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LOCAL AND GLOBAL CARLEMAN ESTIMATES FOR PARABOLIC OPERATOR S WITH
COEFFICIENTS WITH JUMPS AT INTERFACES

JEROME LE ROUSSEAU AND LUC ROBBIANO

Asstract. In (0, T) x Q, Q open subset dk", n > 2, we consider a parabolic operar= d; — Vyd(t, X)Vx,
where the (scalar) céigcients(t, x) is piecewise smooth in space yet discontinuous across athrimierfaceS.

We prove a global in time, local in space Carleman estimateéPfm the neighborhood of any point of the
interface. The “observation” region can be chosen indegethg of the sign of the jump of the ciient 6

at the considered point. The derivation of this estimatesebn the separation of the problem into three
microlocal regions related to high and low tangential fienpies at the interface. In the high-frequency regime
we use Calderon projectors. In the low-frequency regimdoliew a more classical approach. Because of the
parabolic nature of the problem we need to introduce Weylriinder anisotropic metrics, symbol classes and
pseudo-dierential operators. Each frequency regime and the assddithnique require aftrent calculus.

A global in time and space Carleman estimate off & M, M a manifold, is also derived from the local result.

Keyworps: Parabolic equation; Non-smooth ¢beient; Transmission problem; Carleman estimate; Micraloc
analysis; Calderon projectors.

AMS 2000suBJeCT cLASSIFICATION: 35K05; 35K20; 35S15.
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1. INTRODUCTION AND NOTATION

LetQ be a bounded regular connected open subskf.ofet T > 0. We consider the parabolic operator
P = d; + Awith A = —V4(6V) on (0 T) x Q. The difusion codicients depends on both time and space
and satisfies

(1.1) 0 < 6min < (t, X) < Omax < 00,

which ensures uniform ellipticity, and is smooth in time amdooth in space apart from across a smooth
interfaceS, where it may jump. More precisely, we IBtbe a smooth hypersurfacednhthat does not cross
the boundaryQ and such tha® \ S is composed of two connected componedisandQ,. We assume
thatslorxo, € ([0, T] x Q;). Note thats is bounded.

The Carleman estimate we first aim to prove is of the form

2
il /Wil + W3t e¥/"V,wilp < CHilneM 5, Pw=fin (0,T)x (@\S), h>0,

for handh’ = h/T suficiently small, whernw is smooth on both sides & and supp{) c (0, T) x V,
with V a small neighborhood of a point &, and with boundary conditions at the interface that concern
the continuity ofw and that of the associated normal flé&,w. This estimate is thus global in time and
local in space. We shall refer to this type of estimate as tocallCarleman estimate. Here, following
Fursikov-Imanuvilov ], the weight function we consids chosen singular at timte= 0 andt = T,
and of the form(t)¢(x)/h, wherep(x) is negative and satisfies a sub-ellipticity condition, (i = %
Attimest — 0* andt — T, the exponential of the weight functiog®+®/" thus vanishes at all orders.

Carleman estimates for parabolic operators with smootfficants were proven i6]. The proofis
based on the construction of a suitable smooth weight fangti The case of piecewise regular fogents
was treated in part i [DOP2]. There non-smooth weighttions are introduced. They are in particular
assumed to satisfy theame transmission conditioas the solution of the parabolic problem. However, a
Carleman estimate is only achieved if a monotonicity caadits imposed on the fusion codicienté.
This condition states that the region of “observation”, vghere the weight functiog(x) is the largest, has
to coincide with the side of the interface where the tréigas the lowest. The condition thus concerns the
sign of the jump ob at the interface.

In one dimension in space, the monotonicity condition wiesxesl in ]. This in particular led to
the possible treatment of cihieients with bounded variations i07]. In higher dimemsi the condition
was relaxed in9] in the case of afliptic operator.

Here, we prove that the monotonicity assumption can beedlaxany dimension > 2 for theparabolic
problem: a Carleman estimate is achieved with an arbitrigry af the jump of the difusion codficients
at the interface. The proof originates from the work of the &uthors on the elliptic case i09]. In
particular, with microlocal cut4ds, high frequencies and low frequencies (with respect taahgential
directions at the interface) are separated. Low frequsrauie treated as is usually done for the derivation
of Carleman estimates: the operator is conjugated with xperential of the weight functiorg/®#/h,
and separated into self- and anti-adjoint contributidrfsgstimates, integration by parts and a positivity
argument (e.g. Garding’s inequality) yield the Carlemaimaste. High frequencies are not treated this way.
Integrations by parts yield trace terms at the interfa¢kat cannot beféciently estimated. We rely on the
method of Calderon projectors since the conjugated pécatygerator is elliptic for these high frequencies;
we obtain a Carleman estimate through a pseuderential parametrix of the parabolic operator, which
does not require integration by parts. We thus circumventabhnical diiculty encountered by the authors
of [POP02]. We also note that the trace terms that prevemtedeérivation of the Carleman estimate with
the classical method can now be estimatqubsteriori

As mentioned above, the first result we achieve is a locap@@es) Carleman estimate at the interface. In
the case of a compact (Riemannian) manifold, with possihlitipie interfaces, this local estimate can be
stitched together with more classical estimates, away tfaninterfaces, in the interior or at the boundary.



CARLEMAN ESTIMATE FOR NON SMOOTH COEFFICIENTS 3

This requires the construction of a global weight functidime estimate we then obtain is global in time
and in space. Here, we shall refer to such an estimate as tal@arleman estimate. In the global case,
the weight function we construct is continuous. It is in faictooth away from a small neighborhood of the
interfaces.

The method we expose relies on the use several pseti@oeditial calculi of the Weyl-Hormander
type , Sections 18.4-18.6]. Since we face paralopkerators here, such refined calculi are needed
to compare the action of the time derivative and the secoddrcspace derivatives. For such pseudo-
differential calculi, adapted Sobolev spaces were introdur:]. Here, we use such Sobolev spaces;
the semi-classical setting we follow allows us however tmiduce such spaces without relying on the more
intricate analysis of[BC94].

Carleman estimates have many applications ranging fromuthatification of unique continuation prob-
lems (see e.g[[Horp3, Chapter §], [HorB5b, Chapter Z8Jig3]), inverse problems (see e.f. [BRK$1L, 14a98,
[1Y03, KSUO7]), to control theory. In control theory, glob@arleman estimates for parabolic operators
yield the null controllability of classes of semi-linearrgholic equations{[FI94, Barpp, FCZ00]. This last
application was the motivation for the proof of a global @arhn estimate irf [DOPP2] in the case of a
non smooth dtusion codicient. With the global estimate we derive here, the corahility result of
semi-linear parabolic equations 02] is generalizethe case of arbitrary signs for the jump of
the difusion codicient at interfaces. The geometry we treat is also more géf@anifolds, multiple
interfaces).

There remain some open problems connected to the subjdusdrticle, including the cases of inter-
faces that meet the boundaif2, non smooth interfaces, such as interfaces with cornerssitrg interfaces.
All these situations forbid the use of the microlocal teciugis we present here. Here, we have considered a
diffusion codicient. The case of a flusion matrixs(t, X) = (6ij(t, X)) s is also of relevance. A Carleman
estimate can be achieved in the case of a smodkhsitbn matrix for which the operatdfy - 6(t, X)Vy is
uniformly elliptic. In the presence of jumps of the matéift, X) at an interface the derivation of such an
estimate is open.

1.1. Outline. Our main goal is to prove a local Carleman estimate at thefade. In Sectiovﬂz, we place
ourselves in the vicinity of a point of the interface and méke proper change of variables in space and
time to prepare for the proof. In particular we use geodesional coordinates, which allow us to isolate
the normal coordinate in the second-order elliptic operatahange of variable in time allows us to work
in R instead of in the bounded interval,(0). We present the assumptions that are made on the weight
functiony and we state the local Carleman estimate, first in the loaaidinates (Theore@A) and also in
the original space-time coordinates (see Thedren 2.8).

In Section|{ 3] we introduce the two main pseudfiedential calculi that we shall use and prove some
basic facts for the associated classes of operators andesadaces. In Sectio@.z we formulate our
transmission problem at the interface as a system of coygdeabolic equations and we conjugate this
system with the exponential of the weight function. A largetmf the analysis that follows relies on
the properties of the (complex) roots of the polynomial spialof the conjugated system. This analysis is
carried outin SectioE.S. We exhibit the symbol-like bebaef these roots and show that the assumptions
we have made on the weight function yield a precise zerosargscheme for the imaginary parts of these
roots. In Sectio4, we state and prove a Carleman estiataeoundary. This estimate assumes no
boundary conditions and is thus characterized by tracestatrthe boundary and we make use of it in the
following sections. As a direct consequence, we also writeal Carleman estimate in the neighborhood
of a boundary in the case of Dirichlet boundary conditions.

In Section|}1, we split the problem into microlocal problemgtiree regionsﬁ{,”*, é”,g’”, and a small
neighborhood of@”rf’. These are phase-space regions that are identified in S@o In each region we

obtain a partial Carleman estimate. éﬁﬂ’*, which essentially corresponds to tangential high fregiesn
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the conjugated operator is elliptic and we use the methodatdeZon projectors. There, only one of the
two pseudo-dterential calculi is used. Iﬁg”, which essentially corresponds to tangential low freques)c
the classical Carleman method is used: we apply the bourniglpeyestimate of Secti.4 on both side
of the interface. In this region the second pseudtedéntial calculus is used. The last region, a small
neighborhood oféfrf’, is an intermediate region in which both methods are usethi$iregion we need to
make the two calculi “communicate”. In Secti@4.4, the ¢hpartial estimates are stitched together and
we prove the local Carleman estimate at the interface of femel@.}.

In Sectior[b we explain how local estimates, at the bounddhe interface and in the interior of the
domain, can be patched together to form a global estimatst M(Sectiorﬂs is devoted to the construction
of the phase function that permits such a patching.

To ease the reading of the article, we have gathered manyguwbmtermediate results in Appen(ﬂ A.

1.2. Notation. We shall use of the notatia@) := (1 + |§|2)% for £ e R". Forn e N, We set
R =X X <0}, R ={% <0}, RI={XX>0, R,={X%:20,
For a neighborhooW of a point of{x, = 0} we set
VI=VNR", Vi=VNR]
For a compact seéf of V we setk9 = {x € K, x, < 0} andK? = {x € K, x, > 0}. We then denote by
€= (K9) (resp.%:°(KY) the space of functions that & in R (resp.@i) with support inK9 (resp.K9).

We shall denote by”(RP) the usual Schwartz space of smooth functions that decrapg#y atco in
RP. If sdenotes a variable iR, we furthermore define the following half-space Schwartcsp

SRxR]) ={f e 7°R x Ei); Vk € N,a € N1, ISURp ez {(S, X)L F(s, X)| < oo}
For functionsu, v defined inR™? (resp.R x R"), we define the.2 norm
Ul = Jf 1uF dsdx (resplul® =[] luf*ds d3,

RN+L

originating from the inner products

(u,v)= [fuvdsdx (resp(,v)= f[ uvdsdj.

R+ RxR}

For functionu, v defined inR x R, for which a restriction oiix, = 0*} is properly defined, we set

2 2 -
Ulx—oclg = JI IUlx=0-|"dsdX, (Ulx,0+,Vix=0)o = Jf Ulx=0+Vix,—o+ ds dX,
{X=0} {%,=0}

wherex = (X, x,) € R". In addition we introduce the following notation for thé norms on (0T) x V and
(0,T)xS
2 T 2 2 T 2
llully = MIU(L XIFdtdx |ulslt = gsfluly(t, X)I“ dt dX.
We shall denote by, .} the Poisson bracket, and shall often use partial Poissakdig namely,

n
{f,0}s = (0-1)dsg — (9sT)0-0, {f,g)x = Zl(aéj f)ang - (axi f)aéjg-
=

We shall use bothy, = Vye.

In this article, when the consta@tis used, it refers to a constant that is independent of thé-skassical
parameteh. Its value may however change from one line to another. If @atwo keep track of the value
of a constant we shall use another letter.



CARLEMAN ESTIMATE FOR NON SMOOTH COEFFICIENTS 5

1.3. Semi-classical operators.We now introduce (resp. tangential) semi-classical psalifferential op-
erators ¢DOs) and start by briefly recalling the notation and basicnitédns for the Weyl-Hormander
calculus ofyDOs [Hor85h, Sections 18.4-18.6]. We denotentipie semi-classical parameters, which is
assumed to be small, shye (0, hg]. For ac-tempered metricg onW = R™! x R™! and ac, g-tempered
order functionu = u(z ¢) onW, we set

d a2 ¢, h; (Ve Q) s O
aeohy= sup 2fEEMOLD. - B L)

(vj.4))eW HII 90 s §j)%
We then denote b$(u, g), the space of smooth functioaz, £, h), (z ¢) € W, defined forh € (0, h] for
somehg > 0, that satisfy the following property:

lal(z £, h)
wz )
If we denote byg” the dual metric, we then set

ke(z0)? = sup dao)(¥sm)/9%HY: 1)-
()W

We assumdy < 1. For all sequences(z £, h) € S(ké,u, 0), j € N, there exists a symbal(z ¢, h) € S(u, 9)
such thai(z £, h) ~ ;hlaj(z £, h), in the sense that(z £, h) - 3.y haj(z £, h) € NS(K]'1. 9) (see for
instance [Mard2, Proposition 2.3.2] §r [Hor5a, Propioitl8.1.3]), witha as principal symbol.

We now define semi-classicaDOs operators adapted to the parabolic problem we conséter We
seth’ = h/T and assumb’ € (0, hg]. With W = R™ x R™!, 7= (5 X), ¢ = (1,£), wheres, T € R, X, & € R",
we set¥(u, g) as the space @fDOsA = Op(a), for a € S(u, g), m € R, formally defined by

Au(s X) = (20) ()=t [y dEOTMHCYDNg(g x 7, £ ) u(t,y) dtdy drdé,  ue . (R™).

We shall denote the principal symhay by o-(A). We shall use techniques ¢DO calculus in this article,
such as construction of parametrices, composition fornfataula for the symbol of the adjoint opera-
tor, etc. We refer the reader tp [Tayd1, Hof8Fa, Mhr02]. @ierent metrics we shall use are listed in
Section[3]1 below. With the quantization we have introdugechave

ho hhds

in)zgi, i=1...n o(—==)=rx.

Yk € N, <Ck<oo, (z2)eW he (0, hg.

o

We setDy, = hal—x’ andDg = M2,
We also define tangential symbols and tangential operaﬁmsaa-—tempereﬂl metricsgs on Wy =
R™1 x R" and ac, g--tempered order functiom: = us-(z ") onWi- (ze R™! and” € R"), we set
o I &z ¢/, b (Y1, £7)s - - (s G))
alf"(z¢.h) = sup - —
¥;£f)EWr [11 9o (yi- £)2
We then denote b8+ (ur, g7), the space of smooth functioag&, ¢, h), (z, ¢") € Wy, defined forh € (0, hg]
for somehg > 0, that satisfy the following property:

laly (. ¢, h)
ur(z.2)
If we denote byg7 the dual metric, we then sk{s(z )% = SURy,yew, 97 o) (Y- 7)/ 97 .0y V> 1) We as-

sumekys < 1, which as above allows to define asymptotic se¥igs; hja,-, if aj(z ¢’,h) € ST(ké’T U7, 97),
with ag as principal symbol.

vke N, <Cr<oo, (z)eWr, he (0 hd.

IHere, the dual metric and the temperance only refer to the tangential variable(( 7, £’) even though a dependency n
exists.
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The tangentialDOs we shall consider are defined in the case(s, X', x,) € R™! and” = (r,¢’), with
st eR, x,& e R andx, € R. We define¥+(u, g) as the space of tangentiﬁDOsﬂ A = op(a), for
a € Sy (us, gr), formally defined by

Au(s x) = (2n)"h™"(R) [ S IR ONg(s x 7., h Ut Y, xn) dtdy dr de’,

for u e .7/(R™?1) andx = (X, x,). They are in particular continuous oA (R x R}) or .7(R™1). If we let
them act on a function that does not depend og, they can be considered as regul@Os if we only
consider the restriction diuonx, = 0.

We shall also denote the principal symlglby o-(A). In the case where the symbol is polynomiatin
andh, we shall denote the space of associated tangehjfatentialoperators byZ;(us, 9r).

The composition formula for tangential symba@ss S+ (ur, g;), b € S+(o7, 9:), is given by

(1.2) (a#rb)(sx7.¢’.h)

—N(hy-1 ) ) )
= %ffffeltﬁ/(hh')I(Y»U)/ha(s, X,T+0"§/ +n/7h) b(S+t, X/+y’,Xn,T,§/,h) dtdo_dy d]’]’

—i)l
= 5 iy E amaza) (o) e’ h)
lal=M a! ~
SiMAL (M 4 1)(L— M
+ hlwl—n n a/l—l( I)
|w|:ZM+l ) (2m)n ({ a!
X (2 02a)(S X T+ 0 &+, ) (FRIZE)(S+ Yt X + Y Xe, &, D) it dor dly iy b,

Ifff g itor/(hi)=icy’ ") /h

with @ = (a1, @2), a1 € N, a € N1, and yields a tangential symbol 8- (u7p7, 9;).

2. LocaL SETTING, WEIGHT FUNCTION AND STATEMENT OF THE MAIN RESULT

2.1. Local change of variables.In a neighborhood of a poinyy of S, we denote by, the variable that

is normal to the interfac& and byx’' the remaining spacial variables, i.&.= (X, X,). The interface is
now given byS = {X; X, = 0}. In particularyo = (y;,0). The transmission conditions at the interface we
consider are

(TC) Vi, X, Wlx,=0- = Wlx,=0+ + 6, (6(9on)|><”:0* = ((5(9><,1W)|><n:0+ + 0,

i.e., the continuity ofw at the interface as well as the continuity of the normal fluodolo some error
termsd and®. It should be noted that, even for a smooth functigrwe may not havé®w in L? in the
neighborhood of/ for a function satisfying these transmission conditiohg8,and® do not vanish. It will
however be ir_? on both sides of the interface.

In a suficiently small neighborhood c R" of yo, we place ourselves in normal geodesic coordinates.
For convenience, we shall take the neighborhwodf the formVy, x (-, &) whereVy, is a suficiently
small neighborhood of;,. In such coordinate system, theancipal partof the elliptic diferential operator
A = —V,(6Vy) can take the form

(2.1) Ap = =0y, 6(t, X)Ox, — 6(t, X)r (X, dx),
on both sides of the interface witkix, £') homogeneous second-order polynomialg'ithat satisfy
(2.2) r(x&)eR, and CillEP <r(x¢)<Clél’, xeVy x(-&8), & e R™

for some O< C; < C, < . Note that the transmission conditioTC) remain unckdng this change
of variables.

20Dbserve that the notation we adopt in the tangential casés djfferent from that used above, Op, to avoid confusion in the main
text.
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To work onR for the time variable, instead of the finite interva) {Q, we make the following change of
variable

(2.3) ) = tan(n?t - g).

We note that; = @63, with a(s) = n(s)? with (s) = (1 + sz)%. The parabolic operator we consider
become® = g, + AonR x Q. The function(t) = T2(t(T - t))~* changes into

YL -1m -1
(2.4) n(s)=n (5 + arctans)) (E - arctan(s)) .
In particular we have
(2.5) C(sy<n(s) <C(s), seR,  and C(** < |p®(9) < C(s)*, keN.

We setc(s(t), X) = d(t, X). We however keep the notatiofs r, # and® in an abusive way. Note that
Clay% (8 X) € €°(R x V%), and

0 < 8min < (S X) < Smax

and that the time and space derivativeg affe bounded (on both sides of the interface). In particular w
haveldsc| < CT(s)~2. The transmission conditions become

(TCy) Vs X, W=0 = Wlx=0 +6, (COxW)lx,=0- = (CIx,W)lx,=0+ + O.

This change of variable will allow us to use positivity argemts such as Garding’s inequality in all tan-
gential directions, including, when in the neighborhood of the interface. At one point wallsmove
back to time variabléto take advantage of the compactness oT[[((see Assumptio@.z and the proof of
Lemma[3.2]7 below).

The Carleman estimate we shall first obtain will be statethén(s, x) variables and we shall move back
to the original coordinates, (x) afterwards.

2.2. Assumptions on the weight function and main result.We introduce the following parabolic op-
eratorP, = @65 + Ay = @65 — 0x,C(S, X)0x, — (S, X)r(x, dx) on both sides of the interface, i.e., only
considering the principal part for the action of the operatdhe spacial directions.

We lety be a (weight) function in the spatial varialske In the Carleman estimate we shall prove,
we shall “observe” the solution of the parabolic equatim = f on the sidex, > 0 and thus choose
O, 0(X0, X', Xn = 07) > 0. We set

, ,as)
(26) = —(axn(p)z + r(X,f ) - r(X, aX’()O) -h C(S> X)T]zrl p, A= C(S’ X)(fﬁ + ag),
(2.7) a = m +T(X &, 0xp), &1 = 20(S X)(éndx, e + @),

wherer(x, &, ") is the symmetric bilinear form i, ¢’ associated to the real quadratic fomr(xg £’). Here,
h” = h/T. The connection between the symbajsa; and the operatd? will be made clear in Secti.3.
We shall make the following assumptions on the weight fuomggi.

Assumption 2.1. The weight functiogp(x) € €' (V) satisfiesplzn € %”‘”(W) and

¢ <-C<0, |gf=r|>C>0, dxp>0, inVh,
Furthermore, we have
axn‘;9|xn:0+ - 6xn99|xn:0* >C>0, (Caxn‘)p)|xn:0+ - (Caxn‘P)|xn:O* >C>0,
and

OxPlx=0+ = L (|ax’99|xn:0| + 6xn‘;9|xn:0*),
with L syficiently large.
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The value ofL will be determined below in Sectign B.3 (see the proof of Bitpn[3.2}).
Observe thatzln-o(s(t), X, 7, &) anday (s(t), x, 7, &) are well defined fot = 0 andt = T.

Assumption 2.2. The weight functiog(x) satisfies

(2.8) Y(t,x 1,8 [0, T] x VI xRxR", (resp.[0,T] x VI x R x R"),
8alh-o(S(t), X, 7,¢) = 0 and &(s(t), x, 7,€) =0 = {&lh-0, &}x(S(1), X, 7.€) > O,
which is the so-called sub-ellipticity conditi¢H6r63].

Functions that satisfy Assumpti02.1 are quite simpleotwstruct. Functions that satisfy both As-
sumptiong 2]1 and 3.2 can be obtained by the following lemimiawproof can be found in Appendij A.

Lemma 2.3. Lety(x) be a function that fulfills Assumptiofs]2.1. Ther e¥ — !X, with K > sup g ¥,
satisfies both Assumptiops]2.1 §nd 2.2for 0 syficiently large.

Note thaty is chosen continuous across the interface. In particularhavedy ¢lx,-o- = Ix¢lx,=or,
which we shall simply writé)y ¢lx o+ in the sequel.
One of our main purpose is to prove the following local Cadarestimate.

Theorem 2.4. Let the neighborhood V be figiently small according to Propositi24 below. Let K be
a compact subset of V. Lets) be given as ir(@) With the weight functiop satisfying Assumptio.l
and[2., there exist & 0 and h > 0 such that

2.9) hio e’ + K9 ier v wi + R )AKs i Mo + hollis e/ A’
2 2 2
+ hi(9)2 €My, _o:[y + h(9)2 €7V Wiy, —o: o + hK(S)2 €7/, Wiy —0-1

< C(R1le " + hics)em ety + (N2 "0t + W) eVl
+ W ierhol + h5(h’)2|<s>%aseﬂw/“®|§),

for0 < h < hyand0 < ' < hy, (W = h/T), and for w satisfying[TCJ), with W, = € (R x Ei),
W(s, )= € 6°(K%), for all s € R, anddkw bounded for all ke N, and f € L?(R x V) with f = Pow in
Rx(V\S).

Remark 2.5. An inspection of the proof of the theorem at the end of Secﬂishows that the last term in
the r.h.s. of )h5(h’)2|<s>%6se”¢/h®|§, can be omitted if we renounce the estimation of the higheeio
terms,h3(h’)2||<s>%eW/hasva2 andh8|(sy~ e powi” in the Lh.s. of [2)) (see Equatioh (4.77)).

Remark 2.6. The previous Carleman estimate yields the same estimatiesf@arabolic operatdt making
use of the insensitivity of such estimates to additionadearder terms. We may thus carry on the analysis
of the subsequent sections by simply usif¥gn place ofP. We may also replacA; by V,(cVy) in one of

the terms of the l.h.s. of the Carleman estimate siaces the principal part oV,(cVy). In fact, in both
cases, the lower-order terms in theiffdiences can be dealt with by takinguticiently small.

Remark 2.7. Note also that the Carleman estimate is in fact insensitvehinges of variables. In par-
ticular, the conditions we impose on the weight function\abare coordinate invariant, including the
sub-ellipticity condition of Assumptiop 3.2 [Ho63, Sist 8.1, page 186]. The local Carleman estimate
can thus be stated in the original spacial coordinates. Mogeisely, we state AssumptioZ.l 2.2
with 9y, ¢lx,-0: replaced byongls: (the normal derivative op on each side of the interface) aady by

the tangential component &y at the interfaces. Here the normal direction is the direction that points
to the region in which the solution is “observed”, i.e., i ftegion where the weight functias(x) is the
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largest. By abuse of notation we still denote this regiofvBy The other side is denoted M#. We obtain
a Carleman estimate of the same form@ (2.9)

(2.10) hiK® e + R e T il + WK e Mo’ + K E ey (v )l
2/t P 4 3l b e/ 2 130k 2
+ hi(s)2€"MWs:|g + h7|(s)2 €V, Wis:|g + h|(S)2 €0y Wls:],
< C(h4||e”‘/’/hf||2 + hi( Mg + W) F /a0l + h3l() MY ol
+ h3|<s>%e"¢/h®|§ n h5(h’)2|<s>%6se"‘0/h®|§),

for h andh’ taken stficiently small, and for smooth functions on both sides of titerface and satisfying
the transmission conditionf (T

We now proceed with writing the local Carleman estimate weehabtained with the original time
variablet € (0,T). From ) we havels = @dt = %(s(t))zdt. As was done in the introduction, by
abuse of notation, we do not change the names of the funatibather we consider that they dependton
or s. It thus follows that, for a functiop and fora € R, we have

() e/Mg|” = [ [(5% €219 0/ig(s X)12 ds dx= % } J(S(t)y2 221000 (1 )2 dt dx
RV ov

C
= ?||<s(t)>a+1e”¢“‘¢n$,

recalling the notatiofi.||; introduced in Sectioh__]I.Z, and we also have

C
(9" € gl 0:lp = HS(O) "€ s Ir.
whereg|s: denotes the restriction gfon either side of the interfac® In addition we have
W)K& Masgil” = h(N)? [ [(9)2"6#( 9 Mo (s )P ds dx
RV

.
= S (S0 2 OMag(t 9P dt dx= SRS e ool

with a similar result for surface integrals. FroE[Z.S) weda
n(t)/C < (s(t)) < Cn(t)

In the ¢, X) coordinates the local Carleman estimate is thus of the form
S /il 1 Bl E NG il o+ hSIed e/ ile & RSl s e/ 2
(2.11) hlinze® it + b°llnze"Vwlly + h2linz€owllr + hollnz €MV (6 VW)l
2 2 2
+ hin? &Mws. |7 + h3n? &'V Wis: |1 + h3n? e/"a, wis: |7
2 2 2 2 2
< C(h“uneﬂ“’/“fu?+h|n?eW“‘9|T+h5|n%e"¢“‘ateh+h3|n% e"“’/“vx/eh+h3|n%eW’“®|T+h7|n‘%ew/“at®|T),

for 0 < h+ h/T < h;. We now note that sinc&(t(T — t)w) = (T — 2t)w + t(T — t)d;w and sincel — 2t is
bounded, by taking the constdntsuficiently small, i.e.handh’ = h/T suficiently small, we can subtract
1 to the power of; in all the terms ofl). In particular we obtaielw/hﬂﬁ in the r.h.s. of the Carleman
estimate, which is the form usually encountered.

Theorem 2.8. Let the neighborhood V be figiently small according to Propositi24 below. Let K be
compact subset of V. With the weight functiosatisfying Assumptiorjs P.1 apd]2.2, there exist Gand
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h; > 0 such that
2 2 2 2
(2.12) hip? €™M wily + W3l /MY il + WPl 2 €/ aowly + h¥lli~2 €MV (5V W)l
2 2 2
+ hip?e/Mws. |; + h3n? "V wis. |t + h3n? e/"a, wWis:[;
2 2 2 2 2
<C (h4||eW/ W12 + b2 e/Mgly +hol 2 e/, 01; + W2 e/ gl + h3n2 €@y +h 3 eﬂw/“at(ah) ,
for 0 < h+h/T < hy, and for w satisfyind[TQ), with Wyt € €70, T) x VE), wt, Mo € E(Kh),
for all t € (0, T), anddkw bounded for all ke N, and f e L2((0,T) x V) with f = Pwin(0,T) x (V \ S).
Carleman estimates are often stated with large paramettier ithan with small parameters as we have
done here. Introducing= T?/handv = (t(T —t))~* we have
3.2 v 2 L v 2 —1y,,-% T 2 —1y, —% v 2
(2.13) 77vze™ Wt + Tlv2e™?* Vit + 7y 2e7YOW |t + T v 2€ Vi (VW) |+
31,3 v 2 1 v 2 L v 2
+v2e™ Wi |1 + TvZeT Ve Ws: |t + T]v2e7 Y0y Ws: |1
TV 2 3.3 1w 2 -1 -1 v 2 L v 2 1 v 2 -3 v 2
< C(||e YT + 22 el + v 2e7Y0i0)r + Tv2 e Vi bl + TIvZETYOl; + v 2€ ‘PGIT),
for r > 7o(T + T?), for 7o > 0 suficiently large.

Remark 2.9. If needed, classical density arguments can be used to tetalsdundedness and regularity
assumptions made anin Theore8. In fact, these assumptions are made for Keeof#he proof below.

3. PRELIMINARY RESULTS

3.1. Symbol classes.n the following sections, We shall use the (resp. tang8rdrder functiondvi, A, m
andA (resp.Ms, A7, my andAy) given by

2:=(92 + (9?12 + €%, resp. MZ = ()% + (92T + €',

me =1+ 72 + ¢, resp.me = 1+ 72+ €%,
AY = (9% (9% + gt resp. AL = (9t + (942 + €14,
=1+ 72 4|84, resp. A% = 1+7%+ |§’|4.

associated to the following metrics @11 x R™* (respR™! x R") [H6r854, Section 18.4]

_ ldg? <s>2\dr|2 |d? _ 1 _ lds? <s>2\dr|2 ld¢'? _ 1
Om ‘= gz T+ Spe + e, Kaw = i M7 = gz TldX* + Wz + ™Z Kgur = e
_ ldg? o, lde | |de? _1 _ ldg? o, ldr? | deP _ 1
Om = g7 T10¢ + T + T, K =0 Omr =gt e e K = s
._ |d 94dr)? | [d¢? 1 ._ |d 9¥de? | ld¢')? 1
e R N e e RN Ny

lds? [dr2 _ |dg? _1 ds? \drl |dé'? _ 1
gq = 7 + dx? + D + z kg/l =7 Qu7 = o7 + |dx2 + + /]27 s kgx:r =5

Lemma 3.1. The metric g (resp. gn, da, 9,) is slowly varying and the order function M (resp. M, 1) is
gm-continuous (resp..g da, g.-continuous) with similar results for tangential metriascborder functions.

Lemma 3.2. The metric g (resp. g da, 0:1) is o-temperate and the order functions M (resp. M,
A) is o,gu-temperate (respr-gm, da, ga-temperate) with similar results for tangential metricsdaorder

functions.
The proofs of the two lemmata are left to the reader. The meadenote thatA is notgy continuous.

The two calculi do not “intersect” well. For simplicity we &t write S(u, grs) in place of Ss(u, grs),
I'=A,4,Morm.
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We shall often make use of the following trace formula
(3.1) K9 Pl=otlo < Ch 2 (IDx gl + K9 gl), ke R.
All the remaining results in this section are proven in Amh'a@.

Lemma 3.3. Let (T, y) be (M, m) or (A,1). Letv(s) € S((s),gs), With gs = |dg?/(s)?, be elliptic, i.e.
V()| > C(s). Letk |l e R. If p(s, X, 7, &) andu(s, X, 7, &) are such thap(s, x, 7, €) := u(s, X, 7, &/v(9)) then

peS9TTgr) & uesS(s'Y.g),
with a similar result for tangential symbols, with assoeidbrder functions and metrics.
We define the maps
(3.2) k1 (sX7.E) P (sxn2a(9r.nE).
(3.3) R (sx1.8) P (sxn 297 778).
The previous result gives
peS(9YG) © uok) €SI ar), (I,7) = (A,1)or (M, m),

with similar relations in the case of tangential symbols.
In the following lemmata we shall use the notativgy to denoteR x R or R™,

Lemma 3.4. Letk| € R andI" = A or M. Then, for h sfiiciently small, R= (s)™op("™") op(")(s)*
(resp. R= ()™ op(I’;}) op(’)(s)¥) is an homeomorphism of (R™*1) onto L2(R™?) (resp. [2(Rsy) onto
L?(Rgx)-

Lemma 3.5. LetT be M orA. Let k, ko, | € R. There exist C> 0 and hh > 0 such that for all
u e .Z(R™1) (resp..”(Rsy)), there exists v& L2(R™?) (resp. [2(Rsx)) such that u= (s Op(')(s)*ev
(resp. u= ()" op(C! }(s)*?v) and

1/ClKksy ™M™ Op™yull < IVl < CIK9 ™ * OpC")ul,  O<h<hy,
(resp. 1/ClKs)™ ™ op@)ull < M| < CIKs ™ op@T)ull,  0<h<hy).

Lemma 3.6. LetI’ be A or M. Letk | € R. Forae ST, gr) (resp. S-((S)XT_, gr.+)) there exist C> 0
and hy > 0 such that for all0 < h < hy, we have

10p@)ull < CIks) Op)ull, ue.7(R™) (resp. lop@)ul < CIKs) op(r)ull, u €. (Rsy).
With the previous lemma we can improve the result of Lenimja 3.5

Lemma 3.7. LetT be M orA. With the notation of Lemmfa .5, for all,K’ € R, we furthermore have
(9% Op(*)v € LAR™?) (resp(9) op(Ty)V € L*(Rs,)) and

1/ClIKs* ™ opull < [K9)¥ Op@"vil < ClK9* M Opyul.  0<h<hy,
(resp. 1/CIKs)* 7 op@i)ull < [K9)* op@ VI < CIKs* 7 op@yHull,  0<h<hy).
Lemma 3.8. LetI" be M orA. Let ke R and be S(I'%, gr) (resp. be S(TX., gr.7)). If k' + kK’ = k, we have
(Op®)u. v)| < COpT*)ull [ OpT* Wl  u,ve #(R™?),

(resp. [(op®)u, V)| < Cllop@T)ull lopT¥ VI,  uve Z(Rsy),

for h syficiently small. We have a similar result in the case of the &gl inner product(.,.)o and
associated normlgy and functions restricted tg,x= 0.

In fact, the Garding inequality holds for the present calas its proof in the semi-classical case (see
e.g. [MarOp]) applies with Lemna_$.8. We shall only use itfie following tangential form.



12 JEROME LE ROUSSEAU AND LUC ROBBIANO

Lemma 3.9(Garding inequality) LetI’ = A or M. Let ke R and ae S(I',, gr), with principal part a,
such thatReap(s X, 7, &) > CF',} with C > 0. For 0 < C’ < C, there exists h> 0 such that
Re(op@)u.U) = C'llop¥Aul’, ue #(Rsy). O<h<hy,

For each calculus we introduce the following Sobolev spaces

Definition 3.10. Letk, | € R. ForT" = A or M, and forh small, we set
SR = ((97K0pTu; ue LPR™)L 45 (Rax) = (9 op@7)u; u e LA (Rqy))-
We introduce
Ullr.r = K9 Op@ull,  lullr = IKS* op@)ull.

Proposition 3.11. Let k| € R and letl’ = A or M. The function spacéﬁk"(R””) (resp.%'f;}(Rsx))
equipped withl.[l - (resp.ll.lk;r.7) is a Hilbert space with?” (R™?) (resp..#(Rsx)) as a dense subspace.

In particular, ifk” < kandl” < | we have

SR AR € TR, (resp. (Rsx) © Ay (Rsx) € A4 (Rsx):
By density we deduce the following regularity result fronmuma[3.p.

Lemma 3.12. LetI’ be A or M. Letkl| € R. For a € S, gr) (resp. S-((SFT" ., gr.+)) there exist
C > 0and h, > O such that for all0 < h < hy, we have
IOp@)ull < CIK9)* Op)ull, ue A ®R™) (resp. |lop@ull < CIKS* op@)ull. u € 7k (Rsy)).

It shall often be useful to obtain classical Sobolev normsfthe norms we have introduced.

Lemma 3.13. Let ke R. There exist G 0and hy > O such that all0 < h < hy,

1 n
(34) clie  opMyull < Ik ull + [Ks)**Dsul + j;1||<s>ka,»u|| < Cl(s) opM)ull,

for allu € .7/(R™?), and

1 n-1
(3.5) 6||<s>kop(M¢)u|| < K ull + K 1 Dsull + _zl||<s>ka,. ull < CllKs)* op(My-)ull,
]:
1 kel ok K
(3.6) 5(||<s> ul+ 3, IKS) ijun)s K9 op(As)ull,
j=1

for all u € .¥(Rsx). By density these inequalities can be extended mwhf‘l(R”*l), %“';:,}.(R&X) and

%‘j\'f';(Rs,x) respectively. For the last two inequalities, we have simisults for trace norms|y at {x, =
0*}.

Lemma 3.14. Let ke R. There exist C- 0 and hy > 0 such that for all ue .#(Rgy) and ve .#(R™?!) and
all0<h<hy,

n-1
B7) (A/O)KS* opAT)ul < K9 ull + (9 *Detil + 3 KD ull < CIS' op(A7)ull

(3:8) (/O  OPAVI < IK9)“Vil + K9 ““Devi| + j§1||<s>kD§,,v|| < CIK9) Op(AV.

By density these inequalities can be extendedeto%’o;\'fﬁ(Rsx), and ve ijk’z(R”*l) respectively.
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Lemma 3.15. LetT' = A or M. Let k e N. There exists C> 0 such that if ue %ﬂr"'z(R”*l) then
Dy,U € 741 (R™?) and ue 75 (R™) and moreover

I{$* op(Ts) Dy, ull + K9 op2)ull < CI(S* OpT3)ull, u e S R™).

The following lemma yields by density continuous injecsaf Sobolev spaces of the two families we
have introduced. We observe that in general, switching fsamDO calculus to the other does not preserve
operator orders.

Lemma 3.16. For allk € R and | € R* we have
(s OpAhull < ClKsOpMHull. K9 OpM"2)ull < CIKOpA)ull,  ue .7 (R™D),
(9 op(A))ull < CIK9* opMiull, K op(MyA)ull < CIKS  opA)ull, U € .7 (Rsy).
We have similar results for trace normig at {x, = 0"}.

The proof given in AppendiﬂA requires the introductions ofiatermediate/DO calculus in which
both order functiong. andM belong.

The following two lemmata will allows us to switch from onel@aus to the other, yet preserving the
operator order, in the low frequency regime.

Lemma 3.17. Let(y,T,y,T") = (4, A,m, M) or (m M, 2, A) and let
)(a(s, X’ T, f) € S(’y_”’ g‘}/)’ V/l € R
Then, for any: € R, ya € S((y') ™. gy).
Fork,le R, if o € S(9%', g,) then

o xa and o#ya € S(9'.9,) N SU9 (V). 9).
If we further sety = ya o k € SKS*T#,gr) N SKH“(")#,ar), u € R, with x as defined ir(@), and if
T e S((sFT', gr) then

Ty and T#y € ST, gr) N SUS ). ar).
We have similar results for tangential operators.

Remark 3.18. The reader will note that we do not aim at giving optimal resin the previous lemma.
We content ourselves with the ability to switch from one ahls to the other, but we do not try to improve
operator orders as could easily be done at places. Suchmefirie are not necessary for the sequel.
Lemma 3.19. Let(y,I,y',I") = (4, A,m, M) or (m, M, 2, A) and lety, € S(1, g,.+) with compact support
in the (x, 7, &) variables. Lety = yao k. Letk, K1, 1" e Rand Ne N. If £ € S(¥ Al ga.7), there exists
C > Osuch that

K9 0p(M;-) 0pE)lx,-0-lp < CK'* 0p(AF" -0+l + CHY(IMI + 1Dy Vi),

K9 op(M;-) opE)ul < CIK*** op(AF")ull + ChYjvl,
if u = op(y)v, with ve . (Rs ).
3.2. A system formulation. Let K be a compact subset bf We consider a function(s, x) as described
in the statement of Theorepn P.4, i.e., satisfying §r&hd such that its restrictiong(s, .)=n are in6g>(K%)

and are bounded iR x RZ, along with all their derivatives w.r.t andx.

We introducef by f% = flrxrn = P2Wirxrn. We shall consider the transmission problem as a system of
two equations inV® coupled at the boundamy, = 0*. We thus make the change of variabiggo —x, in
V9. This yields the following system ix¢:

{(@as = 3,08 X)0x, = (s Qro(x, ) W8 = f9,

3.9
(39) (4205 - 95, )0y, — (s )rd(x, 0x)) Wi = 9,
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with

(TC Vs, X, Wg'xn:O+ = Wd|xn:0+ +6, Cgaong|xn:0+ + Cdaond|xn:0+ =0,

where for a function defined inV, we sety? := ylys andy9(X, x,) = ¥(X, —x,) for x, > 0. In particular,
we haver9(x, dy) = r(x, —Xn, dx), andrd(x, dx) = r(x, dx) for x, > 0. If there is no possible confusion,

we shall now writay = t(y9, y9).
From Assumptioff 2}1 we have

(3.10) % @¥x =0 <0, Ox@x=0r >0, 8y lx -0 + Ix,@%x -0 = C >0,
(3.11) (05, l=0r + (€20, 0Ylxy=0+ = C >0,

and

(3.12) 0% lx=0+ > L (10x@lxy=0+| + 10%,0%x,=0+),

with L sufficiently large.
We denote byp* the symbols of the operators acting wh in @). We also denote by the symbol
of the tangential operatd&as — c¥(s, X)r¥(x, dx). We set

Pa(s X, Ds, Dy) := Op(diag@?, p%), K(s x, Ds, Dy) := op(diagk?, k%)), and & := diag(?, ).

We setv = t(v@’,vd) = e®/"w, The entries of satisfy the following boundary condition

(TC,) |y =0+ = Vd|xn=0+ + 0, C9(Dy, + indx,¢?)Vlx,—0+ + Cd(Dxn + i776><n90d)Vd|><n:0+ =0,
where

h
(3.13) 0, = €¥"My_0:0 and O, = Te'79‘>/h|xn:0+®.

Because of the negative signgfve then observe that € .7 (R x R7).
We define the following conjugated operators
P, = h2ei®/Np,, g1®/h — diag(Pg, pg , K, = gI®/hK g n®/h _ diag(Kg, Kg),

which we shall, in the sequel, treat as a semi-classic¢tdreéintial operator, witthh andh’ = h/T as small
parameters. The principal symbol®f is of the form

ptp(sv X1, f/’ fn) = d|ag(pg(5, XT, é:,’ fn)’ pg(s’ X, é:,’ fn))
cg 0
We sefcy, = 0 and we have

(3.14) Py = Dx,CmDx, + 2iCav(9x,®)Dx, — Cm(7dx, ) + h(dx, (Cms, @) + K.
We define the following operators
Q=(P,+P))/2,  Qi=(P,-P)/Q), Qj=diag@.q), j=12
with
Q2 = Dy,CmDy, + Q2. Q1 = Dy 7Cm(05,®) + 7Cm(x, @)Dy, + 26nQ1.  Q; = diag@®. Qf). j = 1.2
We have

p = ch( +ia}) = (& + qf + 2iém 0s gt + 200),
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where the principal symbotﬁd = o-(Q?d), q?’ = o-(Q?’), j =1,2are given by

/ /as ’ ~
(B15) ¥ = (a5 E) ¥ naeg) ~ 1 gy g = &+ ),

o = a(s)
1 2ck(s %)

Note that we have € S(1,ga) N S(1, gm) (resp.S(1,ga.7) N S(1, gums)) and

(3.16) T+ 8 & neet), G = 2ch(En 00 + gP).

(3.17) OF € S(AZ,ga7) NS(MZ, guy),  GF € S(A% gr) N S(M?, gw),

(3.18) Q% € S(AZ.ga7) N SUSHM7, gmr), q% € S(A% ga) N SSHM, gw).
Finally we note thalDsc(s, X)| < ChhT(s)™? = CH(s)™2.

3.3. Symbol-like behavior of the roots; elliptic and non elliptic regions. We setaz* = é%’ + iz?\(‘}j with
4 / a(s) 7 2
8 = —(Oxg")” + THx ) —rhx Ox) — gt 8 = che + ).
T " , -
A = 5 PR Dug®). By = 20H (gt + ).

(adapting the definitions @ anda;, j = 1,2 in .6)-[2.])). With the mapsand« defined in [3.2)4(3]3),
we havea o & = n2p¥, anda® o x = n2g¥, j = 1,2. Note that we have

a¥ € S(12,917) N S(ME, gmr),  AF € S(4%,9;) N S(TP, Gm),

ay € S(A7.917) N S(Mr.gmy). &' € S(%.g) N S(M. G,
which is consistent witH (3.17)F(3]18) and Lemng 3.3.

Here, we shall study the properties of the two complex robﬁ’cand pz? atx, = 0* when considered
as polynomials ir¥,. Depending on the signs of the imaginary parts of the roo¢ssiall adopt dferent
strategies for the proof of partial Carleman estimates. Bartial” we actually mean that the resulting
estimate will only hold in some microlocal region (see Sm:@). Once collected together, the partial
estimates will yield the result of Theordm|2.4.

We note thap = ch(¢, - pi) (& — pp”) andal = b (¢ — pd*)(é - p&) and

(3.19) PEH k(s x &), 0) = pE (s x 7. &, ).
The dependency of the roots bhcomes form that of, andg,. Following [LR97], we introduce
%2 y2
a
(3.20) uZ’ = aza + @) /,t%’ = qzd + (@) with ,qu oK = 77_2/1%’,

(Ox, %) (n Ox,9%)?
and define, forr = aor p,
EBr = (s %1, 0) e Rx VIXR X R x (0, ho]; u¥(s x,7,&,h) > 0},
Ex = (s 1,8, 0) e Rx VI X R x R™ x (0, ho]; w(s, x,7,&",h') < 0},
Zh= (s x1,&,h) e RxVIXR xR x (0, hg]; u¥(s x,7,&,h) =0}
We have the following lemma, which proofis given in Appen@x

Lemma 3.20. We have the following root properties.
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d
¢ Imé&,y . d+ ¢ Imé&, ¢ Imé&,
XOp d+
1 .“pp
Reé, 14 Re¢, 3t Reg,
x d— x 0= ’x sz_
Pp Pp Pp
PQ pg Pg
@ Imé&, o+ ¢ Imé&, e ¢ Imé&, Ot
*Pp Pp Pp
p Reéy pg’*x“ Re&, p%_x' Reé&,
g,— p
Pp *
(a) Root configuration iﬁﬁ’*, y?, > 0; (b) Root configuration irﬁ‘}?, /1?) =0; (c) Root configuration irﬁg”,y% <0.

Figure 1: The roo,b%*+ crosses the real axis before the rpg)f does, a&‘é decreases.

(1) In the regiongj” (resp.éagd”'), the polynomial @ (resp. p) has two distinct roots that satisfy
Imp&* > 0andimp®~™ <0 (resp.lmp%"+ > Oandlmp%‘” <0).

Moreover we have
pi>C>0 e Impkt>C >0andImpl” <-C <0,
(resp.uf > C(s)* & Impf* > Cs)and Impf~ < —C(s)).
(2) In the%regiongfd" (resp.é’gd"), the imaginary parts of the two roots have the same sign atsah
=0y, ™.

3) In :F]:i region,fz}”e:‘Zj (resp.,,@”r?’), one of the roots is real.
Moreover, there exist G 0 and H > 0 such thatp* — p¥~| > [Imp* — Imp¥~| > C > 0in the region
k> —Hy.
Remark 3.21. Note that 6 x, 7, &, V) € &8 for |(r, &)| suficiently large, say(r,£)| > R, uniformly in

(s,X) e R x vd and forh’ bounded. Note also that in the regi{;ui’ > —H}, the rootsoz*i are smooth since
they do not cross.

For the polynomiag (resp.pd), for |(r,£)| > R, we have Inp* > 0 and Imp§ ™ < O (resp. Inpy* > 0
and Imp,~ < 0). As the value ofud (resp./fg) decreases, the ropﬁ* (resp.pf;*) moves towards the real
axis, and crosses it in the regicfd (resp.,,@”rf’). In the regionéa;’" (resp.a?g") the two roots both have
negativeimaginary parts.

For the polynomiad (resp.p?) , for |(r,¢’)| > R, we have Inp3™ > 0 and Imp3~ < 0 (resp. Inp* > 0
and Impp~ < 0). As the value ofid (resp.uj) decreases, the rop§™~ (resp.py ) moves towards the real
axis, and crosses it in the regicy’ (resp.2y) . In the regionsy~ (resp.&y") the two roots both have
positiveimaginary parts. The “motion” of the roots pf andpd is illustrated in Figuré]1.

Lemma 3.22. Let H be as given in Lemnfa 3]20. Lét € S(1,g,-) with support in{u¥ > —H}. Then
X%pZ”* € S(A7,019). Let G > 0, there exists C 0 such that ImpZ"il > CAs in {,uZ{’ > Co}. It follows
that for some C> 0 we have

p%* = p¥ I = [Im(p¥* — p¥7)| = C'Ar, in {ud > Co).

See Appendik A for a proof. By (3.R0), note that the eafefined in [3]2) is one-to-one frofa,, > Ci?)
onto{u, > C}. From (3.1p) and Lemma 3.3 we thus have the following result.
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Corollary 3.23. Let H be as given in Lemnfa 3]20. Lét € S(1, ga 7) with supportinfu® > —~Hz?). Then
)(%p%’i € S(As,0a7)- Let G > O, there exists G 0 such that Imp%”*l > CAg in {;11‘;/‘,j > Con?}. It follows
that for some C> 0 we have

o =l 2 Im(pE* - ph7) > C'Ar, in{ul > Con).

With the condition we have imposed on the weight function 'B'slémptiol we now prove the fol-
lowing Proposition.

Proposition 3.24. We haves?* c &2, anddist(&®*, 22) > C > 0, if the neighborhood V ofgyis
syficiently small. We have thaf > C’ > 0impliesug > C” > 0.

The result of the proposition implies that the r@@f (resp.p‘r’;*) crosses the real axis before the root
p3~ (resp.pp”) does, agg (resp.uy) decreases from positive to negative values. This is itaistl in Fig-
ureﬂ. We enforce this root configuration because of the iqales we shall use to prove partial Carleman
estimates in Sectidi 4.

In the sequel we shall also need the following lemma.

Lemma 3.25. For all C > 0 there exists Csuch that
kil<C = p[+EI<C.

3.4. A Carleman estimate at the boundary. Here, we place ourselves on one side of the interface, say
VY, and we treat the interface as a boundary. We momentarily tte‘y,” notation.

Proposition 3.26. Let K be a compact subset of V. If the weight funcicatisfies Assumpti@.z, there
exist C> 0 and h, > 0 such that

(3:21) PP > Ch(l(s)? opMoVI” + K9 D)

+hReZ(V) + h? Re(Dy, Vix=0+ + L1Vlx,=0» LoVlxy=0-)o »
forO<h<h;and0 < h < hy, forve .Z(R x R?), with (s, .) € €°(KY), for all s € R, and where
(322)  A(V) = (QuVlx,=0» (S X)Dx,Vlx=0+ ) + ((6(S D, Q1 = 2¢(S, X)1(B5,¢) Q2)\Vlxi=0+, V0 ),
and Ly € Z(Mr, gmy) and Lo € Y((S), gm7)-

The reader should note that in the definitionZfv) we havecDy, Q1 — 2¢n(dx,¢)Qz = L; Dy, + L}, with
L) e ‘P((s}M,‘r, gwr), j = 1.2, witho (L)) = 2c¢%q; ando(L)) = —2¢2n(0x,¢)G2- An alternative expression
for A(v) that we shall use in the sequel is the following

(3.23) BWV) = ((BO Bl) (DX“V““O*) , (DX“V““O*))O,

Bél. B, Vlx,=0* Vlx,=0+

with o(Bo) = 2¢%ndy,¢, o(By) = o(B}) = 2¢%qy ando(By) = —2¢%n(dx,¢) (see [3.15){(3.36)).
Note that in the proposition, we purposely do not impose amynidary condition ak, = 0* on the
functionv here. The result of Lemma 2 ifi [LR95] is the counterpart of firoposition in the elliptic case.

Proof. We setg := P,v, i.e.,Q,v +iQ;v = g. We note that
(W1, szz) = (QZWL Wz) —ih [(W1|xn=o+, CDx,Wolx,=0 )g + (CDx,W1lx,=0+ » W2|xn:0+)0] ,
(wa, Quws) = (Qawr, Wa) — 2ih (Cn(9x, @)W b0t Walx,=0+ ) -
for wj € Z(R x RY), with wj(s,.) € 62°(K9) for all se R, j = 1,2, and we thus obtain
gl = G2Vl + 1M + i([ D2, Qulv, V) + h(v).
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We observe that we have
i[Q2, Q1] = h(|:|oD><nCDxn + HiDy, + HZ),
whereH; € ‘P((s}MjT,gM;,—), j = 0,1,2. We then note thaby cDy, — Q> € ¥(M2,gms) and Dy, —
m@ € ¥(ML, gus). By (B.3) we thus have
i[Q2. Q1] = h(HoQ2 + H1Qu + Ha).  Hj € ¥((IM).gur). ] =02, andHy € ¥(Mr. gur).

From the sub-ellipticity conditior] (.8) in Assumptipn]2a2 have the following lemma (see Appenflix A
for a proof).

Lemma 3.27. For u syficiently large and h and’hsyficiently small we have
2
(6 + (0x,9)%0k)
(93MZ

Applying Garding's inequality (see Lemr@.g) in the tartg@irections (including the time direction)
we thus obtain, foh sufficiently small,

SUSIMZ, gur) 3 p o(Hz) = C(SMZ.

(3.24) 1igl® > Qv + Qov” + hReZ(v) + hRe(HoQav. v) + hRe(H1Grv, v)
+Chi(? opMA VI — hRe((Q + (£ Q)v. GV).

whereG € Y({(s)™%, gus) ando(G) = ,uq%f;’;z—”,\‘ﬂ‘gzqz.

We first see that we have
(3.25) h|(HoQ2v. v)| < hIQavilIKsVIl < Ch2 (I Qavl® + C' 2 Ks)V2,
(3.26) h|(H1Quv. v)| < hliQuvilll opMz )Vl < ChE[Quvl® + C'hE [ op (M )V,
We have the following lemma.
Lemma 3.28. We have((s)2 Dy Vil < C[|Q1V]| + Cl(s)Z op(My V..
Proof. We observe that sind®; = 2cnyg, Dx, + n[Dx,, ¢l ] +2cQq, we can write

(9% =« <s> (9)?

D s
ZCU‘P;(n Ql [ Xn C‘Pxn] e an

which yields||(s)% DV <C (||(s)*% Ol + ||<s>7 op(MT)v||), by Lemm, from which we concludem
Following [CR9%], since
1,4
(3.27) Q1 = 5(Q1 = 7Dy, Cxg]) = 7(0x¢) .

we now write

~ Oy 0)?  ~
QG + (1 Qe = 2 (B1 ~ 1D, G g]) ~ Qun(@n 91Dy, + M(Qz ~ Dx,CDy,)-

Using (3.27) a second time we have

<S>%Dxn -

QG + (104,61’ Q = (13,6)Ds, ~ 5(G1 ~ M[Ds,, G D) 7 ),

(naxnso)

+ 2 (G Dy, i) + TG, - Dy D)
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which reads

(no xnso) (9%,9)” 5. _} Dxnﬁ &,

C
+ T((S) M7, gm) Q1 + hP((9)2, gms) Dy, + hP(($)*My, gm7).

(3.28) QI+ (ndx,¢)°Qz €

We note that

'((naxcnso) h2ClIOaM° + h3CI(SVIZ,

ng Gv)

and

¢ Giv.GY) = hRe(%n I 5

by integration by parts. With Lemn{a B.8 we thus obtain

h Re(%ann (%(“T(’O(jlv, D,GV) - h? Re( Q1Vlx,=0+» 1GVix,= o+)

By 0 =
(3.29) —hRe((Q} + (79x,£)°Q2)V. GV) > —h” Re( ,2;" QuVlx=0+» nGVx=0+ ),

1.~ 1.~ 1 2 1 2
- C(RHIG” + R IGM + hEIKS) DM + R O M),
From (3.2h),[3.35)[(3.26) anfl (3]29), and Len{ma]3.28, wekmie by choosing sufficiently small. =

In Sectior[}4, we shall use the result of Proposifion]3.26 anside anfbr the other side of the interface
S. However, we may also apply it to a small neighborhood of apof the boundary of the open set
Q. It then yields the following proposition in the case of hazpoeous Dirichlet boundary conditions.
In a suficiently small neighborhootlV of a pointy of the boundanpQ, we may use normal geodesic
coordinates. Without changing the statement of Assum@n(the proof of) Lemm@.S shows that this
assumption can be fulfilled by choosipg= e — 'k, with K > sup,w ¢ and withVi(x) # 0 in W. If we
choosey such thabvwlsarw < 0 thendnelsonw < 0. We state the proposition in the same setting as that of

Theoren{2]8.

Proposition 3.29. Let y € 4Q and W be a sgliciently small neighborhood of y . Let K be a compact
subset of2 such that W is a neighborhood of K §& Lety be defined in W that satisfies the sub-elliptic
condition@)in W andonplsanw < 0, where n is the outer unit normal £2 ondQ. Then there exist G 0
and h, > 0 such that

2 2 2 2
(3.30) hilp2e®/Mwif; + hlln2 eV il + hPlly~2€/Maanl; + hPlly~ 2 €/"V, (VW) I
2
+ W2 Mg wlanly < ChYle?/" |2,

for 0 < h+h/T < hy, and for we €>((0, T) x Q), suppim(t,.)) c K, forall t € (0, T), Wlo.T)x@anw) = 0,
andokw bounded for all ke N, and f e L?((0, T) x W) with f = Pwin (0, T) x W.

Proof. As above, we use local normal geodesic coordinates at thedaoyand we perform the change of
variable in timet — s, of Sectiol. For simplicity we use the same lett¢o denote the function under
consideration after the change of variable.

With the xy-axis pointing inward we havénglx o+ = —0x,¢lx,=0-- Settingv = &7/, @.) holds for
h andh’ suﬁmently small (because of the negative sigrpafote thatv € .(R x R7)). Sincev|so = 0 the
last term in 1) vanishes and the quadratic fosiv) reduces to

1 2 1 2
B) = (2C0(9xPlx,=0+) Dy Vxy=0+, D, Miy=0+ ), = Cl? D, Vlxe=orlo = Cln? €/" D Wi=0: o,
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with C > 0. By Lemm4[3.13, we thus obtain
2 1 2 1 2 1 _ge/h 2
IV > Ch(IKs)Z op(Mr V™ + K82 Dy MI” + 172 €7D, Wi-o+ o)
3 2 3 2 n 1 2 1 /h 2
> Ch(IK9)2vIl" + ()2 DVl + 2 (92 Dy + 7 €#/"Dy Wix,=0+lo) -
]:

We note that

()2 €™/MDy Wil < [(9)2 Dy, (€7/"W) || + ()2 1(0x, ) €"/™wi| < CI($)2 Dy VIl + CIKS) I,
and

kY2 " Dewlly < ()2 Ds (€%"W) I, + N2/ (@gn)ewlly < K2 DMlo + CIKS)2 Vo,

since O< h’ < hg. We thus obtain

n
(3.31) (9 i Ml + 12 Dol + 3, 182/ Dywi” + In e/, Wi, -o-lp) < Clle™/"Pouif.
=

SinceA; = -*94, + P, anda(s) = 7(s)? we have
2
(3.32) hel(s) e/ < hC||<s>%eW’“h$aswn + 1Ol e P

< C (it e D’ + hier"Pov’).
with (B.3]) and[(3:32), after changing back to the origimeee coordinates, we obtain

hiks 2e/mwil” + W9 ey, wi” + W32 deMaaw” + hel(s) 2 /My eV, W)

1 2
+he(s) e/ Mgl < CHeM ),

The replacement d?, by P and of A; by V,(cVy) can be done according to Rem 2.6. Finally, arguing
as above Theorefn 2.8 we achieve the result. m

4. MicroLocAL CARLEMAN ESTIMATES AND PROOF OF THE MAIN RESULT

Based on Lemmp 3.p0 and Proposition B.24 we now place oessiglthree dierent microlocal regions
and prove each time a partial Carleman estimate. The thtieeadss will be gathered and patched together
in Section[4J4, which will provide a proof for Theor¢m]2.4.

4.1. Estimate in regiongg*: a Calderon projector method. The following lemma enables the construc-
tion of the microlocal cut-fi functions we shall use. The proof can be found in Appeﬂiix A.

Lemma4.1. Lety, € €~ (R) suchthay,, € €c°(R). The functiongZ’(s, X7, &) =Xﬂoy2{’(s, X1, &, 0 =0)
belong to §1,9,7) N S(1, gmy). If moreovery, € 65°(R) then)(fiij € S(47%, 9a7) N S(M, gmy) for all
v eR.

Let yZ(s x 1.&") € S(1,0.7), with compact support with respect tocontained inV, be such that
p3(s %, 7, &, = 0) > Cq > 0in supp(yy). By Lemmg4.]L this can be achieved by setting

Xa(S X T.8) = 0¥ (b © pg)(s X 7.€". 1 = 0),
with yx € €5°(V) andy, € €~(R), 0 < y, < 1, such tha, = 0in (—c,C;) andy, = 1in (Cy, +c0)

with C; > Cy1. Asu — ulv—o = PO(1), for v > 0 sufficiently small, we haved(s, x, 7,¢’,h") > C > 0 in

supp(yy). We also haved(s, x, 7,&,h) = C’ > 0 in supp(?), by Propositior} 3.34 if the neighborhodd
is chosen sfiiciently small. We set* := x? o «, with the mapx defined in [32), and have' € S(1,ga.7)

by Lemma[3]3. From the remark preceding Corollary]3.23 weep@dv> Cr? in supp(y*). In supp(;)
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we havelaZﬁ’l2 > CA% Inturn we haveth’l2 > CA%in supp(y*). The region we consider is thus an elliptic
region for the conjugated operat®eg.

Proposition 4.2. Let K be a compact subset of V, with the neighborhood V chaggciently small ac-
cording to Propositio4. Lat" € S(1, ga), with compact support in x, be as introduced above with
support in{u§ > Cp?}. With the weight functiop satisfying Assumptign 2.1, there exist@ and h > 0
such that

(4.1) I(S)2Dx, 0p(x "MI + I(S)? 0p(A7) op(y* VI
+ hE ((8)% Dy, 0p(x W) =0+l + [{9)2 (OP(AT) 0P W) =0+ o)
< C(IPM| + h(ID Vil + | 0p(A7 M) + P2IDs Vix,—0r |y + h? (I(S)7 OP(AT)8, Iy + ()2 Oyly))

for 0 < h < hy, 0 < b < hy, and for v= {(v9,\9), vl € (R x R?), with \(s, )t € €=(KY), for all s € R,
satisfying transmission conditioCJ).

In the microlocal region we consider here, through the suppby*, the root configuration opz/?
corresponds to that illustrated in Figr¢ 1a.

Remark 4.3. Note that the first two terms in the partial estim(4.ﬂjed$ from the equivalent term in
the Carleman estimatEIZ.Q) by a fackor Here, a “better” estimate is actually obtained becauseave h
restricted ourselves microlocally to an elliptic regiontieé symbolp,. The Carleman estimatEIZ.Q), for
the second-order operatBs, in fact corresponds to a sub-elliptic estimate.

Proof. In supp(y*) we have
(4.2) Impk* >CA7r >0, Imp%~ < -CAy <0, and x*pf* € S(As.grr),

by Lemma[3.20, and Corollafy 3]23.
We setu = op(y*)v. We haveP,u = g with g = op(x*)P,V + [Py, 0p(x*)]v, and P,,op(x*)] €
hDy, ¥ (1, ga7) + hY(As, ga.7). In particular, we have

(4.3) llgll < C(IIP,Vl + hiIDy VI + hil op(Ar)VII)
Following @ the transmission conditions satisfied ifyandud are
(TC}) W)y —or = Wy =0 + Oy, €Dy, + indx,¢®)U8lx=0- + CH(Dx, + indx, @)Uy -0+ = G,
with 6,,+ = 0p(x™*)b,lx,—0- and
G1 = [¢¥(Dx, + 170x,¢%), 0p(x )] Wlx,=0+ + [c!(Dx, + indx,¢"), 0p(x )] Vlix,=0+ + OP(x")Oylx,-0-

eh¥(1,ga7) eh?(L.ga.7)

that satisfies
(4.4) (9)2G1ly < Ch(S)2Vix<0+ o + CHSZO, ;-

We denote by the zero-extension of a functigne (R x V9) to R™1. Considering the form a?,in

(B-13) we then have
h
P, U= g - hcryo(u) &’ + T (crya(U) = 0p@) Crivo(W) 6, o(U) = Ul=0r»  Y2(U) := DyUlx,=0r
wherest) = (&)] Sx=0, aNdq, = diagpd™ +p3*, p% + p*) sincep™ + pk = —2i ndy M. Since

y1(u) = (0p(x ") Dx,V)lx=0+ + ([Dx, OP(x )IV)Ix,=0+»  With [Dy,, 0p(x™)] = i—hOP(aer+) € h¥(1,9a,7),
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note that, we have

(4.5) yo(U), y2(U) € Z(R xR™™),

sincevt € .7 (R x R7). Setting

(4.6) Wi = Cmyo(u), and Wo = Cmy1(u) — 0p(@,) Cmyo(u),
we write

(4.7) P,Uu=g-hw ¢ + ihwoo‘.

We now chooseg (s, X, 7,€) € S(1,9,) equal to one for dticiently large|(r, £)| as well as in a neigh-
borhood of suppg;) with moreover suppga) N (a9)~*({0}) = 0 and suppga) N (a%)~*({0}) = 0. These
conditions are compatible from the choice made for sygp@nd Propositi04. We sgt:= ya ok,
with the correspondence mapl&fined in ), and havee S(1,ga).

From the ellipticity ofp, on suppf), for largep € N, there exists aDO E, = Op(g), with e €
S(A72,g,), of the form

p . .
(4.8) e= X ey, with ¢j e S(A*7,gx). € =x/p¥ and suppgf’) ¢ supp(y),
that satisfies
Epo P, =0p(x) + "Ry, Ry, e P(A™P,g).

Note that the parametrix construction yields the symb%lq =0,...,p, in the form of rational functions

in &, for largen™2|&,|, with pi/‘,"* andp%"‘ for only poles.
With such a parametrik, we obtain

(4.9) u=Epg+Ep (—h2W1 & + th05) +01, g1 = (Id—0p(x))u - h**'Ryu.

With Lemma 2.10 in ], which proof can be adapted to thalsgl classes we consider here, we have
(Id - Op(x)) o op(x*) € NnewrhNP(A™N, ga). Noting thatu = op(x*) v, we obtain, for all, |’ € R,

(4.10) Iks)' Op(A")gull < CHPvi.

In particularg; € jfj\"z(R”*l) and with Lemm5 we have

(4.12) (9! Dy, gull + (9 op(A7)gull < C'HPvll.

We compute the action in the regien > 0 of the parametri¥, on the terms defined on the interface in

(9). We find
Ep (i—hWoé) (8.%) = (2rh) (D) [ VMM (5 x 7 &) wp(t, Z) d(t, Z) d(r. ),
Ep(—h2wio’) = (2h) ) [ 07 /FACZ M (5 x 7. £')wn (5, 2) d(t, Z) d(r, €),
where

. 1 h ~ 1 !
fo(sx7.¢) = 5 H{ doi/Ne(s x,7,6) dén,  Ti(sx7.&) = - H{ &in/Ne(s X, 7, £)én dén.

Note that the integral defininfy is absolutely converging. The integral definitads however to be under-
stood in the sense of oscillatory integrdls [H$r90, Sec#@]. Note that we have

N 1 .
(4.12) fis x,7,&) = o D,, [ &x/Ne(s, x, 1, &) dé,
I R Zn=%n
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The choice we have made for the cut-function y makes the symbdai(s, x, 7, &) holomorphic for large
77 Yén, &n € C. In %, > 0, we thus obtain

(4.13) (s X&) = o [ee(s x,7.£) dép,
2 by

wherey is the union of the segmef#, € R; |&,] < CoAs} and the half circldé, € C; |&,| = CoAr, IMEp >
0}, where the constar@@y is chosen sfiiciently large so as to have the roga%+ inside the domain with
boundaryy (recall thay*p& is in S(As, ga7)). From (&1p), we obtain similarly

(419) G xTE) = 5 [T X T nder, X050

Y

The expressiong (4]13) anld (4.14) above are valiin 0 but admit a trace at, = 0*. In particular, we
note that, fokr, 81 € N, anda,, B2 multi-indices, we have

(4.15) DY 020 IR < Coparpupp (9P IASTIEEL >0, j=0,1, Tel.

We now choosg(s, %, 7,&") € S(1,9a.7), satisfying the same requirement@s equal to one in a neigh-
borhood of supp(*) and such that the symbglbe equal to one in a neighborhood of supp( We set
tj = xafj, j = 0,1 andgz = op((1- x1)to)Wo + op((1— x1)t1)wa. This yields

(4.16) u = Epg + op(to)wo + op(t1)wi + g1 + Q2.

From the composition formula of tangential operat (Ingjing that it does not involve derivations w.r.t.
the variablex,, and estimate[ (4.15), fdc 1,1’ € R, we obtain

(4.17) IS Op(A")gall < Ckh*(IVip + IDx Vix0+lo)-

with Cy > 0, since supp(% x1) N supp*) = 0. In particularg, € .7, *(R™") and with Lemm4 3.5 and
by the trace formulg[(3.1) we obtain, for &k R,

(4.18) () Dy, @2ll + 1) 0p(A7)g2ll < C'h?(IDx Vil + V] + [Dx, Vix=0+ o)-

We now observe that the symbals, x, 7, £) is holomorphic w.r.t&, in the support of;. We can then
write

(419)  t=diagt’t), thsx7E)=ri(sxnE)m [ e (s xr eh den, =01,

)

wherey?/;’ is a direct contour surrounding the rop€$+ in the region In¥, > coAs, forcy > 0.
We note that in suppf1) we have

6 1 1 1 1
R e S L A )
The residue formula then yields
By
(4.20) g0y I = e X ;fp% )'%,7 +ha%, =01 A%e S gar).
Cd(Pp ~—Pp )
From (4.1p) we obtain the estimate

ID'Xna‘éla‘,ﬁ?ﬁflﬁ??tjl < Corapprfol e*Co(Xn/h)A(r<S>2.81701A:r1+i+|—2.31—V32\ % >0, j=0,1 leN,
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—1+j+l

again by the residue formula, which yielef/"(D, )'t; bounded ifS(A -

0. It follows that,

1 2 1 2
(421) K92 0p(Ar) o 0P IWilzoll = [ et (9% op(Ar) o opEty)wi| (x0) g
Xp>

,0a.7) uniformly w.r.t. x, >

< Ch(s)? op(lwi.,
and

2 2 f 2
(4.22) K(9)2(Dx, OPEW)lx20” = I &2/ |(9)F opE "Dyt (x0) A < Ch(9E op(AL Wi,
Xn>

Asge L2R™?), Epg € H04(R™?). By Lemma[3.TDEpg € - (R™?) andEyg € 7 (R™) and
(9 D, Epll + 1<)} 0p(A)Epgl < C(llop(Ar) Dy, Engll + 110p(A2)Epgl) < C'll Op(ADEpll

where the first inequality follows from Lemrpa 3 12. Frdm @),land estimate$ (4.3], (4]11), 4.1§), }.21),
(F-22) we thus obtain

(4.23) K92 Dy ull +1K)* op(Ar)ull < C([IP,vil + h(IDx, VIl + Il op(A7)V)
+ h2((9)2Wolo + ()% Op(A7)Walo) + WDy Vix,—orlo)
We shall now address the boundary tergsandw;. We take the trace a, = 0" of ) which gives

(4.24) Yo(u) = op@)yo(u) + op®)y1(u) + G,
wherea € S(1,95.4) andb € S(A:rl, ga.7), With principal symbols

%,,
. . P
ao = diag, a3), with a¥ =- (Xl ﬁ]
P Xn=0*

b_i = diag?®,,b%;), with b* =

1 ]
Xl — 9
8" =08 o
by @.2) and[(4]6). Note that the symbalandb arediagonal The operators opj and opb) are called
Calderon projectors (see e.f. [CP82]). The func@oris given byG, = (Epg + g1 + G2)Ix,=0-- Note that
The trace ofE,g at x, = 0* make sense sindg,g € .7 *(R™?) and [3.B) in Lemm§ 3.4 gives enough

regularity for the trace to be taken.
With the trace formula[(3]1) we write

)% 0p(A7)Galg < ChT2(IDy, © 0p(A7)(Epg + G1 + @)l + I(S) 0p(A7)(Epg + g1 + G2)I)-
SinceE, € ¥(A~2,g,), arguing as above with Lemmdta 3.12 gnd]3.15 we obtain
(4.25) 9% 0p(AT)Galy < Ch 2] Op(A?)(Epg + 01 + B2
<C'ht (IIPVI + (1D, VIl + 1 0pA7IVI) + WDy Vixy=o+ ) -

making use of estimatef (. .10) ahd (4.17).
The transmission condition| give

(4.26) Yo(U) = yo(U) + b, 71(UE) = Bya(U?) + kyo(U) + Gy

whereg = (¢9/9)x0r, K = —in(0x, @0 + BOx @ Ix=0r) € S(A7,0ay) andGy = —indx,¢%0,,+ +
T l:0+ Gl with

(4.27) [(9)2G1lo < CH(S) 2 V<0t g + CU(S) 20,1y + (92O, ],),
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by @.4). From [4.34) we thus obtain

d _ d dy L &
(1d - op(@)) (yo(lfyo)(:dfw) - op(o) ( Ar(u ); ('Yd‘;(“ )t Gl) +Go.
We thus have

Id - 0p(a) - op(¥) ok 0p®9) o ) (vo(U)) _  , (0P ~1d|,  (0p(9)) &
Id - op(@”) —op®?) J\n(u)) "~ 0 o o)t

whereps andk stand here for the associated multiplication operators.() and LemmatE.S, far

sufficiently small, there existgo{u®) andyi(ug) € L3R x R™1) such thatyo(u?) = (s)~% op(A;2)Fo(u?),

andy1(u?) = (s)"2%1(u). We thus obtain a system of the form

y1(u?)
wherex is a 2x 2 matrix with entries irS((s)*%A;l, ga.7), wWith principal symbol

A (1-ag-kb) B bﬁl)
AF(1-8) b
ands andII are 2x 1 matrices with entries i5(1, g ) and S(A,}l, Oa.7) respectively, with principal

symbols
g _ 1 bg
o = (ao ) and 1141 = ( _1).
0 0

~ d .
(4.28) op) (70(” )) = Gy + 0P, + op()Cy,
Ko = (9)2 (
We now choosega(s, X, 7,¢") € S(1,9a.7), satisfying the same requirementy@s equal to one in a neigh-

borhood of suppt*) and such that the symbgh be equal to one in a neighborhood of supg( In
supp(y2), we obtain

g+
Afl ,Op -k 1
AR R AR
1
K0|supp(xz) =(9)72 d+
A br S
T d+ d,— d,+ d,—
Pp ~Pp Pp —Pp /o

This yields
A7 08" +Brp”" K
O3 =P8R = Pp )y o

Since we have Imf;* + Bp5") = CAs > 0 in suppfy2) by (2), and since

detq(o)|supp(xg) = _<S>_l

Im(-K) = 5 ’7_0+ (995,69 + €2y Yl 00 > O,

Xn=

by B:1}), we find thatdet(o)lsupper)l = C(9)~*A;2, with C > 0 by Corollary[3.2B. It follows thak is
elliptic in supp(y2). Then, there existl, € S((s)éA(,—, da.7), such that opg) o op(k) = op(x2) + h'”llip,
with Iip € ‘P((s}‘%A,}l’p, ga.7), for p € N large. This yields
Fo(u?)
(5’1(Ud)
We have the following lemma which proof can be found in App’gr@l

_ X _ _hPP 5’0(ud)
= 0p(lp)Gz + 0p(lp) © OP()8,,- +0p(p) © op()Gy + (0p(1- x2) — hPRy) ()
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Lemma 4.4. We have

(4.29) Jopta-xa) (E85) |, < CHP (1D 10+ D1 -01).

By Lemma[3.b, we then obtain
(4.30) (9% 0p(Ar)yo(uDly + (9 Fy1(uDly < Clo(U)lo + F1(uDl
< C' (9% 0p(AT)G2lo + ()2 OP(AT )b+l + (9)2 Gl + P (1D Vil + VIl + Dy V=0 b))
< C(h 2PVl + h? (DMl + [|0p(AT V) + hZ Dy, V=0t + {S)? OP(AT)8,lo + (97 Oyly)
by @.27) and[(4.35) and the trace formyla}(3.1). Frpm {4.2@) same estimate holds for
K92 0p(A7)yo(U9)l + K9 Ey2(W9)lp,  and also for (s)2wolg + ()% Op(Ar)Walp,
by @.6). We thus have

(4.31) h? (K92 (Dx, 0P0r W0 o + (92 (0p(AT) 0p(x W)yt o + K9 2Wolo + ()2 0p(As-)walo)
< C(IIPMI + h(IDx VIl + [10p(A7 W) + MIDs V=0l + N2 ()2 0p(AT )l + h2(S)2Oyl)
We conclude the proof by combining estimafes (4.23) andij4.3 m

4.2. Estimate in region éf". Letyz(s X, 7,&) € S(1, gm), With compact support w.r.x contained inv,
be such thatd(s, x,7,&, " = 0) < —~C < 0 in supp(y;). This remains valid foh’ > 0 with h’ sufficiently
small with possibly a dferent constan€. The construction of such a symbol can be done similarly to
that of y% in Sectionl with Lemm@.l. Note that supp] is compact in the variablex(r, ¢’) by

Lemma[3.2p. We s@t™ := x; ok, with the mapx defined in [3]), and have € S(1, gus) by Lemmd 313.
From the remark preceding Corolldry 3.23 we hafe< —~Cn? in supp(y").

Proposition 4.5. Let K be a compact subset of V, with the neighborhood V chaggaiently small ac-
cording to Propositio4. Let™ € S(1, gus), with compact support in x, be as introduced above with
support infu$ < —Cn?}. With the weight functiop satisfying Assumptiorfs P.1 afd]2.2, there exist G
and hy > 0 such that

(4.32) ()t Dy, op(y Wl + (9 0pr) ope W)
+h((92(Dy, Opcv’)V)Ixn:wlé + ) (op(r) Op()c’)V)lxn:ml(Z))
2,12 2 V12 1 ’ 2 1.2
sc(umvn + h? (||Dy, Vi +||op(r¢)v||)+h(|<s>zop(r¢)9¢|o+|<s>z®¢|0)),

WithT,T” = Aor M, for0 < h < hy, 0 < " < hy, and for v = {8, vd), vk € .Z(R x R"), with
V(s )% € 6°(K9), for all s € R, satisfying transmission conditioECJ).

In the microlocal region we consider here, through the suppoy~, the root configuration ob?,?
corresponds to that illustrated in Fig@ 1c. With the mimeal cut-df y~ we place ourselves in the region
éag”, finitely away fromﬁ}”pd. In the proof we shall make use of the Carleman estimate aadsoy proved
i ; i d
in Section[3}4 for both conjugated operatBfsandPl.

Proof. We setu = op(y~)v. Because of the compact supportygf in the variables X, 7, ¢) we have
X~ € SUMAL, gnr) N SHS¥M Y, gur) for anyu € R by Lemma[3.9]7. TherP,u = g with g =
op(x")PyV + [Py, 0p(x7)]v. By Lemma[3.3]7, we haveP],, op(y~)] € hDy ¥(1,grs) + h¥(T'r, gr.r) and
we have

(4.33) llglh < C(IIPyVil + hiIDy VI + hilop@Cr)Vil), T = Aor M.
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The transmission conditions satisfied ifyandu? are
(TC,) Wik o = Wikor + 0y, €Dy, + 170%,¢%)Wlx,—0+ + C*(Dx, + indx¢")Ulx,z0+ = G,
with 6,,- = 0p(x~)6,lx,-0- and withG; given by

G1 = [c¥(Dx, + indx,¢%), 0p(x NVilx=0- + [*(Dx, + indx¢), 0p(x NIVx=0+ + OP(x )Oglx=0+
and satisfying
(4.34) (9)2Gilo < Chi(S)2Vix,-otl + CKS) 2Oyl

We apply the Carleman method to the conjugated operﬁﬁ)z‘md Pg. By Assumpti02 and Proposi-
tion[3.26, we then have

2 2
(4.35) h(I(s)? op(Mr)ut||” + [(8)2 Dy,u*|") + hRe M (uk)
+ W2 Re(Dy U0 + LEUM, —or. UYL -0+ ), < ClighIP”,

for h andh’ sufficiently small, whereLgi‘1 € 2(Ms,gwsr) and L?;‘ € Y((S), gm.r). We setyo(ut) = utly _o
andyl(u%) = Dxnu%|xn:0+. Observe that we have

(4.36) h2

2 2
((Dxnlﬂd + LEub))y -0, LY U%lxn:m)o' < Chz(b’l(u%)lo + |0p(M‘7')70(U%)|0)~

The quadratic formsg* are given by (seq (3.23))

B% Bg/d % o
(4.37) A = ((B%j, Bid] (;1)8%;) ’ (ﬁgﬂ%i))o
=%

with o(BY) = 2(c¥)?ndx,e", o(B}) = o(BY) = 2(c*)%qy’ ando(BY) = ~2(c%)n(dy,¢™*)cls
We make use of transmission conditiops (f@and write

y1i(W)) _ (-8 K yl(ud)) ( )
(4.39) (Yo(ug)) ( )()’O(U) o)
—
:=H9
whereg = (cd/cg)lxn —or € S(Lgmr), k = —i(00x,¢Olx=0" + BNy x=0) € S(S),gwmr) andG, =
—in(0%,90s, + @ Gl that satisfies the estimate
(4.39) K$)2Gjly < ChE(IDy VI + [KSMI) +C((9) 0, o+ S ¢lo)s

by #.34) and the trace formulp (B.1). We obtain

o) = (89100). (269 + vor e, e,

whereo(B9) = lo(H9)(BY)o(HY), and

00700 = (0 (AL 2 ) (e 5w (3,

(et o),
Opr ) \Op 0
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which, by Lemmd 3]8, can be estimated as follows, with {4.39)
(4.40) UG, yo(u). b, GY)
< C(K9)? 0pMr)yo(uDlg + K9 y2(Ulg + (9GS + () 0p(MF )6l
< C (9% 0p(Mr 10Ul + (8 y1(lg + h(ID? + K9VI)
+ (92 0p(M7 ) o + (920,

From they DO calculus we find

BY = ( é’g é’?)
~\per P
BI" B

with o(BY) = AP (Bf) € S((S),amr), o(B) = o(BY) = -B(e(BDk + o(B]) € S(HMy, gur) and
o(BY) = ko (BY) + 2ReQ)o(BY) + o(BY) € S((SYMZ, gu7). By Lemma[3 B, it follows that

oy (el ()

With Lemmatd 3]5 anfl 3.7 we chooggu®) andy1(u?) in L%(R x R™?) such that

1 d 2 1 d 2
< C (K92 ya(ulo + (9)* opM)yo(uly ).

yoU?) = (972 op(M;H70(U?),  ya(u?) = (9729 (u?).

The quadratic forn¥g9(u®) can thus be written as

@2 =g &) FiR)),
=6

wherer(BY) = 2(c?)%(s)~1ndy, ¢, o(BY) = o(BY) = 2(c)X(s)1qiM * andor(BY) = —2(c%)%(s)n(x,¢*)aIM 2.
We haveB € ¥(1, gwr) and we find det¢(B%) = —4(c%)*(n9x,¢%)?(s)M7) 2 i, with 1§ as defined in
Section[3P. It follows that in supp(’) we have dett(BY)) > C > 0. Sincedy¢" > 0 it follows thato(BY)

is positive definite. From Garding’s inequality (see Len{n®) 8ve deduce that for ar¢ > O there exists
a > 0 andh, such that for O< h < h; we have

(443)  aReZ () = K (Fau)s + FoWhls) = K (K9 Hya(uhlo + 9 0pMy)yo(uly)

by Lemma[3}. Fron{ (4.30) (4}41), ar{d (4.43) we find that

(4.44) aReZ* () + ReZ%(U) > C (19172l + (9} 0p(Vir)yo(u)lo)
— Ch(ID M2 + [KMP) = C (K92 0P8Iy + (910,15).

for a sufficiently large. From the transmission conditiohs (#.38) wtam

1 2 1 2 1 d 2 1 d 2
(4.45)  (K9771(W)o + K2 0pM7)y0(U)) < C (I 7y2(uDlo + K2 0p(My)yo(u)p)

1 2 1 2
+ C'h(ID VP + IKIP) + C' (KK9)? 0p(M7 )6y lg + (92 O lg)
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With the linear combination(@.3%f + (.33, for « sufficiently large, and[(4.33)[ (4 36], (4]44) ahd (}.45),

we can thus obtain
(4.46) h(I(9%Dx, 0p(¢ I + (9 0p(Mr) 0p(x [ )
+ 0 (K9} (Dx, 0P Wlorlg + ()3 (OP() 0L Wl lo)
2 2 2 2 1 2 1 2
SC(umvn + b2 (IDx VI + I op(@7)VI )+h(|<s>zop(M,,.)ew|0+|<5>2@¢|0)),

withT" = A or M, by takingh sufficiently small. With Lemm# 3.19 we can repladg by A in the L.h.s. of
(F-49). By Lemmd 3.37 we hayés)? opMq)0,,- g < [(s)? op('7)8,l, with I = A or M. We thus obtain
the sought microlocal Carleman estimate. ]
4.3. Estimate in the neighborhood of the region,,@”pd. Let xI(s, x, 7, &) € S(1,g,7), with compact sup-
port w.r.t. x contained inV, be such that in the support @f we haveud(s x,7,¢’,h" = 0) > C > 0
and

(Cgaxn‘;pg + Cdaxniﬁd)2|xn:0+ - (Cd)zllg|xn:0+,h’:0 >C > 0, in SUPIO(Xg)-

These two properties remain valid flor > 0 with h’ sufficiently small. The construction of such a symbol
can be done similarly to that gf: in Section[4]1 with Lemm{ 4.1. Note that supf) is compact in the
variables §, 7, &) by Lemma[3.35 ag® is bounded. We se® := x93 o «, with the map« defined in [3.R),
and have® € S(1, gws) by Lemmg 3. From the remark preceding Corolfary|3.23 wepd > Cr? in
supp(®). We also have

(4.47) nZ(Cgaxn(pg + Cdaxn‘ﬁd)2|xn:0+ - (Cd)zl~l(;:j)|xn:0+ 2 C/772 >0, in Supp(XO)-

Proposition 4.6. Let K be a compact subset of V with the neighborhood V choggaisntly small ac-
cording to Propositio4. Let® € S(1, gms), with compact support in x, be as introduced above with
support in{uy > Cn?} and satisfyindf.47) With the weight functiop satisfying Assumptioris .1 ahd]2.2,
there exist C> 0 and h, > 0 such that

1 0 2 1 0 2
(4.48) h(|()? Dx, 0p(x°WI" + () op(T) op(x M)
+ 1 (K9} (Dx, 0P kc0rlg + (9 (OPT7) 0P W) eycor o)
< C(IPVI2 + 1 (D4 VIZ + 0PI M) + WD Vheeorf + N(<92 0PI )6y + K9 20,1).

whereI,T" = A or M, for 0 < h < h;, 0 < i < hy, and for v = {(v8,vd), Vb € .#(R x R"), with
V(s )% € 6°(KY), for all s € R, satisfying transmission conditioECJ).

With the properties we require gif, we may microlocally focus on a small neighborhood of théaeg
2. In particular, close taZ{ we haveu$ small, which allows to have (4 }47) by the properties assuomed
the weight function (see Assumpti.l). In such a smaljmedrhood ofZ ¢, the root configuration of
p?é1 corresponds to that illustrated in Fig@ 1b.

Proof. Because of the compact supportydfin the variablesX, 7, £) we havey® e S((s)/‘A,}*‘,gA,T) N
S($#M;*, gmr) for anyu € R by Lemmd3.117. In suppC), for someC > 0, we have

Impp* >CI'7, Impy~ <-CI'y, T=AorM.

We setu = op(y°)v. Then,P,u = gwith g = op(y°)P,V + [P,,0p(x®)]v. By Lemma[3.7]7 we have
[P,.op(x%)] € hDy, ¥(1,gr.7) + h¥(T'r. gr7) and

(4.49) lIg*|1 < C(IIPEV¥|| + hIDx VIl + hll opTC7)Vil), T = A or M.
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The transmission conditions satisfied ifyandu? are
(TC?) W)k cor = Wlxm0 + 0,0,  C(Dx, + indy,¢®)Wlx,—0+ + €Dy, + indy,¢® )0+ = G1,
with 6,0 1= 0p(x°)f,lx,—0- and withG; given by

G1 = [¢¥(Dx, + in9x,¢°), OP(x)Vlx,=0+ + [!(Dx, + ind,#?), 0Pk )Vxy=0+ + OP(x°)Oylx,0
and satisfying
(4.50) (9)2Gilo < Chi(S)2Vix,-otl + CKS) 2Oyl
Because of the root configuration ﬂéi, we may apply to this operatﬂg and tou? the method of Calderon
projectors of Sectiop 4.1 and follow the notation of the frafdPropositior{ 4 JL. We thus obtain an estimate
of the form of (4.2B), namely,
(4.51) [(S)2Dy, U +[K(S)% op(As)UY| < C(IIPngll +h(I[Dx VIl + llop@T7)VII)

+ 2 (9 2y1(W)ly + (9)? 0p(AT)yo(U)lp) + WPIDx Vo), T'= A or M,

since estimate[(4.3) is now replaced by (#.49). We recalhth@®) = u*|, _o- andys(u*) = Dy u¥ly o-.
We also have the following trace equation, of the same for@29),

(4.52) yo(9) = op@%)yo(u®) + op%)y (W) + G3,
with the operators opf) and opp?) with principal symbols
-
o), nebaty
=-|xX1 5= ) I P & By
ao ( o8 =P8 Mycor P ey

wherey1(s, x, 7, &), satisfies the same requirementésand is equal to one in a neighborhood of sygh)(
In fact, by Lemmd 3.37, we haw¥ € S(1,grr) andb® € S(;%,grr), I = A or M. We haveG) =

(Epg® + g + 9))Ix,-0+, With g1 andg; satisfying the same estimates as[in (#.10) gnd}(4.17). I ligc
Lemmal3.1p, we have, for dlk R,

(4.53) IKs) Op(M?)g1ll < CIKS) Op(A*)gull < C'h?vil,
(4.54) IKs) Op(M?)gall < CIKS) Op(A*)gzll < C'h?(IIVilo + IDaVIl + [Dy, Vix,=0- lo)-
Lemma 4.7. We have E € S(A2,gx) N S(M~2,gu)

>

Xn=0*

Proof. We use the notation of Propositi4.2 here. We now chggleex, 7, £) € S(1,9,) equaltooneina
neighborhood of supp@) and tozerofor |(r, £)| sufficiently large, with moreoversuppg)m(ag)‘l({O}) =0.
These conditions are compatible from the choice made fqu(gp and Propositio4. In fact for any
1 ER, ya € S(A7#,g)) N S(M*, gn). We sety := ya o k, with the correspondence mapmléfined in ),
and havee € S((S¥A™,gx) N S((SHM*, gy) by Lemmg 3]3.

The analysis of PropositioB.Z carries through; the syndbdtps is defined according tdﬂ.S). In
particular we findey € S(A=2,ga) N S(M~2, gu) by Lemm?. The iterative construction of the symbol
of E, gives the result with Lemnfa 3]17. m

Continuation of the proof of Proposition .. With the trace formulg[(3 1), Lemnja 3} 15, (4.49) ahd (4.53)-
(B.5%), the functior& thus satisfies

(4.55) (9)? op(Ly)GY, < Ch2 (Il opZ)(Epg® + g + Il + K op(T7)(Epg® + o + GI)Il)
< C'h 2| Op(?)(Epg? + o + g
< Ch2 (JIPQA)] + h(IDx VI + [|0p@y M) + WDy V=0 lp) . T.T7 = A or M.
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We now use relatiorf (4.52) in connection the transmissiolitions [TCZ]). With (TCZ)), we first write
op®?)y1(W?) = —opE°)(By1(uh) + 0p®?)(kyo(U?)) + OPE)G1,  Yo(U) = Yo(U) + 6,0,

wheres = (¢4/¢9)y,—0+, K = =in(0x,¢%x,=0+ +/8 0%, Ix,0+) ANAGy = —indy,¢96,, 0+ z+— Gy that satisfies

xn=0*

(4.56) ()2 Gl < ChE (IDy VIl + IKII) + C(D) 26,0l + (9)Z Olg).
by @.50) and the trace formulp (B.1). From (}.52), we obtain
(Id— 0p@?) - op®°) o K) yo(u”) = — 0pE)(By1(U)) + 0p®?)G1 + (0p@?) - Id)é,,,0 + G3,
=0p)

wherek stands here for the multiplication operator by the funckaiven above. Let(s X, 7, &) satisfy
the same requirement g8, and be equal to one in a neighborhood of sydpénd be such that the symbol
x1 is equal to one in a neighborhood of supp). In supp(y2), the principal symbol of is given by

g+

o k
Kolsuppirs) = —go—g= € S(L.Ga7) N S(L Gu.7).
Pp ~Pp

In supp(y2) we have Inp%’;+ > CI'+ > 0,T = A or M, and Im{-k) > Cy by Assumptior] 2]1. We thus see
thatx is elliptic in supp(y2) f_or bothyDO calculi. We choosE = A or M. There exist$ € S(1, gr.7-), with

I = %P o hllj, with I € S(T;, gr.7), andlo = x2/ko, such that
op(p) © Op() = 0p(x2) + PRy,
with Ry € ‘P([;.l’p, or.7), for p large. We thus obtain
(4.57) Yo(u?) = —op(l) o op®?)(By1(U?)) + Gs,
with
Gs = op() o op(?) G1 + 0p() o (0p(E®) — 1d) 6,0 + 0p() G3 + (Id — 0p(x2))yo(u) — hP**Ryyo(u).
From theyDO calculus, since supp@y2) N supp(®) = 0, we obtain
(4.58) (9% 0p(L;)Galy <C (W2 IPIVA|| + hZ (IDV] + | op@r M) + h2 Dy Vix,-0t g
+ K92 0P )b, 0l + (97O,l)). T'=AorM.
by @.56) and[(4.35). We thus have
(4.59) K9 0p@, )oYy <C ((9Fya(ul + h 2PV + h3(IDavi| + | opTrWil) + h¥ Dy Vi,-o- g
+ K92 0P )b, 0l + (7O, l). LT =AorM.

We now apply the Carleman method to the oper&fband tou”. By Propositior] 3.26 we have

2 1 2 1 2
(4.60) Igl” > Ch(iKks)? opM Ul + ()2 Dy 171
+hRez%(ud) + h? Re(DXnud|xn:0+ + LU o, Lgud|xn:0+)o,
for h andh’ sufficiently small, whereLd, LY, and %9 are as given in the proof of Propositipn]4.5. We
observe that we have

(4.61) 12|((Dxuf+ LU0 Lm0 )| < CHP (Iya(Uhlg +1 0p(Mr)0(u®)p)

< CP (Iya(u)lo +10pT7)yo(u)lg) + HV(IMI + D), T'= A or M,
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by Lemma[3.19. WittB! defined in [4.3]7), and (4.57) we obtain
2 = (S* 0 BT o Sya(u), ya(u)), + U(ra(u?), Ga),
with

s= (—opa) - 0909 Oﬂ)’

with B standing here for the associated multiplication operatwd, where

d _ [ rd dy [ O a( 0 d a(0) (O
(03] (2] 0] () 2)
With Lemma&[3.B and Young’s inequality we obtain

1 2 1 2
U (y2(u?). Ga)l < &l(8)2y1(u)g + Csl(S)? 0p(M7)Gslo,
which by (@5B) yields
1 2
(4.62)  U((u?). Ga)l < 92 ya(uh)ly + C (NHIPLVAI + h(IDVIP + [| opTrWIFP) + 1Dy Vix,-0+ 13
1 2 1 2,
+K9)2 0pM7 )b, 00y + K920, L)), T'=AorM.
In supp(y?), the principal symbol 08* o BY o S is given by
X = (2 (2n1x,¢" - 4d3p Relob?,) - 26llob Pn(dx,¢)f)|, . € S gwr).

Xﬂ:
In supp(®) we have

_ 2
(4.63) llob? [ Plxy=0 = [0 Ix=0 = K|~ = ((Rep$™)? + (Impd™ + nos,® + B naxmd)z)'XHZW ,
Re(ob?)) lob?,|?lx,—0 = Rep} Ix,-o-
We then obtain

> P : ]
(@ = 28 Mok Plnde) (811002, - 2088~ (nde™) ™ Repd” )| _ .

2
= 26 [lob®  P(n0x,¢") (ﬂ‘z (0%, - (Rep™)?) — § + (ol (0%, ") ™ — B~* Repf™) )

¥n=0*
> 26° [lob? Pndx, ¢ (B~217 (0%, 0% + B 0 6”)? —#S)'anm >C(s) >0, in supp{?),
by @.47) and since
llob%yZlx,-0r = (Repp " Vlxye0r = 170, 9% + B Bxop*) =0
and for someC > 0, by ), we have

-1
(4.64) oD%y Pl = 172 (77 Rep$ )2 + (77 1mpl” + 0, 0% + ™)) | > Ci2

Xn=0
aspd ok = ;flp%* remains bounded in suppf). Hence, Garding’s inequality (see Lem@ 3.9) yields

1 2
(4.65) Re(S" 0 B0 Sy1(u), y1(u?)), = CK9)?ya (W),
for h sufficiently small andC > 0. Combining[(4.65) and (4J52) we thus obtain

1 2
(4.66)  ReZ*(u?) > CK92ya(uh)lp — C' (WHIPIAI” + h(IIDaVI? + | opE7 M) + hiIDy Vi, -0+[3
1 2 1 2
+ (92 0p(M7)0 00l + K92 Oylg) . T'= Aor M.

by choosings sufficiently small in [4.622).
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From (4.4D), [4.99),[(4.60)[ (4J61), ar[d (4.66), and by Lexfg1i}, since = op(x°)v, we obtain

(4.67) (i opTAWI + (9D, uI%) + h(K9)F 0pCr)vouly + (9 y2(u)l)
< C(lIPMIP + W*(IDaVIP + |l op@ M) + h* Dy Vix,=0+
+ (9 OpATI, Iy + () 0P, poly + 9 10,15))

with I',T” = A or M. From the transmission conditior|s (¥} we obtain

1 a2 1 a2 1 dy 2 1 , NG
(4.68)  (I(92y1(u)o + K2 0pT7)yo(U0lg ) < C (K 2ya(Ulo + ()2 0p(T ) yo(U)l)
+ Ch(ID P + IKSVIP) + C (K92 0pEr )y p0lg + (920, 1),

with I,T" = A or M, by Lemma[3.79. With Lemmp 319 anfl (4.68) we thus see thabpepiinear
combination of [[4.91) and (4.57) yields the sought partail€man estimate fdr sufficiently small, since

(92 0p(Lr )0, 0l < CI(S)? op()0,l,, I.T" = A or M, by Lemmd 3.7]7. n

4.4. Proof of the local Carleman estimate of Theorenf 2]4We choosg*, vy~ andy® with values in [01]
that satisfy the properties listed in Propositi .a:. respectively and furthermare+y =+ = 1
in a neighborhood oK x R", which can be achieved by Proposit.24.
We recall thatd = diag(?, ¢%) andv = €®"w. Since 1- (x* + x~ + x°) = 0 in a neighborhood of
suppv), we have
()2 Dy, M0+ lo < ()2 Dx, 0P(x Wxy-0lo + ()% D, 0p(x M0+
+ ()2 Dy, OP(x " Wixy=0+lo + MPI($)? D, RV, o,

with R, € W(A,”, ga7), for anyp € N. SinceDy, Ry, = RyDy, + [Dx,, Rp] we find

(592 Dy, V=0l < 1(S)2 Dy, 0p(x W0+l + 1(S)2 Dy, 0P(x W0+ lo
+ ()2 Dy, 0p(x)Vlx,=0+ o + Ch(I(S)2 Dy, Vi, + (S)2 Vo).
We also have
9% OP(ATVix=0-lo < (97 OP(AT) OP(x Wki=0+ o + (9 OP(AT) OP(x IVIx,=0+lo
+1(9)% 0p(Ar) OP(X WVl 0+lo + CHI(S) 2 Vi =0+ s
and similarly
()2 Dy VIl + ()% Op(A7 VI < 11(S)2 Dy, 0p(x I + ()2 0p(As) Op(x* Vil
+ ()2 Dy, 0p(x VI + 11()2 0p(As) op(x VIl + (S 2 Dy, Op(x WMl + [1(S)Z 0p(As) op(x )l
+ Ch(I()Z Dy VIl + (S 2 Vix,=0+11)-

These three inequalities together with [4.[D), (4.32), #ingf) (the latter two expressed in the cBSE' = A)
then yield

(4.69) h( 2DV + (9 0pArVI) + h (K9 Du Moo + K OP(AT V-0 )
< C(IPVI2 +h(K9)? 0PIy + (:0,1p)).

for h sufficiently small, since by Lemn{a3]16. we ha(®? op(As)f,l, < CKS)? 0p(My)6,l;.
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We now aim to introduce the terhﬁs)% Dgv|| in the L.h.s. of the previous inequality. To do so we make
further use of Propositioh 3]26. By Lemrpa 3.13, on both sidéke interface we have

2 2 n 2
(4.70) (I +IK DI + 3 193D v*I)
J:
+hReZ%(v) + h? Re(Dy Voly,0r + LEVE], o, LEVE], o) < CIIPEV,

with % defined in [3:22) and® € 2(My, gus) andL¥ € ¥((s), gws). By Lemmatd 3]8 anf 3116 we
have

(4.71)
1 2
02 |(DsVPlcor + LEWPlcor, LEVRL 01 ) | < CFP ((9)F 0P )VI-ot ]y + (9)2 DoV Plcor lok($) 2ot o)

h2 (10 2 1o 2
(4.72) < C'h? (K(9)? OP(A7Vix,=0+ o + (9)? D, V¥lx=0rlo) -
and
(4.73) hRe#%(v¥) = 2h Re(a(s)Ds(C*Dy ) ¥ lx-0-» v%|xn=0+)0 +hReZ%(Vh),
with
7 (b s 2 T s 2
(4.74) B4 ()] < Ch(K*Vix=0'lo + 2 (9 DxVha-oro).
J:

For the treatment of the first term in the r.h.s. pf (#.73) wiofo [BDLO7, Equation (1.14)] and we sum
the contributions of thed andd sides”:

2hRe(a(8)Ds(C?Dy, V) lx,=0+» Vlx,=0+ ), + 2h Re(a(9)Ds(C* D, V) b0, Vim0 )
= 2hRe(a(5)Ds(C?D5, VP + "Dy, V) =0 vd|xn:o+)0 + 2h Re(a(9)Ds(c?Dy, V)lx,0r @,)0
= —2hRei (a(8)Ds((C%0x,¢° + €05, ¢ )lxy=0-Vlx,=0+). vd|xnzo+)O + 2hRe(a(9)DsO,, vd|xn:0+)O
— 2hRei (a(8)Ds(n(Cx,¢%)xy=0+0,): Voo ), + 2N RE(CID V) o0, Ds((96,)), -
making use of transmission conditiofs (JICWe note that
2h 'Re(a(S)Ds(’an, Vd|xn:0+)o - Rei (a(s)DS(U(CgaXnQOQ)'xn:O*Qp),Vd|xn:0+)o + Re(CgDXanan:O*, Ds(a(s)ecp))o'
3 2 1 2 3 2 3 2 1 2
< Ch(|<S>ZV|xn:O+|0 +(8)2 Dy Vlx,=0+lg + [{S)2 6,1y + [(S)2Dsbyly + ()2 Ds(%lo)-

and, agc99y,¢9 + ¢y ¢9)| >C>0,

Xn=0" —

~ 2hRei (a(9Ds(n(C93,¢7 + 1y ) -0 Vlo0+). Voo )

a(s) d d 2 p

=-hR hh g g —0* .= +Vd _o+| dsd

eff U(Cgaxn‘ﬁg I Cdaxn¢d)|xn:0+ 6s|77(C Ox,° + C Ox, ¢ )|xn70 |%,=0+ V" |x,=0 s ax
’ a S VA

= hPh Re [ 17(%0x,¢° + 0, 0% - 05 ( 9 ) M=o ds d,

n(c99y,¢9 + Cdaxn‘!’d)|xn:0+

by integration by parts. It follows that the sum of &l first terms in the r.h.s. 03) can be estimated
by

(4.75) | Re@(5)Ds(C?Dyx,V9)lx,~0+» V¥lx,=0+ Jo + Re@(S)Ds(c?Dy, V)lx,=0+» VV]x,~0+ ol

3 2 1 2 3 2 3 2 1 2
< Ch(|<S>ZV|xn=o+|o + K97 Dy Mig=0+lo + {920l + K9)? Dbyl + ()2 DsOyly) .
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From (4.7B), [4.74) and (4]75) we thus obtain
n 1

(4.76) hi Re9(%) + Re ()| <Ch(K(9) Mol + 3, K9} Dy Vix,-or s
=1

3 2 3 2 1 2
+ ((926yly + K2 Dsfyly + ()7 DsO, ) -
with (B.79), (4.7}1) and (4.76) we have
2 1 2 1 2
(4.77) hi(s)?Davl” < C(uPstgn2 PP + h (<9 0p(ArNVix=o- |y + 9 Do Viy-o-lo)

1 2 1 2
+h(KS* 0PI, + [(97D:B,1p))-
With Lemma&[3.1B, combining this estimate wifh (4.69) we abta

2 2 n 1 2 1 2 1 2
(4.78) N(K I + IS DMI + 3, 9 EDMI') + ({8 D hey=0rlo + KS)? OPAT W0+ l)
i=

1 2 1 2 1 2
< C(IPMP + (9 0P~ + ()0, + (9 Ds0,y))-
Again with Lemmd 3.113 we obtain

3 2 3 2 n 1 2 3 2 n 1 2
h(I(O A" + (9Dl + 3 1K Dl ) + N (K9 Vhey=orlo + (9 DVhsr=or o)
1= 1=

2 3, 2 3 2 nl 1 2 1 2 1 2
< (1P + (936,15 + k92D lp + 3 K2 Dxly + 910,15 + (9D:0,1)).
J:

Sincev = €"®/"w and observing that we have
k)2 e7/"Dawllg < 1I(9)% Ds (€"W) 1| + N1I(9) 2 €7/ (G Wl < [KS)2 Devllg + CIKS) Vi,
and
K2 Dy wil < [K8)2 Dy, (7°/"W) || + () 21(9, @) €| < CI()2 Dy VIl + CIKS) 2Vl
and similar inequalities for the norms at the interfége = 0%}, and recalling the forms &, and®, in
(B-13), which gives
(9 EDefly < (NPT (@an)ebly + (ML) ¥/ Masbly < Ci(9E e Ml + C(hHL(s) e/ Ma e,
and similarly
(9)1DeB,[; < CH(9) eMa) + CH(h)Z (9t 0f;,
we can conclude the proof of The0r2.4 (moving back to thatiom before the change of variable

Xn — —X, in V9 that was performed in Sectign B.2). The addition of the tla?an)*%eW/hAZWH2 in the
.h.s. of [2.9) is performed as in the proof of Proposifioc?d8. n

5. A cLoBAL CARLEMAN ESTIMATE

Let M be a compact connecte&d® manifold with* boundary, and foj e L = {1,--- ,N}, letQ; c M
be an open subset . We assume th@,— is a compact connectedl™ manifold with 4 boundary and
thatM = Jje, Q;. Fori # j we setlij = Q N Q;, and we assumg; c dQ; N dQ; andljj € M \ oM.
We also sel’j = 9Qj N dM. We assuméQj = T'j U Uje(j Tij andoM = (Jj T'j. We also lefl'j; € Q;
be a?’> manifold without boundary such that difg; = dimM — 1 andQ; \ T'j; is connected. Finally, we
assume thab is an open subset @1, satisfyingw € Q4. The geometric configuration we have described
is illustrated in Figuré]2.
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(b)

Figure 2: (a) General geometrical configuratidhis a compact manifold with boundary. (b) A particular
case:M is an bounded open subsetRit.

Lets; € ([0, T] x Q;j \ Tj;, R). We furthermore assume that, on both sideE pfs; is smooth up to
Tjj. The codficients; can thus exhibit a jump acrosg; in Q; (see Figurd 2a wher# can have a jump
acrosd's4). We defines € L*([0, T] x M) by 6ljo.1jx(@\ry;) = ¢j- We assume that @ min < 6 < dmax < ©0.

Let nowg be a%> metric onM and setA = % 2ik O (g 1/Gd0y;). In local coordinates, the operator

A has the forml), modulo lower order terms. Far j we denote byaf’—ij a non vanishing vector field

defined in a neighborhood of; and normal td’j;. By d, we denote the normal derivative M. If vis a
function defined in a neighborhood B, for xo € Ij, we shall write

Vir- (%) = lim v(X), and V(X)) = lim v(x).
1 X—Xo, XEQ| 1 X—Xo, XEQ;
Lety be a function such thato,\r;, € €=((0, T) x ﬁ, \ I'j;) and assume that on both sidedgf, y is
smooth up td"j;. We further assume thgisatisfies the following problem,

Py=0owy+Ay= fjin (0, T)xQjforall j, YloTxem =00n(QT)xaIM,
Yiomxr: = Yiomxr; + éij, (6]'%)|(0,T)><Fi*j = (&%N(O,T)XFG + 0, on(QT)x Ty, foralli<j,

(5.1)

Theorem 5.1. There exist a continuous weight functigrin M, and C> 0, h; € (0, ho], such that for all
h > 0, with h+ h/T < hy, and for ally satisfyian)we have

2 2 2 2
(5.2) hilpze®/Myily, + h3ln? €/"Vylly + bl 2 &Myl + hPlly~2 e/ Aylly,
2 2 2
+ Lyl + 3 Rt (Y[ + P It anylavl
i i<j i

i<j
2 2 2 2
< C(hlly? /™l + h1e®M flly) + C % (hin? &yl + Py~ 2 €M ai6 I, + WP e/™Vey |
1<]
1 2 _3 2
+ h3|n2e'790/h®ij|rij + h7|77 ge”‘ﬂ/hat@ij |rij)7
T T
wheren = T2({(T - t))* and W[5 = [fIw(t, X)Pdxdt, W2 = [fW->dS dt, where dS is the surface
ou or

measure o'

We denote by a complete set of vector fields. The form of the inequalitysioat change if we choose
a different set of vector fields. The covariant derivatives aressipte choice.
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Qi : N : Q;
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| 8% T8¢ I
Vij = Vji

Figure 3: The open subsetﬁ, t=0,1,2,3,inthe neighborhooW;; of Ij;.

Remark 5.2. Below, for all j € L we shall construct a weight functigr, on each open s€l; (or rather in
a somewhat larger set), and then we shall define the globghtviinctiony as the supremum of thg's,
which is continuous but will not be smooth in a small neighitwad of the interfaces.

Note however that if the geometry permits the constructianglobal continuous weight functianthat
is smooth except at the interfaces and satisfies the sytti@tly condition everywhere and Assumpti@Z.l
at the interfaces, the global Carleman estimate can benaatém a much simpler way by patching together
local estimates that are derived directly with the weiginicion (see for instancd [Horp3, Lemma 8.3.1]
or [LLO9]). The cases presented [n [DOP02] permit the caresion of such a global weight functifiniThe
construction below allows to address more general geoesetri

To prove Theorer@.l we construct weight functions allowtim@pply the local Carleman estimates
proven in the previous sections.
We place ourselves in a neighborhoggof the interface’; in M. ForV;; sufficiently small there exist
> 0andg;; : Vij — Tij X (—¢, €) a€¢*-diffeomorphism such that
¢ij(X) = (x,0) for alli, j € L and allx € Tjj,
$ij(Vijn Q) =Tij x (=&,0),  ¢ij(Vij N Q) =Tij x (0, &) fori # |,

We write ¢ij = (¢}, 45) wheregl. : Vij — Tjj and¢? : Vij — (=¢,¢). In the casé # j we may assume
Vij = Vj andgj = (¢}, —¢7). Note that the choice of the sign ¢f; on both sides of j; is arbitrary.

In a similar way, there exis¥j, a neighborhood ofj in M, ¢ > 0 and¢; : Vj — I'j x [0,¢) a €>-
diffeomorphism such that;(x) = (x,0) for all x € T'j and we writep; = (¢}, ¢%) whereg; : V; — T'j and
¢]2 V- [0, &).

We choose small enough such that the distance between any two/get, i, j, k € L, is positive. We
introduce
—(+ 1)

5
The local geometry we have described in the neighborhgod illustrated in Figur({|3. For eaghe L we
shall construct a weight functiofn; on a domain related @; such that, firstlyy; satisfies Assumptio.l

V¢ _{XEVij;

—le
2 f—
i~ <¢ij(x)<?}, t=0,1,23.

3Some of the cases presentedPOZ] can be treated byttbduntion of two global weight functions. Then for both gfef
functions local estimates can be obtained and patchedheget
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(and thenp; = e — eX with K > supy; will satisfy both Assumptionf 2.1 arfd p.2 for> 0 sufficiently
large by Lemm3), and, secondly, local Carleman estge be patched together.

We define sets of indices in the following way. Ugt= {1} andJy = {1}. If Jx_1 # L we set
lk={] € L\ J-q1; T € i1, Tij # 0} and Jx= J-1U Ik

In the example of FigurE]Za we hale= {2,4}, J1 = {1,2,4} thenl, = {3}, J, = L. In Figure we have
1 =1{2}, J1 = {1, 2}, thenl, = {3,4}, J» = {1, 2,3, 4}, and finallyl, = {5}, J, = L.
This sequence of sets satisfies the following proposititre groof can be found in Appen(ﬂ A.

Proposition 5.3. (1) The sequence is finite: there exisgsekN such that = L.
(2) The setsy, 0 < k < ko, form a partition of L.
(3) Yk e {0,...,ko} we have | # 0. By convention we sef L1 = 0.
(4) Yke{0,...,ko}, if j e Ixandifiis such thal’; # 0 thenie lx_1 U i U li1.

We now state the proposition that establishes the existefrmepropriate weight functiong;, j € L.

Theorem 5.4. Forallk € {1,...,ko} and all j € Iy there existg}j : Qj U Uie,ui,., Vij = R, @€ Morse
function, that satisfies

(1) {xe QjUUiaun., Viis V¥i(X) =0} € Ui, lei if j #1(@andc wif j = 1).

(2) The functiony; satisfies Assumptign 2.1 in;\Wor i € Iy U ly1.

3) Fori # j,ifi € Iy, theninfxev& Wi(x) > SURcev Ui(X) andsug(e\,i3j Yi(x) < infxevisj Ui(X).
(4) Fori =+ jifie Iktheninfxe\,ilj Ui(X) > SUBcev ¥i(X) andsug(e\,ili vi(X) < im‘xe\,ili wi(X).
(5) The functiony; satisfied the conditiofl,y; < 0onT;.

Proof. We start by recalling some facts on Morse Functions. Uebe a domain of a manifold, let
Yo € €*(U,R). In any neighborhood afq in (U, R), there exists a Morse functiof. Actually, the
construction of such a Morse function can be done by onlyupleirtg the functiony in a neighborhood of
its critical points.

The Morse functiony; has only a finite number of critical points. We recall how tieay be all “moved”
to a particular location: le¢’ c U, we can construct a Morse functign € ¢ (Q) out of 1 such that
the critical points of), are in&'. It is suficient to explain how one critical point @f; can be “moved” to
0. Letxy be such a critical point, and letbe a%’> path between; and a pointxy of &, with a chosen
such that Vy1)(a(t)) # 0if t € [0,1). Let X be a smooth vector field with support in a neighborhvoaf
a([0, 1]) and such thaX(a(t)) = a(t) (we choosex(t) # O for all t € [0, 1]) and withV sufficiently small
to haveVyi1(x) # 0 if x € V \ {x1}. We solvex(t, 2) = X(x(t, 2)) with the initial conditionx(0,2) = z. The
solution exists for alt € R andz — X(t,2) is a smooth dfeomorphismx(t,2) = x(-t,2). From the
uniqueness of the solutions we hax(g xp) = a(t). We then se»2(2) = 1 o X(1, 2). Observe then that the
critical pointx; has be pulled back tey € &.

For the construction of the weight functioss, j € L, we proceed by induction and assume that for all
j € Uglfik+1 I, there exists a functiop; satisfying the properties listed in theor 5.4. et I, we shall
now constructy;. First, we definey; in neighborhoods of j, I';; andTj, fori € I U ly,1 when these sets
are non empty.

Casel'; # 0: we sety(x) = ¢J?(x) for x € V;. We haveVy(x) # 0 for x € Vj andy; satisfies

property [p) of Theorepn §.4 .
Casel'jj # 0: we set

Ui = A5 (0 i 6500 > 0. wj(¥) = ¢, (0 if ¢(x) <0, x € Vjj.
For A > 0 suficiently large(x) satisfies property|2) of Theordm 5.4\
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Yi Vi

[E N

Qi

Vij = Vi Vij = V;ji
(@) (b)

Figure 4: (a) Construction af; andy; in Vjj fori, j € I, i # j; (b) Construction ofy; in V;; for
i€ Iki+1‘

Caselj; # Owith i € Iy, i # j: we set
(5.3) Ui = Agf (%), if 5 () > 0 (lLe.xe Q)), (¥ =¢7(X) if ¢7(x) <0 (i.e.xe Q).

For A > 0 suficiently large,yj(x) satisfies propertieg](2) anf] (4) of Theorfn] 5.4/ip The
functiony; is actually constructed the same wayMp = Vjj, i.e. following ), and we have
(5.4) Uj(¥) = Ae/5> —&/52 yi(x), xeVjcCQ;
The construction of; in this region is illustrated in Figufea.
Casel'j; # O with i € | 41: In the induction process we descrilig, has been constructed & U
Upelaut., Vpi @nd its critical points in/jj N Q; are in fact located irVilj. We set
M= supyi(¥). m= inf yi(x).
xeV2 eV
For¢2 (x) € (—&,0], i.e. inQ; N'V;j, we seeky; in the dfine formyj(x) = A(¢ () +35) + B. The
constantsA > 0 andB € R are chosen such that g@q‘,l ¥i(x) > mand sugevs ¥i(X) < mwhich
implies property[(3) of Theorefn §.4. This is satisfied if

A(£+§)+B>W1 andA(%+§)+B<m.

5
Such a constar exists ifm— 16 < m+ 22 10 thatis, if 5fn—m) < Ae, which can always be achieved
by some positivéd regardless of the values ﬁfandm
Forq) (x) > 0. i.e. inQj N V;j, we setyj(x) = (x) + 5 £ | B. ForC sufficiently the function
v satlsﬂes property[kZ) of TheoreElS 4, The construcuonj/pfn this region is illustrated in
Figure[4p.
The functiony; is now defined in the neighborhoodslgf T'j;, andTj, i € Ik U l.1, for these sets that
are non empty. Next we can smoothly extesndto a function inﬁ,— U Uienun., Vij (or simply choose a
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i1€ |k
,«"—.Qil
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Fjll 1 . 1]
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Ujig Viai Vi o2l

12]

Figure 5: The setd; (light colored regions) anﬁl,— (light and dark colored regions). Heje= Iy, io € k-1,
il € ly, al’ldiz € lge1.

smooth function oveﬁj in the case where the previous sets were empty — such an exarpld beQs

in Figure). As explained above, the function we have olethican be changed into a Morse function in
the neighborhood of its critical points. This local chan§énction does notfiiect the local definitions of
¥ we made above in the neighborhoods of the interfaces anddacies as these regions do not contain
critical points. Finally, the finite number of remainingtaral points can be pulled back to the regi

for g € ly-1 if T'jq # 0. Such ag always exists from the definition of if j # 1. If j = 1 we can pull back
the critical points into the observation region These pullbacks do noffact the local definitions af; we
made above. |

We may now prove the global Carleman estimate.
Proof of Theorem5.4. To lighten the notation we introduce

2 2 2 2
IVIZ,, =hilrE €Myl + helinE eVl + holly2eMayily + holln2e M Ay,
3 2 1 2 1 ay. 2
Y Nyl + 3 Rt (Wl + T e ()
i,jhjcu UERRRA ey ij i [e0 oy T
and
2 3 _aelhoai® L k3. ae/h 2
YIS, = hilmze™ylly + hlin2 € V,ily,

whereU is a subset oM andy a weight function.

We now introduce the open sets and weight functions we skall betj € Iy, j # 1, we denote by
Vi€ Ui, lei a neighborhood of the critical points #f and byV] € w, for j = 1, a neighborhood of the
critical points ofyy,. If j € I, we denote this uniquieby k;. Let

K > supsupyj(x), with ﬁ.j =Q;u UJ Viju U Vi,
jeL Xeﬁj ielkj i€|kj+1
and defingpj(x) = e¥i® — e and
VxeM\w, ¢(X)= ‘_ma@gsoj(X), VX € w, ¢(X) =¢i1(X),
j, XeU;j
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with
U = ( (U vouvl)) (Uv?) ( U vi(j?uviljuvfj), P %1,

|e|k 1 |€Ik |€ij+1
U = (Ql\w)uvflu( UVEUVE VA
We also introduce

sz(Qj\(V]fUiEU VOJu( UVEOVE)u( U VEOVTUVEUVE) j#1

l1 i€|kj i€|ki+1

U;

(Qu\V4) UV UVE U (Uvouvl OVZUVE)

We hanjj =U;U0;j, j#1,andU; = U; UOy, where we have set

(5.5) i=( U VHu(UVHu( U V3)\V) and0y=VLU(UV3)uw\V;.
i€l €I|k i€l1 i€l,

Forallj e L, we letyj € %”C“(Uj) such that 0< yj < 1 andy; = 1 in U;. We setw; = xjy, we have
oW + Aw; = xj(0ty + Ay) + [A xjly in each open s, k € L. We can patch the local Carleman estimates
of Theoren{2]8 at the interface and that of Proposition] 3t #@sboundary together with classical estimates
in the interior (see for instancf [H6163, Lemma 8.3.1][oLA]). We remark that®, x;] is a first order
differential operator and is supporteddn. We havey; = 1 in U; then we obtain the following estimate

(5.6) IVIG, 4, < RHS+ChIIR, ., j€L

where we denote, here and in the sequel, by RHS the right-bigiedbf the sought Carleman estim(5.2).
If i € k1 and] € I we haveV} ¢ U; and by theorerfi 5fi(3) (see Figlird 4b, exchanging the roles of
andj) we obtain,

(5.7) Yl ¢, < CllYliia g, < Cliiyilly, -
Ifi,jelg Vilj c Q; N U;. By Theoren|5]4{4) (See also Figiré 4a), we have,
(5.8) Ylllvz o, < CliVIllvz ¢, < CliYllly, g, -
If i € lka, J € I we haveVi Qi nU;. By Theoren] 5U3) (See also Figiiré 4b), we obtain,
(5.9) YlIz ¢, < ClYlig 4 < Cliiyilly, -
By the definition of0;, j € L, in (6.3) and following [(5]7),[(5]8) and ($.9) we have,
(5.10) S I, < C 5 IMIZ,, < CIYiR,. and IIYIZ,,, <C IV
) =] Wioy.¢; = =t VG .¢; = Vv Vg, ¢, = Vv

For all x € M there existg such thatp(x) = ¢j(x), then if we denote b; = {x € Uj, ¢(X) = ¢;(X)},
we haveM \ w = [ J; W and

(5.11) VRt = ;uyuév,.,w,. < gnynﬁ,,%..

Let yo € 6°(Q4) such that O< yo < 1 andyo = 1 in w. Noting thaty, is a smooth function of, the
following classical local estimate holds (s¢e [}196]), fieandh/T sufficiently small,

(5.12) VI, < lIxoyI2,, < CHIE¥ Py, + Chinte™ Moy,
41 gnelh 2 e /h®
< C(h*lI*/" Pl + hllylIE, , + hilz2e™yL,).
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. . . . . 3 /h 2
by invoking a first-order commutator as above. In particuiate that the observation tertmj;ze™"y]| ,
does not involve first-order derivatives of the functiorFrom (5.1]1) and[(5.}2) we have

2 3 2
IV, < S IV, 4, + (NI Pl + hlVIIR, , + hiln? €/ i),
J

which by (5.p) gives

Iif, < RHS+Ch( g Iy, 4, + VIR, ,)-
<J<

We conclude by choosirtgsufficiently small to “absorb” the last two terms by the L.Lh.sw@.1p). =

APPENDIX A. SOME INTERMEDIATE AND TECHNICAL RESULTS

A.1. Proof of Lemma. We setR(t, x, &) = d(t, XY)(£2 + r(x, &) = {jjzl @i j(t, X)&é andR(t, x,&,7) =
5t X) (€t + T €.7)) = 27 g et )&m;. Then

Aolh=o(S(t), X, 7. &) = R(t, X, &) = R(t, X, ¢%) and & (s(t), X, 7,&) =7+ Zﬁ(t, X, &, @).

We find that{8z|h-0, 81 }x(S(1), X, 7, £) = Ay + Az with

A= ijizlai.,x,.w (06 Rt % &)@y, Rt X, £.¢4) + (0 Rt X, £ 6,0 R X, £3)

Ao = 3, (0 RIE % xR x.£.63) + ORI X £.63) (OxRIE X ) — GuRIE %))

With the exponential form we have chosen fowe havedye = 1gdxy anddy ¢ = 2P(Ix ) (dx) +
Ag0% ¢ with g = €. IntroducingB(t, x,€) = Xi_1 Bi j&i€j with Bi j = Y4 (9% «¥)aika;), we find

7P = FER XU + PER X E03)P + AF X 0') + AFBL X,8).

If Aoln=o(S(t), X, 7,£) = 0 we then haveR(t, x, &) = R(t, X, ¢) = 2G?R(t, x, ¥}) and in particular
1/CIél < Aglyil < Clél.
It follows that
Ay > CAGW - C B2
It also follows thatAy| < C(Agw4])>. We have thus obtained
{B2lh-0, Bu}x(S(t), X, 7. &) = CA'GWI* — C' PG W — C (A8l))°,

if @zlh=0(S(t), X, 7, ¢) = 0. Recalling thapy}| > C > 0 in V¥, the result hence follows for sufficiently large.
]

Remark A.1. Note that we did not use the assumptas(t), x, 7, £) = 0 here. Comments on thefu
ciency and necessity of the sub-ellipticity condition carfdaund in [LLO9].
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A.2. Proof of Lemma@. We write the proof for[(, y) = (M, m). The result follows the same in the case
(T, y) = (A, Q). First we have

lo(s X, 7, &)l < (ML, X, 7,£/v)* < TV K2 +127% + ¢ < C(9)' "MK,
Leta’ > 0 and®’ > 0 ande” andB” be multi-indices. An induction o’ + |8”| shows that
02 0% 38 ) p(s % 7,€) = L(s X T, €/(9)),
where? € S((s) B Im#"-18"l g,). We thus have
10205 7 9 p(s x,7.8)l < T ¥ Im(t, x, 7, &/v(9)F ¥ < C(g) T MEF

We have thus obtained the desired estimate. The convelsg$olhe same and so does the result for
tangential symbols. ]

A.3. Proof of Lemma [8.4. We treat the tangential case in the proof @g = R x R}. The other cases
follow the same. From the symbolic calculus we fRd= ()™ op(T;) op(, )(s)* = Id +hS; with S; €
¥(I';%, or7) (recall that O< I < hg). FromL2 regularity [Hr85k, Theorem 18.6.3] we haSe : L2(R x
R7) — L2(R x R?) continuously. Hence fdn sufficiently small Ic+hS; is invertible inL(L?, L?).

A.4. Proof of Iemma. We write the proof in the case = My andRsx = R x R]. The other cases
follow the same. Working witkis) ™ u € .#(R x RT), we see that it dtices to consider the cake= 0 and
ko = k.

Letr € R. We first prove that opq!) : L3R x R?) — Z’(R x R}) is injective. Letw € L? and let
op(Mi)w = 0. By Lemmg[ 34 op{l;") op(ML,) is invertible inL(L?, L?). It follows thatw = 0.

Letu e (R x R}) and seR = (s)™“op(M') op(M}.)(s)*. By Lemma[3}4 and its proof, the operator
R = 1d+hS;, with S; € ¥(M_*, gu,), is invertible inL(L?, L?). We setv = R™X(s)™ op(M_!)u which is in
L2(R x RY), sincew = (s) ™ op(M;")u € .7 (R x R]) c L?(R x R"). Moreover, for som€ > 0,

1/CIwi| < Ml < Clwl.

We havey = Rw = limp ., 3o hislwin LARxR"). Since opl!, )(s)* is continuous from 2(RxR?)
into 2’(R x R7) we see that

n -
(A1) op(Mi (v = lim 3} op(My-)(s)*hiSiw in 2/(R x RY).
— 00 j=0
Forj > 1+ kwe have
lopM- )9 N SIwi| < hIC,CL Wil C1 = l0opMI(S*SE 2, Cao = ISz

. . —n —n

It follows that the series ir[ (A1) actually converged f(R x R,) and thus o1}, )(s)v € L3R x R.,).
Observe now thats) op(M;')(op(M'Txi)kv) = (9 op(M;')u. We conclude thati = op(M} )(s)*v
with the injectivity of opQ\/I:r') from L2(R x R,) into 2’(R x R"). ]

A.5. Proof of Lemma [3.8. We write the proof in the case = My andRsx = R x R, The other cases
follow the same. Let € .#(R x R?). For h sufficiently small, there exists € L?(R x R") such that
u = op(M')(s)™v and|lvl| < Cli(s)* op(M}-)ull by Lemmg[3]5. Thetiop(@)ull = || op(a) op(M;')(s)™vI| <
C|vll by L? regularity [H6r85k, Theorem 18.6.3] since apgp(M_')(s)™ € ¥(1, gu.7). m
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A.6. Proof of lemmal[3.7. As in the proof of Lemm§ 3|5, it sfices to consider the cake = 0 andk, = k.
We havev = R'w = limy_. 2o hiSjw in L2(R x RY) with w = (s)op(M)u. Letk’, I’ € R. Since
(¥ op(M ') is continuous from_z(R x R1) into Z’(R x R7) we see that

(A.2) (o)X op(MI)v = lim 3 hi(s) opMy)Shw in 2'(R x RT).
nN—oo j:0

Since(s)€ op(M})S; € Y((S)€ M), gwr), by Lemmd3J6, there exis@; > 0 such that
K9 opMi)Sall < Crlk9 opMi)gll, K9 op(My)Sell < ClIKs)¥ op(My)ell,
for ¢ € /(R x R7) by induction onj € N. We thus have
K9 op(Mi)SIwil < C1IKS)¥ op(My)wil < CICIK9¥ *opMy™ul,  j e N,
It follows that the series i2) convergeslif(R x R7), for h suficiently small, and
(s op(Mi VIl < C (2j hel) s ™+ opy-ull,
which concludes the proof. ]

A.7. Proof of Lemma ). We write the proof in the casE = Ms. andRsx = R x R}. The other
cases follow the same. Letv e /(R xRY). From Lemma.5 there existg € L2(R x R) such that
v = op(M_¥" )w with [w]| < C|lop(M¥")vil. We then have

(op®)u, V) = (op®)u, op(M7* )W) = [ (Op(O)U, OP(MF W), (), /ey Ao

= f0<op(M;k”)* op®)U, W) )@ A% = (0p(M7X")* op)u, w).
Xn>!

Since opM;¥")* op(b) € ¥(M¥, gu.7) this yields the result by Lemnja $.6. m

A.8. Proof of Proposition -. We write the proof in the tangential case fo= M andRgyx = R x RT.
The other cases follow the same. let j‘f"' (R xRY). Thenu = (s)~ Kop(M ')v with v e L2(R x

R7). SettingR = (s)*op(M}.)(s) ™ op(M_'), we see as in the proof of Lemr@SA, tiRais invertible in
L(L2, L?). It follows that]|.|lx; w7 iS @ norm onﬁff"' (R xRY), since(s)*op(M!-)u € L*(R x R?) and since
(9 op(M!)u = 0 impliesu = 0. Setting ¢, u)%pm = (9 op(ML)u, (s op(M!)u) we obtain an inner
product forj‘fk' (R xRY).

Let us now con5|de|L(])naCauchysequence u%ﬁ',]" (RXRD), [I.ll1.m7)- We haveu, = ()™ op(M> I)vn
with v, € L*(R x RT). Then the sequenos = R*((s)*op(M))un, n € N, is a Cauchy sequence in
L?(R x R") which converges to € L2(R x R?). Introducingu = ()™ op(M. I)v € I 'T(R x RT), since
lun = Ul m = IR(Va — V)II, we see thatu,)n converges taiin (%ﬂk (R xR, [t m)-

Letnowu e 7y (RxR1) be such that = (s)™ op(M;')vwith v € L2(RxR?) and let ¢), < .7 (RxR?)
be convergent tv in L% (R x RY). We setu, = (s op(M)vn € .#(R x R}). Then|lu — Ul ms =
IRV, — V)| and we that the sequenas), < .7(R x RT) converges taiin (75 (R X RY). [l pr)- ™

A.9. Proof of lemma[3.13. We treat the tangential cases here. On the one hand @@ calculus we
observe that

KK op(M Ul = (0p(Myr)* (9% 0p(My)u, U) = ({82 op(MZ)u, u) + h(op(@)u, u)

= ((9%*2u,u) + ((9**2D2u, u) + i ((9%D5 u, u) + h(op@)u, U,
=
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wherea € S((9*Mg, gws). On the other hand, we havg)®*?D2 = D($)**?Ds + hi op(b) where
b € S((9*Mys, gus). From Lemmd 3]8, foh sufficiently small we have

(op@+ hb)u, u) < Cl(9)* op(M7)ull’.

We thus obtain the norm equivalende [3.5) by takinguficiently small. In [3.p), the inequality follows
from Lemmg3.p. ]

A.10. Proof of lemma .We sketch the proof in the tangential case &g = R x R7. Since(s)¥*?,
(9*2Ds, (9D € Y((9 A7, gar) We have

n-1
(92Ul + ¢ *Dsull + £ 19Dy ull < CI(9* op(Aull, - ue 7 (R xR,
J:

by Lemma[ 3 fot sufficiently small. Then we proceed as in the proof of Lenjma]3.12. dtain for
instance

K9 op(AZ)ull = ((9%*4u, u) + ((***D2u, ) + (%D |*u, u) + (R, U), Ry € PUH*AZ, gr )

We note thatDy [* = 31} DY, + 2,2, D D . We thus obtain
k 2y, k2, 12 K20 2 o s K2 2 o o (k2 kM2
[KsY* op(AZHUll™ = K “ull” + [KS)™“Dsull” + 21||<S> Diul + ,k21(<5> D5, U, (9)"Di, u) + h(Rau, u),
= jk=
with Ry € W((9)*A2., ga 7). We conclude with Lemm@B and by takihguficiently small. ]

A.11. Proof of Lemma. We consider the casee .7 (R™?). The extensionta € %ﬂrk’z(R”*l) follows
by density. We write

IKS*Dy, OPA UL = (9 0p(As)u, DZ (S 0p(A7)U) = (¥ Op(A7)U, (¥ op(As) D L)
= (op(A7)* (9% op(Ar)u, D2 u) = ((9)* op(AZ)u, (D2 u) + h(Ryu, D2 ),

with Ry € W(($)*As, ga.7). We have
(X Op(AZ)u, (XD U)] < 29 op(AZ)ul” + 2I(9*DZ ul®

n
<C (||<s>k+2u||2 + (9 2Dull” + zl||<s>kD§ju||2) < C”I(9* Op(Ad)ull’,
]:

by Lemma[3.14. We also hayies)“ op(AZ)ul| < CI(s)* Op(A?)ul| by Lemmd[3.14. It follows that
(Re, D2 U) < Cl(s* op(AZ)ull (D2 ull < C'I(9* Op(AA)ul’.
by Lemma[3].

For thegm.+-, gm calculi, we obtain
[(S)*Dy, op(M#)ull + (¥ op(MZ)ull < CIK(S) Op(M?)ull,

in the cases € . (R™?) by simply applying Lemm§ 3.1.3. m
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A.12. Proof of Lemma . We give the proof in the non tangential case. We introducddhewing
additional metric

ds?
(97

Lemma A.2. The metric g is slowly varying and the order functions M @ndre g-continuous.

2 2 2
(e e

o 2 Yl _ =
g:= +dX° + M M Kg vE

Lemma A.3. The metric g isr-temperate and the order functions M andare o,g-temperate.

The proofs of the two lemmata are left to the reader.
The order functiongV and A are thus admissible for thg-calculus. SinceYM < A < M, we thus
obtain, fork e R, andl > 0

(M2 e s((9*A',g).  (9A' € S((9*M', g).
We then havés)*M'/2#A~(s)™ e S(1,g) and(s)*A' #M~'(s)™ e S(1, g) which allows to proceed as in
the proof of Lemm4 3]6. m

A.13. Proof of Lemma[3.17. First observe that the proof of Proposition 18.1.4[in [Hi§Badapts to the
order functions and metrics we consider here.

Lemma A.4. Let(T,y) = (M,m) or (A, 2) and let ke R. Let g € S((ST™, gr) (resp. (9*y™, g,)) and
assume the - —co when j— co. Letae ¥ (R™! x R™?) and assume that for alt, a’, 3, 5" we have
for some Cy, andu depending om, o', 3, andp’

0205 320f, al < C(s)T*, (resp. A9»), (%), (r,€) e R™,
If there is a sequengg, — —co such that

la- X ajl < C(9*T**, (resp. G/*),
J=p

it follows that ae S((SKTSUR™ gr) (resp. (YU ™M, g,)), and that a~ ¥ a;. We have a similar result
for tangential symbol classes.

Let (y,T,y,T") = (4, A,m M) or (m M, 2, A). We provide the proof for the tangential case. We note
that
Ar <Cmy and my < C'AZ.
which givesya € S((y;-)*, 9,) for anyu € R. Also, for alla, o, 8, 8’, both

0205 &% (o xa)l and 19505 0207, (o #r xa))
can be estimated t@(s)"‘“y; andC'(s)"‘“(yﬁr)V’ foranyv,v’ € R and the first result follows.
By Lemm, we have € ST, gr.r) N SKS(T) ™, gr.7), for anyu € R. We note that
(A.3) Ay <CMg  and My < C'AZ.

Foralla, o', 8,5, 10205 829/ (S#7x)| can be estimated k§(s)' T’ for somev, 4 € R sincey € S(L,gr.r)-

By (E) it can also be estlmated 6/ (s)" (' Y for somey’ € R.
From the composition formulf (1.2), we have
(et 0 ke - wen E

lol<p

(0737%) (9207 X)(s % 7. €, h)| < C(9TY,

with @ = (@1,2) € Nx N1 andyv, — —c asp — oo sincey € S(1,gr7). By (A.9) it can also be
estimated byC'(s)*(I";.)"® with v, —» —co asp — o
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AST € S((9'T%, grr) We havedy' 9,7 € S((s)k“”ll“' Joarloal g ) with j = 1if T = M andj = 2 if
I = A. We also havé? 92 y € S((s*~ “11"7 ,0r.7), for anyu. With Lemm' we thus have

(02037%) 0 k™t € Sy I g 7). (9305 x) 0 k7H € SOy, Byr).
Arguing as above, sinags) (95185 x) o «~* satisfies the same properties@swe obtain

(07:0g72) @30 1) 0 k7 € Sy, gyr) N SUIM () . 0y 7).

We thus haved?*di2) (0505 x) € S(9*(I)", gr ), again by Lemmé4 3]3. The second result thus
follows by Lemmg A 4. ]

The reader should note that the argumentation we have matie second part does not apply to the
calculus of the composition of operators but rather on theh éarm of the resulting symbol asymptotic
expansion.

A.14. Proof of Lemma . We letyi(x,7,&) € S(1,9,.7), with compact support in thex(r, &) vari-
ables, be such that = 1 on suppf) and we set? = y2 o «, with « as defined in2). We write the proof
for the tangential norms of the restrictionsxtp= 0*. The other case follows the same. By Lemma}3.17
we havey andy?! in S(1, gm.7) N S(L, ga.7).

From theyDO calculus and Lemmfa 3]17, for apye N, we findy* #- = #7 y = T #7 x + hPr, with
rp € S(M.", gmr) N S(A;”, ga ). Hence opE)u = op(x1) opE)u — hP op(r,)v, which yields

K op(Mi-) OpE)uly,—0+ |, < K 0p(M-) 0p(x1) OPE)Ulx,=0- |y + Cph? Vix0+lg
< CKO op(As" Yuly,<0- 1 + Cly hP =2 (V| + [IDx, V).

for anyp’ € N, by Lemmé[3]6, sincés)* op(M!-) op(x1) € ¥((S)*AL. gr7) by Lemma[3.77, and by using
the trace formulg[(3]1). m

A.15. Proof of Lemma(3.2(. .

The proof we give extends that of Lemma 3 page 48@R97].0W¢) the %" notation here since
the same argument holds for both cases. We bave c(s, X)(£2 + 2i(0x,¢)én + az + 2ia1). We seta € C
such thatr® = (9x,¢)? + a + 2ia;. Then the imaginary parts of the two rootsagfare—dy,¢ + Re) and
have opposite signs if and only|iRe()| > |dx,¢|. We note that
(Im(2))?

4A2
with a similar equivalence in the case of equalities on batess Substitutingr for z, and|dy,¢| for A,
we thus obtain that the imaginary part of the roots have appsegns if and only ifus > 0, asu, =
a + a§/(axn¢)2. In the casei, = 0 only one of the roots is real and the imaginary part of theséone is
of the opposite sign oy ¢. In the casgw, < 0 both imaginary parts of the roots have the same sign equal
to the opposite sign afy, ¢.

If we have Imp?) > Co > 0 and Imp;) < —Co then| Re()| > |x,4| + Co and by [A.#) we obtain

(A.4) |IRe@|>A & Re@)>A- zeC,

8
(O 0 =R 2 (gl +CoF = s

which gives
1
(0x9)? (0%l + Co)?
Conversely, let us assume that> C; > 0. We then have
(Im(a?))?
4(axn99)2

fta = C§ + 2Coldy, ¢l + &5 ( )=C>o.

(A.5) Re@?) > (0x,¢)* - +Cy.



48 JEROME LE ROUSSEAU AND LUC ROBBIANO

Im(2)

C1

=& \ \ Re@

Px

Tc, Py

Figure 6: Portions of the parabolae considered in the prbbémma[3.2p.

Recalling that Ref?) = (dx,¢)? + &, and the form of, in @) we_observe that Ret) > —C, holds forhy
bounded for som€&, > 0. We setA = {Re@) > —C,} c C. Letx € Vd and introduce

_ : (Im(2))?
Py = AN fze C; Re@) < (dx,p(X)? - W}’
and
: (Im(2))?
TCISDX =AnN {Z € C, Re(Z) < (6Xnt,0(x))2 - W + Cl} .

We can find a sficiently small constarnts; = C3(x) > 0 such that

(A.6) P« AN fze C; Re@) < (105, + Ca)® - ('m—(z))z} C1c,P

" ’ S 40 p(M)] + Cg)2)

since we work in the compact set, Px. This is illustrated in Figur(ﬂ 6. By continuity, the set insion
(A.g) holds in a neighborhood of SinceVd is compact, there exis®; > 0 such that[(AJs) holds for all
x € VA with C; replaced byCy.

We hence obtain that, > C; > 0 implies {A}), which in turn implies

(Im(@?))?
4(|0x, ¢l + C3)*

By (B.9) it follows that Reg) > |9x,¢| + C; and thus Img}) > C; > 0 and Imp3) < —C%.

Re@?) > (19x¢l + C3)* -

We now address the last point of the lemma. Let 0 < L < infz71dx,¢l and letH = L2 —12. We
consider the regiofu, > —H}. In this region we have

a2 1 1
2 2 2 2 1 _ 12 2 2
T2 el (O i (e () )(1+ W) =17 - (0xp)" + 31(W - |—2)-
Sinceua = a + a2/(dx,¢)? we then have, + (9x.¢)? > 12 — %2 which by (A3) yields| Re@)| > I. We
conclude by observing thgtf — pz| > [Imp} — Impz| = 2| Re(@)|. ]

A.16. Proof of Lemma [B.22. We follow the notation of the proof of Lemnfa 3]20 above and wepd
the ‘3" notation here since the same argument holds for both casschooser € C such thate? =
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(Ox,0)? + @p + 2iag = (X, &) = 1 (X, Oy ) — h'mn'(p + i@ + 2if (X, &', dx ) which yields the roots to be
—idy, @ + ia. We write @/A7)? = v1 + v, With
1 N . T 1 , a
= (&) +igsg). andve= i (~r0coe) -1 oo
To prove the first result, i.eyp: € S(17, g19), it suffices to considets large, as we already know that the
two roots are smooth in supp). Note that there exists > 0 such thatv;| > 3L, and|v,| < L for A+ large,
sayds > Ry. In this region we hav{zz|2//1$. > 2L.

Let us now assume thalm(a?)|/A2 < L, then sincgImy,| < L we have Imvy| < 2L. It follows that
Rev; = |[Revq| > VL2 — 412 > 2L and Re¢?)/12 > Revy — |Revy| > 2L — L > 0. If A+ > Ry, we have
thus obtained thaia{/1-)? remains away from a neighborhood of the brafichfor the complex square
root and we may thus choos¢As = F((a/17)?) with F = € (C). Since (/A7)? € S(L1, g..7), it follows
from Theorem 18.1.10 irf [Hor8ba] that 1, € S(1,g.7), for A+ > Ry, and it yields the first conclusion.

LetCo > 0 and let us place ourselves in a regipa > Co}. By Lemma[3.20 we have Imf) > C > 0
and Imp;) < —C. The roots are given byidy ¢+i. It thus sdfices to prove thgRea|/A+ > C > 0 for A+
large, sayls > R, > R;. Let us assume théRea|/1+ > C > 0 does not hold. Then there exists a sequence
Yn = (Sn, Xn, Tn» €ps N)ner such that (Rer/A4-)(yn) converges to zero. By the first part of the proof we know
that (@/A+)(yn) is bounded and thus converges up to a subsequence. It foftat ¢/ 17)(y,) converges
to a point of the imaginary axis, up to that subsequence,winicurn implies that¢/A)?(yn) converges
to a non positive real number. As we have seen abave()?> remains away from a neighborhood of the
branchR_ in the regioMs > R;. We have thus reached a contradiction. ]

T+ 2% €. 0x9)).

A.17. Proof of Proposition|3.24. We takeh = h" = 0. The result remains however true if we chobsad
h" sufficiently small sincecé(n—szn’ is bounded. We note thaﬁj >C>0if |&+ |a%|/|chp%| > Ro|Vye®| for
someR, > 0 suficiently large. Observe that

v %
. Oy o a ) .
lTl% <C |61L +C'r%(x,§', X‘pq )|SC'( | 1;1 +|§’|), uniformly in se R.
(Vx| [Vxp™| Vx| Vx|

Hence, there exis®® > 0 suficiently large such that

, Il ,
€]+ ——————— > RmaxsupVxe* ()] = (8%7.¢) € & =0 N &0
maxsupVye™(X)| % ova

xeVd
Note that shrinking the size &f (as will be done below) does naffact the constarR. To conclude, it thus

suffices to prove thgig — ud > C > 0 with (s, x, 7,¢’) € R x K, with K the compact region

K = { (078 x € VA, I€] + [rl/maxSUuRVue (9] < RmaxsupVe () |.

d

4 xevd xeVd
We observe that
1 1 1
9_ 8 8. o2 — (9 92 4 =72 -
Ha = Ha =|(0x,¢")" — (Ox,0”)" + 4T ((Cgaxnlﬁg)z (Cdaxn(pd)z)

+ F( 1 1 )+F2( ! = ) + Xn0y(1)
T - - 3

O e RO AR (O LR CHPD L | N
wherer~stands for (X, &', dx ¢)Ix.-o- and,(1) is a bounded function and its upperbound only depends on
the choice ofp we are going to make below, since t,¢’) € K. We first consider the casg = 0. After
we have obtainedd — ud)|x.-o- = C > 0, uniformly in's, with a particular choice of the functiasn we can
allow —¢ < x, < e with e small, i.e., for the neighborhood sufficiently small (see the form of we have
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chosen at the beginning of Sectiﬂn 2). The inequalty- ¢ > C > 0 is then preserved with possibly a
different positive consta@.

We view (g — u9)|x -0+ as a second-order polynomialinof the format? + gr + y. Sincea > 0 by
Assumptior] 2]1, its minimum value is¢4 — %)/ (4a). To obtain f§ — 130+ > Co it is thus stfficient to
haves = 82 — 4ay + 4aCo < 0 We find

1 .
0= W((C“ — C9)%72 — ()0, 99)" — () (0x,6)*

+ AC0(C YOt — (O, 9%)7) + (On 0P + (D), -

Since inK we have
[F < Clox gl 1€'] < CROx ¢l maxsugVxg*(¥)],
d XEW
it follows that we obtain the sought negativity &fwith |0y, ¢%x,0+| > L(10x @lx,=0¢| + 10%,¢%1x,=0+]), if we
choosel > 1 suficiently large, as stated ifi (3]12) after Assumpfioh 2.1, nthking the neighborhood
suficiently small around the poiry, so that
maxsupVxe®(x)| < (L+¢) inf_dy¢°
4 eV (x,0)evd

with £ as small as needed. [

A.18. Proof of Lemma. By definition ofazd, if /JZ? is bounded thet¥’| andaid are bounded. We have
seen that

(A7) b ( a1 +1£1). uniformlyinse R
' Vx|l = M Vuh| ’ |
in the proof of Propositioh 3.24. The result follows. n

Remark A.5. Note that we can furthermore prove that Bsuficiently large, we have
pEzC+ @) +1gP), @k eN=R
which by (A.7) yields, for som& > 0,
pzC@+?+iEP).  ImE) 2R,
A.19. Proof of Lemma[3.27. We set

2
(02 + (n0x,0) %) o)
= (oA .
P=H <S>3M,2r 2
With the change of variablesintroduced in [3]2) we define = 773(p o k1) andBz = n73(c(Hz) o k1) .
We have

P (a8 + (6Xn<p)2a2)2

v=#@ Mg_ox‘l

+ﬂ2.

By (@), sinceC(s)ymy < My o k™% < C’(symy, it is sufficient to prove that

2 4 (9. oVa,)
(A.8) y = ﬂw + B> szr,

for u sufficiently large.

Sincep; € S(M2., gmy) by Lemma[3.B, and since + (dx,¢)?a2 € S(M&,dmr) is elliptic for large
(z,&)| by Remark[Ap, then[(A]8) in fact holds fdfr,¢')] > R, with R sufficiently large and withu
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suficiently large. We thus work witl(z, &)l < R, i.e., with (x,7,¢”) in a compact seK. We note that
o(£[Q2, Q1]) = W {82, Gu}s + {2, G1}x Where
/(M ~ ’ o~ 5 / / ’ ’ / AV / 1~
' (6. Guls = ~h 08z = 20'clm'a)(9) ((#4,)7 + T (% 5)) = (W) a(S)(wr ) (8) ~ W (3s)a(9) ST
(A.9) € (9°W'S(L, gmr) + hd2S(L. gur).

We shalll first consider the cake= ' = 0. We have

U(ih[éz’ Ql])’h:o = {Gzlh=0, G1}x = 0°(Ho)lh=0 G2lh=0 + o"(H1)Ih=001 + 0"(H2)lh=0.
Observe now that we have
{Bolheo, B}y = £2l0 + &nl1 + T2, with [j € S(M, gmr), | =1,2,3.
As we have;3{Galh-0, d1}x = {&2ln-0, B1}x © &, it follows that
o(FHjlheo =" 0%, j=1,2,3.
Note thaté} = &alh-0/C — @zlh-0 andé, = &1/(2C0x,¢) — a1/dx,p. This yields

{Bolh-0. B1}x = Baln-olo + Bal1 + 2. with Ij € S(M), gm7). | = 1,2,3,

and we have

nlo ok = o(Ho)lh=o € S((S), 7)., 11 ok = o(H1)lh=o € S(M7, Im.7),
and 7%l o k = o(Ha)lh-0 € S(SHMZ, gu.7).-

In particular we note thdp = B2|h-o.
Here we shall use the time variatile [0, T] instead ofs for compactness reasons. Assume that
(t, x, 7, &) is such that

(a2 + (9x.9)?Baln=0)(S(1), X, 7,€') = 0.

Then, choosing, = —(a1/(¥%))(S(t), X, 7,&") we haveai(s(t), X, 7, €) = &lh-0(S(1), X, 7, ¢) = 0. It follows
thatl, = B2lh-0 > O at the considered point by Assumptioz. Sincd, (%, 7, £) is in the compact set
[0, T] x K, we thus obtain|n-¢ > C for u sufficiently large.

We now relax the conditioh = h" = 0 and leth’, h’ > 0. First note that the generated perturbatiomgn
is i a(9)17 (9)¢(X)/(c(s, X)n(9)?) € S(1, gms) and corresponds to a bounded perturbatidri8((s)?, gm.7)

2
for g,. This perturbation ira, yields a perturbation iph’S(1, gmy) fory%.

Note that we have
{02, Ui tx — {C2lheo, G }x € 'S, gmr).

In the computation of[Q,, Qu] in the formHoD2 + HiDy, + Ho letting ' > 0 thus only &ectso(Hy)
by a term inh'S((s)%, gm7) + hS(MZ, gw ) making also use of[ (Al9). Writing[Q,, Q1] in the form
HoQ: + H1Q; + Hy transfers that perturbation to(H,) with an additional term i/ S((s)2, gm.7-)o-(Ho)
thus inh'S((s)3, gm.7-). We finally obtain a perturbation iV S(1, gmr)) + hS(S)™*Me., gmry) for B2. In
particular, this perturbation is bounded with respect,tasmy is bounded in the cagér, £')| < R. Since
we havev|,-o > C > 0 we obtain that > C’ > 0 for h andh’ sufficiently small. This concludes the case
I(r.&) <R u
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A.20. Proof of Lemma@ We havel)( | < C. Next, let us consider the derlvatlvepi’ with respect to
s. We have
4

0sx8(s, %, 7, &) = [0 (s %, 7, &', h = Ol xy, o pd bsxné¢ h= 0)|_C I)c oud(s x7.&,h=0),

sinceya1 € S(A%,g1.7). As the support of, is compacp?d is bounded in the support of the expression and
so ardr| and|¢’| by Lemmg[3.25. It follows that

Oy B(s X 7.&) < CA9 A, vER.

A similar reasoning is applied to other partial derivativéis the casey, € %:°(R) we then furthermore
haveLy | < C, a7 foranyv € R. The same applies to timay, gms-calculus. ]

A.21. Proof of Lemma @ We shall write the proof for op(% y2)yo(u%). It follows very similarly for
op(1- x2)y1(u). )

We setyp(u?) = (s)2y0(u?). Thenyp(u®) = op(A;})yo(u?). Following the notation of the proof of
Lemmatg3]5 anff 3.7, we hayg(d) = R op(A7)o(u?), whereR = op(Ar) op(A;?) € W(1,gr7). We
write

op(1- x2)¥o(u?) = R*Rop(1- x2)R ™ op(Ar)o(u) = y1 + z,

where

y1 = RMR op(1- x2)IR P op(A7)jo(u?), 21 = R op(L- x2) op(As)Fo(ud).
We find
(A.10) 121l < ClOp(1—x2) OP(AT)(9)Fyo(U)ly < C' N iVlxmorl < €2 (1Ml + [IDy, Vi)

for anyk € N, from the tangentialDO calculus (see formu@.Z) since supp(kz) N supp(y*) = 0 and
yo(u?) = uly —o = 0p(x*)Vix.0+, and by use of the trace formufa (B.1).
We have R op(1- x2)] = hRi € hy(A7*, ga7) andys = hR?RRR ™ op(A7)7o(U) = y2 + 2 with

y2 = hRZ[R RR ™ op(A7)io(u?), 2 = hR?Ry op(As)7o(u?).

Similarly we have an estimate ft®|, of the same form as that @], in (A.10) and by induction for any
k > 2 we find op(1- y2)7o(u) = Yk + z1 + - - - + z With z, . . ., Z also satisfying such an estimate and

Yk = "RFRR op(A7)7o(u?) = KR RFo(u?),
with R € W(AZX, ga.7)- It follows that

1Yo < CHIRFo(U)lo < C'MVix=01 o,
by Lemma[3]7 and Lemn{a .6 for aky N. We conclude by using the trace formufa]3.1). "

A.22. Proof of Proposition . We begin by proving Points (1) and (3). (Point (2) is a consege of
(1).) If I3 = 0 this simply means tha®; = M andJ; = L = {1}. Assume now that for somle > 1
we haveJ; # Landl, # 0forall £ < k—1. Letji1 € L\ Jeyg, let xi € Q, and we fixxg € Q.
By connexion, there exists a continuous pafh) in M such thate(0) = X, anda(1l) = x;. Denote by
Q={tel0,1], a(t) ¢ Ujes, Qj}, we have 1e Q, Q; being a neighborhood o, 0 ¢ Q we deduce that

to = inf Q > 0. Obviously there eX|st;sg € Jk_1 such that(tg) € Q,z and there exist > 0, j3 ¢ Jk-1 such
thatVt € (to, to + 6), a(t) € Qj,. This means that(to) € T'j,j,.

We havej; € ly_1. Infact, if j2 ¢ k-1, @aSj2 € J1, we havej, € |y, for somek, < k- 2. However
[j,j, # 0; this impliesjsz € ly,+1, which in turn givesjz € J-1. This thus yields a contradiction.

It then follows thatjz € Ix andlx # 0. Hence, we have proved thak]x is a increasing sequence of
subset in the finite sét. This implies that there existg such thatl, = L.
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Proof of (4). Letj € I and leti be such thal’j; # 0. If i € I, wheref < k-2 asIj; # 0 we then have
j € lgi1, which is in contradiction with € Iy as¢+ 1 < k—1. Now, ifi € Jy we have € l,_1 U ly; if i ¢ Jg,
asTij; # 0 andj € Iy, we have € l,1 by the definition of the setdx. [ |
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