ON PROPER \mathbb{R} -ACTIONS ON HYPERBOLIC STEIN SURFACES by Christian Miebach & Karl Oeljeklaus **Abstract.** — In this paper we investigate proper \mathbb{R} -actions on hyperbolic Stein surfaces and prove in particular the following result: Let $D \subset \mathbb{C}^2$ be a simply-connected bounded domain of holomorphy which admits a proper \mathbb{R} -action by holomorphic transformations. The quotient D/\mathbb{Z} with respect to the induced proper \mathbb{Z} -action is a Stein manifold. A normal form for the domain D is deduced. ## 1. Introduction Let X be a Stein manifold endowed with a real Lie transformation group G of holomorphic automorphisms. In this situation it is natural to ask whether there exists a G-invariant holomorphic map $\pi \colon X \to X/\!\!/ G$ onto a complex space $X/\!\!/ G$ such that $\mathcal{O}_{X/\!\!/ G} = (\pi_* \mathcal{O}_X)^G$ and, if yes, whether this quotient $X/\!\!/ G$ is again Stein. If the group G is compact, both questions have a positive answer as is shown in [**Hei91**]. For non-compact G even the existence of a complex quotient in the above sense of X by G cannot be guaranteed. In this paper we concentrate on the most basic and already non-trivial case $G = \mathbb{R}$. We suppose that G acts properly on X. Let $\Gamma = \mathbb{Z}$. Then X/Γ is a complex manifold and if, moreover, it is Stein, we can define $X/\!\!/ G := (X/\Gamma)/\!\!/ (G/\Gamma)$. The following was conjectured by Alan Huckleberry. Let X be a contractible bounded domain of holomorphy in \mathbb{C}^n with a proper action of $G = \mathbb{R}$. Then the complex manifold X/Γ is Stein. In [FI01] this conjecture is proven for the unit ball and in [Mie08] for arbitrary bounded homogeneous domains in \mathbb{C}^n . In this paper we make a first step towards a proof in the general case by showing **Theorem**. — Let D be a simply-connected bounded domain of holomorphy in \mathbb{C}^2 . Suppose that the group \mathbb{R} acts properly by holomorphic transformations on D. Then the complex manifold D/\mathbb{Z} is Stein. Moreover, D/\mathbb{Z} is biholomorphically equivalent to a domain of holomorphy in \mathbb{C}^2 . The authors would like to thank Peter Heinzner and Jean-Jacques Loeb for numerous discussions on the subject. As an application of this theorem we deduce a normal form for domains of holomorphy whose identity component of the automorphism group is non-compact as well as for proper \mathbb{R} -actions on them. Notice that we make no assumption on smoothness of their boundaries. We first discuss the following more general situation. Let X be a hyperbolic Stein manifold with a proper \mathbb{R} -action. Then there is an induced local holomorphic \mathbb{C} -action on X which can be globalized in the sense of [HI97]. The following result is central for the proof of the above theorem. **Theorem.** — Let X be a hyperbolic Stein surface with a proper \mathbb{R} -action. Suppose that either X is taut or that it admits the Bergman metric and $H^1(X,\mathbb{R})=0$. Then the universal globalization X^* of the induced local \mathbb{C} -action is Hausdorff and \mathbb{C} acts properly on X^* . Furthermore, for simply-connected X one has that $X^* \to X^*/\mathbb{C}$ is a holomorphically trivial \mathbb{C} -principal bundle over a simply-connected Riemann surface. Finally, we discuss several examples of hyperbolic Stein manifolds X with proper \mathbb{R} -actions such that X/\mathbb{Z} is not Stein. If one does not require the existence of an \mathbb{R} -action, there are bounded Reinhardt domains in \mathbb{C}^2 with proper \mathbb{Z} -actions for which the quotients are not Stein. ## 2. Hyperbolic Stein \mathbb{R} -manifolds In this section we present the general set-up. **2.1.** The induced local \mathbb{C} -action and its globalization. — Let X be a hyperbolic Stein manifold. It is known that the group $\operatorname{Aut}(X)$ of holomorphic automorphisms of X is a real Lie group with respect to the compact-open topology which acts properly on X (see [Kob98]). Let $\{\varphi_t\}_{t\in\mathbb{R}}$ be a closed one parameter subgroup of $\operatorname{Aut}(D)$. Consequently, the action $\mathbb{R} \times X \to X$, $t \cdot x := \varphi_t(x)$, is proper. By restriction, we obtain also a proper \mathbb{Z} -action on X. Since every such action must be free, the quotient X/\mathbb{Z} is a complex manifold. This complex manifold X/\mathbb{Z} carries an action of $S^1 \cong \mathbb{R}/\mathbb{Z}$ which is induced by the \mathbb{R} -action on X. Integrating the holomorphic vector field on X which corresponds to this \mathbb{R} -action we obtain a local \mathbb{C} -action on X in the following sense. There are an open neighborhood $\Omega \subset \mathbb{C} \times X$ of $\{0\} \times X$ and a holomorphic map $\Phi \colon \Omega \to X$, $\Phi(t,x) =: t \cdot x$, such that the following holds: - (1) For every $x \in X$ the set $\Omega(x) := \{t \in \mathbb{C}; (t, x) \in \Omega\} \subset \mathbb{C}$ is connected; - (2) for all $x \in X$ we have $0 \cdot x = x$; - (3) we have $(t + t') \cdot x = t \cdot (t' \cdot x)$ whenever both sides are defined. Following [Pal57] (compare [HI97] for the holomorphic setting) we say that a globalization of the local \mathbb{C} -action on X is an open \mathbb{R} -equivariant holomorphic embedding $\iota\colon X\hookrightarrow X^*$ into a (not necessarily Hausdorff) complex manifold X^* endowed with a holomorphic \mathbb{C} -action such that $\mathbb{C}\cdot\iota(X)=X^*$. A globalization $\iota\colon X\hookrightarrow X^*$ is called universal if for every \mathbb{R} -equivariant holomorphic map $f\colon X\to Y$ into a holomorphic \mathbb{C} -manifold Y there exists a holomorphic \mathbb{C} -equivariant map $F\colon X^*\to Y$ such that the diagram commutes. It follows that a universal globalization is unique up to isomorphism if it exists. Since X is Stein, the universal globalization X^* of the induced local \mathbb{C} -action exists as is proven in [HI97]. We will always identify X with its image $\iota(X) \subset X^*$. Then the local \mathbb{C} -action on X coincides with the restriction of the global \mathbb{C} -action on X^* to X. Recall that X is said to be orbit-connected in X^* if for every $x \in X^*$ the set $\Sigma(x) := \{t \in \mathbb{C}; t \cdot x \in X\}$ is connected. The following criterion for a globalization to be universal is proven in [CTIT00]. **Lemma 2.1**. — Let X^* be any globalization of the induced local \mathbb{C} -action on X. Then X^* is universal if and only if X is orbit-connected in X^* . **Remark.** — The results about (universal) globalizations hold for a bigger class of groups ([CTIT00]). However, we will need it only for the groups \mathbb{C} and \mathbb{C}^* and thus will not give the most general formulation. For later use we also note the following **Lemma 2.2**. — The \mathbb{C} -action on X^* is free. *Proof.* — Suppose that there exists a point $x \in X^*$ such that \mathbb{C}_x is non-trivial. Because of $\mathbb{C} \cdot X = X^*$ we can assume that $x \in X$ holds. Since \mathbb{C}_x is a non-trivial closed subgroup of \mathbb{C} , it is either a lattice of rank 1 or 2, or \mathbb{C} . The last possibility means that x is a fixed point under \mathbb{C} which is not possible since \mathbb{R} acts freely on X. We observe that the lattice \mathbb{C}_x is contained in the connected \mathbb{R} -invariant set $\Sigma(x) = \{t \in \mathbb{C}; t \cdot x \in X\}$. By \mathbb{R} -invariance $\Sigma(x)$ is a strip. Since X is hyperbolic, this strip cannot coincide with \mathbb{C} . The only lattice in \mathbb{C} which can possibly be contained in such a strip is of the form $\mathbb{Z}r$ for some $r \in \mathbb{R}$. Since this contradicts the fact that \mathbb{R} acts freely on X, the lemma is proven. Note that we do not know whether X^* is Hausdorff. In order to guarantee the Hausdorff property of X^* , we make further assumptions on X. The following result is proven in [Ian03] and [IST04]. **Theorem 2.3**. — Let X be a hyperbolic Stein manifold with a proper \mathbb{R} -action. Suppose in addition that X is taut or admits the Bergman metric. Then X^* is Hausdorff. If X is simply-connected, then the same is true for X^* . We refer the reader to Chapter 4.10 and Chapter 5 in [Kob98] for the definitions and examples of tautness and the Bergman metric. **Remark.** — Every bounded domain in \mathbb{C}^n admits the Bergman metric. **2.2.** The quotient X/\mathbb{Z} . — We assume from now on that X fulfills the hypothesis of Theorem 2.3. Since X^* is covered by the translates $t \cdot X$ for $t \in \mathbb{C}$ and since the action of \mathbb{Z} on each domain $t \cdot X$ is proper, we conclude that the quotient X^*/\mathbb{Z} fulfills all axioms of a complex manifold except for possibly not being Hausdorff. We have the following commutative diagram: $$\begin{array}{ccc} X & \longrightarrow X^* \\ \downarrow & & \downarrow \\ X/\mathbb{Z} & \longrightarrow X^*/\mathbb{Z}. \end{array}$$ Note that the group $\mathbb{C}^* = (S^1)^{\mathbb{C}} \cong \mathbb{C}/\mathbb{Z}$ acts on X^*/\mathbb{Z} . Concretely, if we identify \mathbb{C}/\mathbb{Z} with \mathbb{C}^* via $\mathbb{C} \to \mathbb{C}^*$, $t \mapsto e^{2\pi i t}$, the quotient map $p \colon X^* \to X^*/\mathbb{Z}$ fulfills $p(t \cdot x) = e^{2\pi i t} \cdot p(x)$. **Lemma 2.4**. — The induced map $X/\mathbb{Z} \hookrightarrow X^*/\mathbb{Z}$ is the universal globalization of the local \mathbb{C}^* -action on X/\mathbb{Z} . *Proof.* — The open embedding $X \hookrightarrow X^*$ induces an open embedding $X/\mathbb{Z} \hookrightarrow X^*/\mathbb{Z}$. This embedding is S^1 -equivariant and we have $\mathbb{C}^* \cdot X/\mathbb{Z} = X^*/\mathbb{Z}$. This implies that X^*/\mathbb{Z} is a globalization of the local \mathbb{C}^* -action on X/\mathbb{Z} . In order to prove that this globalization is universal, by the globalization theorem in [CTIT00] it is enough to show that X/\mathbb{Z} is orbit-connected in X^*/\mathbb{Z} . Hence, we must show that for every $[x] \in X/\mathbb{Z}$ the set $\Sigma([x]) := \{t \in \mathbb{C}^*; t \cdot [x] \in X/\mathbb{Z}\}$ is connected in \mathbb{C}^* . For this we consider the set $\Sigma(x) = \{t \in \mathbb{C}; t \cdot x \in X\}$. Since the map $X \to X/\mathbb{Z}$ intertwines the local \mathbb{C} - and \mathbb{C}^* -actions, we conclude that $t \in \Sigma(x)$ holds if and only if $e^{2\pi it} \in \Sigma([x])$ holds. Since X^* is universal, $\Sigma(x)$ is connected which implies that $\Sigma([x])$ is likewise connected. Thus X^*/\mathbb{Z} is universal. **Remark**. — The globalization X^*/\mathbb{Z} is Hausdorff if and only if \mathbb{Z} or, equivalently, \mathbb{R} act properly on X^* . As we shall see in Lemma 3.3, this is the case if X is taut. **2.3.** A sufficient condition for X/\mathbb{Z} to be Stein. — If dim X=2, we have the following sufficient condition for X/\mathbb{Z} to be a Stein surface. **Proposition 2.5**. — If the \mathbb{C} -action on X^* is proper and if the Riemann surface X^*/\mathbb{C} is not compact, then X/\mathbb{Z} is Stein. *Proof.* — Under the above hypothesis we have the \mathbb{C} -principal bundle $X^* \to X^*/\mathbb{C}$. If the base X^*/\mathbb{C} is not compact, then this bundle is holomorphically trivial, i.e. X^* is biholomorphic to $\mathbb{C} \times R$ where R is a non-compact Riemann surface. Since R is Stein, the same is true for X^* and for $X^*/\mathbb{Z} \cong \mathbb{C}^* \times R$. Since X/\mathbb{Z} is locally Stein, see [Mie08], in the Stein manifold X^*/\mathbb{Z} , the claim follows from [DG60]. Therefore, the crucial step in the proof of our main result consists in showing that \mathbb{C} acts properly on X^* under the assumption dim X=2. ## 3. Local properness Let X be a hyperbolic Stein \mathbb{R} -manifold. Suppose that X is taut or that it admits the Bergman metric and $H^1(X,\mathbb{R}) = \{0\}$. We show that then \mathbb{C} acts locally properly on X^* . **3.1. Locally proper actions.** — Recall that the action of a Lie group G on a manifold M is called locally proper if every point in M admits a G-invariant open neighborhood on which the G acts properly. **Lemma 3.1**. — Let $G \times M \to M$ be locally proper. - (1) For every $x \in M$ the isotropy group G_x is compact. - (2) Every G-orbit admits a geometric slice. - (3) The orbit space M/G is a smooth manifold which is in general not Hausdorff. - (4) All G-orbits are closed in M. - (5) The G-action on M is proper if and only if M/G is Hausdorff. *Proof.* — The first claim is elementary to check. The second claim is proven in $[\mathbf{DK00}]$. The third one is a consequence of (2) since the slices yield charts on M/G which are smoothly compatible because the transitions are given by the smooth action of G on M. Assertion (4) follows from (3) because in locally Euclidean topological spaces points are closed. The last claim is proven in $[\mathbf{Pal61}]$. **Remark.** — Since \mathbb{R} acts properly on X, the \mathbb{R} -action on X^* is locally proper. 3.2. Local properness of the \mathbb{C} -action on X^* . — Recall that we assume that $$(3.1)$$ X is taut or that (3.2) X admits the Bergman metric and $H^1(X, \mathbb{R}) = \{0\}.$ We first show that assumption (3.1) implies that \mathbb{C} acts locally properly on X^* . Since X^* is the universal globalization of the induced local \mathbb{C} -action on X, we know that X is orbit-connected in X^* . This means that for every $x \in X^*$ the set $\Sigma(x) = \{t \in \mathbb{C}; t \cdot x \in X\}$ is a strip in \mathbb{C} . In the following we will exploit the properties of the thickness of this strip. Since $\Sigma(x)$ is \mathbb{R} -invariant, there are "numbers" $u(x) \in \mathbb{R} \cup \{-\infty\}$ and $o(x) \in \mathbb{R} \cup \{\infty\}$ for every $x \in X^*$ such that $$\Sigma(x) = \{ t \in \mathbb{C}; \ u(x) < \operatorname{Im}(t) < o(x) \}.$$ The functions $u: X^* \to \mathbb{R} \cup \{-\infty\}$ and $o: X^* \to \mathbb{R} \cup \{\infty\}$ so obtained are upper and lower semicontinuous, respectively. Moreover, u und o are \mathbb{R} -invariant and $i\mathbb{R}$ -equivariant: $$u(it \cdot x) = u(x) - t$$ and $o(it \cdot x) = o(x) - t$. **Proposition 3.2.** — The functions $u, -o: X^* \to \mathbb{R} \cup \{-\infty\}$ are plurisubharmonic. Moreover, u and o are continuous on $X^* \setminus \{u = -\infty\}$ and $X^* \setminus \{o = \infty\}$, respectively. *Proof.* — It is proven in [For96] that u and -o are plurisubharmonic on X. By equivariance, we obtain this result for X^* . Now we prove that the function $u: X \setminus \{u = -\infty\} \to \mathbb{R}$ is continuous which was remarked without complete proof in [Ian03]. For this let (x_n) be a sequence in X which converges to $x_0 \in X \setminus \{u = -\infty\}$. Since u is upper semi-continuous, we have $\limsup_{n\to\infty} u(x_n) \le u(x_0)$. Suppose that u is not continuous in x_0 . Then, after replacing (x_n) by a subsequence, we find $\varepsilon > 0$ such that $u(x_n) \le u(x_0) - \varepsilon < u(x_0)$ holds for all $n \in \mathbb{N}$. Consequently, we have $\Sigma(x_0) = \{t \in \mathbb{C}; u(x_0) < \operatorname{Im}(t) < o(x_0)\} \subset \Sigma := \{t \in \mathbb{C}; u(x_0) - \varepsilon < \operatorname{Im}(t) < o(x_0)\} \subset \Sigma(x_n)$ for all n and hence obtain the sequence of holomorphic functions $f_n \colon \Sigma \to X$, $f_n(t) := t \cdot x_n$. Since X is taut and $f_n(0) = x_n \to x_0$, the sequence (f_n) has a subsequence which compactly converges to a holomorphic function $f_0 \colon \Sigma \to X$. Because of $f_0(iu(x_0)) = \lim_{n\to\infty} f_n(iu(x_0)) = \lim_{n\to\infty} iu(x_0) \cdot x_n = iu(x_0) \cdot x_0 \notin X$ we arrive at a contradiction. Thus the function $u \colon X \setminus \{u = -\infty\} \to \mathbb{R}$ is continuous. By $(i\mathbb{R})$ -equivariance, u is also continuous on $X^* \setminus \{u = -\infty\}$. A similar argument shows continuity of $-o \colon X^* \setminus \{o = \infty\} \to \mathbb{R}$. \square Let us consider the sets $$\mathcal{N}(o) := \{ x \in X^*; \ o(x) = 0 \} \text{ and } \mathcal{P}(o) := \{ x \in X^*; \ o(x) = \infty \}.$$ The sets $\mathcal{N}(u)$ and $\mathcal{P}(u)$ are similarly defined. Since $X = \{x \in X^*; \ u(x) < 0 < o(x)\}$, we can recover X from X^* with the help of u and o. **Lemma 3.3**. — The action of \mathbb{R} on X^* is proper. *Proof.* — Let $\partial^* X$ denote the boundary of X in X^* . Since the functions u and -o are continuous on $X^* \setminus \mathcal{P}(u)$ and $X^* \setminus \mathcal{P}(o)$ one verifies directly that $\partial^* X = \mathcal{N}(u) \cup \mathcal{N}(o)$ holds. As a consequence, we note that if $x \in \partial^* X$, then for every $\varepsilon > 0$ the element $(i \varepsilon) \cdot x$ is not contained in $\partial^* X$. Let (t_n) and (x_n) be sequences in \mathbb{R} and X^* such that $(t_n \cdot x_n, x_n)$ converges to (y_0, x_0) in $X^* \times X^*$. We may assume without loss of generality that x_0 and hence x_n are contained in X for all n. Consequently, we have $y_0 \in X \cup \partial^* X$. If $y_0 \in \partial^* X$ holds, we may choose an $\varepsilon > 0$ such that $(i\varepsilon) \cdot y_0$ and $(i\varepsilon) \cdot x_0$ lie in X. Since the \mathbb{R} -action on X is proper, we find a convergent subsequence of (t_n) which was to be shown. \square **Lemma 3.4**. — We have: - (1) $\mathcal{N}(u)$ and $\mathcal{N}(o)$ are \mathbb{R} -invariant. - (2) We have $\mathcal{N}(u) \cap \mathcal{N}(o) = \emptyset$. - (3) The sets $\mathcal{P}(u)$ and $\mathcal{P}(o)$ are closed, \mathbb{C} -invariant and pluripolar in X^* . - (4) $\mathcal{P}(u) \cap \mathcal{P}(o) = \emptyset$. *Proof.* — The first claim follows from the \mathbb{R} -invariance of u and o. The second claim follows from u(x) < o(x). The third one is a consequence of the \mathbb{R} -invariance and $i\mathbb{R}$ -equivariance of u and o. If there was a point $x \in \mathcal{P}(u) \cap \mathcal{P}(o)$, then $\mathbb{C} \cdot x$ would be a subset of X which is impossible since X is hyperbolic. **Lemma 3.5**. — If o is not identically ∞ , then the map $$\varphi \colon i\mathbb{R} \times \mathcal{N}(o) \to X^* \setminus \mathcal{P}(o), \quad \varphi(it, z) = it \cdot z,$$ is an $i\mathbb{R}$ -equivariant homeomorphism. Since \mathbb{R} acts properly on $\mathcal{N}(o)$, it follows that \mathbb{C} acts properly on $X^* \setminus \mathcal{P}(o)$. The same holds when o is replaced by u. *Proof.* — The inverse map $$\varphi^{-1}$$ is given by $x \mapsto (-io(x), io(x) \cdot x)$. **Corollary 3.6**. — The \mathbb{C} -action on X^* is locally proper. If $\mathcal{P}(o) = \emptyset$ or $\mathcal{P}(u) = \emptyset$ hold, then \mathbb{C} acts properly on X^* . From now on we suppose that X fulfills the assumption (3.2). Recall that the Bergman form ω is a Kähler form on X invariant under the action of $\operatorname{Aut}(X)$. Let ξ denote the complete holomorphic vector field on X which corresponds to the \mathbb{R} -action, i. e. we have $\xi(x) = \frac{\partial}{\partial t}|_{0} \varphi_{t}(x)$. Hence, $\iota_{\xi}\omega = \omega(\cdot, \xi)$ is a 1-form on X and since $H^{1}(X, \mathbb{R}) = \{0\}$ there exists a function $\mu^{\xi} \in \mathcal{C}^{\infty}(X)$ with $d\mu^{\xi} = \iota_{\xi}\omega$. **Remark**. — This means that μ^{ξ} is a momentum map for the \mathbb{R} -action on X. **Lemma 3.7**. — The map $\mu^{\xi}: X \to \mathbb{R}$ is an \mathbb{R} -invariant submersion. *Proof.* — The claim follows from $$d\mu^{\xi}(x)J\xi_{x}=\omega_{x}(J\xi_{x},\xi_{x})>0.$$ **Proposition 3.8**. — The \mathbb{C} -action on X^* is locally proper. *Proof.* — Since μ^{ξ} is a submersion, the fibers $(\mu^{\xi})^{-1}(c)$, $c \in \mathbb{R}$, are real hypersurfaces in X. Then $$\frac{d}{dt}\bigg|_{0} \mu^{\xi}(it \cdot x) = \omega_{x}(J\xi_{x}, \xi_{x}) > 0$$ implies that every $i\mathbb{R}$ —orbit intersects $(\mu^{\xi})^{-1}(c)$ transversally. Since X is orbit-connected in X^* , the map $i\mathbb{R} \times (\mu^{\xi})^{-1}(c) \to X^*$ is injective and therefore a diffeomorphism onto its open image. Together with the fact that $(\mu^{\xi})^{-1}(c)$ is \mathbb{R} -invariant this yields the existence of differentiable local slices for the \mathbb{C} -action. **3.3. A necessary condition for** X/\mathbb{Z} **to be Stein.** — We have the following necessary condition for X/\mathbb{Z} to be a Stein manifold. **Proposition 3.9**. — If the quotient manifold X/\mathbb{Z} is Stein, then X^* is Stein and the \mathbb{C} -action on X^* is proper. *Proof.* — Suppose that X/\mathbb{Z} is a Stein manifold. By [CTIT00] this implies that X^* is Stein as well. Next we will show that the \mathbb{C}^* -action on X^*/\mathbb{Z} is proper. For this we will use as above a moment map for the S^1 -action on X^*/\mathbb{Z} . By compactness of S^1 we may apply the complexification theorem from [**Hei91**] which shows that X^*/\mathbb{Z} is also a Stein manifold and in particular Hausdorff. Hence, there exists a smooth strictly plurisubharmonic exhaustion function $\rho \colon X^*/\mathbb{Z} \to \mathbb{R}^{>0}$ invariant under S^1 . Consequently, $\omega := \frac{i}{2}\partial \overline{\partial} \rho \in \mathcal{A}^{1,1}(X^*)$ is an S^1 -invariant Kähler form. Associated to ω we have the S^1 -invariant moment map $$\mu \colon X^*/\mathbb{Z} \to \mathbb{R}, \quad \mu^{\xi}(x) := \frac{d}{dt} \bigg|_{0} \rho(\exp(it\xi) \cdot x),$$ where ξ is the complete holomorphic vector field on X^*/\mathbb{Z} which corresponds to the S^1 -action. Now we can apply the same argument as above in order to deduce that \mathbb{C}^* acts locally properly on X^*/\mathbb{Z} . We still must show that $(X^*/\mathbb{Z})/\mathbb{C}^*$ is Hausdorff. To see this, let $\mathbb{C}^* \cdot x_j$, j = 0, 1, be two different orbits in X^*/\mathbb{Z} . Since \mathbb{C}^* acts locally properly, these are closed and therefore there exists a function $f \in \mathcal{O}(X^*/\mathbb{Z})$ with $f|_{\mathbb{C}^* \cdot x_j} = j$ for j = 0, 1. Again we may assume that f is S^1 - and consequently \mathbb{C}^* -invariant. Hence, there is a continuous function on $(X^*/\mathbb{Z})/\mathbb{C}^*$ which separates the two orbits, which implies that $(X^*/\mathbb{Z})/\mathbb{C}^*$ is Hausdorff. This proves that \mathbb{C}^* acts properly on X^*/\mathbb{Z} . Since we know already that the \mathbb{C} -action on X^* is locally proper, it is enough to show that X^*/\mathbb{C} is Hausdorff. But this follows from the properness of the \mathbb{C}^* -action on X^*/\mathbb{Z} since $X^*/\mathbb{C} \cong (X^*/\mathbb{Z})/\mathbb{C}^*$ is Hausdorff. # 4. Properness of the \mathbb{C} -action Let X be a hyperbolic Stein \mathbb{R} -manifold. Suppose that X fulfills (3.1) or (3.2). We have seen that \mathbb{C} acts locally properly on X^* . In this section we prove that under the additional assumption dim X=2 the orbit space X^*/\mathbb{C} is Hausdorff. This implies that \mathbb{C} acts properly on X^* if dim X=2. **4.1. Stein surfaces with** \mathbb{C} -actions. — For every function $f \in \mathcal{O}(\Delta)$ which vanishes only at the origin, we define $$X_f := \{(x, y, z) \in \Delta \times \mathbb{C}^2; \ f(x)y - z^2 = 1\}.$$ Since the differential of the defining equation of X_f is given by $(f'(x)y \ f(x) - 2z)$, we see that 1 is a regular value of $(x, y, z) \mapsto f(x)y - z^2$. Hence, X_f is a smooth Stein surface in $\Delta \times \mathbb{C}^2$. There is a holomorphic \mathbb{C} -action on X_f defined by $$t \cdot (x, y, z) := (x, y + 2tz + t^2 f(x), z + t f(x)).$$ One can directly check that this defines an action. **Lemma 4.1**. — The \mathbb{C} -action on X_f is free, and all orbits are closed. Proof. — Let $t \in \mathbb{C}$ such that $(x, y + 2tz + t^2f(x), z + tf(x)) = (x, y, z)$ for some $(x, y, z) \in X_f$. If $f(x) \neq 0$, then z + tf(x) = z implies t = 0. If f(x) = 0, then $z \neq 0$ and y + 2tz = y gives t = 0. The map $\pi: X_f \to \Delta$, $(x, y, z) \mapsto x$, is \mathbb{C} -invariant. If $a \in \Delta^*$, then $f(a) \neq 0$ and we have $$\frac{z}{f(a)} \cdot (a, f(a)^{-1}, 0) = (a, y, z) \in X_f,$$ which implies $\pi^{-1}(a) = \mathbb{C} \cdot (a, f(a)^{-1}, 0)$. A similar calculation gives $\pi^{-1}(0) = \mathbb{C} \cdot p_1 \cup \mathbb{C} \cdot p_2$ with $p_1 = (0, 0, i)$ and $p_2 = (0, 0, -i)$. Consequently, every \mathbb{C} -orbit is closed. \square **Remark.** — The orbit space X_f/\mathbb{C} is the unit disc with a doubled origin and in particular not Hausdorff. We calculate slices at the point p_j , j = 1, 2, as follows. Let $\varphi_j : \Delta \times \mathbb{C} \to X_f$ be given by $\varphi_1(z,t) := t \cdot (z,0,i)$ and $\varphi_2(w,s) = s \cdot (w,0,-i)$. Solving the equation $s \cdot (w,0,-i) = t \cdot (z,0,i)$ for (w,s) yields the transition function $\varphi_{12} = \varphi_2^{-1} \circ \varphi_1 : \Delta^* \times \mathbb{C} \to \Delta^* \times \mathbb{C}$, $$(z,t) \mapsto \left(z, t + \frac{2i}{f(z)}\right).$$ The function $\frac{1}{f}$ is a meromorphic function on Δ without zeros and with the unique pole 0. **Lemma 4.2.** Let \mathbb{R} act on X_f via $\mathbb{R} \hookrightarrow \mathbb{C}$, $t \mapsto ta$, for some $a \in \mathbb{C}^*$. Then there is no \mathbb{R} -invariant domain $D \subset X_f$ with $D \cap \mathbb{C} \cdot p_j \neq \emptyset$ for j = 1, 2 on which \mathbb{R} acts properly. *Proof.* — Suppose that $D \subset X_f$ is an \mathbb{R} -invariant domain with $D \cap \mathbb{C} \cdot p_j \neq \emptyset$ for j = 1, 2. Without loss of generality we may assume that $p_1 \in D$ and $\zeta \cdot p_2 = (0, -2\zeta i, -i) \in D$ for some $\zeta \in \mathbb{C}$. We will show that the orbits $\mathbb{R} \cdot p_1$ and $\mathbb{R} \cdot (\zeta \cdot p_2)$ cannot be separated by \mathbb{R} -invariant open neighborhoods. Let $U_1 \subset D$ be an \mathbb{R} -invariant open neighborhood of p_1 . Then there are r, r' > 0 such that $\Delta_r^* \times \Delta_{r'} \times \{i\} \subset U_1$ holds. Here, $\Delta_r = \{z \in \mathbb{C}; |z| < r\}$. For $(\varepsilon_1, \varepsilon_2) \in \Delta_r^* \times \Delta_{r'}$ and $t \in \mathbb{R}$ we have $$t \cdot (\varepsilon_1, \varepsilon_2, i) = (\varepsilon_1, \varepsilon_2 + 2(ta)i + (ta)^2 f(\varepsilon_1), i + (ta)f(\varepsilon_1)) \in U_1.$$ We have to show that for all $r_2, r_3 > 0$ there exist $(\widetilde{\varepsilon_2}, \widetilde{\varepsilon_3}) \in \Delta_{r_2} \times \Delta_{r_3}$, $(\varepsilon_1, \varepsilon_2) \in \Delta_r^* \times \Delta_{r'}$ and $t \in \mathbb{R}$ such that (4.1) $$(\varepsilon_1, \varepsilon_2 + 2(ta)i + (ta)^2 f(\varepsilon_1), i + (ta)f(\varepsilon_1)) = (\varepsilon_1, -2\zeta i + \widetilde{\varepsilon_2}, -i + \widetilde{\varepsilon_3})$$ holds. Let $r_2, r_3 > 0$ be given. From (4.1) we obtain $\widetilde{\varepsilon}_3 = taf(\varepsilon_1) + 2i$ or, equivalently, $ta = \frac{\widetilde{\varepsilon}_3 - 2i}{f(\varepsilon_1)}$. Setting $\widetilde{\varepsilon}_2 = \varepsilon_2$ we obtain from $2(ta)i + (ta)^2 f(\varepsilon_1) = -2\zeta i$ the equivalent expression (4.2) $$f(\varepsilon_1) = -2i\frac{\zeta + ta}{(ta)^2}.$$ for $t \neq 0$. Choosing a real number $t \gg 1$, we find an $\varepsilon_1 \in \Delta_r^*$ such that (4.2) is fulfilled. After possibly enlarging t we have $\widetilde{\varepsilon_3} := taf(\varepsilon_1) + 2i = -2i\frac{\zeta}{ta} \in \Delta_{r_3}$. Together with $\varepsilon_2 = \widetilde{\varepsilon_2}$ equation (4.1) is fulfilled and the proof is finished. Thus, the Stein surface X_f cannot be obtained as globalization of the local \mathbb{C} -action on any \mathbb{R} -invariant domain $D \subset X_f$ on which \mathbb{R} acts properly. **4.2.** The quotient X^*/\mathbb{C} is Hausdorff. — Suppose that X^*/\mathbb{C} is not Hausdorff and let $x_1, x_2 \in X$ be such that the corresponding \mathbb{C} -orbits cannot be separated in X^*/\mathbb{C} . Since we already know that \mathbb{C} acts locally proper on X^* we find local holomorphic slices $\varphi_j \colon \Delta \times \mathbb{C} \to U_j \subset X$, $\varphi_j(z,t) = t \cdot s_j(z)$ at each $\mathbb{C} \cdot x_j$ where $s_j \colon \Delta \to X$ is holomorphic with $s_j(0) = x_j$. Consequently, we obtain the transition function $\varphi_{12} \colon (\Delta \setminus A) \times \mathbb{C} \to (\Delta \setminus A) \times \mathbb{C}$ for some closed subset $A \subset \Delta$ which must be of the form $(z,t) \mapsto (z,t+f(z))$ for some $f \in \mathcal{O}(\Delta \setminus A)$. The following lemma applies to show that A is discrete and that f is meromorphic on Δ . Hence, we are in one of the model cases discussed in the previous subsection. **Lemma 4.3**. — Let Δ_1 and Δ_2 denote two copies of the unit disk $\{z \in \mathbb{C}; |z| < 1\}$. Let $U \subset \Delta_j$, j = 1, 2, be a connected open subset and $f: U \subset \Delta_1 \to \mathbb{C}$ a non-constant holomorphic function on U. Define the complex manifold $$M := (\Delta_1 \times \mathbb{C}) \cup (\Delta_2 \times \mathbb{C}) / \sim,$$ where \sim is the relation $(z_1, t_1) \sim (z_2, t_2) :\Leftrightarrow z_1 = z_2 =: z \in U$ and $t_2 = t_1 + f(z)$. Suppose that M is Hausdorff. Then the complement A of U is discrete and f extends to a meromorphic function on Δ_1 . Proof. — We first prove that for every sequence (x_n) , $x_n \in U$, with $\lim_{n\to\infty} x_n = p \in \partial U$, one has $\lim_{n\to\infty} |f(x_n)| = \infty \in \mathbb{P}_1(\mathbb{C})$. Assume the contrary, i.e. there is a sequence (x_n) , $x_n \in U$, with $\lim_{n\to\infty} x_n = p \in \partial U$ such that $\lim_{n\to\infty} f(x_n) = a \in \mathbb{C}$. Choose now $t_1 \in \mathbb{C}$, consider the two points $(p, t_1) \in \Delta_1 \times \mathbb{C}$ and $(p, t_1 + a) \in \Delta_2 \times \mathbb{C}$ and note their corresponding points in M as q_1 and q_2 . Then $q_1 \neq q_2$. The sequences $(x_n, t_1) \in \Delta_1 \times \mathbb{C}$ and $(x_n, t_1 + f(x_n)) \in \Delta_2 \times \mathbb{C}$ define the same sequence in M having q_1 and q_2 as accumulation points. So M is not Hausdorff, a contradiction. In particular we have proved that the zeros of f do not accumulate to ∂U in Δ_1 . So there is an open neighborhood V of ∂U in Δ_1 such that the restriction of f to $W := U \cap V$ does not vanish. Let g := 1/f on W. Then g extends to a continuous function on V taking the value zero outside of U. The theorem of Rado implies that this function is holomorphic on V. It follows that the boundary ∂U is discrete in Δ_1 and that f has a pole in each of the points of this set, so f is a meromorphic function on Δ_1 . **Theorem 4.4.** — The orbit space X^*/\mathbb{C} is Hausdorff. Consequently, \mathbb{C} acts properly on X^* . *Proof.* — By virtue of the above lemma, in a neighborhood of two non-separable \mathbb{C} -orbits X is isomorphic to a domain in one of the model Stein surfaces discussed in the previous subsection. Since we have seen there that these surfaces are never globalizations, we arrive at a contradiction. Hence, all \mathbb{C} -orbits are separable. ## 5. Examples In this section we discuss several examples which illustrate our results. **5.1.** Hyperbolic Stein surfaces with proper \mathbb{R} -actions. — Let R be a compact Riemann surface of genus $g \geq 2$. It follows that the universal covering of R is given by the unit disc $\Delta \subset \mathbb{C}$ and hence that R is hyperbolic. The fundamental group $\pi_1(R)$ of R contains a normal subgroup N such that $\pi_1(R)/N \cong \mathbb{Z}$. Let $\widetilde{R} \to R$ denote the corresponding normal covering. Then \widetilde{R} is a hyperbolic Riemann surface with a holomorphic \mathbb{Z} -action such that $\widetilde{R}/\mathbb{Z} = R$. Note that \mathbb{Z} is not contained in a one parameter group of automorphisms of \widetilde{R} . We have two mappings $$X := \mathbb{H} \times_{\mathbb{Z}} \widetilde{R} \xrightarrow{q} \widetilde{R} / \mathbb{Z} = R$$ $$\downarrow p \qquad \qquad \downarrow \qquad$$ The map $p: X \to \Delta \setminus \{0\}$ is a holomorphic fiber bundle with fiber \widetilde{R} . Since the Serre problem has a positive answer if the fiber is a non-compact Riemann surface ([**Mok82**]), the suspension $X = \mathbb{H} \times_{\mathbb{Z}} \widetilde{R}$ is a hyperbolic Stein surface. The group \mathbb{R} acts on $\mathbb{H} \times \widetilde{R}$ by $t \cdot (z, x) = (z + t, x)$ and this action commutes with the diagonal action of \mathbb{Z} . Consequently, we obtain an action of \mathbb{R} on X. **Lemma 5.1**. — The universal globalization of the local \mathbb{C} -action on X is given by $X^* = \mathbb{C} \times_{\mathbb{Z}} \widetilde{R}$. Moreover, \mathbb{C} acts properly on X^* . *Proof.* — One checks directly that $t \cdot [z,x] := [z+t,x]$ defines a holomorphic \mathbb{C} -action on $X^* = \mathbb{C} \times_{\mathbb{Z}} \widetilde{R}$ which extends the \mathbb{R} -action on X. We will show that X is orbit-connected in X^* : Since [z+t,x] lies in X if and only if there exist elements $(z',x') \in \mathbb{H} \times \widetilde{R}$ and $m \in \mathbb{Z}$ such that $(z+t,x) = (z'+m,m\cdot x')$, we conclude $\mathbb{C}[z,x] = \{t \in \mathbb{C}; \operatorname{Im}(t) > -\operatorname{Im}(z)\}$ which is connected. In order to show that \mathbb{C} acts properly on X^* it is sufficient to show that $\mathbb{C} \times \mathbb{Z}$ acts properly on $\mathbb{C} \times \widetilde{R}$. Hence, we choose sequences $\{t_n\}$ in \mathbb{C} , $\{m_n\}$ in \mathbb{Z} and $\{(z_n, x_n)\}$ in $\mathbb{C} \times \widetilde{R}$ such that $$((t_n, m_n) \cdot (z_n, x_n), (z_n, x_n)) = ((z_n + t_n + m_n, m_n \cdot x_n), (z_n, x_n)) \rightarrow ((z_1, x_1), (z_0, x_0))$$ holds. Since \mathbb{Z} acts properly on \widetilde{R} , it follows that $\{m_n\}$ has a convergent subsequence, which in turn implies that $\{t_n\}$ has a convergent subsequence. Hence, the lemma is proven. **Proposition 5.2.** — The quotient $X/\mathbb{Z} \cong \Delta^* \times R$ is not holomorphically separable and in particular not Stein. The quotient X^*/\mathbb{C} is biholomorphically equivalent to $\widetilde{R}/\mathbb{Z} = R$. *Proof.* — It is sufficient to note that the map $\Phi \colon X = \mathbb{H} \times_{\mathbb{Z}} \widetilde{R} \to \Delta^* \times R$, $Phi[z, x] := (e^{2\pi i z}, [x])$, induces a biholomorphic map $X/\mathbb{Z} \to \Delta^* \times R$. **Proposition 5.3**. — The quotient $X/\mathbb{Z} \cong \Delta^* \times R$ is not holomorphically separable and in particular not Stein. Thus we have found an example for a hyperbolic Stein surface X endowed with a proper \mathbb{R} -action such that the associated \mathbb{Z} -quotient is not holomorphically separable. Moreover, the \mathbb{R} -action on X extends to a proper \mathbb{C} -action on a Stein manifold X^* containing X as an orbit-connected domain such that X^*/\mathbb{C} is any given compact Riemann surface of genus $g \geq 2$. **5.2.** Counterexamples with domains in \mathbb{C}^n . — There is a bounded Reinhardt domain D in \mathbb{C}^2 endowed with a holomorphic action of \mathbb{Z} such that D/\mathbb{Z} is not Stein. However, this \mathbb{Z} -action does not extend to an \mathbb{R} -action. We give quickly the construction Let $$\lambda := \frac{1}{2}(3 + \sqrt{5})$$ and $$D := \{(x, y) \in \mathbb{C}^2 \mid |x| > |y|^{\lambda}, |y| > |x|^{\lambda} \}.$$ It is obvious that D is a bounded Reinhardt domain in \mathbb{C}^2 avoiding the coordinate hyperplanes. The holomorphic automorphism group of D is a semidirect product $\Gamma \ltimes (S^1)^2$, where the group $\Gamma \simeq \mathbb{Z}$ is generated by the automorphism $(x,y) \mapsto (x^3y^{-1},x)$ and $(S^1)^2$ is the rotation group. Therefore the group Γ is not contained in a one-parameter group. Furthermore the quotient D/Γ is the (non-Stein) complement of the singular point in a 2-dimensional normal complex Stein space, a so-called "cusp singularity". These singularities are intensively studied in connection with Hilbert modular surfaces and Inoue-Hirzebruch surfaces, see e.g. [vdG88] and [Zaf01]. In the rest of this subsection we give an example of a hyperbolic domain of holomorphy in a 3-dimensional Stein solvmanifold endowed with a proper \mathbb{R} -action such that the \mathbb{Z} -quotient is not Stein. While this domain is not simply-connected, its fundamental group is much simpler than the fundamental groups of our two-dimensional examples. Let $G:=\left\{\left(\begin{smallmatrix} 1&a&c\\0&1&b\\0&0&1\end{smallmatrix}\right);\ a,b,c\in\mathbb{C}\right\}$ be the complex Heisenberg group and let us consider its discrete subgroup $$\Gamma := \left\{ \begin{pmatrix} 1 & m & \frac{m^2}{2} + 2\pi i k \\ 0 & 1 & m + 2\pi i l \\ 0 & 0 & 1 \end{pmatrix}; \ m, k, l \in \mathbb{Z} \right\}.$$ Note that Γ is isomorphic to $\mathbb{Z}_m \ltimes \mathbb{Z}^2_{(k,l)}$. We let Γ act on \mathbb{C}^2 by $$(z,w)\mapsto \left(z+mw-\frac{m^2}{2}-2\pi ik,w-m-2\pi il\right).$$ **Proposition 5.4.** — The group Γ acts properly and freely on \mathbb{C}^2 , and the quotient manifold \mathbb{C}^2/Γ is holomorphically separable but not Stein. *Proof.* — Since $\Gamma' \cong \mathbb{Z}^2$ is a normal subgroup of Γ , we obtain $\mathbb{C}^2/\Gamma \cong (\mathbb{C}^2/\Gamma')/(\Gamma/\Gamma')$. The map $\mathbb{C}^2 \to \mathbb{C}^* \times \mathbb{C}^*$, $(z, w) \mapsto (\exp(z), \exp(w))$, identifies \mathbb{C}^2/Γ' with $\mathbb{C}^* \times \mathbb{C}^*$. The induced action of $\Gamma/\Gamma' \cong \mathbb{Z}$ on $\mathbb{C}^* \times \mathbb{C}^*$ is given by $$(z,w) \mapsto \left(e^{-m^2/2}zw^m, e^{-m}w\right)$$ which shows that Γ acts properly and freely on \mathbb{C}^2 . Moreover, we obtain the commutative diagram $$\mathbb{C}^* \times \mathbb{C}^* \longrightarrow Y := (\mathbb{C}^* \times \mathbb{C}^*)/\mathbb{Z}$$ $$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$ $$\mathbb{C}^* \longrightarrow T := \mathbb{C}^*/\mathbb{Z}.$$ The group \mathbb{C}^* acts by multiplication in the first factor on $\mathbb{C}^* \times \mathbb{C}^*$ and this action commutes with the \mathbb{Z} -action. One checks directly that the joint $(\mathbb{C}^* \times \mathbb{Z})$ -action on $\mathbb{C}^* \times \mathbb{C}^*$ is proper which implies that the map $Y \to T$ is a \mathbb{C}^* -principal bundle. Consequently, Y is not Stein. In order to show that Y is holomorphically separable, note that by $[\mathbf{Oel92}]$ this \mathbb{C}^* -principal bundle $Y \to T$ extends to a line bundle $p \colon L \to T$ with first Chern class $c_1(L) = -1$. Therefore the zero section of $p \colon L \to T$ can be blown down and we obtain a singular normal Stein space $\overline{Y} = Y \cup \{y_0\}$ where $y_0 = \operatorname{Sing}(\overline{Y})$ is the blown down zero section. Thus Y is holomorphically separable. Let us now choose a neighborhood of the singularity $y_0 \in \overline{Y}$ biholomorphic to the unit ball and let U be its inverse image in \mathbb{C}^2 . It follows that U is a hyperbolic domain with smooth strictly Levi-convex boundary in \mathbb{C}^2 and in particular Stein. In order to obtain a proper action of \mathbb{R} we form the suspension $D = \mathbb{H} \times_{\Gamma} U$ where Γ acts on $\mathbb{H} \times U$ by $(t, z, w) \mapsto (t + m, z + mw - \frac{m^2}{2} - 2\pi ik, w - m - 2\pi il)$. **Proposition 5.5**. — The suspension $D = \mathbb{H} \times_{\Gamma} U$ is isomorphic to a Stein domain in the Stein manifold G/Γ . *Proof.* — We identify $\mathbb{H} \times U$ with the $\mathbb{R} \times \Gamma$ -invariant domain $$\Omega := \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}; \text{ Im}(a) > 0, (c, b) \in U \right\}$$ in G. Since $\mathbb{H} \times U$ is Stein, it follows that $\mathbb{H} \times_{\Gamma} U$ is locally Stein in G/Γ . Hence, by virtue of $[\mathbf{DG60}]$ we only have to show that G/Γ is Stein. For this we note first that G is a closed subgroup of $\mathrm{SL}(2,\mathbb{C}) \ltimes \mathbb{C}^2$ which implies that G/Γ is a closed complex submanifold of $X := (\mathrm{SL}(2,\mathbb{C}) \ltimes \mathbb{C}^2)/\Gamma$. By $[\mathbf{Oel92}]$ the manifold X is holomorphically separable, hence G/Γ is holomorphically separable. Since G is solvable, a result of Huckleberry and Oeljeklaus ($[\mathbf{HO86}]$) yields the Steinness of G/Γ . One checks directly that the action of $\mathbb{R} \times \Gamma$ on $\mathbb{H} \times U$ is proper which implies that \mathbb{R} acts properly on $\mathbb{H} \times_{\Gamma} U$. Because of $(\mathbb{H} \times_{\Gamma} U)/\mathbb{Z} \cong \Delta^* \times (U/\Gamma)$ this quotient manifold is not Stein but holomorphically separable. ### 6. Bounded domains with proper \mathbb{R} -actions In this section we give the proof of our main result. **6.1. Proper** \mathbb{R} -actions on D. — Let $D \subset \mathbb{C}^n$ be a bounded domain and let $\operatorname{Aut}(D)^0$ be the connected component of the identity in $\operatorname{Aut}(D)$. **Lemma 6.1.** — A proper \mathbb{R} -action by holomorphic transformations on D exists if and only if the group $\operatorname{Aut}(D)^0$ is non-compact. The proof follows from the existence of a diffeomorphism $K \times V \to \operatorname{Aut}(D)^0$ where K is a maximal compact subgroup of $\operatorname{Aut}(D)^0$ and V is a linear subspace of the Lie algebra of $\operatorname{Aut}(D)^0$. **6.2. Steinness of** D/\mathbb{Z} . — Now we give the proof of our main result. **Theorem 6.2.** — Let D be a simply-connected bounded domain of holomorphy in \mathbb{C}^2 . Suppose that the group \mathbb{R} acts properly by holomorphic transformations on D. Then the complex manifold D/\mathbb{Z} is biholomorphically equivalent to a domain of holomorphy in \mathbb{C}^2 . Proof. — Let $D \subset \mathbb{C}^2$ be a simply-connected bounded domain of holomorphy. Since the Serre problem is solvable if the fiber is D, see [Siu76], the universal globalization D^* is a simply-connected Stein surface, [CTIT00]. Moreover, we have shown in Theorem 4.4, that \mathbb{C} acts properly on D^* . Since the Riemann surface D^*/\mathbb{C} is also simply-connected, it must be Δ , \mathbb{C} or $\mathbb{P}_1(\mathbb{C})$. In all three cases the bundle $D^* \to D^*/\mathbb{C}$ is holomorphically trivial. So we can exclude the case that D^*/\mathbb{C} is compact and it follows that $D/\mathbb{Z} \cong \mathbb{C}^* \times (D^*/\mathbb{C})$ is a Stein domain in \mathbb{C}^2 . **6.3.** A normal form for domains with non-compact $\operatorname{Aut}(D)^0$. — Let $D \subset \mathbb{C}^2$ be a simply-connected bounded domain of holomorphy such that the identity component of its automorphism group is non-compact. As we have seen, this yields a proper \mathbb{R} -action on D by holomorphic transformations and the universal globalization of the induced local \mathbb{C} -action on D is isomorphic to $\mathbb{C} \times S$ where S is either Δ or \mathbb{C} and where \mathbb{C} acts by translation in the first factor. Moreover, there are plurisubharmonic functions $u, -o: \mathbb{C} \times S \to \mathbb{R} \cup \{-\infty\}$ which fulfill $$u(t \cdot (z_1, z_2)) = u(z_1, z_2) - \operatorname{Im}(t)$$ and $o(t \cdot (z_1, z_2)) = o(z_1, z_2) - \operatorname{Im}(t)$ such that $D = \{(z_1, z_2) \in \mathbb{C} \times S; \ u(z_1, z_2) < 0 < o(z_1, z_2)\}$. From this we conclude $u(z_1, z_2) = u(0, z_2) - \operatorname{Im}(z_1), \ o(z_1, z_2) = o(0, z_2) - \operatorname{Im}(z_1) \ \text{and define} \ u'(z_2) := u(0, z_2), \ o'(z_2) := o(0, z_2).$ We summarize our remarks in the following **Theorem 6.3**. — Let D be a simply-connected bounded domain of holomorphy in \mathbb{C}^2 admitting a non-compact connected identity component of its automorphism group. Then D is biholomorphic to a domain of the form $$\widetilde{D} = \{(z_1, z_2) \in \mathbb{C} \times S; \ u'(z_2) < \operatorname{Im}(z_1) < o'(z_2) \},$$ where the functions u', -o' are subharmonic in S. ### References - [CTIT00] E. CASADIO TARABUSI, A. IANNUZZI & S. TRAPANI "Globalizations, fiber bundles, and envelopes of holomorphy", *Math. Z.* **233** (2000), no. 3, p. 535–551. - [DG60] F. DOCQUIER & H. GRAUERT "Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten", *Math. Ann.* **140** (1960), p. 94–123. - [DK00] J. J. Duistermaat & J. A. C. Kolk *Lie groups*, Universitext, Springer-Verlag, Berlin, 2000. - [FI01] C. DE FABRITIIS & A. IANNUZZI "Quotients of the unit ball of \mathbb{C}^n for a free action of \mathbb{Z} ", J. Anal. Math. 85 (2001), p. 213–224. - [For96] F. FORSTNERIC "Actions of $(\mathbf{R}, +)$ and $(\mathbf{C}, +)$ on complex manifolds", Math. Z. **223** (1996), no. 1, p. 123–153. - [Hei91] P. HEINZNER "Geometric invariant theory on Stein spaces", Math. Ann. 289 (1991), no. 4, p. 631–662. - [HI97] P. HEINZNER & A. IANNUZZI "Integration of local actions on holomorphic fiber spaces", Nagoya Math. J. 146 (1997), p. 31–53. - [HO86] A. T. Huckleberry & E. Oeljeklaus "On holomorphically separable complex solv-manifolds", *Ann. Inst. Fourier (Grenoble)* **36** (1986), no. 3, p. 57–65. - [Ian03] A. IANNUZZI "Induced local actions on taut and Stein manifolds", *Proc. Amer. Math. Soc.* **131** (2003), no. 12, p. 3839–3843 (electronic). - [IST04] A. IANNUZZI, A. SPIRO & S. TRAPANI "Complexifications of holomorphic actions and the Bergman metric", *Internat. J. Math.* **15** (2004), no. 8, p. 735–747. - [Kob98] S. Kobayashi Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998. - [Mie08] C. Miebach "Quotients of bounded homogeneous domains by cyclic groups", 2008, arxiv:math.CV/0803.4476v1. - [Mok82] N. Mok "The Serre problem on Riemann surfaces", *Math. Ann.* **258** (1981/82), no. 2, p. 145–168. - [Oel92] K. Oeljeklaus "On the holomorphic separability of discrete quotients of complex Lie groups", *Math. Z.* **211** (1992), no. 4, p. 627–633. - [Pal57] R. S. Palais "A global formulation of the Lie theory of transformation groups", Mem. Amer. Math. Soc. No. 22 (1957), p. iii+123. - [Pal61] _____, "On the existence of slices for actions of non-compact Lie groups", Ann. of Math. (2) 73 (1961), p. 295–323. - [Siu76] Y. T. Siu "Holomorphic fiber bundles whose fibers are bounded Stein domains with zero first Betti number", *Math. Ann.* **219** (1976), no. 2, p. 171–192. - [vdG88] G. VAN DER GEER *Hilbert modular surfaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 16, Springer-Verlag, Berlin, 1988. - [Zaf01] D. ZAFFRAN "Serre problem and Inoue-Hirzebruch surfaces", Math. Ann. 319 (2001), no. 2, p. 395–420. CHRISTIAN MIEBACH, LATP-UMR(CNRS) 6632, CMI-Université d'Aix-Marseille I, 39, rue Joliot-Curie, F-13453 Marseille Cedex 13, France. • E-mail: miebach@cmi.univ-mrs.fr KARL OELJEKLAUS, LATP-UMR(CNRS) 6632, CMI-Université d'Aix-Marseille I, 39, rue Joliot-Curie, F-13453 Marseille Cedex 13, France. • E-mail: karloelj@cmi.univ-mrs.fr