
HAL Id: hal-00397216
https://hal.science/hal-00397216

Submitted on 23 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An integrated object-oriented approach for parallel CFD
Dominique Eyheramendy, David Loureiro, Fabienne Oudin-Dardun

To cite this version:
Dominique Eyheramendy, David Loureiro, Fabienne Oudin-Dardun. An integrated object-oriented
approach for parallel CFD. PARCFD 2008 - 20th International Conference on Parallel Computa-
tional Fluid Dynamics, May 2008, Lyon, France. pp.275-283, �10.1007/978-3-642-14438-7_29�. �hal-
00397216�

https://hal.science/hal-00397216
https://hal.archives-ouvertes.fr

An integrated object-oriented approach for parallel
CFD

Dominique Eyheramendy1,David Loureiro2, Fabienne Oudin-Dardun3

1 Ecole Centrale Marseille LMA-CNRS, Technopôle de Château-Gombert 38 rue Frédéric
Joliot Curie, 13451 Marseille, France
dominique.eyheramendy@ec-marseille.fr

2 LIP/ENS-LYON/INRIA/CNRS/UCBL, 46 Allée d’Italie, 69364 Lyon, France
david.loureiro@ens-lyon.fr

3 Université de Lyon, Université Lyon 1, CNRS UMR5208, Institut Camille Jordan,
CDCSP-ISTIL, 15 Blvd Latarget, 69622 Villeurbanne, France
fabienne.oudin@univ-lyon1.fr

Abstract. In this paper, we present a global computer science approach to deal with
parallel computations. The proposed approach consists in managing at the same level
either multithreading or distributed strategies, whatever the computation may be. The
integration of the concept is held in a Java framework which proposes both, a pure
object-oriented paradigm and, convenient libraries to deal with threads management
and communications schemes. The approach is illustrated on a domain decomposi-
tion method for a Navier-Stokes flow.
Keywords: Finite elements, object-oriented programming, domain decomposition,
multi-threaded computing, distributed computing.

1 Introduction

In this paper, we present the key ideas of a Java application to a finite element code.
This approach is based on the reusability of code and the portability of application
in the case of parallel application. The key idea of the developments is that the par-
allel algorithms are programmed within the application using a single programming
concept and a single language. In classical approaches, the programming language
(C, C++, Fortran) is associated to additional libraries such as PVM or MPI. Exist-
ing libraries in the Java environment are used here. Thus, the maintenance of the
application is made easier, which is important from an industrial point of view. The
proposed approach offers the advantage of a high level of reusability of the different
parts of the code whatever the computational strategy is. The consequence of it is a
high reliability of the software for domain decomposition methods. This reliability is
obtained through a classical object-oriented paradigm which allows the programmer

1

to separate the management of finite elements data, the solution algorithms, the man-
agement of different processes and the communication schemes.

In section 2, we give a state of the art for Java applications in Computational Me-
chanics that most often includes parallel computations. In section 3, we described
two different implementations of an overlapping Schwarz domain decomposition
method within the same finite element code. In section 4, we give a numerical appli-
cation that has been run using the same code on different systems.

2 Java in Computational Mechanics

Until now, most of the developments in Java computational mechanics have been
considered by the computational science community, in general concerned by par-
allel computations. In the domain of numerical computations, Java retained some
attention for its networking capabilities and its Internet easy portability. E.g. in [1], a
trivial application based on a boundary element method has been developed. Similar
developments may be found directly on the Internet, including basic finite element
applications, such as in [2] for an application of fracture mechanics. In the compu-
tational mechanics community, Java is often considered as a simple tool to produce
applications on the Internet and/or to effectuate computation on the network. For ex-
ample, Java kind technologies are often used to couple and manage traditional codes
written in C/C++/Fortran. This permits the developers to use ancient codes or part
of code in coupled applications. A consequence of it is to keep a real computational
efficiency. E.g. in [3], an interactive finite element application based on a coupled
C++/Java is described. Comparative tests with FORTRAN and C are conducted on
small problems using direct solvers based on tensor computations; this aims at illus-
trating the high efficiency computational potential of Java. In [4], the development
of GUIs is put in prominent position on an unstructured mesh generator. In [5], the
Java code CartaBlanca is presented. It is an environment for distributed computa-
tions of complex multiphase flows. Based on a finite volume approach, a solution
scheme based on a Newton-Krylov algorithm is described. The code exhibits good
performances. A similar environment has been developed to simulate electromag-
netisms problems in [6]. Both applications show the high potential of the approach
to design more complex and general computational tools in mechanics for example.
These developments exhibit the networking facilities provided in Java. A large num-
ber of publications shows the interest of Java and its efficiency: direct solution of
linear systems [7], FFT and iterative and direct linear systems solvers on Euler type
flows [8], solution of Navier-Stokes flows [9] and [10]. Again, in all these papers,
multiprocesses’ management and networking capabilities of Java are put forward. In
[8], [9] and [11], performances of Java are tested on simple matrix/vector products.
Compared to C/C++ code, only 20 to 30% of efficiency is lost. More recently, the de-
scription of a finite element code in Java was proposed in [12]. The proposed design
remains rather similar to the existing ones based on classical object-oriented ap-
proaches. Nevertheless, this paper shows that it is possible to develop a global code
based on a pure Java approach. The latter can be applied to design large complex

2

applications in computational mechanics taking into account complexity in modern
computational mechanics: multiscale, multiphysics and multiprocesses applications.
Firstly, enhanced and homogeneous data organization schemes to deal with com-
plexity are proposed in Java. Secondly, developing a global application in a uniform
environment including all the libraries needed is somehow an attractive idea for sci-
entists and industrials. It is worth noting that similar approaches exist in C# (e.g. see
[15], [16]). This brief analysis shows that even if performances do not achieve the
one of C/C++/Fortran but get close to a certain extent, Java or similar approaches can
be used in computational mechanics including CFD. These strategies offer the main
advantage to design the simulation tools such a way that the technical strategies and
the numerical algorithms are integrated in a seamless way.

3 Schwarz multiplicative multithreaded and distributed
applications

The Schwarz multiplicative algorithm is described in [11]. In Fig. 1, the same de-
composed domain is shown to be solved in a multi-threaded application or in a dis-
tributed application. Solving both problems is made through the same basic code
for the physics and numerical algorithm. A description of the code goes beyond the
scope of this paper and can be found in [13], [17] and [18]. The description of the
multithreaded application is given in [17]. As shown in Fig. 1, the general structure
of the code organization is the same. In the distributed version, the global Schwarz al-
gorithm is managed through a thread located on the computer 1. The algorithm lies in
two points: the management of the domains located on alternative computers and the
communication schemes between these domains located on various computers. The
global management is held by the way of distributed objects. The Java RMI package
is used for that purpose. It permits the programmer to keep a natural and homoge-
neous organization of classes to deal with the domain decomposition algorithm. The
consequence of it is to keep exactly the same structure as in both algorithms, man-
aging real objects in the one case, and distributed objects in the other case. The later
remains seamless for the programmer. The Schwarz algorithm is given in both cases
as follows (programming details are omitted in the following code):
public void solve()
{

// . . . INITIALIZING OF THE SOLVER
for(int it = 0; (it < maxIteration) && (! iteration.converged()); it++)
{

for(int color = 0 ; color < 2 ; color++)
{

int anteColor = (color + 1) % 2 ;
//**************** solution *****************
// SOLUTION BLOCK OMMITED
//*************** exchanges ****************
// EXCHANGES BLOCK OMMITED

3

//***
}
// FINALIZING THE ITERATIONS
// . . .

}
}

Schwarz
Multiplicative

Algorithm

Schwarz
Multiplicative

Algorithm

Thread 0

T
hread

2
T

hread
T

hread
T

hread

Computer 1

Multi-threaded application

Computer 1

Domain 1

C
om

pt.
2

3
4

5
3

4
5

C
om

pt.
C

om
pt.

C
om

pt.

Domain 2

Domain 2

Domain 4

Domain 1

Domain 2

Domain 2

Domain 4

Distributed application

Global
synchronization

of the
computations:
distant object
management by
independent
processes

Global
synchronization

of the
compinations:
distant object
management by
independent
processes

Fig. 1. Multi-threaded application versus distributed application.

The major differences between both approaches remain the initialization phases in
the different threads (solution, exchanges,. . .). We give here the example of the
thread creation to solve the physical problem for a given domain:
Thread threadii = new Thread (new Runnable ()

{

4

int number = Ni ;
public void run()
{

domains[number].solveSchwarz () ;
}

}) ;
The variable called domains[number] represents the domain (numbered number) to
be solved at a given time. In the distributed version, the same piece of code becomes:
Thread threadii = new Thread(new Runnable()

{
public void run() {

try {
((ServerDomain) listOfServerDomain.get(indice0a)).solveSchwarz();

} catch (RemoteException e) { }
}

});
In this piece of code, the equivalent domain is called using the code: listOfServer-
Domain.get(indice0a) but the global scheme remains the same. In the first approach,
the domain is located in the same memory space, as in the second approach, it is
located on a separate computer. The lack of efficiency in communication schemes is
the main drawback of the use of RMI distributed objects. The latter is not a problem
for the management of the global Schwarz algorithm but produces a bottleneck when
exchanging data. This is the reason why communications are programmed using the
Socket Java class which a point to point communication scheme. This scheme is im-
plemented at the level of boundary conditions object where the information provided
by the neighbor domain id needed. Once again, only a local modification is needed
within the global framework. For illustration purposes, both schemes are applied to
a Navier-Stokes flow. For programming details in Java, the reader may refer to [19].

4 Numerical application

To illustrate both approaches, we study a Galerkin Navier-Stokes formulation sta-
bilized by adding least-squares type terms. The equations of the problem and the
formulation are presented in Fig. 2. Linearization of the problem is introduced in a
Newton like scheme in the Schwarz multiplicative scheme. A direct linear system
solver based on a Crout decomposition is used to solve the linear system at each
iteration. Note, the same code is compiled once and run on all systems. The multi-
threaded version of code is run on a SGI Altix 16-processors Itanium2 1.3Ghz, 32
Go of RAM. The distributed version is run on a set of simple cluster of PC linked
by a classical network. The code used for both applications is exactly the same. The
global solution algorithm and the boundary conditions in charge of the communica-
tion scheme are of course not the same. The formulation is applied to the computation
of a flow through a set of cylinders shown in Fig. 3. The domain is a periodic layer
of cylinders. Numerical results are given in Fig. 3. First, the pressure contour on a

5

typical cell is plotted. Secondly, the mean velocity computed overall the domain is
given with respect to the gradient of pressure over the cell in the direction of the
main flow. The latter represent the homogenized flow through the cylinders. For low
velocities, the relation between the mean velocity and the gradient of pressure is lin-
ear. From a global point of view this can be assimilated to a Darcy’s flow. But as
far as the mean velocity is increasing the linearity disappears. The advection term
is no more negligible and the global flow cannot be assimilated to Darcy’s flow. It
shows the influence of the advection term on the homogenized flow, that cannot any
more considered as a linear Darcy’s flow. Filtration laws could be established such a
way. The same computation has been held using both approaches. From a practical
point of view, we show that the same code can be run on heterogeneous systems.
As both systems are different, we cannot compare the efficiency of both algorithms.
This goes beyond the scope of our qualitative test. We show here that we can easily
switch from a computer to another one without any problem using exactly the same
code and without compiling it. This feature can be very interesting from an industrial
point of view.

Fig. 2. Navier-Stokes model. Initial-boundary value problem and stabilized finite elements
formulation.

5 Conclusion

In this paper, we have presented two computational approaches based on the same
numerical algorithm, a Schwarz overlapping domain decomposition method. The

6

first approach is a multithreaded approach of the algorithm; the second one is a dis-
tributed version of it. In the first one, which is to be run on a share memory system, no
communication between the domains is needed. The second one is based on two dif-
ferent communication schemes. The first one permits a master to manage the global
Schwarz algorithm based on a classical object-oriented approach for distributed ob-
jects. Communications for data exchanges are implemented using classical sockets.
This point to point communication scheme allows us to achieve efficiency. The im-
plementation is held in Java which ensures the code to be run directly on all the
systems. The same code is run for both applications. The advantages of such an ap-
proach are:

1. from a programmer point of view: a single language and a single approach for
all the algorithms which means simplicity and reliability due to the fact that the
finite element core remains identical.

2. From a user point of view: the same code can be used on heterogeneous systems
depending on the availability of different systems.

We advocate that such an approach may simplify a lot the use of complex systems
for single applications. This opens new tracks in the design of code that can be used
in the context of either a shared memory system or a distributed memory system. In
this context, mixing both approaches within a single application, taking advantage of
the heterogeneous computers systems available at a given time is made possible in a
simple way.

[1] M. Nuggehally, Y.J. Lui, S.B. Chaudhari and P. Thampi, An internet-based
computing plateform for the boundary element method, Adv. In Engrg. Software,
34 (2003) 261-269.

[2] G.P. Nikishkov and H. Kanda, The development of a Java engineering applica-
tion for higher-order asymptotic analysis of crack-tip fields, Advances in Engi-
neering Software 30 (1999) 469-477.

[3] G.R. Miller, P. Arduino, J. Jang and C. Choi, Localized tensor-based solvers for
interactive finite element applications using C++ and Java, Comp. & Struct. 81
(2003) 423-437.

[4] R. Marchand, M. Charbonneau-Lefort and M. Dumberry, ARANEA, A program
for generating unstructured triangular meshes with a Java Graphics User interface,
Comp. Phys. Communications, 139 (2001) 172-185.

[5] N.T. Padial-Collins, W.B. VanderHeyden, D.Z. Zhang, E.D. Dendy and D.
Livescu, Parallel operation of CartaBlanca on shared and distributed memory
computers, Concurrency and Computation: Practice and Experience 16 (2004)
61-77.

[6] L. Baduel, F. Baude, D. Caromel, C. Delb, N. Gama, S. El Kasmi and S.
Lanteri, A parallel object-oriented application for 3-D electromagnetism, ECCO-
MAS 2004, Jyvskyl, Finland (2004).

[7] G.P. Nikishkov, Y.G Nikishkov and V.V Savchenko, Comparison of C and Java
performance in finite element computations, Computer & Structures, 81 (2003)
2401-2408.

7

Fig. 3. Flow through cylinders. Computational domain, decomposed domain, numerical re-
sults: detail of iso-pressures, curve velocity/gradient of pressure (Experiment and simulation).

[8] J.M. Bull, L. A. Schmith, L. Pottage and R. Freeman, Benchmarking Java against
C and Fortran for Scientific Applications, Joint ACM JavaGrande - ISCOPE 2001
Conference, Stanford Universtity, June 2-4, 2001.

[9] J. Huser, T. Ludewig, R.D. Williams, R. Winkelmann, T. Gollnick, S. Brunett
and J. Muylaert, A test suite for high-performance parallel Java, Advances in En-
gineering Software, 31 (2000) 687-696.

[10] C.J. Riley, S. Chatterjee and R. Biswas, High-performance Java codes for com-
putational fluid dynamics, Concurrency and Computation: Practice and Experi-
ence 15 (2003) 395-415.

[11] D. Eyheramendy, Object-oriented parallel CFD with JAVA, 15th International
Conference on Parallel Computational Fluid Dynamics, Eds. Chetverushkin, Ecer,
Satofuka, Priaux, Fox, Ed. Elsevier, (2003) pp. 409-416.

[12] D. Eyheramendy, Advanced object models for mathematical consistency en-
forcement in scientific computing, WSEAS Transactions on Mathematics, vol. 4,
N◦ 4, (2005), pp. 457-463.

[13] D. Eyheramendy, High abstraction level frameworks for the next decade in
computational mechanics, Innovation in Engineering Computational Technology,
Eds. B.H.V. Topping, G. Montero and R. Montenegro, c©Saxe-Cobourg Publica-
tions, Chap. 3, (2006) pp. 41-61.

8

[14] G.P.Nikishkov, Object oriented design of a finite element code in Java. Com-
puter Modeling in Engineering and Sciences 11 (2006) pp. 81-90.

[15] R.I. Mackie, Object-oriented design of pre-conditionned iterative equation
solvers using .NET, Proceedings of 5th Int. Conf. on Engineering Computational
Technology, Las Palmas de Gran Canaria, Spain, 12-15 Sept. 2007.

[16] R.I. Mackie, Lessons learnt from using .NET for distributed finite element anal-
ysis, Proceedings of 11th Int. Conf. on Civil, Structural and Environmental Engi-
neering Computing, St. Julians, Malta, 18-21 Sept. 2007.

[17] D. Eyheramendy and F. Oudin, Advanced object-oriented techniques for cou-
pled multiphysics, In Civil Engineering Computation: Tools and Techniques, Ed.
B.H.V. Topping, c©Saxe-Cobourg Publications, ISBN 978-1-874672-32-6 Chap.
3, (2007) pp. 37-60.

[18] D. Eyheramendy, Advanced object models for mathematical consistency en-
forcement in scientific computing, WSEAS Transactions on Mathematics, vol. 4,
N◦ 4, (2005), pp. 457-463.

[19] D. Flanagan, Java in a Nutshell, Fourth edition, Ed. O’reilly (2002).

9

