd∂xnϕ

d)
∣
∣
∣
xn=0+

≥ C > 0,

− 2hRei
(

a(s)Ds(η(cg∂xnϕ
g + cd∂xnϕ

d)|xn=0+v
d|xn=0+), vd|xn=0+

)

0

= −hRe∫∫ a(s)
η(cg∂xnϕ

g + cd∂xnϕ
d)|xn=0+

hh′∂s

∣
∣
∣η(cg∂xnϕ

g + cd∂xnϕ
d)|xn=0+ |xn=0+v

d|xn=0+
∣
∣
∣
2

ds dx′

= h2h′Re∫∫ η2(cg∂xnϕ
g + cd∂xnϕ

d)|2xn=0+∂s

( a(s)
η(cg∂xnϕ

g + cd∂xnϕ
d)|xn=0+

)

|vd|xn=0+ |2 ds dx′,

by integration by parts. It follows that the sum of theg/d first terms in the r.h.s. of (4.73) can be estimated
by

(4.75) 2h|Re(a(s)Ds(cgDxnv
g)|xn=0+ , v

g|xn=0+ )0 + Re(a(s)Ds(cdDxnv
d)|xn=0+ , v

d|xn=0+ )0|
≤ Ch

(

|〈s〉 3
2 v|xn=0+ |

2

0 + |〈s〉
1
2 Dxnv|xn=0+ |

2

0 + |〈s〉
3
2 θϕ|

2

0 + |〈s〉
3
2 Dsθϕ|

2

0 + |〈s〉
1
2 DsΘϕ|

2

0

)

.
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From (4.73), (4.74) and (4.75) we thus obtain

h|ReB
g(vg) + ReB

d(vd)| ≤Ch
(

|〈s〉 3
2 v|xn=0+ |

2

0 +
n∑

j=1
|〈s〉 1

2 Dx j v|xn=0+ |
2

0
(4.76)

+ |〈s〉 3
2 θϕ|

2

0 + |〈s〉
3
2 Dsθϕ|

2

0 + |〈s〉
1
2 DsΘϕ|

2

0

)

.

With (4.70), (4.71) and (4.76) we have

(4.77) h‖〈s〉 3
2 Dsv‖

2 ≤ C
(

‖Pg
ϕv

g‖2 + ‖Pd
ϕv

d‖2 + h
(

|〈s〉 1
2 op(ΛT )v|xn=0+ |

2

0 + |〈s〉
1
2 Dxnv|xn=0+ |

2

0

)

+ h
(

|〈s〉 1
2 op(MT )θϕ|

2

0 + |〈s〉
1
2 DsΘϕ|

2

0

))

.

With Lemma 3.13, combining this estimate with (4.69) we obtain

(4.78) h
(

‖〈s〉 3
2 v‖2 + ‖〈s〉 3

2 Dsv‖
2
+

n∑

j=1
‖〈s〉 1

2 Dx j v‖
2)
+ h

(

|〈s〉 1
2 Dxnv|xn=0+ |

2

0 + |〈s〉
1
2 op(ΛT )v|xn=0+ |

2

0

)

≤ C
(

‖Pϕv‖2 + h
(

|〈s〉 1
2 op(MT )θϕ|

2

0 + |〈s〉
1
2Θϕ|

2

0 + |〈s〉
1
2 DsΘϕ|

2

0

))

.

Again with Lemma 3.13 we obtain

h
(

‖〈s〉 3
2 v‖2 + ‖〈s〉 3

2 Dsv‖
2
+

n∑

j=1
‖〈s〉 1

2 Dx j v‖
2)
+ h

(

|〈s〉 3
2 v|xn=0+ |

2

0 +
n∑

j=1
|〈s〉 1

2 Dx j v|xn=0+ |
2

0

)

≤ C
(

‖Pϕv‖2 + h
(

|〈s〉 3
2θϕ|

2

0 + |〈s〉
3
2 Dsθϕ|

2

0 +
n−1∑

j=1
|〈s〉 1

2 Dx jθϕ|
2

0
+ |〈s〉 1

2Θϕ|
2

0 + |〈s〉
1
2 DsΘϕ|

2

0

))

.

Sincev = eηΦ/hw and observing that we have

‖〈s〉 3
2 eηΦ/hDsw‖0 ≤ ‖〈s〉

3
2 Ds

(

eηΦ/hw
)

‖
0
+ h′‖〈s〉 3

2 eηΦ/h(∂sη)Φw‖0 ≤ ‖〈s〉
3
2 Dsv‖0 +C‖〈s〉 3

2 v‖0,
and

‖〈s〉 1
2 eηΦ/hDx j w‖ ≤ ‖〈s〉

1
2 Dx j

(

eηΦ/hw
)

‖ + ‖〈s〉 1
2η(∂x jΦ) eηΦ/hw‖ ≤ C‖〈s〉 1

2 Dx j v‖ +C‖〈s〉 3
2 v‖,

and similar inequalities for the norms at the interface{xn = 0+}, and recalling the forms ofθϕ andΘϕ in
(3.13), which gives

|〈s〉 3
2 Dsθϕ|

2

0 ≤ (h′)2|〈s〉 3
2 eηϕ/h(∂sη)ϕθ|

2

0 + (hh′)2|〈s〉 3
2 eηϕ/h∂sθ|

2

0 ≤ C|〈s〉 3
2 eηϕ/hθ|20 +C(hh′)2|〈s〉 3

2 eηϕ/h∂sθ|
2

0,

and similarly

|〈s〉 1
2 DsΘϕ|

2

0 ≤ Ch2|〈s〉 1
2 eηϕ/hΘ|20 +Ch4(h′)2|〈s〉 1

2 eηϕ/h∂sΘ|
2

0,

we can conclude the proof of Theorem 2.4 (moving back to the notation before the change of variable

xn → −xn in Vg that was performed in Section 3.2). The addition of the termh5‖〈s〉− 1
2 eηϕ/hA2w‖2 in the

l.h.s. of (2.9) is performed as in the proof of Proposition 3.29. �

5. A global Carleman estimate

Let M be a compact connectedC∞ manifold withC∞ boundary, and forj ∈ L = {1, · · · ,N}, letΩ j ⊂ M
be an open subset ofM. We assume thatΩ j is a compact connectedC∞ manifold withC∞ boundary and
that M =

⋃

j∈L Ω j . For i , j we setΓi j = Ωi ∩ Ω j , and we assumeΓi j ⊂ ∂Ωi ∩ ∂Ω j andΓi j ⋐ M \ ∂M.
We also setΓ j = ∂Ω j ∩ ∂M. We assume∂Ω j = Γ j ∪⋃

i∈L\{ j} Γi j and∂M =
⋃

j∈L Γ j . We also letΓ j j ⋐ Ω j

be aC∞ manifold without boundary such that dimΓ j j = dim M − 1 andΩ j \ Γ j j is connected. Finally, we
assume thatω is an open subset ofΩ1 satisfyingω ⋐ Ω1. The geometric configuration we have described
is illustrated in Figure 2.
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Γ4
Γ1

Ω2

Γ23
Ω3

Γ34

Ω4

Γ44

Ω1

Γ12

Γ14

ω

(a)

Γ24
Γ2

Ω4

ω

Γ4

Ω2

Γ23

Ω5

Ω3

Γ35

Ω1

Γ12

(b)

Figure 2: (a) General geometrical configuration:M is a compact manifold with boundary. (b) A particular
case:M is an bounded open subset ofRn.

Let δ j ∈ C∞([0,T] × Ω j \ Γ j j ,R). We furthermore assume that, on both sides ofΓ j j , δ j is smooth up to
Γ j j . The coefficientδ j can thus exhibit a jump acrossΓ j j in Ω j (see Figure 2a whereδ4 can have a jump
acrossΓ44). We defineδ ∈ L∞([0,T] × M) by δ|[0,T]×(Ω j\Γ j j ) = δ j . We assume that 0< δmin ≤ δ ≤ δmax < ∞.

Let nowg be aC∞ metric onM and setA = 1√
g

∑

j,k ∂xk(g
jk √gδ∂x j ). In local coordinates, the operator

A has the form (2.1), modulo lower order terms. Fori ≤ j we denote by ∂
∂ηi j

a non vanishing vector field
defined in a neighborhood ofΓi j and normal toΓi j . By ∂n we denote the normal derivative on∂M. If v is a
function defined in a neighborhood ofΓi j , for x0 ∈ Γi j , we shall write

v|Γ+i j (x0) = lim
x→x0, x∈Ω j

v(x), and v|Γ−i j (x0) = lim
x→x0, x∈Ωi

v(x).

Let y be a function such thaty|Ω j\Γ j j ∈ C∞((0,T) × Ω j \ Γ j j ) and assume that on both sides ofΓ j j , y is
smooth up toΓ j j . We further assume thaty satisfies the following problem,

(5.1)
Py= ∂ty+ Ay= f j in (0,T) ×Ω j for all j, y|(0,T)×∂M = 0 on (0,T) × ∂M,
y|(0,T)×Γ+i j = y|(0,T)×Γ−i j + θi j , (δ j

∂y
∂ηi j

)|(0,T)×Γ+i j = (δi
∂y
∂ηi j

)|(0,T)×Γ−i j + Θi j , on (0,T) × Γi j , for all i ≤ j,

Theorem 5.1. There exist a continuous weight functionϕ in M, and C> 0, h1 ∈ (0, h0], such that for all
h > 0, with h+ h/T ≤ h1, and for all y satisfying(5.1)we have

(5.2) h‖η 3
2 eηϕ/hy‖2M + h3‖η 1

2 eηϕ/h∇y‖2M + h5‖η− 1
2 eηϕ/h∂ty‖

2

M + h5‖η− 1
2 eηϕ/hAy‖2M

+
∑

i≤ j
h|η 3

2 eηϕ/hy|Γ±i j |
2

Γi j
+

∑

i≤ j
h3|η 1

2 eηϕ/h(∇y)|Γ±i j |
2

Γi j
+ h3 |η 1

2 eηϕ/h∂ny|∂M |
2

∂M

≤ C
(

h‖η 3
2 eηϕ/hy‖2ω + h4‖eηϕ/h f ‖M

)

+C
∑

i≤ j

(

h|η 3
2 eηϕ/hθi j |

2

Γi j
+ h5|η− 1

2 eηϕ/h∂tθi j |
2

Γi j
+ h3|η 1

2 eηϕ/h∇θi j |
2

Γi j

+ h3|η 1
2 eηϕ/hΘi j |

2

Γi j
+ h7|η− 3

2 eηϕ/h∂tΘi j |
2

Γi j

)

,

whereη = T2(t(T − t))−1 and ‖w‖2U =
T

∫
0
∫
U
|w(t, x)|2dx dt, |w|2Γ =

T

∫
0
∫
Γ

|w|Γ|2 dS dt, where dS is the surface

measure onΓ.

We denote by∇ a complete set of vector fields. The form of the inequality does not change if we choose
a different set of vector fields. The covariant derivatives are a possible choice.



CARLEMAN ESTIMATE FOR NON SMOOTH COEFFICIENTS 37

Γi j

Vi j = V ji

Ωi Ω j

φ2
i j

− 4
5ε − 2

5ε
− 3

5ε − 1
5ε

V0
i j

V1
i j

V2
i j

V3
i j

Figure 3: The open subsetsVℓ
i j , ℓ = 0, 1, 2, 3, in the neighborhoodVi j of Γi j .

Remark 5.2. Below, for all j ∈ L we shall construct a weight functionϕ j , on each open setΩ j (or rather in
a somewhat larger set), and then we shall define the global weight functionϕ as the supremum of theϕ j ’s,
which is continuous but will not be smooth in a small neighborhood of the interfaces.

Note however that if the geometry permits the construction of a global continuous weight functionϕ that
is smooth except at the interfaces and satisfies the sub-ellipticity condition everywhere and Assumption 2.1
at the interfaces, the global Carleman estimate can be obtained in a much simpler way by patching together
local estimates that are derived directly with the weight functionϕ (see for instance [Hör63, Lemma 8.3.1]
or [LL09]). The cases presented in [DOP02] permit the construction of such a global weight function3. The
construction below allows to address more general geometries.

To prove Theorem 5.1 we construct weight functions allowingto apply the local Carleman estimates
proven in the previous sections.

We place ourselves in a neighborhoodVi j of the interfaceΓi j in M. ForVi j sufficiently small there exist
ε > 0 andφi j : Vi j → Γi j × (−ε, ε) aC∞-diffeomorphism such that

φi j (x) = (x, 0) for all i, j ∈ L and allx ∈ Γi j ,

φi j (Vi j ∩ Ωi) = Γi j × (−ε, 0), φi j (Vi j ∩ Ω j) = Γi j × (0, ε) for i , j,

We writeφi j = (φ1
i j , φ

2
i j ) whereφ1

i j : Vi j → Γi j andφ2
i j : Vi j → (−ε, ε). In the casei , j we may assume

Vi j = V ji andφ ji = (φ1
i j ,−φ2

i j ). Note that the choice of the sign ofφ2
j j on both sides ofΓ j j is arbitrary.

In a similar way, there existV j, a neighborhood ofΓ j in M, ε > 0 andφ j : V j → Γ j × [0, ε) a C∞-
diffeomorphism such thatφ j(x) = (x, 0) for all x ∈ Γ j and we writeφ j = (φ1

j , φ
2
j ) whereφ1

j : V j → Γ j and

φ2
j : V j → [0, ε).
We chooseε small enough such that the distance between any two setsVi j , Vk, i, j, k ∈ L, is positive. We

introduce

Vℓ
i j =

{

x ∈ Vi j ;
−(ℓ + 1)ε

5
< φ2

i j (x) <
−ℓε
5

}

, ℓ = 0, 1, 2, 3.

The local geometry we have described in the neighborhoodVi j is illustrated in Figure 3. For eachj ∈ L we
shall construct a weight functionψ j on a domain related toΩ j such that, firstly,ψ j satisfies Assumptions 2.1

3Some of the cases presented in [DOP02] can be treated by the introduction of two global weight functions. Then for both weight
functions local estimates can be obtained and patched together.



38 JÉRÔME LE ROUSSEAU AND LUC ROBBIANO

(and thenϕ j = eλψ j − eλK with K > supψ j will satisfy both Assumptions 2.1 and 2.2 forλ > 0 sufficiently
large by Lemma 2.3), and, secondly, local Carleman estimates can be patched together.

We define sets of indices in the following way. LetI0 = {1} andJ0 = {1}. If Jk−1 , L we set

Ik =
{

j ∈ L \ Jk−1; ∃i ∈ Ik−1, Γi j , ∅} and Jk = Jk−1 ∪ Ik.

In the example of Figure 2a we haveI1 = {2, 4}, J1 = {1, 2, 4} thenI2 = {3}, J2 = L. In Figure 2b we have
I1 = {2}, J1 = {1, 2}, thenI2 = {3, 4}, J2 = {1, 2, 3, 4}, and finallyI2 = {5}, J2 = L.

This sequence of sets satisfies the following proposition. The proof can be found in Appendix A.

Proposition 5.3. (1) The sequence is finite: there exists k0 ∈ N such that Jk0 = L.
(2) The sets Ik, 0 ≤ k ≤ k0, form a partition of L.
(3) ∀k ∈ {0, . . . , k0} we have Ik , ∅. By convention we set Ik0+1 = ∅.
(4) ∀k ∈ {0, . . . , k0}, if j ∈ Ik and if i is such thatΓi j , ∅ then i∈ Ik−1 ∪ Ik ∪ Ik+1.

We now state the proposition that establishes the existenceof appropriate weight functionsψ j , j ∈ L.

Theorem 5.4. For all k ∈ {1, . . . , k0} and all j ∈ Ik there existsψ j : Ω j ∪⋃

i∈Ik∪Ik+1
Vi j → R, a C∞ Morse

function, that satisfies

(1)
{
x ∈ Ω j ∪⋃

i∈Ik∪Ik+1
Vi j ; ∇ψ j(x) = 0

} ⊂ ⋃

i∈Ik−1
V1

ji if j , 1 (and⊂ ω if j = 1).
(2) The functionψ j satisfies Assumption 2.1 in Vi j for i ∈ Ik ∪ Ik+1.
(3) For i , j, if i ∈ Ik+1, theninf x∈V1

i j
ψ j(x) > supx∈V1

i j
ψi(x) andsupx∈V3

i j
ψ j(x) < inf x∈V3

i j
ψi(x).

(4) For i , j, if i ∈ Ik theninf x∈V1
i j
ψi(x) > supx∈V1

i j
ψ j(x) andsupx∈V1

ji
ψi(x) < inf x∈V1

ji
ψ j(x).

(5) The functionψ j satisfied the condition∂nψ j < 0 onΓ j .

Proof. We start by recalling some facts on Morse Functions. LetU be a domain of a manifold, let
ψ0 ∈ C∞(U,R). In any neighborhood ofψ0 in C∞(U,R), there exists a Morse functionψ1. Actually, the
construction of such a Morse function can be done by only perturbing the functionψ0 in a neighborhood of
its critical points.

The Morse functionψ1 has only a finite number of critical points. We recall how theycan be all “moved”
to a particular location: letO ⊂ U, we can construct a Morse functionψ2 ∈ C∞(Ω) out of ψ1 such that
the critical points ofψ2 are inO. It is sufficient to explain how one critical point ofψ1 can be “moved” to
O. Let x1 be such a critical point, and letα be aC∞ path betweenx1 and a pointx0 of O, with α chosen
such that (∇ψ1)(α(t)) , 0 if t ∈ [0, 1). Let X be a smooth vector field with support in a neighborhoodV of
α([0, 1]) and such thatX(α(t)) = α̇(t) (we choose ˙α(t) , 0 for all t ∈ [0, 1]) and withV sufficiently small
to have∇ψ1(x) , 0 if x ∈ V \ {x1}. We solve ˙x(t, z) = X(x(t, z)) with the initial conditionx(0, z) = z. The
solution exists for allt ∈ R andz → x(t, z) is a smooth diffeomorphism,x−1(t, z) = x(−t, z). From the
uniqueness of the solutions we havex(t, x0) = α(t). We then setψ2(z) = ψ1 ◦ x(1, z). Observe then that the
critical pointx1 has be pulled back tox0 ∈ O.

For the construction of the weight functionsψ j , j ∈ L, we proceed by induction and assume that for all
j ∈ ⋃k0

ℓ=k+1 Iℓ there exists a functionψ j satisfying the properties listed in theorem 5.4. Letj ∈ Ik, we shall
now constructψ j . First, we defineψ j in neighborhoods ofΓ j , Γ j j andΓi j , for i ∈ Ik ∪ Ik+1 when these sets
are non empty.

CaseΓ j , ∅: we setψ j(x) = φ2
j (x) for x ∈ V j . We have∇ψ j(x) , 0 for x ∈ V j andψ j satisfies

property (5) of Theorem 5.4 .
CaseΓ j j , ∅: we set

ψ j(x) = Aφ2
j j (x) if φ2

j j (x) > 0, ψ j(x) = φ2
j j (x) if φ2

j j (x) ≤ 0, x ∈ V j j .

For A > 0 sufficiently large,ψ j(x) satisfies property (2) of Theorem 5.4 inV j j .
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Figure 4: (a) Construction ofψ j andψi in Vi j for i, j ∈ Ik, i , j; (b) Construction ofψ j in Vi j for
i ∈ Ik j+1.

CaseΓi j , ∅ with i ∈ Ik, i , j: we set

ψ j(x) = Aφ2
i j (x), if φ2

i j (x) > 0 (i.e.x ∈ Ω j), ψ j(x) = φ2
i j (x) if φ2

i j (x) ≤ 0 (i.e.x ∈ Ωi).(5.3)

For A > 0 sufficiently large,ψ j(x) satisfies properties (2) and (4) of Theorem 5.4 inVi j . The
functionψi is actually constructed the same way inV ji = Vi j , i.e. following (5.3), and we have

ψ j(x) ≥ Aε/5 > −ε/5 ≥ ψi(x), x ∈ V1
ji ⊂ Ω j .(5.4)

The construction ofψ j in this region is illustrated in Figure 4a.
CaseΓi j , ∅ with i ∈ Ik+1: In the induction process we describe,ψi has been constructed inΩi ∪

⋃

p∈Ik+1∪Ik+2
Vpi and its critical points inVi j ∩ Ωi are in fact located inV1

i j . We set

m= sup
x∈V1

i j

ψi(x), m= inf
x∈V3

i j

ψi(x).

Forφ2
i j (x) ∈ (−ε, 0], i.e. inΩi ∩ Vi j , we seekψ j in the affine formψ j(x) = A(φ2

i j (x) + ε
2) + B. The

constantsA > 0 andB ∈ R are chosen such that infx∈V1
i j
ψ j(x) > m and supx∈V3

i j
ψ j(x) < m which

implies property (3) of Theorem 5.4. This is satisfied if

A(
−2ε
5
+
ε

2
) + B > m and A(

−3ε
5
+
ε

2
) + B < m.

Such a constantB exists ifm− Aε
10 < m+ Aε

10 , that is, if 5(m−m) < Aε, which can always be achieved
by some positiveA regardless of the values ofmandm.

Forφ2
i j (x) > 0. i.e. inΩ j ∩ Vi j , we setψ j(x) = Cφ2

i j (x) + Aε
2 + B. ForC sufficiently the function

ψ j satisfies property (2) of Theorem 5.4. The construction ofψ j in this region is illustrated in
Figure 4b.

The functionψ j is now defined in the neighborhoods ofΓ j , Γ j j , andΓi j , i ∈ Ik ∪ Ik+1, for these sets that
are non empty. Next we can smoothly extendψ j to a function inΩ j ∪ ⋃

i∈Ik∪Ik+1
Vi j (or simply choose a
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Ωi1

V1
i1 j

Γ ji1

Ωi2
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i1 j
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Ω j

Figure 5: The setsU j (light colored regions) and̃U j (light and dark colored regions). Herej ∈ Ik, i0 ∈ Ik−1,
i1 ∈ Ik, andi2 ∈ Ik+1.

smooth function overΩ j in the case where the previous sets were empty – such an example would beΩ5

in Figure 2b). As explained above, the function we have obtained can be changed into a Morse function in
the neighborhood of its critical points. This local change of function does not affect the local definitions of
ψ j we made above in the neighborhoods of the interfaces and boundaries as these regions do not contain
critical points. Finally, the finite number of remaining critical points can be pulled back to the regionsV1

jq
for q ∈ Ik−1 if Γ jq , ∅. Such aq always exists from the definition ofIk if j , 1. If j = 1 we can pull back
the critical points into the observation regionω. These pullbacks do not affect the local definitions ofψ j we
made above. �

We may now prove the global Carleman estimate.
Proof of Theorem 5.1. To lighten the notation we introduce

‖y‖2U,ϕ =h‖η 3
2 eηϕ/hy‖2U + h3‖η 1

2 eηϕ/h∇xy‖
2

U + h5‖η− 1
2 eηϕ/h∂ty‖

2

U + h5‖η− 1
2 eηϕ/hAy‖2U

+
∑

i, j,Γi j⊂U
h|η 3

2 eηϕ/hy|Γi j |
2

Γi j
+

∑

i, j,Γi j⊂U
h3|η 1

2 eηϕ/h(∇y)|Γi j |
2

Γi j
+

∑

j, Γ j∈U
h3|η 1

2 eηϕ/h
(∂y
∂ν

)|Γ j |
2

Γ j

,

and
|||y|||2U,ϕ = h‖η 3

2 eηϕ/hy‖2U + h3‖η 1
2 eηϕ/h∇xy‖

2

U ,

whereU is a subset ofM andϕ a weight function.
We now introduce the open sets and weight functions we shall use. Let j ∈ Ik, j , 1, we denote by

V′j ⋐
⋃

i∈Ik−1
V1

ji a neighborhood of the critical points ofψ j and byV′1 ⋐ ω, for j = 1, a neighborhood of the
critical points ofψ1. If j ∈ Ik we denote this uniquek by k j. Let

K > sup
j∈L

sup
x∈Ω̃ j

ψ j(x), with Ω̃ j = Ω j ∪ ⋃

i∈Ikj

Vi j ∪ ⋃

i∈Ikj +1

Vi j ,

and defineϕ j(x) = eλψ j (x) − eλK and

∀x ∈ M \ ω, ϕ(x) = max
{ j, x∈U j }

ϕ j(x), ∀x ∈ ω, ϕ(x) = ϕ1(x),
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with

U j =

(

Ω j \
( ⋃

i∈Ikj −1

V0
ji ∪ V1

ji

))

∪
(

⋃

i∈Ikj

V0
i j

)

∪
(

⋃

i∈Ikj +1

V0
i j ∪ V1

i j ∪ V2
i j

)

, j , 1,

U1 =
(

Ω1 \ ω
)

∪ V0
11∪

(
⋃

i∈I1

V0
i1 ∪ V1

i1 ∪ V2
i1

)

.

We also introduce

Ũ j =

(

Ω j \
(

V′j ∪
⋃

i∈Ik−1

V0
ji

))

∪
(

⋃

i∈Ikj

V0
i j ∪ V1

i j

)

∪
(

⋃

i∈Ikj +1

V0
i j ∪ V1

i j ∪ V2
i j ∪ V3

i j

)

, j , 1,

Ũ1 =
(

Ω1 \ V′1
)

∪ V0
11 ∪ V1

11 ∪
(
⋃

i∈I1

V0
i1 ∪ V1

i1 ∪ V2
i1 ∪ V3

i1

)

.

We haveŨ j = U j ∪O j , j , 1, andŨ1 = U1 ∪O1, where we have set

O j =
( ⋃

i∈Ik−1

V1
ji

)

∪
( ⋃

i∈I Ik

V1
i j

)

∪
( ⋃

i∈Ik+1

V3
i j

)

\ V′j and O1 = V1
11 ∪

( ⋃

i∈I2

V3
i1

)

∪ ω \ V′1.(5.5)

For all j ∈ L, we letχ j ∈ C∞c (Ũ j) such that 0≤ χ j ≤ 1 andχ j = 1 in U j . We setw j = χ jy, we have
∂tw j +Awj = χ j(∂ty+Ay)+ [A, χ j]y in each open setΩk, k ∈ L. We can patch the local Carleman estimates
of Theorem 2.8 at the interface and that of Proposition 3.29 at the boundary together with classical estimates
in the interior (see for instance [Hör63, Lemma 8.3.1] or [LL09]). We remark that [P, χ j] is a first order
differential operator and is supported inO j . We haveχ j = 1 in U j then we obtain the following estimate

(5.6) ‖y‖2U j ,ϕ j
≤ RHS+Ch|||y|||2O j ,ϕ j

, j ∈ L.

where we denote, here and in the sequel, by RHS the right-hand-side of the sought Carleman estimate (5.2).
If i ∈ Ik−1 and j ∈ Ik we haveV1

ji ⊂ Ui and by theorem 5.4(3) (see Figure 4b, exchanging the roles ofi
and j) we obtain,

(5.7) |||y|||V1
ji ,ϕ j
≤ C|||y|||V1

ji ,ϕi
≤ C|||y|||Ui ,ϕi

.

If i, j ∈ Ik, V1
i j ⊂ Ωi ∩ Ui . By Theorem 5.4(4) (See also Figure 4a), we have,

(5.8) |||y|||V1
i j ,ϕ j
≤ C|||y|||V1

i j ,ϕi
≤ C|||y|||Ui ,ϕi

.

If i ∈ Ik+1, j ∈ Ik we haveV3
i j ⊂ Ωi ∩ Ui . By Theorem 5.4(3) (See also Figure 4b), we obtain,

(5.9) |||y|||V3
i j ,ϕ j
≤ C|||y|||V3

i j ,ϕi
≤ C|||y|||Ui ,ϕi

.

By the definition ofO j , j ∈ L, in (5.5) and following (5.7), (5.8) and (5.9) we have,

(5.10)
k0∑

j=1
|||y|||2O j ,ϕ j

≤ C
k0∑

j=1
|||y|||2U j ,ϕ j

≤ C′‖y‖2M,ϕ, and |||y|||2Ω1,ϕ1
≤ C′′‖y‖2M,ϕ.

For all x ∈ M there existsj such thatϕ(x) = ϕ j(x), then if we denote byWj = {x ∈ U j , ϕ(x) = ϕ j(x)},
we haveM \ ω = ⋃

j Wj and

(5.11) ‖y‖2M\ω,ϕ =
∑

j
‖y‖2Wj ,ϕ j

≤ ∑

j
‖y‖2U j ,ϕ j

.

Let χ0 ∈ C∞c (Ω1) such that 0≤ χ0 ≤ 1 andχ0 = 1 in ω. Noting thatϕ1 is a smooth function onΩ1, the
following classical local estimate holds (see [FI96]), forh andh/T sufficiently small,

‖y‖2ω,ϕ1
≤ ‖χ0y‖2ω,ϕ1

≤ Ch4‖eηϕ1/hP(χ0y)‖2Ω1
+Ch‖η 3

2 eηϕ1/hχ0y‖2ω(5.12)

≤ C
(

h4‖eηϕ/hP(y)‖2M + h|||y|||2Ω1,ϕ
+ h‖η 3

2 eηϕ/hy‖2ω
)

,
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by invoking a first-order commutator as above. In particular, note that the observation term,h‖η 3
2 eηϕ/hy‖2ω,

does not involve first-order derivatives of the functiony. From (5.11) and (5.12) we have

‖y‖2M,ϕ ≤
∑

j
‖y‖2U j ,ϕ j

+C
(

h4‖eηϕ/hP(y)‖2M + h|||y|||2Ω1,ϕ
+ h‖η 3

2 eηϕ/hy‖2ω
)

,

which by (5.6) gives

‖y‖2M,ϕ ≤ RHS+Ch
( ∑

1≤ j≤k0

|||y|||2O j ,ϕ j
+ |||y|||2Ω1,ϕ

)

.

We conclude by choosingh sufficiently small to “absorb” the last two terms by the l.h.s. with (5.10). �

Appendix A. Some intermediate and technical results

A.1. Proof of Lemma 2.3. We setR(t, x, ξ) = δ(t, x)(ξ2
n + r(x, ξ′)) =

∑n
i, j=1αi, j(t, x)ξiξ j andR̃(t, x, ξ, η) =

δ(t, x)(ξnηn + r̃(x, ξ′, η′)) =
∑n

i, j=1αi, j(t, x)ξiη j . Then

ã2|h=0(s(t), x, τ, ξ) = R(t, x, ξ) − R(t, x, ϕ′x) and ã1(s(t), x, τ, ξ) = τ + 2R̃(t, x, ξ, ϕ′x).

We find that{ã2|h=0, ã1}x(s(t), x, τ, ξ) = A1 + A2 with

A1 =
n∑

i, j=1
∂2

xi ,x j
ϕ
(

(∂ξi R)(t, x, ξ)(∂η j R̃)(t, x, ξ, ϕ′x) + (∂ξi R̃)(t, x, ξ, ϕ′x)(∂ξ j R)(t, x, ϕ′x)
)

,

A2 =
n∑

i=1

(

(∂ξi R)(t, x, ξ)(∂xi R̃)(t, x, ξ, ϕ′x) + (∂ξi R̃)(t, x, ξ, ϕ′x)
(

(∂xi R)(t, x, ϕ′x) − (∂xi R)(t, x, ξ)
))

.

With the exponential form we have chosen forϕ we have∂xiϕ = λϕ̃∂xiψ and∂2
xi ,x j

ϕ = λ2ϕ̃(∂xiψ)(∂x jψ) +
λϕ̃∂2

xi ,x j
ψ with ϕ̃ = eλψ. Introducingβ(t, x, ξ) =

∑n
i, j=1 βi, jξiξ j with βi, j =

∑n
k,l=1(∂2

xk,xl
ψ)αi,kα j,l, we find

1
4

A1 = λ
4ϕ̃3R(t, x, ψ′x)

2 + λ2ϕ̃R̃(t, x, ξ, ψ′x)
2 + λ3ϕ̃3β(t, x, ψ′) + λϕ̃β(t, x, ξ).

If ã2|h=0(s(t), x, τ, ξ) = 0 we then haveR(t, x, ξ) = R(t, x, ϕ′x) = λ
2ϕ̃2R(t, x, ψ′x) and in particular

1/C |ξ| ≤ λϕ̃|ψ′x| ≤ C|ξ|.

It follows that

A1 ≥ Cλ4ϕ̃3|ψ′x|4 −C′λ3ϕ̃3|ψ′x|2.

It also follows that|A2| ≤ C(λϕ̃|ψ′x|)3. We have thus obtained

{ã2|h=0, ã1}x(s(t), x, τ, ξ) ≥ Cλ4ϕ̃3|ψ′x|4 −C′λ3ϕ̃3|ψ′x|2 −C′(λϕ̃|ψ′x|)3,

if ã2|h=0(s(t), x, τ, ξ) = 0. Recalling that|ψ′x| ≥ C > 0 in Vg/d, the result hence follows forλ sufficiently large.
�

Remark A.1. Note that we did not use the assumption ˜a1(s(t), x, τ, ξ) = 0 here. Comments on the suffi-
ciency and necessity of the sub-ellipticity condition can be found in [LL09].
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A.2. Proof of Lemma 3.3. We write the proof for (Γ, γ) = (M,m). The result follows the same in the case
(Γ, γ) = (Λ, λ). First we have

|ρ(s, x, τ, ξ)| ≤ C〈s〉lm(t, x, τ, ξ/ν)k ≤ C〈s〉lν−k(ν2 + ν2τ2 + |ξ|2)k/2 ≤ C〈s〉l−kMk.

Let α′ ≥ 0 andβ′ ≥ 0 andα′′ andβ′′ be multi-indices. An induction onα′ + |β′′| shows that

∂α
′

s ∂
α′′
x ∂

β′
τ ∂

β′′

ξ
ρ(s, x, τ, ξ) = ζ(s, x, τ, ξ/ν(s)),

whereζ ∈ S(〈s〉l−α′−|β′′ |mk−β′−|β′′ |, gm). We thus have

|∂α′s ∂
α′′
x ∂

β′
τ ∂

β′′
ξ
ρ(s, x, τ, ξ)| ≤ C〈s〉l−α′−|β′′ |m(t, x, τ, ξ/ν(s))k−β′−|β′′ | ≤ C〈s〉l−k−α′+β′Mk−β′−|β′′ |.

We have thus obtained the desired estimate. The converse follows the same and so does the result for
tangential symbols. �

A.3. Proof of Lemma 3.4. We treat the tangential case in the proof andRs,x = R × Rn
+. The other cases

follow the same. From the symbolic calculus we findR = 〈s〉−k op(Γ−l
T ) op(Γl

T )〈s〉k = Id+hS1 with S1 ∈
Ψ(Γ−1

T , gΓ,T ) (recall that 0< h′ ≤ h0). FromL2 regularity [Hör85a, Theorem 18.6.3] we haveS1 : L2(R ×
R

n
+)→ L2(R × Rn

+) continuously. Hence forh sufficiently small Id+hS1 is invertible inL(L2, L2).

A.4. Proof of lemma 3.5. We write the proof in the caseΓ = MT andRs,x = R × Rn
+. The other cases

follow the same. Working with〈s〉−k1u ∈ S (R × Rn
+), we see that it suffices to consider the casek1 = 0 and

k2 = k.
Let r ∈ R. We first prove that op(Mr

T ) : L2(R × Rn
+) → D ′(R × Rn

+) is injective. Letw ∈ L2 and let
op(Mr

T )w = 0. By Lemma 3.4 op(M−r
T ) op(Mr

T ) is invertible inL(L2, L2). It follows thatw = 0.
Let u ∈ S (R × Rn

+) and setR = 〈s〉−k op(M−l
T ) op(Ml

T )〈s〉k. By Lemma 3.4 and its proof, the operator
R = Id+hS2, with S2 ∈ Ψ(M−1

T , gM,T ), is invertible inL(L2, L2). We setv = R−1〈s〉−k op(M−l
T )u which is in

L2(R × Rn
+), sincew = 〈s〉−k op(M−l

T )u ∈ S (R × Rn
+) ⊂ L2(R × Rn

+). Moreover, for someC > 0,

1/C‖w‖ ≤ ‖v‖ ≤ C‖w‖.
We havev = R−1w = limn→∞

∑n
j=0 h jS j

2w in L2(R×Rn
+). Since op(Ml

T )〈s〉k is continuous fromL2(R×Rn
+)

into D ′(R × Rn
+) we see that

(A.1) op(Ml
T )〈s〉kv = lim

n→∞
n∑

j=0
op(Ml

T )〈s〉kh jS j
2w in D

′(R × Rn
+).

For j ≥ l + k we have

‖op(Ml
T )〈s〉kh jS j

2w‖ ≤ h jC1C
j−l−k
2 ‖w‖, C1 = ‖op(Ml

T )〈s〉kSl+k
2 ‖(L2,L2), C2 = ‖S‖(L2,L2).

It follows that the series in (A.1) actually converges inL2(R × Rn
+) and thus op(Ml

T )〈s〉kv ∈ L2(R × Rn
+).

Observe now that〈s〉−k op(M−l
T )

(

op(Ml
T )〈s〉kv

)

= 〈s〉−k op(M−l
T )u. We conclude thatu = op(Ml

T )〈s〉kv
with the injectivity of op(M−l

T ) from L2(R × Rn
+) into D ′(R × Rn

+). �

A.5. Proof of Lemma 3.6. We write the proof in the caseΓ = MT andRs,x = R × Rn
+. The other cases

follow the same. Letu ∈ S (R × Rn
+). For h sufficiently small, there existsv ∈ L2(R × Rn

+) such that
u = op(M−l

T )〈s〉−kv and‖v‖ ≤ C‖〈s〉k op(Ml
T )u‖ by Lemma 3.5. Then‖op(a)u‖ = ‖op(a) op(M−l

T )〈s〉−kv‖ ≤
C‖v‖ by L2 regularity [Hör85a, Theorem 18.6.3] since op(a) op(M−l

T )〈s〉−k ∈ Ψ(1, gM,T ). �
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A.6. Proof of lemma 3.7. As in the proof of Lemma 3.5, it suffices to consider the casek1 = 0 andk2 = k.
We havev = R−1w = limn→∞

∑n
j=0 h jS j

2w in L2(R × Rn
+) with w = 〈s〉−k op(M−l

T )u. Let k′, l′ ∈ R. Since
〈s〉k′ op(Ml′

T ) is continuous fromL2(R × Rn
+) into D ′(R × Rn

+) we see that

(A.2) 〈s〉k′ op(Ml′
T )v = lim

n→∞
n∑

j=0
h j〈s〉k′ op(Ml′

T )S j
2w in D

′(R × Rn
+).

Since〈s〉k′ op(Ml′
T )S2 ∈ Ψ(〈s〉k′Ml′

T , gM,T ), by Lemma 3.6, there existsC1 > 0 such that

‖〈s〉k′ op(Ml′
T )S2φ‖ ≤ C1‖〈s〉k′ op(Ml′

T )φ‖, ‖〈s〉k′ op(Ml′
T )S j

2φ‖ ≤ C j
1‖〈s〉k

′
op(Ml′

T )φ‖,
for φ ∈ S (R × Rn

+) by induction onj ∈ N. We thus have

‖〈s〉k′ op(Ml′
T )S j

2w‖ ≤ C j
1‖〈s〉k

′
op(Ml′

T )w‖ ≤ C j
1C‖〈s〉k

′−k op(Ml′−l
T )u‖, j ∈ N.

It follows that the series in (A.2) converges inL2(R × Rn
+), for h sufficiently small, and

‖〈s〉k′ op(Ml′
T )v‖ ≤ C

(∑

j
h jC j

1

)

‖〈s〉k′−k op(Ml′−l
T )u‖,

which concludes the proof. �

A.7. Proof of Lemma 3.8. We write the proof in the caseΓ = MT . andRs,x = R × Rn
+. The other

cases follow the same. Letu, v ∈ S (R × Rn
+). From Lemma 3.5, there existsw ∈ L2(R × Rn

+) such that
v = op(M−k′′

T )w with ‖w‖ ≤ C‖op(Mk′′
T )v‖. We then have

(op(b)u, v) = (op(b)u, op(M−k′′
T )w) = ∫

xn≥0
〈op(b)u, op(M−k′′

T )w〉S (Rn),S ′(Rn) dxn

= ∫
xn≥0
〈op(M−k′′

T )∗ op(b)u,w〉S (Rn),S ′(Rn) dxn = (op(M−k′′
T )∗ op(b)u,w).

Since op(M−k′′
T )∗ op(b) ∈ Ψ(Mk′

T , gM,T ) this yields the result by Lemma 3.6. �

A.8. Proof of Proposition 3.11. We write the proof in the tangential case forΓ = M andRs,x = R × Rn
+.

The other cases follow the same. Letu ∈ H
k,l

M,T (R × Rn
+). Thenu = 〈s〉−k op(M−l

T )v with v ∈ L2(R ×
R

n
+). SettingR = 〈s〉k op(Ml

T )〈s〉−k op(M−l
T ), we see as in the proof of Lemma 3.4, thatR is invertible in

L(L2, L2). It follows that‖.‖k,l,M,T is a norm onH k,l
M,T (R × Rn

+), since〈s〉k op(Ml
T )u ∈ L2(R × Rn

+) and since
〈s〉k op(Ml

T )u = 0 impliesu = 0. Setting (u, u′)
H

k,l
M,T
= (〈s〉k op(Ml

T )u, 〈s〉k op(Ml
T )u′) we obtain an inner

product forH k,l
M,T (R × Rn

+).

Let us now consider (un)n a Cauchy sequence in (H
k,l

M,T (R×Rn
+), ‖.‖k,l,M,T ). We haveun = 〈s〉−k op(M−l

T )vn

with vn ∈ L2(R × Rn
+). Then the sequencevn = R−1(〈s〉k op(Ml

T )un, n ∈ N, is a Cauchy sequence in
L2(R × Rn

+) which converges tov ∈ L2(R × Rn
+). Introducingu = 〈s〉−k op(M−l

T )v ∈ H
k,l

M,T (R × Rn
+), since

‖un − u‖k,l,M,T = ‖R(vn − v)‖, we see that (un)n converges tou in (H k,l
M,T (R × Rn

+), ‖.‖k,l,M,T ).

Let nowu ∈H
k,l

M,T (R×Rn
+) be such thatu = 〈s〉−k op(M−l

T )vwith v ∈ L2(R×Rn
+) and let (vn)n ⊂ S (R×Rn

+)
be convergent tov in L2(R × Rn

+). We setun = 〈s〉−k op(M−l
T )vn ∈ S (R × Rn

+). Then‖un − u‖k,l,M,T =
‖R(vn − v)‖ and we that the sequence (un)n ⊂ S (R × Rn

+) converges tou in (H k,l
M,T (R × Rn

+), ‖.‖k,l,M,T ). �

A.9. Proof of lemma 3.13. We treat the tangential cases here. On the one hand, fromψDO calculus we
observe that

‖〈s〉k op(MT )u‖2 = (op(MT )∗〈s〉2k op(MT )u, u) = (〈s〉2k op(M2
T )u, u) + h(op(a)u, u)

= (〈s〉2k+2u, u) + (〈s〉2k+2D2
su, u) +

n−1∑

j=1
(〈s〉2kD2

x j
u, u) + h(op(a)u, u),
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wherea ∈ S(〈s〉2kMT , gM,T ). On the other hand, we have〈s〉2k+2D2
s = Ds〈s〉2k+2Ds + hh′ op(b) where

b ∈ S(〈s〉2kMT , gM,T ). From Lemma 3.8, forh sufficiently small we have

(op(a+ h′b)u, u) ≤ C‖〈s〉k op(MT )u‖2.

We thus obtain the norm equivalence (3.5) by takingh sufficiently small. In (3.6), the inequality follows
from Lemma 3.6. �

A.10. Proof of lemma 3.14.We sketch the proof in the tangential case andRs,x = R × Rn
+. Since〈s〉k+2,

〈s〉k+2Ds, 〈s〉kD2
x j
∈ Ψ(〈s〉kΛ2

T , gΛ,T ) we have

‖〈s〉k+2u‖ + ‖〈s〉k+2Dsu‖ +
n−1∑

j=1
‖〈s〉kD2

x j
u‖ ≤ C‖〈s〉k op(Λ2

T )u‖, u ∈ S (R × Rn
+),

by Lemma 3.6 forh sufficiently small. Then we proceed as in the proof of Lemma 3.13. We obtain for
instance

‖〈s〉k op(Λ2
T )u‖ = (〈s〉2k+4u, u) + (〈s〉2k+4D2

su, u) + (〈s〉2k|Dx′ |4u, u) + h(R1u, u), R1 ∈ Ψ(〈s〉2kΛ3
T , gΛ,T )

We note that|Dx′ |4 = ∑n−1
j=1 D4

x j
+

∑n−1
j,k=1 D2

x j
D2

xk
. We thus obtain

‖〈s〉k op(Λ2
T )u‖2 = ‖〈s〉k+2u‖2 + ‖〈s〉k+2Dsu‖2 +

n−1∑

j=1
‖〈s〉kD2

x j
u‖2 +

n−1∑

j,k=1
(〈s〉kD2

x j
u, 〈s〉kD2

xk
u) + h(R2u, u),

with R2 ∈ Ψ(〈s〉2kΛ3
T , gΛ,T ). We conclude with Lemma 3.8 and by takingh sufficiently small. �

A.11. Proof of Lemma 3.15. We consider the caseu ∈ S (Rn+1). The extension tou ∈H
k,2
Γ

(Rn+1) follows
by density. We write

‖〈s〉kDxn op(ΛT )u‖2 = (〈s〉k op(ΛT )u,D2
xn
〈s〉k op(ΛT )u) = (〈s〉k op(ΛT )u, 〈s〉k op(ΛT )D2

xn
u)

= (op(ΛT )∗〈s〉2k op(ΛT )u,D2
xn

u) = (〈s〉k op(Λ2
T )u, 〈s〉kD2

xn
u) + h(R1u,D

2
xn

u),

with R1 ∈ Ψ(〈s〉2kΛT , gΛ,T ). We have

|(〈s〉k op(Λ2
T )u, 〈s〉kD2

xn
u)| ≤ 2‖〈s〉k op(Λ2

T )u‖2 + 2‖〈s〉kD2
xn

u‖2

≤ C′
(

‖〈s〉k+2u‖2 + ‖〈s〉k+2Dsu‖2 +
n∑

j=1
‖〈s〉kD2

x j
u‖2

)

≤ C′′‖〈s〉k Op(Λ2)u‖2,

by Lemma 3.14. We also have‖〈s〉k op(Λ2
T )u‖ ≤ C‖〈s〉k Op(Λ2)u‖ by Lemma 3.14. It follows that

(R1,D
2
xn

u) ≤ C‖〈s〉k op(Λ2
T )u‖ ‖〈s〉kD2

xn
u‖ ≤ C′‖〈s〉k Op(Λ2)u‖2.

by Lemma 3.8.
For thegM,T , gM calculi, we obtain

‖〈s〉kDxn op(MT )u‖ + ‖〈s〉k op(M2
T )u‖ ≤ C‖〈s〉k Op(M2)u‖,

in the caseu ∈ S (Rn+1) by simply applying Lemma 3.13. �
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A.12. Proof of Lemma 3.16. We give the proof in the non tangential case. We introduce thefollowing
additional metric

g :=
|ds|2
〈s〉2 + |dx|2 + 〈s〉

2|dτ|2
M

+
|dξ|2
M

, kg =
1
M
.

Lemma A.2. The metric g is slowly varying and the order functions M andΛ are g-continuous.

Lemma A.3. The metric g isσ-temperate and the order functions M andΛ areσ,g-temperate.

The proofs of the two lemmata are left to the reader.
The order functionsM andΛ are thus admissible for theg-calculus. Since

√
M ≤ Λ ≤ M, we thus

obtain, fork ∈ R, andl ≥ 0

〈s〉kMl/2 ∈ S(〈s〉kΛl , g), 〈s〉kΛl ∈ S(〈s〉kMl , g).

We then have〈s〉kMl/2 #Λ−l〈s〉−k ∈ S(1, g) and〈s〉kΛl # M−l〈s〉−k ∈ S(1, g) which allows to proceed as in
the proof of Lemma 3.6. �

A.13. Proof of Lemma 3.17. First observe that the proof of Proposition 18.1.4 in [Hör85a] adapts to the
order functions and metrics we consider here.

Lemma A.4. Let (Γ, γ) = (M,m) or (Λ, λ) and let k∈ R. Let aj ∈ S(〈s〉kΓmj , gΓ) (resp. S(〈s〉kγmj , gγ)) and
assume the mj → −∞ when j→ ∞. Let a∈ C∞(Rn+1 × Rn+1) and assume that for allα, α′, β, β′ we have
for some C,ν, andµ depending onα, α′, β, andβ′

|∂αs∂α
′

x ∂
β
τ∂

β′
ξ

a| ≤ C〈s〉νΓµ, (resp. C〈s〉νγµ), (s, x), (τ, ξ) ∈ Rn+1.

If there is a sequenceµp → −∞ such that

|a− ∑

j≤p
a j | ≤ C〈s〉kΓµp, (resp. Cγµp),

it follows that a∈ S(〈s〉kΓsupj mj , gΓ) (resp. S(〈s〉kγsupj mj , gγ)), and that a∼ ∑

a j. We have a similar result
for tangential symbol classes.

Let (γ, Γ, γ′, Γ′) = (λ,Λ,m,M) or (m,M, λ,Λ). We provide the proof for the tangential case. We note
that

λT ≤ CmT and mT ≤ C′λ2
T .

which givesχa ∈ S((γ′T )−µ, gγ′) for anyµ ∈ R. Also, for allα, α′, β, β′, both

|∂αs∂α
′

x ∂
β
τ∂

β′
ξ

(σχa)| and |∂αs∂α
′

x ∂
β
τ∂

β′
ξ

(σ#T χa)|
can be estimated byC〈s〉k−αγνT andC′〈s〉k−α(γ′T )ν

′
for anyν, ν′ ∈ R and the first result follows.

By Lemma 3.3, we haveχ ∈ S(〈s〉µΓ−µ, gΓ,T ) ∩ S(〈s〉µ(Γ′)−µ, gΓ′,T ), for anyµ ∈ R. We note that

(A.3) ΛT ≤ CMT and MT ≤ C′Λ2
T .

For allα, α′, β, β′, |∂αs∂α
′

x ∂
β
τ∂

β′

ξ
(Σ#T χ)| can be estimated byC〈s〉νΓµT for someν, µ ∈ R sinceχ ∈ S(1, gΓ,T ).

By (A.3) it can also be estimated byC′〈s〉ν(Γ′T )µ
′
for someµ′ ∈ R.

From the composition formula (1.2), we have
∣
∣
∣
∣(Σ#T χ)(s, x, τ, ξ′, h) − ∑

|α|≤p
h|α|(h′)α1

(−i)|α|

α!
(∂α1
τ ∂

α2
ξ′ Σ) (∂α1

s ∂
α2
x′ χ)(s, x, τ, ξ′, h)

∣
∣
∣
∣ ≤ C〈s〉kΓνp

T ,

with α = (α1, α2) ∈ N × Nn−1 andνp → −∞ as p → ∞ sinceχ ∈ S(1, gΓ,T ). By (A.3) it can also be
estimated byC′〈s〉k(Γ′T )ν

′
p with ν′p → −∞ asp→ ∞



CARLEMAN ESTIMATE FOR NON SMOOTH COEFFICIENTS 47

As Σ ∈ S(〈s〉kΓl
T , gΓ,T ) we have∂α1

τ ∂
α2
ξ′ Σ ∈ S(〈s〉k+ jα1Γ

l− jα1−|α2|
T , gΓ,T ), with j = 1 if Γ = M and j = 2 if

Γ = Λ. We also have∂α1
s ∂

α2
x′ χ ∈ S(〈s〉µ−α1Γ

−µ
T , gΓ,T ), for anyµ. With Lemma 3.3 we thus have

(∂α1
τ ∂

α2
ξ′ Σ) ◦ κ−1 ∈ S(〈s〉k+l−|α2|γl− jα1−|α2|

T , gγ,T ), (∂α1
s ∂

α2
x′ χ) ◦ κ−1 ∈ S(〈s〉−α1γ

−µ
T , gγ,T ).

Arguing as above, since〈s〉α1(∂α1
s ∂

α2
x′ χ) ◦ κ−1 satisfies the same properties asχa, we obtain

(

(∂α1
τ ∂

α2
ξ′ Σ) (∂α1

s ∂
α2
x′ χ)

)

◦ κ−1 ∈ S(〈s〉k+l−|α|γl−|α|
T , gγ,T ) ∩ S(〈s〉k+l−|α|(γ′T )l−|α|, gγ′,T ).

We thus have (∂α1
τ ∂

α2
ξ′ Σ) (∂α1

s ∂
α2
x′ χ) ∈ S(〈s〉k(Γ′T )l−|α|, gΓ′,T ), again by Lemma 3.3. The second result thus

follows by Lemma A.4. �

The reader should note that the argumentation we have made inthe second part does not apply to the
calculus of the composition of operators but rather on the each term of the resulting symbol asymptotic
expansion.

A.14. Proof of Lemma 3.19. We letχ1
a(x, τ, ξ′) ∈ S(1, gγ,T ), with compact support in the (x, τ, ξ′) vari-

ables, be such thatχ1
a = 1 on supp(χa) and we setχ1 = χ1

a ◦ κ, with κ as defined in (3.2). We write the proof
for the tangential norms of the restrictions toxn = 0+. The other case follows the same. By Lemma 3.17
we haveχ andχ1 in S(1, gM,T ) ∩ S(1, gΛ,T ).

From theψDO calculus and Lemma 3.17, for anyp ∈ N, we findχ1 #T Σ #T χ = Σ #T χ + hprp with
rp ∈ S(M−p

T , gM,T ) ∩ S(Λ−p
T , gΛ,T ). Hence op(Σ)u = op(χ1) op(Σ)u− hp op(rp)v, which yields

|〈s〉k op(Ml
T ) op(Σ)u|xn=0+ |0 ≤ |〈s〉k op(Ml

T ) op(χ1) op(Σ)u|xn=0+ |0 +Cp′h
p′ |v|xn=0+ |0

≤ C|〈s〉k+k′ op(Λl+l′
T )u|xn=0+ |0 +C′p′ hp′− 1

2 (‖v‖ + ‖Dxnv‖),
for any p′ ∈ N, by Lemma 3.6, since〈s〉k op(Ml

T ) op(χ1) ∈ Ψ(〈s〉kΛl
T , gΛ,T ) by Lemma 3.17, and by using

the trace formula (3.1). �

A.15. Proof of Lemma 3.20. .
The proof we give extends that of Lemma 3 page 480 in [LR97]. Wedrop the “g/d” notation here since

the same argument holds for both cases. We haveaϕ = c(s, x)(ξ2
n + 2i(∂xnϕ)ξn + a2 + 2ia1). We setα ∈ C

such thatα2 = (∂xnϕ)2 + a2 + 2ia1. Then the imaginary parts of the two roots ofaϕ are−∂xnϕ ± Re(α) and
have opposite signs if and only if|Re(α)| > |∂xnϕ|. We note that

|Re(z)| > A ⇔ Re(z2) > A2 − (Im(z2))2

4A2
, z ∈ C,(A.4)

with a similar equivalence in the case of equalities on both sides. Substitutingα for z, and |∂xnϕ| for A,
we thus obtain that the imaginary part of the roots have opposite signs if and only ifµa > 0, asµa =

a2 + a2
1/(∂xnϕ)2. In the caseµa = 0 only one of the roots is real and the imaginary part of the second one is

of the opposite sign of∂xnϕ. In the caseµa < 0 both imaginary parts of the roots have the same sign equal
to the opposite sign of∂xnϕ.

If we have Im(ρ+a ) ≥ C0 > 0 and Im(ρ−a ) ≤ −C0 then|Re(α)| ≥ |∂xnϕ| +C0 and by (A.4) we obtain

(∂xnϕ)2 + a2 = Re(α2) ≥ (|∂xnϕ| +C0)2 − a2
1

(|∂xnϕ| +C0)2
.

which gives

µa ≥ C2
0 + 2C0|∂xnϕ| + a2

1

( 1
(∂xnϕ)2

− 1
(|∂xnϕ| +C0)2

)

≥ C > 0.

Conversely, let us assume thatµa ≥ C1 > 0. We then have

Re(α2) ≥ (∂xnϕ)2 − (Im(α2))2

4(∂xnϕ)2
+C1.(A.5)
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Im(z)

−C2

C1

Px

τC1Px

Re(z)

Figure 6: Portions of the parabolae considered in the proof of Lemma 3.20.

Recalling that Re(α2) = (∂xnϕ)2 + a2 and the form ofa2 in (2.6) we observe that Re(α2) ≥ −C2 holds forh′

bounded for someC2 > 0. We setA = {Re(z) ≥ −C2} ⊂ C. Let x ∈ Vd and introduce

Px = A∩
{

z ∈ C; Re(z) ≤ (∂xnϕ(x))2 − (Im(z))2

4(∂xnϕ(x))2

}

,

and

τC1Px = A∩
{

z ∈ C; Re(z) ≤ (∂xnϕ(x))2 − (Im(z))2

4(∂xnϕ(x))2
+C1

}

.

We can find a sufficiently small constantC3 = C3(x) > 0 such that

Px ⊂ A∩
{

z ∈ C; Re(z) ≤ (|∂xnϕ(x)| +C3)2 − (Im(z))2

4(|∂xnϕ(x)| +C3)2

}

⊂ τC1Px,(A.6)

since we work in the compact setτC1Px. This is illustrated in Figure 6. By continuity, the set inclusion

(A.6) holds in a neighborhood ofx. SinceVd is compact, there existsC′3 > 0 such that (A.6) holds for all

x ∈ Vd with C3 replaced byC′3.
We hence obtain thatµa ≥ C1 > 0 implies (A.5), which in turn implies

Re(α2) ≥ (|∂xnϕ| +C′3)2 − (Im(α2))2

4(|∂xnϕ| +C′3)2
.

By (A.4) it follows that Re(α) ≥ |∂xnϕ| +C′3 and thus Im(ρ+a ) ≥ C′3 > 0 and Im(ρ−a ) ≤ −C′3.

We now address the last point of the lemma. Let 0< l < L < inf
Vd |∂xnϕ| and letH = L2 − l2. We

consider the region{µa ≥ −H}. In this region we have

µa ≥ l2 − (∂xnϕ)2 ≥ (

l2 − (∂xnϕ)2)
(

1+
a2

1

l2(∂xnϕ)2

)

= l2 − (∂xnϕ)2 + a2
1

( 1
(∂xnϕ)2

− 1
l2

)

.

Sinceµa = a2 + a2
1/(∂xnϕ)2 we then havea2 + (∂xnϕ)2 ≥ l2 − a2

1

l2 which by (A.4) yields|Re(α)| ≥ l. We
conclude by observing that|ρ+a − ρ−a | ≥ | Im ρ+a − Im ρ−a | = 2|Re(α)|. �

A.16. Proof of Lemma 3.22. We follow the notation of the proof of Lemma 3.20 above and we drop
the “g/d” notation here since the same argument holds for both cases.We chooseα ∈ C such thatα2 =
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(∂xnϕ)2+ a2+ 2ia1 = r(x, ξ′)− r(x, ∂x′ϕ)− h′ a

c(s,x)η2η
′ϕ+ i τ

c(s,x) + 2ir̃(x, ξ′, ∂x′ϕ) which yields the roots to be

−i∂xnϕ ± iα. We write (α/λT )2 = ν1 + ν2 with

ν1 =
1

λ2
T

(

r(x, ξ′) + i
τ

c(s, x)

)

, and ν2 =
1

λ2
T

(

− r(x, ∂x′ϕ) − h′
a

c(s, x)η2
η′ϕ + 2ir̃(x, ξ′, ∂x′ϕ)

)

.

To prove the first result, i.e.,χρ±a ∈ S(λT , gλ,T ), it suffices to considerλT large, as we already know that the
two roots are smooth in supp(χ). Note that there existsL > 0 such that|ν1| ≥ 3L, and|ν2| ≤ L for λT large,
sayλT ≥ R1. In this region we have|α|2/λ2

T ≥ 2L.
Let us now assume that| Im(α2)|/λ2

T ≤ L, then since| Im ν2| ≤ L we have| Im ν1| ≤ 2L. It follows that

Reν1 = |Reν1| ≥
√

9L2 − 4L2 ≥ 2L and Re(α2)/λ2
T ≥ Reν1 − |Reν2| ≥ 2L − L > 0. If λT ≥ R1, we have

thus obtained that (α/λT )2 remains away from a neighborhood of the branchR− for the complex square
root and we may thus chooseα/λT = F((α/λT )2) with F = C∞(C). Since (α/λT )2 ∈ S(1, gλ,T ), it follows
from Theorem 18.1.10 in [Hör85a] thatα/λT ∈ S(1, gλ,T ), for λT ≥ R1, and it yields the first conclusion.

Let C0 > 0 and let us place ourselves in a region{µa ≥ C0}. By Lemma 3.20 we have Im(ρ+a ) ≥ C > 0
and Im(ρ−a ) ≤ −C. The roots are given by−i∂xnϕ±iα. It thus suffices to prove that|Reα|/λT ≥ C > 0 forλT
large, sayλT ≥ R2 ≥ R1. Let us assume that|Reα|/λT ≥ C > 0 does not hold. Then there exists a sequence
yn = (sn, xn, τn, ξ

′
n, h
′
n)n∈N such that (Reα/λT )(yn) converges to zero. By the first part of the proof we know

that (α/λT )(yn) is bounded and thus converges up to a subsequence. It follows that (α/λT )(yn) converges
to a point of the imaginary axis, up to that subsequence, which in turn implies that (α/λT )2(yn) converges
to a non positive real number. As we have seen above, (α/λT )2 remains away from a neighborhood of the
branchR− in the regionλT ≥ R1. We have thus reached a contradiction. �

A.17. Proof of Proposition 3.24. We takeh = h′ = 0. The result remains however true if we chooseh and
h′ sufficiently small sincea(s)cη2 η

′ is bounded. We note thatµ
g/d
a ≥ C > 0 if |ξ′| + |ag/d

1 |/|∇xϕ
g/d | ≥ R0|∇xϕ

g/d | for
someR0 > 0 sufficiently large. Observe that

|τ|
|∇xϕ

g/d | ≤ C
|ag/d

1 |
|∇xϕ

g/d | +C
∣
∣
∣
∣ r̃

g/d(x, ξ′,
∂x′ϕ

g/d

|∇xϕ
g/d | )

∣
∣
∣
∣ ≤ C′

( |ag/d
1 |

|∇xϕ
g/d | + |ξ

′|
)

, uniformly in s ∈ R.

Hence, there existsR> 0 sufficiently large such that

|ξ′| + |τ|
max

g/d
sup
x∈Vd

|∇xϕ
g/d(x)| > R max

g/d
sup
x∈Vd

|∇xϕ
g/d(x)| ⇒ (s, x, τ, ξ′) ∈ E

g,+
a |h′=0 ∩ E

d,+
a |h′=0

Note that shrinking the size ofV (as will be done below) does not affect the constantR. To conclude, it thus
suffices to prove thatµg

a − µd
a ≥ C > 0 with (s, x, τ, ξ′) ∈ R × K , withK the compact region

K =
{

(x, τ, ξ′); x ∈ Vd, |ξ′| + |τ|/max
g/d

sup
x∈Vd

|∇xϕ
g/d(x)| ≤ Rmax

g/d
sup
x∈Vd

|∇xϕ
g/d(x)|

}

.

We observe that

µ
g
a − µd

a =

[

(∂xnϕ
d)2 − (∂xnϕ

g)2 +
1
4
τ2

(

1
(cg∂xnϕ

g)2
− 1

(cd∂xnϕ
d)2

)

+ τr̃

(

1
cg(∂xnϕ

g)2
− 1

cd(∂xnϕ
d)2

)

+ r̃2

(

1
(∂xnϕ

g)2
− 1

(∂xnϕ
d)2

) ]∣
∣
∣
∣
∣
∣
xn=0+

+ xnOϕ(1),

where ˜r stands for ˜r(x, ξ′, ∂x′ϕ)|xn=0+ andOϕ(1) is a bounded function and its upperbound only depends on
the choice ofϕ we are going to make below, since (x, τ, ξ′) ∈ K . We first consider the casexn = 0+. After
we have obtained (µg

a − µd
a)|xn=0+ ≥ C > 0, uniformly in s, with a particular choice of the functionϕ, we can

allow −ε ≤ xn ≤ ε with ε small, i.e., for the neighborhoodV sufficiently small (see the form ofV we have
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chosen at the beginning of Section 2). The inequalityµ
g
a − µd

a ≥ C > 0 is then preserved with possibly a
different positive constantC.

We view (µg
a − µd

a)|xn=0+ as a second-order polynomial inτ of the formατ2 + βτ + γ. Sinceα > 0 by
Assumption 2.1, its minimum value is (4αγ− β2)/(4α). To obtain (µg

a− µd
a)|xn=0+ ≥ C0 it is thus sufficient to

haveδ = β2 − 4αγ + 4αC0 ≤ 0 We find

δ =
1

(cgcd∂xnϕ
g∂xnϕ

d)2

(

(cd − cg)2r̃2 − (cg)2(∂xnϕ
g)4 − (cd)2(∂xnϕ

d)4

+ 4C0(cdcg)2((∂xnϕ
d)2 − (∂xnϕ

g)2) + (∂xnϕ
g∂xnϕ

d)2((cg)2 + (cd)2)
)∣∣
∣
∣
xn=0+

.

Since inK we have

|r̃ | ≤ C|∂x′ϕ| |ξ′| ≤ CR|∂x′ϕ|max
g/d

sup
x∈Vd

|∇xϕ
g/d(x)|,

it follows that we obtain the sought negativity ofδ with |∂xnϕ
d|xn=0+ | ≥ L(|∂x′ϕ|xn=0+ | + |∂xnϕ

g|xn=0+ |), if we
chooseL ≥ 1 sufficiently large, as stated in (3.12) after Assumption 2.1, andby taking the neighborhoodV
sufficiently small around the pointy0, so that

max
g/d

sup
x∈Vd

|∇xϕ
g/d(x)| ≤ (1+ ε) inf

(x′,0)∈Vd

∂xnϕ
d

with ε as small as needed. �

A.18. Proof of Lemma 3.25. By definition ofa
g/d
2 , if µ

g/d
a is bounded then|ξ′| anda

g/d
1 are bounded. We have

seen that

(A.7)
|τ|
|∇xϕ

g/d | ≤ C
( |ag/d

1 |
|∇xϕ

g/d | + |ξ
′|
)

, uniformly in s ∈ R,
in the proof of Proposition 3.24. The result follows. �

Remark A.5. Note that we can furthermore prove that forR sufficiently large, we have

µ
g/d
a ≥ C(1+ (a

g/d
1 )2 + |ξ′|2), |(ag/d

1 , ξ
′)| ≥ R,

which by (A.7) yields, for someR′ > 0,

µ
g/d
a ≥ C′(1+ τ2 + |ξ′|2), |(τ, ξ′)| ≥ R′.

A.19. Proof of Lemma 3.27. We set

ρ = µ

(

q2
1 + (η∂xnϕ)2q2

)2

〈s〉3M2
T

+ σ(H2).

With the change of variablesκ introduced in (3.2) we define ˜ν = η−3(ρ ◦ κ−1) andβ2 = η
−3(σ(H2) ◦ κ−1) .

We have

ν̃ = µ
η5

〈s〉3

(

a2
1 + (∂xnϕ)2a2

)2

M2
T ◦ κ−1

+ β2.

By (2.5), sinceC〈s〉mT ≤ MT ◦ κ−1 ≤ C′〈s〉mT , it is sufficient to prove that

ν = µ

(

a2
1 + (∂xnϕ)2a2

)2

m2
T

+ β2 ≥ Cm2
T ,(A.8)

for µ sufficiently large.
Sinceβ2 ∈ S(m2

T , gm,T ) by Lemma 3.3, and sincea2
1 + (∂xnϕ)2a2 ∈ S(m2

T , gm,T ) is elliptic for large
|(τ, ξ′)| by Remark A.5, then (A.8) in fact holds for|(τ, ξ′)| ≥ R, with R sufficiently large and withµ
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sufficiently large. We thus work with|(τ, ξ′)| ≤ R, i.e., with (x, τ, ξ′) in a compact setK. We note that
σ( i

h[Q̃2, Q̃1]) = h′{q̃2, q̃1}s + {q̃2, q̃1}x where

h′{q̃2, q̃1}s = −h′∂sq̃2∂τq̃1 = 2h′c(ηη′a)(s)
(

(ϕ′xn
)2 + r(x, ϕ′x′)

)

− (h′)2ϕa(s)(aη′)′(s) − h′(∂sc)a(s)
1
c

q̃2

∈ 〈s〉3h′S(1, gM,T ) + hq̃2S(1, gM,T ).(A.9)

We shall first consider the caseh = h′ = 0. We have

σ
( i
h

[Q̃2, Q̃1]
)∣∣
∣
∣
h=0
= {q̃2|h=0, q̃1}x = σ(H0)|h=0 q̃2|h=0 + σ(H1)|h=0q̃1 + σ(H2)|h=0.

Observe now that we have

{ã2|h=0, ã1}x = ξ2
nl̃0 + ξnl̃1 + l̃2, with l̃ j ∈ S(mj

T , gm,T ), j = 1, 2, 3.

As we haveη−3{q̃2|h=0, q̃1}x = {ã2|h=0, ã1}x ◦ κ̃, it follows that

σ(H̃ j)|h=0 = η
j+1l̃ j ◦ κ̃, j = 1, 2, 3.

Note thatξ2
n = ã2|h=0/c− a2|h=0 andξn = ã1/(2c∂xnϕ) − a1/∂xnϕ. This yields

{ã2|h=0, ã1}x = ã2|h=0l0 + ã1l1 + l2, with l j ∈ S(mj
T , gm,T ), j = 1, 2, 3,

and we have

ηl0 ◦ κ = σ(H0)|h=0 ∈ S(〈s〉, gM,T ), ηl1 ◦ κ = σ(H1)|h=0 ∈ S(MT , gM,T ),

and η3l2 ◦ κ = σ(H2)|h=0 ∈ S(〈s〉M2
T , gM,T ).

In particular we note thatl2 = β2|h=0.
Here we shall use the time variablet ∈ [0,T] instead ofs for compactness reasons. Assume thatγ =

(t, x, τ, ξ′) is such that
(

a2
1 + (∂xnϕ)2a2|h=0

)

(s(t), x, τ, ξ′) = 0.

Then, choosingξn = −(a1/(ϕ′xn
)
)

(s(t), x, τ, ξ′) we have ˜a1(s(t), x, τ, ξ) = ã2|h=0(s(t), x, τ, ξ) = 0. It follows
that l2 = β2|h=0 > 0 at the considered pointγ by Assumption 2.2. Since (t, x, τ, ξ) is in the compact set
[0,T] × K, we thus obtainν|h=0 > C for µ sufficiently large.

We now relax the conditionh = h′ = 0 and leth′, h′ ≥ 0. First note that the generated perturbation ona2

is h′a(s)η′(s)ϕ(x)/(c(s, x)η(s)2) ∈ h′S(1, gm,T ) and corresponds to a bounded perturbation inh′S(〈s〉2, gM,T )

for q2. This perturbation ina2 yields a perturbation inµh′S(1, gm,T ) for µ (a2
1+(∂xnϕ)2a2)2

m2
T

.

Note that we have

{q2, q1}x − {q2|h=0, q1}x ∈ h′S(〈s〉3, gM,T ).

In the computation ofih[Q̃2, Q̃1] in the form H̃0D2
xn
+ H̃1Dxn + H̃2 letting h′ ≥ 0 thus only affectsσ(H̃2)

by a term inh′S(〈s〉3, gM,T ) + hS(M2
T , gM,T ) making also use of (A.9). Writingi

h[Q̃2, Q̃1] in the form
H0Q̃2 + H1Q̃1 + H2 transfers that perturbation toσ(H2) with an additional term inh′S(〈s〉2, gM,T )σ(H̃0)
thus inh′S(〈s〉3, gM,T ). We finally obtain a perturbation inh′S(1, gm,T )) + hS(〈s〉−1m2

T , gm,T )) for β2. In
particular, this perturbation is bounded with respect tos, asmT is bounded in the case|(τ, ξ′)| ≤ R. Since
we haveν|h=0 ≥ C > 0 we obtain thatν ≥ C′ > 0 for h andh′ sufficiently small. This concludes the case
|(τ, ξ′)| ≤ R. �
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A.20. Proof of Lemma 4.1. We have|χg/d
a | ≤ C. Next, let us consider the derivative ofχ

g/d
a with respect to

s. We have

|∂sχ
g/d
a (s, x, τ, ξ′)| = |∂sµ

g/d
a (s, x, τ, ξ′, h = 0)| |χ′µ ◦ µ

g/d
a (s, x, τ, ξ′, h = 0)| ≤ C

λ4
T
〈s〉 |χ

′
µ ◦ µ

g/d
a (s, x, τ, ξ′, h = 0)|,

sinceµ
g/d
a ∈ S(λ4, gλ,T ). As the support ofχ′µ is compactµ

g/d
a is bounded in the support of the expression and

so are|τ| and|ξ′| by Lemma 3.25. It follows that

|∂sχ
g/d
a (s, x, τ, ξ′)| ≤ Cν〈s〉−1λ−νT , ν ∈ R.

A similar reasoning is applied to other partial derivatives. In the caseχµ ∈ C∞c (R) we then furthermore
have|χg/d

a | ≤ Cνλ
−ν
T for anyν ∈ R. The same applies to themT , gm,T -calculus. �

A.21. Proof of Lemma 4.4. We shall write the proof for op(1− χ2)γ̃0(ud). It follows very similarly for
op(1− χ2)γ̃1(ud).

We setγ̂0(ud) = 〈s〉 1
2γ0(ud). Then γ̂0(ud) = op(Λ−1

T )γ̃0(ud). Following the notation of the proof of
Lemmata 3.5 and 3.7, we have ˜γ0(ud) = R−1 op(ΛT )γ̂0(ud), whereR = op(ΛT ) op(Λ−1

T ) ∈ Ψ(1, gΛ,T ). We
write

op(1− χ2)γ̃0(ud) = R−1Rop(1− χ2)R−1 op(ΛT )γ̂0(ud) = y1 + z1,

where

y1 = R−1[R, op(1− χ2)]R−1 op(ΛT )γ̂0(ud), z1 = R−1 op(1− χ2) op(ΛT )γ̂0(ud).

We find

|z1|0 ≤ C| op(1− χ2) op(ΛT )〈s〉 1
2γ0(ud)|0 ≤ C′hk|v|xn=0+ |0 ≤ C′hk− 1

2

(

‖v‖ + ‖Dxnv‖
)

(A.10)

for anyk ∈ N, from the tangentialψDO calculus (see formula 1.2) since supp(1− χ2) ∩ supp(χ+) = ∅ and
γ0(ud) = ud|xn=0+ = op(χ+)v|xn=0+ , and by use of the trace formula (3.1).

We have [R, op(1− χ2)] = hR1 ∈ hψ(Λ−1
T , gΛ,T ) andy1 = hR−2RR1R−1 op(ΛT )γ̂0(ud) = y2 + z2 with

y2 = hR−2[R,R1]R
−1 op(ΛT )γ̂0(ud), z2 = hR−2R1 op(ΛT )γ̂0(ud).

Similarly we have an estimate for|z2|0 of the same form as that of|z1|0 in (A.10) and by induction for any
k ≥ 2 we find op(1− χ2)γ̃0(ud) = yk + z1 + · · · + zk with z3, . . . , zk also satisfying such an estimate and

yk = hkR−kRkR
−1 op(ΛT )γ̂0(ud) = hkR−kRkγ̃0(ud),

with Rk ∈ Ψ(Λ−k
T , gΛ,T ). It follows that

|yk|0 ≤ Chk|Rkγ̃0(ud)|0 ≤ C′hk|v|xn=0+ |0,
by Lemma 3.7 and Lemma 3.6 for anyk ∈ N. We conclude by using the trace formula (3.1). �

A.22. Proof of Proposition 5.3. We begin by proving Points (1) and (3). (Point (2) is a consequence of
(1).) If I1 = ∅ this simply means thatΩ1 = M and J1 = L = {1}. Assume now that for somek ≥ 1
we haveJk−1 , L and Iℓ , ∅ for all ℓ ≤ k − 1. Let j1 ∈ L \ Jk−1, let x1 ∈ Ω j1 and we fixx0 ∈ Ω1.
By connexion, there exists a continuous pathα(t) in M such thatα(0) = x0 andα(1) = x1. Denote by
Q = {t ∈ [0, 1], α(t) <

⋃

j∈Jk−1
Ω j}, we have 1∈ Q, Ω1 being a neighborhood ofx0, 0 < Q we deduce that

t0 = inf Q > 0. Obviously there existsj2 ∈ Jk−1 such thatα(t0) ∈ Ω j2 and there existδ > 0, j3 < Jk−1 such
that∀t ∈ (t0, t0 + δ), α(t) ∈ Ω j3. This means thatα(t0) ∈ Γ j3 j2.

We havej2 ∈ Ik−1. In fact, if j2 < Ik−1, as j2 ∈ Jk−1, we havej2 ∈ Ik2 for somek2 ≤ k − 2. However
Γ j3 j2 , ∅; this implies j3 ∈ Ik2+1, which in turn givesj3 ∈ Jk−1. This thus yields a contradiction.

It then follows that j3 ∈ Ik and Ik , ∅. Hence, we have proved that (Jk)k is a increasing sequence of
subset in the finite setL. This implies that there existsk0 such thatJk0 = L.
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Proof of (4). Let j ∈ Ik and leti be such thatΓi j , ∅. If i ∈ Iℓ whereℓ ≤ k − 2 asΓi j , ∅ we then have
j ∈ Iℓ+1, which is in contradiction withj ∈ Ik asℓ + 1 ≤ k− 1. Now, if i ∈ Jk we havei ∈ Ik−1 ∪ Ik; if i < Jk,
asΓi j , ∅ and j ∈ Ik, we havei ∈ Ik+1 by the definition of the sets (Ik)k. �
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