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Abstract. Optimal design under a cost constraint is considered, with a scalar coefficient setting the compromise between
information (i.e., precision of the estimation of the model parameters) and cost. For suitable cost functions, by increasing the
value of the coefficient one can force the support points of an optimal design measure to concentrate around points of minimum
cost. When the experiment is constructed sequentially, the choice of each new design point being based on the current estimated
value of the model parameters (response-adaptive design), the strong consistency and asymptotic normality of the estimator
of the model parameters is obtained under the assumption that the design variables belong to a finite set. An example of
adaptive design in a dose-finding problem with a bivariate binary model is presented, showing the effectiveness of the approach.

Keywords. Adaptive design, bivariate binary model, compound optimal design, constrained optimal design, dose finding,
optimal experimental design, penalized experimental design, sequential design.

1 Penalized D-optimal design: introduction and motivation

This work is motivated by the recent papers (Dragalin and Fedorov, 2006; Dragalin et al., 2008) where
the authors use constrained optimal design to make a compromise between individual and collective
ethics in dose-finding studies. Their idea is to use a cost function that accounts for poor efficacy and
for toxicity, and to maximize information-per-cost-unit, which can be put in the form of a standard (un-
constrained) optimal design problem. Using a parametric model for the dose/efficacy-toxicity responses
(Gumbel or Cox model as in (Dragalin and Fedorov, 2006) or a bivariate probit model as in (Dragalin
et al., 2008)), the Fisher information matrix can be calculated and optimal designs can be constructed.

In the present paper we introduce some flexibility in setting the balance between the information
gained (in terms of precision of parameter estimation) and the cost of the experiment (in terms of poor
success for the patients enroled in the trial) by maximizing information-per-observation under a con-
straint on the cost or, equivalently, by optimizing a penalized design criterion where the penalty is related
to the cost of the experiment.

Let X, a compact subset of R% denote the admissible domain for the experimental variables
x (design points) and # € RP denote the (p-dimensional) vector of parameter of interest in a
parametric model generating the log-likelihood (Y, z;6) for the observation Y at the design point
x. We suppose that § € O, a compact subset of RP. For N independent observations Y =
(Y1,...,Yn) at non random design points X = (x1,...,2y) the log-likelihood at 6 is I(Y,X;60) =
ZZJ\L L U(Y5,z4;0). Let M(X,6) denote the corresponding Fisher information matrix, M(X,0) =
—1E {0%1(Y,X;0)/(80007)} = S, ju(2;,0). When N(z;) denotes the number of observations
made at + = xz;, we get the following normalized information matrix per observation M(&,6) =
(I/N)M(X,0) = ZfiﬂN(%)/N] w(x;, 0), where K is the number of distinct design points and &
is the design measure (a probability measure on X') that puts mass N (x;)/N at x;. Following the usual
approximate design approach, we shall relax the constraints on design measures and consider £ as any
element of =, the set of probability measures on X, so that M(&,0) = [, u(x,0) (dx).

In a regression model with independent and homoscedastic observations satisfying IEy(Y |z, 0) =
n(z,0), with n(z, #) differentiable with respect to 6 for any z, we have

T on(z,0) on(z,0)

ww, ) =T —5— —ag7
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with T = [[/(t)/9(t)]* @(t)dt the Fisher information for location, where (-) is the probability
density function of the observation errors and ¢'(-) its derivative.

In a dose-response problem with single response Y € {0, 1} (efficacy or toxicity response at the
dose x for instance) and Prob{Y = 1|x,0} = =(x,0) we have (Y, z;0) = Y log[m(x,0)] + (1 —
Y)log[l — 7 (z, 8)] so that, assuming 7 (z, §) differentiable with respect to 6 for any =,

_ On(x,0) On(x,0) 1
w(z,0) = 90 20T w(x,0)[1 —7(z,0)]

Bivariate extensions, where both efficacy and toxicity responses are observed at a dose x, are considered
in Dragalin and Fedorov (2006) (Gumbel and Cox models) and Dragalin et al. (2008) (bivariate probit
model). See also the example in Sect. 2. Besides a few additional technical difficulties, the main differ-
ence with the single response case is the fact that ;(z, #) may have rank larger than one, so that less than
p support points in £ may suffice to estimate 6 consistently. The same situation occurs for regression
models when dim(7) > 1 so that (1) may have rank larger than one. We assume that ;(x, 6) is bounded
on X.

Local D-optimal design consists in determining a measure £}, that maximizes log det[M(¢, 9)],
with M(&, 6) the Fisher information matrix at a given value of §. In many circumstances, besides the
optimality criterion log det[M(§, #)], it is desirable to introduce a constraint of the form @(¢, §) < C for
the design measure. In dose-finding problems, the introduction of such a constraint allows one to take
individual ethical concerns into account. For instance, when both the efficacy and toxicity responses are
observed, one can relate &(¢, #) to the probability of success (efficacy and no toxicity) for a given dose,
as done in Dragalin and Fedorov (2006); Dragalin et al. (2008). See also Sect. 2. We suppose that the
cost (or penalty) function ®(¢, €) is linear in &, that is

B(¢,0) = /X o(,0) £(dx)

and that ¢(z, #) is bounded on X (see, e.g., Cook and Fedorov (1995) and Fedorov and Hackl (1997,
Chap. 4) for extensions to nonlinear constraints). Also, we restrict our attention to the case where a
single (scalar) constraint is present.

The fact that a single cost function is present permits to consider the problem of maximizing in-
formation per cost-unit, which can be formulated as a design problem without constraint, see (Dragalin
and Fedorov, 2006; Dragalin et al., 2008). However, in dose-finding problems this formulation has the
important consequence that the prohibition of excessively low (with poor efficacy) or high (with high
toxicity) doses can only be obtained by an ad-hoc modification of the cost function ¢(x, ). Indeed, this
is the only way to modify the optimal design and hopefully to change its support. This can be contrasted
with the solution of the constrained design problem that we consider in the present paper.

A direct formulation of the optimal design problem under constraint is as follows:

Maximize log det[M(¢, 6)] with respect to £ € = under the constraint (£, 6) < C'. 2)

We say that a design measure §¢ € = is f-admissible if @(£,0) < C and we suppose that a strictly
f-admissible measure exists in = (®(&,0) < C for some £ € Z). A necessary and sufficient condition
for the optimality of a §-admissible £* € = for (2) then becomes:

A C—P(£7,0)] =0
3A* > 0 such that and 3)
Vo € X, tracelp(z, 0)M™(€%,0)] < p+ \* [¢(x,0) — B(e*,0)].

In practice, £* can be determined by maximizing
Hg(&, ) = log det[M(&, 0)] — AD(¢, 0) )

for an increasing sequence ()\;) of Lagrange coefficients )\, starting at A\ = 0 and stopping at the first
A; such that the associated optimal design £* satisfies @(¢*,0) < C, see, e.g., Mikulecka (1983) (for
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C large enough, the unconstrained D-optimal design 7, is optimal for the constrained problem). The
parameter A can thus be used to set the tradeoff between the maximization of log det[M(¢, #)] (gaining
information) and minimization of @(¢, #) (reducing cost). Notice that maximizing Hy(§, ) for A > 0
is equivalent to maximizing (1 — +) log det[M(¢,0)] + v [-®(&,60)] withy = A/(1 + A) € [0,1) (one
may refer to Cook and Wong (1994) for the equivalence between constrained and compound optimal
designs). Similarly to the case of D-optimal design, the optimal matrix M(£*, ) is unique (but the
optimal design measure £* is not necessarily unique).

Let £*(\) denote an optimal design for Hy(§, \) given by (4). One can easily check that both
log det{M[¢*(A), 0]} and P[£*(N), 0] are non-increasing functions of A, see Cook and Wong (1994)
for examples. We suppose that u(x, 0) and ¢(z, 0) are continuous in z € X, with X’ a compact subset
of R, and define

oy = gél;(l ¢(x,0), =" =x%(0) = arg gg)r(l o(x,0). 3)

One can then show that, for suitable penalty functions, the support of an optimal design for (2) depends
on C or, equivalently, the support of an optimal design for (4) depends on A. When z* is unique, one may
then obtain that the supporting points of £* converge to x* as A\ — co. For dose-response problems, this
property has the important consequence that excessively high or low doses can be prohibited by choosing
C small enough or, equivalently, A large enough. Its effectiveness very much depends on the choice of
the penalty function, and in particular on its local behavior around x* (contrary to what intuition might
suggest, it requires the cost function ¢(-, #) to be sufficiently flat around x*: indeed, in that case a design
¢ supported in the neighborhood of x* can at the same time have a small cost @(&, §) and be dispersed
enough to carry significant information through log det M (¢, 9)).

2 Example: Cox model for efficacy-toxicity response

The example is taken from (Dragalin and Fedorov, 2006) and concerns a problem with bivariate binary
responses. For Y (respectively Z) the binary indicator of efficiency (resp. of toxicity) at dose x for a
model with parameters 6, we write Prob{Y =y, Z = z|z,0} = my.(2,0),Y,y, Z,z € {0, 1}, with

e@11Fbi1 T

T, 0) = 1 4 eao1+borx 4 eaiotbiox 4 cari+bisx
e@10+bipx

7T10(:E, 9) - 1 4 eai+borx 4 gaiotbiox 4 cari+birx
e@01+bo1 T

mo1(x,0) =

1 4 e@1+borx 4 gaiotbiox 4 caritbirx

—1
moo(z,0) = (1 + etortborz  parotbio 4 el +b11 96)

and @ = (a1, b11, a10, b1, ao1, bo1) ' . The log-likelihood function of a single observation (Y, Z) at dose
xisthen (Y, Z,x;0) = Y Zlogmi(z,0) + Y (1 — Z)logmio(x,0) + (1 = Y)Zlogmoi(x,0) + (1 —
Y)(1—Z)log moo(x, §) and elementary calculations show that the contribution to the Fisher information
matrix is

op(z,0)
00T

where p(z,0) = [m11(z,0), m10(, 0), 701(2,0)] T, P(,0) = diag{p(z,0)} and 1 = (1,1,1). Note
that y(z, 0) is generally of rank 3. As in Dragalin and Fedorov (2006), we take § = (3,3,4,2,0,1) " and
X the finite set {1, ... 21D} where the doses z(?) are equally spaced in the interval [—3, 3]. The D-
optimal design is supported on (1), ) 2:(5) and (19 with associated weights 0.3318,0.3721,0.1259
and 0.1701.

We first choose a cost function related to the probability 719(z, #) of efficacy and no toxicity and
take ¢(z,0) = 7,4 (x,6). The Optimal Safe Dose (OSD), minimizing ¢(z, §), is 2(>) = —0.6. Figure 1

op' (x,0)

wae,0) = ——g

(P_l(x, 0) + [1 — m1(z, 0) — mio(, 0) — 7o (x, 9)]—111T)
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Fig. 1. Optimal designs £*()\) as function of A € [0, 100] for the cost function 7' (x, 6): each horizontal dotted line corre-
sponds to a point in &, the thickness of the plot indicates the associated weight.

presents the optimal designs £*(\) for A varying between 0 and 100 along the horizontal axis. The
weight associated with each 2@ on the vertical axis is proportional to the thickness of the plot.
Consider now the cost function

¢(,0) = {mg (2,0) — [maxmo(x,0)] '} (©)

which is more flat than 75 (2, #) around its minimum (at the OSD x(*)). One can show that the optimal
designs then concentrate on three doses around the OSD when ) is large enough. Figure 2 indicates
that for A > 75 the optimum designs are supported on z(¥) and () only, with weights approximately
1/2 each, that is, all patients in a trial defined by £*(\) receive a dose close to the optimal one, z®.
Note, however, that none receives the OSD (compare with Figure 2). The situation changes for larger
values of A, and numerical calculations show that the optimal design is supported on {x(4),x(5),x(6)}
for A > 160, with the weight of the optimal dose (%) increasing with .

L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

A

Fig. 2. Same as Figure 1, but for the cost-function (6).

3 Adaptive designs

In a nonlinear situation, like in the example in the section above, M (&, 6) and ®(&, 6) usually depend
on f. A common approach to overcome the issue of dependence of the optimum design in € consists in
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designing the experiment sequentially. In adaptive D-optimal design for instance, the design point after
N observations is taken as

an41 = argmax trace[u(z, 0N )M~ &y, V)], 0
S

where 6 is the current estimated value of 6. By alternating between estimation based on previous
observations and determination of the next design point where to observe, one forces the empirical design
measure to progressively adapt to the correct (true) value of the model parameters. Adaptive design is
considered in (Dragalin and Fedorov, 2006; Dragalin et al., 2008), but the convergence of the procedure
(strong consistency of the parameter estimator and convergence of the empirical design measure to the
optimal non-sequential design for the true value of the model parameters) is left as an open issue. The
difficulty of proving the consistency of the estimator when design variables are sequentially determined
is usually overcome by considering an initial experiment (non adaptive) that grows in size when the
total number of observations increases, see, e.g., Chaudhuri and Mykland (1993). Although this number
is often severely limited in practise, especially for clinical trials, we think that it is reassuring to know
that, for a given initial experiment, adaptive design guarantees suitable asymptotic properties under
reasonable conditions. Using simple arguments, one can show that this is indeed the case when the
design space is finite, which forms a rather natural assumption in the context of clinical trials. The
case of adaptive D-optimal design is considered in (Pronzato, 2009b) (notice that is also covers the
situation considered by Dragalin and Fedorov (2006); Dragalin et al. (2008), which can be formulated
as a standard D-optimal design problem).

In the case of adaptive penalized D-optimal design, the design point after NV observations is taken as

TN4+1 = argmax {trace[u(x, ONM ™ (en, 0M)] — Ay o (, éN)} : (8)

Following an approach similar to that in (Pronzato, 2009b), one can show that when X’ is finite, A is the
optimal Lagrange coefficient for (2) with the estimated value 6N substituted for 6, and under standard
regularity assumptions, this procedure is asymptotically “optimal” in the sense that the estimated value
of the parameters (by least-squares in a nonlinear regression model or by the maximum-likelihood in
Bernoulli trials) converges a.s. to its true value @ and the information matrix tends a.s. to the penalized
D-optimal matrix at §, see Pronzato (2009a). Also, the estimator is asymptotically normal, with variance-
covariance matrix given by the inverse of the usual information matrix, similarly to the non-adaptive
case.

The strong consistency of N is preserved when Ay is taken as a control parameter that tends to
infinity not too fast (more slowly than N/ loglog N). Letting Ay tend to infinity permit to focuss more
and more on cost minimization and to obtain design measures that converge weakly to the delta measure
at ¥ = argmingey ¢(z,0) (and all design points tend to concentrate around x* for suitable penalty
functions). In dose-finding problems, it means that for suitable penalty functions, when the weight given
to the cost for bad treatment increases with the number of patients enroled, the doses allocated converge
to the OSD while the parameters are still estimated consistently.

Numerical simulations with the example of Section 2 (trials on 36 patients with the cost function
¢(x,0) = 71y (x,0)) indicate much better performance in terms of information gained (precision of the
estimation of @ in the trial) for (8) with Ay adapted to 6N than for the up-and-down rule of Ivanova
(2003), defined by

max{z(~ =1 W} if Zy =1,
Ty = { z(v) ifYy=1and Zy =0, 9)
min{z(~v+D (DY if Yy = 0and Zy = 0.

Here, the index iy € {1,...,11} is defined by (") = 2y and (Y, Zy) denotes the observation
for x . This up and down rule is also considered by Dragalin and Fedorov (2006) (see also Kpamegan
and Flournoy (2001, p. 221)). Simulations also indicate that the number of times the OSD is estimated
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correctly after the trial is much larger for (8) with Ay adapted to 6N than for (9). This performance
comes with a prize, and the cost @(&, 0) is (slightly) higher for (8) than for (9). Considering longer trials
(240 patients) with A\ increasing with IV in (8) permits to outperform (9) both in terms of precision of
the estimation of # (and location of the OSD) and cost: as Ay increases, the design points generated by
(8) tend to concentrate around the OSD.

4 Conclusions

The approach used in (Dragalin and Fedorov, 2006; Dragalin et al., 2008) makes a clear compromise
between the efficient treatment of individuals in the trial (by preventing the use of doses with low efficacy
or high toxicity) and the precise estimation of the model parameters (accompanied with measures of
statistical accuracy), to be used for making efficient decisions for future treatments. As such, it has a
great potential in combining traditional phase I and phase II clinical trials into a single one, thereby
accelerating the drug development process.

We have shown that a different formulation of the problem permits to introduce some flexibility in
setting the compromise between the information gained (in terms of precision of parameter estimation)
and the cost of the experiment (in terms of poor success for the patients enroled in the trial). We have
shown in particular that, for suitable penalty functions, by increasing the weight set on the penalty one
guarantees that all doses in the experiment have a small cost (and concentrate around the optimal dose
when this one is unique). This permits the avoidance of extreme doses generally suggested by optimal
design for parameter estimation. Further developments and numerical studies are required to define
suitable rules for selecting cost functions and for choosing the value (or the sequence of values) for the
penalty coefficients Ay .
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