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ON PROPER R-ACTIONS ON HYPERBOLIC STEIN

SURFACES

by

Christian Miebach & Karl Oeljeklaus

Abstract. — In this paper we investigate proper R–actions on hyperbolic Stein surfaces
and prove in particular the following result: Let D ⊂ C

2 be a simply-connected bounded
domain of holomorphy which admits a proper R–action by holomorphic transformations.
The quotient D/Z with respect to the induced proper Z–action is a Stein manifold. A
normal form for the domain D is deduced.

1. Introduction

Let X be a Stein manifold endowed with a real Lie transformation group G of
holomorphic automorphisms. In this situation it is natural to ask whether there exists
a G–invariant holomorphic map π : X → X//G onto a complex space X//G such that
OX//G = (π∗OX)G and, if yes, whether this quotient X//G is again Stein. If the group
G is compact, both questions have a positive answer as is shown in [Hei91].

For non-compact G even the existence of a complex quotient in the above sense
of X by G cannot be guaranteed. In this paper we concentrate on the most basic
and already non-trivial case G = R. We suppose that G acts properly on X. Let
Γ = Z. Then X/Γ is a complex manifold and if, moreover, it is Stein, we can define
X//G := (X/Γ)//(G/Γ). The following was conjectured by Alan Huckleberry.

Let X be a contractible bounded domain of holomorphy in C
n with a proper action

of G = R. Then the complex manifold X/Γ is Stein.

In [FI01] this conjecture is proven for the unit ball and in [Mie08] for arbitrary
bounded homogeneous domains in C

n. In this paper we make a first step towards a
proof in the general case by showing

Theorem. — Let D be a simply-connected bounded domain of holomorphy in C
2. Sup-

pose that the group R acts properly by holomorphic transformations on D. Then the

complex manifold D/Z is Stein. Moreover, D/Z is biholomorphically equivalent to a

domain of holomorphy in C
2.

The authors would like to thank Peter Heinzner and Jean-Jacques Loeb for numerous discussions on
the subject.
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As an application of this theorem we deduce a normal form for domains of holomor-
phy whose identity component of the automorphism group is non-compact as well as
for proper R–actions on them. Notice that we make no assumption on smoothness of
their boundaries.

We first discuss the following more general situation. Let X be a hyperbolic Stein
manifold with a proper R–action. Then there is an induced local holomorphic C–action
on X which can be globalized in the sense of [HI97]. The following result is central
for the proof of the above theorem.

Theorem. — Let X be a hyperbolic Stein surface with a proper R–action. Suppose

that either X is taut or that it admits the Bergman metric and H1(X, R) = 0. Then

the universal globalization X∗ of the induced local C–action is Hausdorff and C acts

properly on X∗. Furthermore, for simply-connected X one has that X∗ → X∗/C is a

holomorphically trivial C–principal bundle over a simply-connected Riemann surface.

Finally, we discuss several examples of hyperbolic Stein manifolds X with proper
R–actions such that X/Z is not Stein. If one does not require the existence of an R–
action, there are bounded Reinhardt domains in C

2 with proper Z–actions for which
the quotients are not Stein.

2. Hyperbolic Stein R–manifolds

In this section we present the general set-up.

2.1. The induced local C–action and its globalization. — Let X be a hyper-
bolic Stein manifold. It is known that the group Aut(X) of holomorphic automorphisms
of X is a real Lie group with respect to the compact-open topology which acts prop-
erly on X (see [Kob98]). Let {ϕt}t∈R be a closed one parameter subgroup of Aut(D).
Consequently, the action R × X → X, t · x := ϕt(x), is proper. By restriction, we
obtain also a proper Z–action on X. Since every such action must be free, the quotient
X/Z is a complex manifold. This complex manifold X/Z carries an action of S1 ∼= R/Z

which is induced by the R–action on X.
Integrating the holomorphic vector field on X which corresponds to this R–action we

obtain a local C–action on X in the following sense. There are an open neighborhood
Ω ⊂ C × X of {0} × X and a holomorphic map Φ: Ω → X, Φ(t, x) =: t · x, such that
the following holds:

(1) For every x ∈ X the set Ω(x) :=
{
t ∈ C; (t, x) ∈ Ω

}
⊂ C is connected;

(2) for all x ∈ X we have 0 · x = x;
(3) we have (t + t′) · x = t · (t′ · x) whenever both sides are defined.

Following [Pal57] (compare [HI97] for the holomorphic setting) we say that a glob-
alization of the local C–action on X is an open R–equivariant holomorphic embedding
ι : X →֒ X∗ into a (not necessarily Hausdorff) complex manifold X∗ endowed with a
holomorphic C–action such that C · ι(X) = X∗. A globalization ι : X →֒ X∗ is called
universal if for every R–equivariant holomorphic map f : X → Y into a holomorphic
C–manifold Y there exists a holomorphic C–equivariant map F : X∗ → Y such that
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the diagram

X
ι

//

f
  @

@@
@@

@@
@ X∗

F
}}||

||
||

||

Y

commutes. It follows that a universal globalization is unique up to isomorphism if it
exists.

Since X is Stein, the universal globalization X∗ of the induced local C–action exists
as is proven in [HI97]. We will always identify X with its image ι(X) ⊂ X∗. Then the
local C–action on X coincides with the restriction of the global C–action on X∗ to X.

Recall that X is said to be orbit-connected in X∗ if for every x ∈ X∗ the set
Σ(x) := {t ∈ C; t · x ∈ X} is connected. The following criterion for a globalization to
be universal is proven in [CTIT00].

Lemma 2.1. — Let X∗ be any globalization of the induced local C–action on X. Then

X∗ is universal if and only if X is orbit-connected in X∗.

Remark. — The results about (universal) globalizations hold for a bigger class of
groups ([CTIT00]). However, we will need it only for the groups C and C

∗ and thus
will not give the most general formulation.

For later use we also note the following

Lemma 2.2. — The C–action on X∗ is free.

Proof. — Suppose that there exists a point x ∈ X∗ such that Cx is non-trivial. Because
of C·X = X∗ we can assume that x ∈ X holds. Since Cx is a non-trivial closed subgroup
of C, it is either a lattice of rank 1 or 2, or C. The last possibility means that x is a
fixed point under C which is not possible since R acts freely on X.

We observe that the lattice Cx is contained in the connected R–invariant set Σ(x) =
{t ∈ C; t · x ∈ X}. By R–invariance Σ(x) is a strip. Since X is hyperbolic, this strip
cannot coincide with C. The only lattice in C which can possibly be contained in such
a strip is of the form Zr for some r ∈ R. Since this contradicts the fact that R acts
freely on X, the lemma is proven.

Note that we do not know whether X∗ is Hausdorff. In order to guarantee the
Hausdorff property of X∗, we make further assumptions on X. The following result is
proven in [Ian03] and [IST04].

Theorem 2.3. — Let X be a hyperbolic Stein manifold with a proper R–action. Sup-

pose in addition that X is taut or admits the Bergman metric. Then X∗ is Hausdorff.

If X is simply-connected, then the same is true for X∗.

We refer the reader to Chapter 4.10 and Chapter 5 in [Kob98] for the definitions
and examples of tautness and the Bergman metric.

Remark. — Every bounded domain in C
n admits the Bergman metric.



4 CHRISTIAN MIEBACH & KARL OELJEKLAUS

2.2. The quotient X/Z. — We assume from now on that X fulfills the hypothesis
of Theorem 2.3. Since X∗ is covered by the translates t · X for t ∈ C and since the
action of Z on each domain t ·X is proper, we conclude that the quotient X∗/Z fulfills
all axioms of a complex manifold except for possibly not being Hausdorff.

We have the following commutative diagram:

X //

��

X∗

��

X/Z // X∗/Z.

Note that the group C
∗ = (S1)C ∼= C/Z acts on X∗/Z. Concretely, if we identify C/Z

with C
∗ via C → C

∗, t 7→ e2πit, the quotient map p : X∗ → X∗/Z fulfills p(t · x) =
e2πit · p(x).

Lemma 2.4. — The induced map X/Z →֒ X∗/Z is the universal globalization of the

local C
∗–action on X/Z.

Proof. — The open embedding X →֒ X∗ induces an open embedding X/Z →֒ X∗/Z.
This embedding is S1–equivariant and we have C

∗ · X/Z = X∗/Z. This implies that
X∗/Z is a globalization of the local C

∗–action on X/Z.
In order to prove that this globalization is universal, by the globalization theorem in

[CTIT00] it is enough to show that X/Z is orbit-connected in X∗/Z. Hence, we must
show that for every [x] ∈ X/Z the set Σ

(
[x]

)
:= {t ∈ C

∗; t · [x] ∈ X/Z} is connected in
C

∗. For this we consider the set Σ(x) = {t ∈ C; t · x ∈ X}. Since the map X → X/Z

intertwines the local C– and C
∗–actions, we conclude that t ∈ Σ(x) holds if and only

if e2πit ∈ Σ
(
[x]

)
holds. Since X∗ is universal, Σ(x) is connected which implies that

Σ
(
[x]

)
is likewise connected. Thus X∗/Z is universal.

Remark. — The globalization X∗/Z is Hausdorff if and only if Z or, equivalently, R

act properly on X∗. As we shall see in Lemma 3.3, this is the case if X is taut.

2.3. A sufficient condition for X/Z to be Stein. — If dim X = 2, we have the
following sufficient condition for X/Z to be a Stein surface.

Proposition 2.5. — If the C–action on X∗ is proper and if the Riemann surface

X∗/C is not compact, then X/Z is Stein.

Proof. — Under the above hypothesis we have the C–principal bundle X∗ → X∗/C.
If the base X∗/C is not compact, then this bundle is holomorphically trivial, i. e. X∗

is biholomorphic to C × R where R is a non-compact Riemann surface. Since R is
Stein, the same is true for X∗ and for X∗/Z ∼= C

∗ ×R. Since X/Z is locally Stein, see
[Mie08], in the Stein manifold X∗/Z, the claim follows from [DG60].

Therefore, the crucial step in the proof of our main result consists in showing that
C acts properly on X∗ under the assumption dim X = 2.



ON PROPER R-ACTIONS ON HYPERBOLIC STEIN SURFACES 5

3. Local properness

Let X be a hyperbolic Stein R–manifold. Suppose that X is taut or that it admits
the Bergman metric and H1(X, R) = {0}. We show that then C acts locally properly
on X∗.

3.1. Locally proper actions. — Recall that the action of a Lie group G on a
manifold M is called locally proper if every point in M admits a G–invariant open
neighborhood on which the G acts properly.

Lemma 3.1. — Let G × M → M be locally proper.

(1) For every x ∈ M the isotropy group Gx is compact.

(2) Every G–orbit admits a geometric slice.

(3) The orbit space M/G is a smooth manifold which is in general not Hausdorff.

(4) All G–orbits are closed in M .

(5) The G–action on M is proper if and only if M/G is Hausdorff.

Proof. — The first claim is elementary to check. The second claim is proven in [DK00].
The third one is a consequence of (2) since the slices yield charts on M/G which are
smoothly compatible because the transitions are given by the smooth action of G on
M . Assertion (4) follows from (3) because in locally Euclidian topological spaces points
are closed. The last claim is proven in [Pal61].

Remark. — Since R acts properly on X, the R-action on X∗ is locally proper.

3.2. Local properness of the C–action on X∗. — Recall that we assume that

(3.1) X is taut

or that

(3.2) X admits the Bergman metric and H1(X, R) = {0}.
We first show that assumption (3.1) implies that C acts locally properly on X∗.
Since X∗ is the universal globalization of the induced local C–action on X, we

know that X is orbit-connected in X∗. This means that for every x ∈ X∗ the set
Σ(x) = {t ∈ C; t ·x ∈ X} is a strip in C. In the following we will exploit the properties
of the thickness of this strip.

Since Σ(x) is R–invariant, there are “numbers” u(x) ∈ R∪{−∞} and o(x) ∈ R∪{∞}
for every x ∈ X∗ such that

Σ(x) =
{
t ∈ C; u(x) < Im(t) < o(x)

}
.

The functions u : X∗ → R ∪ {−∞} and o : X∗ → R ∪ {∞} so obtained are upper
and lower semicontinuous, respectively. Moreover, u und o are R–invariant and iR–
equivariant:

u(it · x) = u(x) − t and o(it · x) = o(x) − t.

Proposition 3.2. — The functions u,−o : X∗ → R ∪ {−∞} are plurisubharmonic.

Moreover, u and o are continuous on X∗ \ {u = −∞} and X∗ \ {o = ∞}, respectively.
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Proof. — It is proven in [For96] that u and −o are plurisubharmonic on X. By
equivariance, we obtain this result for X∗.

Now we prove that the function u : X \ {u = −∞} → R is continuous which was
remarked without complete proof in [Ian03]. For this let (xn) be a sequence in X
which converges to x0 ∈ X \ {u = −∞}. Since u is upper semi-continuous, we have
lim supn→∞

u(xn) ≤ u(x0). Suppose that u is not continuous in x0. Then, after replac-
ing (xn) by a subsequence, we find ε > 0 such that u(xn) ≤ u(x0) − ε < u(x0) holds
for all n ∈ N. Consequently, we have Σ(x0) =

{
t ∈ C; u(x0) < Im(t) < o(x0)

}
⊂

Σ :=
{
t ∈ C; u(x0) − ε < Im(t) < o(x0)

}
⊂ Σ(xn) for all n and hence obtain the

sequence of holomorphic functions fn : Σ → X, fn(t) := t · xn. Since X is taut and
fn(0) = xn → x0, the sequence (fn) has a subsequence which compactly converges to
a holomorphic function f0 : Σ → X. Because of f0

(
iu(x0)

)
= limn→∞ fn

(
iu(x0)

)
=

limn→∞ iu(x0) · xn = iu(x0) · x0 /∈ X we arrive at a contradiction. Thus the function
u : X \ {u = −∞} → R is continuous. By (iR)–equivariance, u is also continuous on
X∗ \ {u = −∞}. A similar argument shows continuity of −o : X∗ \ {o = ∞} → R.

Let us consider the sets

N (o) :=
{
x ∈ X∗; o(x) = 0

}
and P(o) :=

{
x ∈ X∗; o(x) = ∞

}
.

The sets N (u) and P(u) are similarly defined. Since X =
{
x ∈ X∗; u(x) < 0 < o(x)

}
,

we can recover X from X∗ with the help of u and o.

Lemma 3.3. — The action of R on X∗ is proper.

Proof. — Let ∂∗X denote the boundary of X in X∗. Since the functions u and −o are
continuous on X∗ \ P(u) and X∗ \ P(o) one verifies directly that ∂∗X = N (u) ∪N (o)
holds. As a consequence, we note that if x ∈ ∂∗X, then for every ε > 0 the element
(i ε) · x is not contained in ∂∗X.

Let (tn) and (xn) be sequences in R and X∗ such that (tn · xn, xn) converges to
(y0, x0) in X∗ × X∗. We may assume without loss of generality that x0 and hence xn

are contained in X for all n. Consequently, we have y0 ∈ X ∪ ∂∗X. If y0 ∈ ∂∗X holds,
we may choose an ε > 0 such that (i ε) · y0 and (i ε) · x0 lie in X. Since the R–action
on X is proper, we find a convergent subsequence of (tn) which was to be shown.

Lemma 3.4. — We have:

(1) N (u) and N (o) are R–invariant.

(2) We have N (u) ∩N (o) = ∅.
(3) The sets P(u) and P(o) are closed, C–invariant and pluripolar in X∗.

(4) P(u) ∩ P(o) = ∅.
Proof. — The first claim follows from the R–invariance of u and o.

The second claim follows from u(x) < o(x).
The third one is a consequence of the R–invariance and iR–equivariance of u and o.
If there was a point x ∈ P(u) ∩ P(o), then C · x would be a subset of X which is

impossible since X is hyperbolic.

Lemma 3.5. — If o is not identically ∞, then the map

ϕ : iR ×N (o) → X∗ \ P(o), ϕ(it, z) = it · z,
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is an iR–equivariant homeomorphism. Since R acts properly on N (o), it follows that

C acts properly on X∗ \ P(o). The same holds when o is replaced by u.

Proof. — The inverse map ϕ−1 is given by x 7→
(
−io(x), io(x) · x

)
.

Corollary 3.6. — The C–action on X∗ is locally proper. If P(o) = ∅ or P(u) = ∅
hold, then C acts properly on X∗.

From now on we suppose that X fulfills the assumption (3.2). Recall that the
Bergman form ω is a Kähler form on X invariant under the action of Aut(X). Let
ξ denote the complete holomorphic vector field on X which corresponds to the R–
action, i. e. we have ξ(x) = ∂

∂t

∣∣
0
ϕt(x). Hence, ιξω = ω(·, ξ) is a 1–form on X and since

H1(X, R) = {0} there exists a function µξ ∈ C∞(X) with dµξ = ιξω.

Remark. — This means that µξ is a momentum map for the R–action on X.

Lemma 3.7. — The map µξ : X → R is an R–invariant submersion.

Proof. — The claim follows from dµξ(x)Jξx = ωx(Jξx, ξx) > 0.

Proposition 3.8. — The C–action on X∗ is locally proper.

Proof. — Since µξ is a submersion, the fibers (µξ)−1(c), c ∈ R, are real hypersurfaces
in X. Then

d

dt

∣∣∣∣
0

µξ(it · x) = ωx(Jξx, ξx) > 0

implies that every iR–orbit intersects (µξ)−1(c) transversally. Since X is orbit-connected
in X∗, the map iR × (µξ)−1(c) → X∗ is injective and therefore a diffeomorphism onto
its open image. Together with the fact that (µξ)−1(c) is R–invariant this yields the
existence of differentiable local slices for the C–action.

3.3. A necessary condition for X/Z to be Stein. — We have the following
necessary condition for X/Z to be a Stein manifold.

Proposition 3.9. — If the quotient manifold X/Z is Stein, then X∗ is Stein and the

C–action on X∗ is proper.

Proof. — Suppose that X/Z is a Stein manifold. By [CTIT00] this implies that X∗

is Stein as well.
Next we will show that the C

∗–action on X∗/Z is proper. For this we will use as
above a moment map for the S1–action on X∗/Z.

By compactness of S1 we may apply the complexification theorem from [Hei91]
which shows that X∗/Z is also a Stein manifold and in particular Hausdorff. Hence,
there exists a smooth strictly plurisubharmonic exhaustion function ρ : X∗/Z → R

>0

invariant under S1. Consequently, ω := i
2
∂∂ρ ∈ A1,1(X∗) is an S1–invariant Kähler

form. Associated to ω we have the S1–invariant moment map

µ : X∗/Z → R, µξ(x) :=
d

dt

∣∣∣∣
0

ρ
(
exp(itξ) · x

)
,
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where ξ is the complete holomorphic vector field on X∗/Z which corresponds to the
S1–action. Now we can apply the same argument as above in order to deduce that C

∗

acts locally properly on X∗/Z.
We still must show that (X∗/Z)/C

∗ is Hausdorff. To see this, let C
∗ · xj, j = 0, 1,

be two different orbits in X∗/Z. Since C
∗ acts locally properly, these are closed and

therefore there exists a function f ∈ O(X∗/Z) with f |C∗·xj
= j for j = 0, 1. Again we

may assume that f is S1– and consequently C
∗–invariant. Hence, there is a continuous

function on (X∗/Z)/C
∗ which separates the two orbits, which implies that (X∗/Z)/C

∗

is Hausdorff. This proves that C
∗ acts properly on X∗/Z.

Since we know already that the C–action on X∗ is locally proper, it is enough to
show that X∗/C is Hausdorff. But this follows from the properness of the C

∗–action
on X∗/Z since X∗/C ∼= (X∗/Z)/C

∗ is Hausdorff.

4. Properness of the C–action

Let X be a hyperbolic Stein R–manifold. Suppose that X fulfills (3.1) or (3.2). We
have seen that C acts locally properly on X∗. In this section we prove that under the
additional assumption dimX = 2 the orbit space X∗/C is Hausdorff. This implies that
C acts properly on X∗ if dim X = 2.

4.1. Stein surfaces with C–actions. — For every function f ∈ O(∆) which van-
ishes only at the origin, we define

Xf :=
{
(x, y, z) ∈ ∆ × C

2; f(x)y − z2 = 1
}
.

Since the differential of the defining equation of Xf is given by
(
f ′(x)y f(x) − 2z

)
,

we see that 1 is a regular value of (x, y, z) 7→ f(x)y − z2. Hence, Xf is a smooth Stein
surface in ∆ × C

2.
There is a holomorphic C–action on Xf defined by

t · (x, y, z) :=
(
x, y + 2tz + t2f(x), z + tf(x)

)
.

One can directly check that this defines an action.

Lemma 4.1. — The C–action on Xf is free, and all orbits are closed.

Proof. — Let t ∈ C such that (x, y + 2tz + t2f(x), z + tf(x)
)

= (x, y, z) for some
(x, y, z) ∈ Xf . If f(x) 6= 0, then z + tf(x) = z implies t = 0. If f(x) = 0, then z 6= 0
and y + 2tz = y gives t = 0.

The map π : Xf → ∆, (x, y, z) 7→ x, is C–invariant. If a ∈ ∆∗, then f(a) 6= 0 and
we have

z

f(a)
·
(
a, f(a)−1, 0

)
= (a, y, z) ∈ Xf ,

which implies π−1(a) = C ·
(
a, f(a)−1, 0

)
. A similar calculation gives π−1(0) = C · p1 ∪

C · p2 with p1 = (0, 0, i) and p2 = (0, 0,−i). Consequently, every C–orbit is closed.

Remark. — The orbit space Xf/C is the unit disc with a doubled origin and in
particular not Hausdorff.
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We calculate slices at the point pj, j = 1, 2, as follows. Let ϕj : ∆×C → Xf be given
by ϕ1(z, t) := t·(z, 0, i) and ϕ2(w, s) = s·(w, 0,−i). Solving the equation s·(w, 0,−i) =
t · (z, 0, i) for (w, s) yields the transition function ϕ12 = ϕ−1

2 ◦ ϕ1 : ∆∗ × C → ∆∗ × C,

(z, t) 7→
(

z, t +
2i

f(z)

)
.

The function 1
f

is a meromorphic function on ∆ without zeros and with the unique

pole 0.

Lemma 4.2. — Let R act on Xf via R →֒ C, t 7→ ta, for some a ∈ C
∗. Then there

is no R–invariant domain D ⊂ Xf with D ∩ C · pj 6= ∅ for j = 1, 2 on which R acts

properly.

Proof. — Suppose that D ⊂ Xf is an R–invariant domain with D ∩ C · pj 6= ∅ for j =
1, 2. Without loss of generality we may assume that p1 ∈ D and ζ ·p2 = (0,−2ζi,−i) ∈
D for some ζ ∈ C. We will show that the orbits R·p1 and R·(ζ ·p2) cannot be separated
by R–invariant open neighborhoods.

Let U1 ⊂ D be an R–invariant open neighborhood of p1. Then there are r, r′ > 0 such
that ∆∗

r × ∆r′ × {i} ⊂ U1 holds. Here, ∆r = {z ∈ C; |z| < r}. For (ε1, ε2) ∈ ∆∗

r × ∆r′

and t ∈ R we have

t · (ε1, ε2, i) =
(
ε1, ε2 +2(ta)i + (ta)2f(ε1), i + (ta)f(ε1)

)
∈ U1.

We have to show that for all r2, r3 > 0 there exist (ε̃2, ε̃3) ∈ ∆r2
×∆r3

, (ε1, ε2) ∈ ∆∗

r×∆r′

and t ∈ R such that

(4.1)
(
ε1, ε2 +2(ta)i + (ta)2f(ε1), i + (ta)f(ε1)

)
= (ε1,−2ζi + ε̃2,−i + ε̃3)

holds.
Let r2, r3 > 0 be given. From (4.1) we obtain ε̃3 = taf(ε1) + 2i or, equivalently,

ta = eε3−2i
f(ε1)

. Setting ε̃2 = ε2 we obtain from 2(ta)i + (ta)2f(ε1) = −2ζi the equivalent

expression

(4.2) f(ε1) = −2i
ζ + ta

(ta)2
.

for t 6= 0. Choosing a real number t ≫ 1, we find an ε1 ∈ ∆∗

r such that (4.2) is fulfilled.
After possibly enlarging t we have ε̃3 := taf(ε1) + 2i = −2i ζ

ta
∈ ∆r3

. Together with
ε2 = ε̃2 equation (4.1) is fulfilled and the proof is finished.

Thus, the Stein surface Xf cannot be obtained as globalization of the local C–action
on any R–invariant domain D ⊂ Xf on which R acts properly.

4.2. The quotient X∗/C is Hausdorff. — Suppose that X∗/C is not Hausdorff and
let x1, x2 ∈ X be such that the corresponding C–orbits cannot be separated in X∗/C.
Since we already know that C acts locally proper on X∗ we find local holomorphic slices
ϕj : ∆×C → Uj ⊂ X, ϕj(z, t) = t ·sj(z) at each C ·xj where sj : ∆ → X is holomorphic
with sj(0) = xj. Consequently, we obtain the transition function ϕ12 : (∆ \ A) × C →
(∆\A)×C for some closed subset A ⊂ ∆ which must be of the form (z, t) 7→

(
z, t+f(z)

)

for some f ∈ O(∆ \ A). The following lemma applies to show that A is discrete and
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that f is meromorphic on ∆. Hence, we are in one of the model cases discussed in the
previous subsection.

Lemma 4.3. — Let ∆1 and ∆2 denote two copies of the unit disk {z ∈ C; |z| < 1}.
Let U ⊂ ∆j, j = 1, 2, be a connected open subset and f : U ⊂ ∆1 → C a non-constant

holomorphic function on U . Define the complex manifold

M := (∆1 × C) ∪ (∆2 × C)/∼,

where ∼ is the relation (z1, t1) ∼ (z2, t2) :⇔ z1 = z2 =: z ∈ U and t2 = t1 + f(z).
Suppose that M is Hausdorff. Then the complement A of U is discrete and f extends

to a meromorphic function on ∆1.

Proof. — We first prove that for every sequence (xn), xn ∈ U , with limn→∞ xn = p ∈
∂U , one has limn→∞|f(xn)| = ∞ ∈ P1(C). Assume the contrary, i.e. there is a sequence
(xn), xn ∈ U , with limn→∞ xn = p ∈ ∂U such that limn→∞ f(xn) = a ∈ C. Choose
now t1 ∈ C, consider the two points (p, t1) ∈ ∆1 × C and (p, t1 + a) ∈ ∆2 × C and
note their corresponding points in M as q1 and q2. Then q1 6= q2. The sequences
(xn, t1) ∈ ∆1 ×C and (xn, t1 + f(xn)) ∈ ∆2 ×C define the same sequence in M having
q1 and q2 as accumulation points. So M is not Hausdorff, a contradiction.

In particular we have proved that the zeros of f do not accumulate to ∂U in ∆1.
So there is an open neighborhood V of ∂U in ∆1 such that the restriction of f to
W := U ∩ V does not vanish. Let g := 1/f on W . Then g extends to a continuous
function on V taking the value zero outside of U . The theorem of Rado implies that
this function is holomorphic on V . It follows that the boundary ∂U is discrete in ∆1

and that f has a pole in each of the points of this set, so f is a meromorphic function
on ∆1.

Theorem 4.4. — The orbit space X∗/C is Hausdorff. Consequently, C acts properly

on X∗.

Proof. — By virtue of the above lemma, in a neighborhood of two non-separable C–
orbits X is isomorphic to a domain in one of the model Stein surfaces discussed in the
previous subsection. Since we have seen there that these surfaces are never globaliza-
tions, we arrive at a contradiction. Hence, all C–orbits are separable.

5. Examples

In this section we discuss several examples which illustrate our results.

5.1. Hyperbolic Stein surfaces with proper R–actions. — Let R be a compact
Riemann surface of genus g ≥ 2. It follows that the universal covering of R is given by
the unit disc ∆ ⊂ C and hence that R is hyperbolic. The fundamental group π1(R)

of R contains a normal subgroup N such that π1(R)/N ∼= Z. Let R̃ → R denote

the corresponding normal covering. Then R̃ is a hyperbolic Riemann surface with a

holomorphic Z–action such that R̃/Z = R. Note that Z is not contained in a one

parameter group of automorphisms of R̃.
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We have two mappings

X := H ×Z R̃
q

//

p

��

R̃/Z = R

H/Z ∼= ∆ \ {0}.

The map p : X → ∆ \ {0} is a holomorphic fiber bundle with fiber R̃. Since the
Serre problem has a positive answer if the fiber is a non-compact Riemann surface

([Mok82]), the suspension X = H ×Z R̃ is a hyperbolic Stein surface. The group R

acts on H × R̃ by t · (z, x) = (z + t, x) and this action commutes with the diagonal
action of Z. Consequently, we obtain an action of R on X.

Lemma 5.1. — The universal globalization of the local C–action on X is given by

X∗ = C ×Z R̃. Moreover, C acts properly on X∗.

Proof. — One checks directly that t · [z, x] := [z + t, x] defines a holomorphic C–

action on X∗ = C ×Z R̃ which extends the R–action on X. We will show that X is
orbit-connected in X∗: Since [z + t, x] lies in X if and only if there exist elements

(z′, x′) ∈ H × R̃ and m ∈ Z such that (z + t, x) =
(
z′ + m, m · x′

)
, we conclude

C[z, x] =
{
t ∈ C; Im(t) > − Im(z)

}
which is connected.

In order to show that C acts properly on X∗ it is sufficient to show that C × Z acts

properly on C × R̃. Hence, we choose sequences {tn} in C, {mn} in Z and
{
(zn, xn)

}

in C × R̃ such that
(
(tn, mn) · (zn, xn), (zn, xn)

)
=

(
(zn + tn + mn, mn · xn), (zn, xn)

)
→

(
(z1, x1), (z0, x0)

)

holds. Since Z acts properly on R̃, it follows that {mn} has a convergent subsequence,
which in turn implies that {tn} has a convergent subsequence. Hence, the lemma is
proven.

Proposition 5.2. — The quotient X/Z ∼= ∆∗ × R is not holomorphically separable

and in particular not Stein. The quotient X∗/C is biholomorphically equivalent to

R̃/Z = R.

Proof. — It is sufficient to note that the map Φ: X = H×Z R̃ → ∆∗ ×R, Phi[z, x] :=(
e2πiz, [x]

)
, induces a biholomorphic map X/Z → ∆∗ × R.

Proposition 5.3. — The quotient X/Z ∼= ∆∗ × R is not holomorphically separable

and in particular not Stein.

Thus we have found an example for a hyperbolic Stein surface X endowed with a
proper R–action such that the associated Z–quotient is not holomorphically separable.
Moreover, the R–action on X extends to a proper C–action on a Stein manifold X∗

containing X as an orbit-connected domain such that X∗/C is any given compact
Riemann surface of genus g ≥ 2.
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5.2. Counterexamples with domains in C
n. — There is a bounded Reinhardt

domain D in C
2 endowed with a holomorphic action of Z such that D/Z is not Stein.

However, this Z–action does not extend to an R–action. We give quickly the construc-
tion.

Let λ := 1
2
(3 +

√
5) and

D := {(x, y) ∈ C
2 | |x| > |y|λ, |y| > |x|λ}.

It is obvious that D is a bounded Reinhardt domain in C
2 avoiding the coordinate

hyperplanes. The holomorphic automorphism group of D is a semidirect product Γ ⋉

(S1)2, where the group Γ ≃ Z is generated by the automorphism (x, y) 7→ (x3y−1, x) and
(S1)2 is the rotation group. Therefore the group Γ is not contained in a one-parameter
group. Furthermore the quotient D/Γ is the (non-Stein) complement of the singular
point in a 2-dimensional normal complex Stein space, a so-called ”cusp singularity”.
These singularities are intensively studied in connection with Hilbert modular surfaces
and Inoue-Hirzebruch surfaces, see e.g. [vdG88] and [Zaf01].

In the rest of this subsection we give an example of a hyperbolic domain of holo-
morphy in a 3–dimensional Stein solvmanifold endowed with a proper R–action such
that the Z–quotient is not Stein. While this domain is not simply-connected, its fun-
damental group is much simpler than the fundamental groups of our two-dimensional
examples.

Let G :=
{(

1 a c
0 1 b
0 0 1

)
; a, b, c ∈ C

}
be the complex Heisenberg group and let us consider

its discrete subgroup

Γ :=








1 m m2

2
+ 2πik

0 1 m + 2πil
0 0 1


 ; m, k, l ∈ Z



 .

Note that Γ is isomorphic to Zm ⋉ Z
2
(k,l). We let Γ act on C

2 by

(z, w) 7→
(

z + mw − m2

2
− 2πik, w − m − 2πil

)
.

Proposition 5.4. — The group Γ acts properly and freely on C
2, and the quotient

manifold C
2/Γ is holomorphically separable but not Stein.

Proof. — Since Γ′ ∼= Z
2 is a normal subgroup of Γ, we obtain C

2/Γ ∼= (C2/Γ′)/(Γ/Γ′).
The map C

2 → C
∗ × C

∗, (z, w) 7→
(
exp(z), exp(w)

)
, identifies C

2/Γ′ with C
∗ × C

∗.
The induced action of Γ/Γ′ ∼= Z on C

∗ × C
∗ is given by

(z, w) 7→
(
e−m2/2zwm, e−mw

)

which shows that Γ acts properly and freely on C
2. Moreover, we obtain the commu-

tative diagram

C
∗ × C

∗

(z,w) 7→w

��

// Y := (C∗ × C
∗)/Z

��

C
∗ // T := C

∗/Z.
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The group C
∗ acts by multiplication in the first factor on C

∗ × C
∗ and this action

commutes with the Z–action. One checks directly that the joint (C∗ × Z)–action
on C

∗ × C
∗ is proper which implies that the map Y → T is a C

∗–principal bundle.
Conseqently, Y is not Stein.

In order to show that Y is holomorphically separable, note that by [Oel92] this
C

∗–principal bundle Y → T extends to a line bundle p : L → T with first Chern class
c1(L) = −1. Therefore the zero section of p : L → T can be blown down and we obtain
a singular normal Stein space Y = Y ∪ {y0} where y0 = Sing(Y ) is the blown down
zero section. Thus Y is holomorphically separable.

Let us now choose a neighborhood of the singularity y0 ∈ Y biholomorphic to the
unit ball and let U be its inverse image in C

2. It follows that U is a hyperbolic domain
with smooth strictly Levi-convex boundary in C

2 and in particular Stein. In order to
obtain a proper action of R we form the suspension D = H×Γ U where Γ acts on H×U
by (t, z, w) 7→ (t + m, z + mw − m2

2
− 2πik, w − m − 2πil).

Proposition 5.5. — The suspension D = H ×Γ U is isomorphic to a Stein domain

in the Stein manifold G/Γ.

Proof. — We identify H × U with the R × Γ–invariant domain

Ω :=








1 a c
0 1 b
0 0 1


 ; Im(a) > 0, (c, b) ∈ U





in G.
Since H×U is Stein, it follows that H×Γ U is locally Stein in G/Γ. Hence, by virtue

of [DG60] we only have to show that G/Γ is Stein.
For this we note first that G is a closed subgroup of SL(2, C)⋉C

2 which implies that
G/Γ is a closed complex submanifold of X :=

(
SL(2, C)⋉C

2
)
/Γ. By [Oel92] the man-

ifold X is holomorphically separable, hence G/Γ is holomorphically separable. Since
G is solvable, a result of Huckleberry and Oeljeklaus ([HO86]) yields the Steinness of
G/Γ.

One checks directly that the action of R × Γ on H × U is proper which implies that
R acts properly on H ×Γ U .

Because of (H ×Γ U)/Z ∼= ∆∗ × (U/Γ) this quotient manifold is not Stein but holo-
morphically separable.

6. Bounded domains with proper R–actions

In this section we give the proof of our main result.

6.1. Proper R–actions on D. — Let D ⊂ C
n be a bounded domain and let Aut(D)0

be the connected component of the identity in Aut(D).

Lemma 6.1. — A proper R–action by holomorphic transformations on D exists if

and only if the group Aut(D)0 is non-compact.
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The proof follows from the existence of a diffeomorphism K × V → Aut(D)0 where
K is a maximal compact subgroup of Aut(D)0 and V is a linear subspace of the Lie
algebra of Aut(D)0.

6.2. Steinness of D/Z. — Now we give the proof of our main result.

Theorem 6.2. — Let D be a simply-connected bounded domain of holomorphy in C
2.

Suppose that the group R acts properly by holomorphic transformations on D. Then

the complex manifold D/Z is biholomorphically equivalent to a domain of holomorphy

in C
2.

Proof. — Let D ⊂ C
2 be a simply-connected bounded domain of holomorphy. Since

the Serre problem is solvable if the fiber is D, see [Siu76], the universal globaliza-
tion D∗ is a simply-connected Stein surface, [CTIT00]. Moreover, we have shown in
Theorem 4.4, that C acts properly on D∗. Since the Riemann surface D∗/C is also
simply-connected, it must be ∆, C or P1(C). In all three cases the bundle D∗ → D∗/C

is holomorphically trivial. So we can exclude the case that D∗/C is compact and it
follows that D/Z ∼= C

∗ × (D∗/C) is a Stein domain in C
2.

6.3. A normal form for domains with non-compact Aut(D)0. — Let D ⊂ C
2 be

a simply-connected bounded domain of holomorphy such that the identity component
of its automorphism group is non-compact. As we have seen, this yields a proper
R–action on D by holomorphic transformations and the universal globalization of the
induced local C–action on D is isomorphic to C × S where S is either ∆ or C and
where C acts by translation in the first factor.

Moreover, there are plurisubharmonic functions u,−o : C × S → R ∪ {−∞} which
fulfill

u
(
t · (z1, z2)

)
= u(z1, z2) − Im(t) and o

(
t · (z1, z2)

)
= o(z1, z2) − Im(t)

such that D =
{
(z1, z2) ∈ C × S; u(z1, z2) < 0 < o(z1, z2)

}
. From this we conclude

u(z1, z2) = u(0, z2) − Im(z1), o(z1, z2) = o(0, z2) − Im(z1) and define u′(z2) := u(0, z2),
o′(z2) := o(0, z2).

We summarize our remarks in the following

Theorem 6.3. — Let D be a simply-connected bounded domain of holomorphy in C
2

admitting a non-compact connected identity component of its automorphism group.

Then D is biholomorphic to a domain of the form

D̃ =
{
(z1, z2) ∈ C × S; u′(z2) < Im(z1) < o′(z2)

}
,

where the functions u′,−o′ are subharmonic in S.
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Curie, F-13453 Marseille Cedex 13, France. • E-mail : miebach@cmi.univ-mrs.fr

Karl Oeljeklaus, LATP-UMR(CNRS) 6632, CMI-Université d’Aix-Marseille I, 39, rue Joliot-
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