
HAL Id: hal-00397010
https://hal.science/hal-00397010

Submitted on 19 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Description of the LIPN System at TAC 2008:
Summarizing Information and Opinions
Aurélien Bossard, Michel Généreux, Thierry Poibeau

To cite this version:
Aurélien Bossard, Michel Généreux, Thierry Poibeau. Description of the LIPN System at TAC 2008:
Summarizing Information and Opinions. TAC 2008, Nov 2008, Gaithersburg, United States. pp.282-
291. �hal-00397010�

https://hal.science/hal-00397010
https://hal.archives-ouvertes.fr

Description of the LIPN Systems at TAC2008:
Summarizing Information and Opinions

Aurélien Bossard, Michel Généreux and Thierry Poibeau
Laboratoire d’Informatique de Paris-Nord
CNRS UMR 7030 and Université Paris 13

93430 Villetaneuse — France
{firstname.lastname}@lipn.univ-paris13.fr

1 Introduction

The Text Analysis Conferences (TAC) offer a unique
occasion to show innovative approaches to text summa-
rization. As a first incursion into this new research area,
LIPN participated in the following tasks of TAC 2008:
the Update Summarization task and the Opinion Sum-
marization task. LIPN systems obtained good results
for Opinion Summarization; however, we are confident
that there is room for improvement, especially for the
systems that did not perform so well on the Update
task.

This paper gives a technical description of the sys-
tems developed. Algorithms and results are then briefly
discussed for the different tasks we participated in.

In the first section, we describe the LIPN1-Opinion
system for Opinion Summarization, which is based on
an adaptation of the MEAD system (Radev et al. 2004)
integrating a sentiment analysis component. We then
describe a series of other systems based on an orig-
inal clustering-based summarization algorithm called
CBASES, which has been applied to the Update as well
as to the Opinion Summarization tasks.

2 LIPN1-Opinion: Summarizing Opin-
ionated Blog Posts

We propose here an approach which combines tradi-
tional summarization with sentiment detection. Our
system’s overall architecture is not without resemblance
to MEAD (Radev et al. 2004), a technique that is cen-
tred on the computation of cluster centroids to eval-
uate a sentence relevance to a set of clustered docu-
ments. Although our approach relies only incidentally

on centroids, our system has preserved a few other rec-
ognizable aspects of MEAD, such as a certain number
of feature computations and re-ranking. Our system
departs mainly from MEAD in a number of ways: the
inclusion of sentiment analysis to account for opinion-
ated texts, computing of a score for additional relevant
features, post-processing (merging) sentences as well as
experimenting with similarity measures other than the
usual cosine.

2.1 How the runs were produced
There are three elements which serve as input to the
summarizer: the XML targets/questions/documents file
associates each target:question to a set of relevant blog
posts, the posts themselves, and a few optional snippets
of answers to each queries drawn from the blog posts
and provided by TAC.
Cleaning Each XML formatted blog posts goes

through boilerplate stripping as well as a basic screen-
ing to discard noisy input. Sentences with a ratio:

number of frequent words/total number of words

below a given threshold (0.35) were deemed too noisy
and discarded. Frequent words are the one hundred
most frequent words in the English language which
on average make up approximately half of written
texts (Fry, Kress, & Fountoukidis 2000).

Computing Features Once we have clean data, we
are in a position to compute a number of rele-
vant features for each sentence. There are nine dis-
tinct features: sentiment, isLongestSentence, sim-
ilarityWithTarget, similarityWithQuery, similarity-
WithFirstSentence, similarityWithSnippets, centroid,
length and position. Details of the computation of
each feature can be found in section 2.2.

Clustering This step aims at creating clusters on the
basis of the test data. The test data provided a list

of blog posts for each target in which answers to
queries could be extracted and summarized. Con-
sequently, each cluster gathers blog posts associated
with a unique target:query combination as provided
with the data1, resulting in a total of forty-eight clus-
ters.

Query Classification The clusters were further
grouped in two categories according to the sentiment
expressed or sought after in the query. Two broad
categories were considered: positive and negative.
Therefore, a two-class SVM classifier was developed
and trained on the manually tagged queries from
the training data provided earlier in TAC. The
idea behind the grouping of clusters is to improve
summaries by selecting sentences having the same
opinionated polarity as the query.

Summarizing The selection of relevant sentences for
summarization is based on a weighted sum of feature
values. To avoid including very short sentences in
the summary, sentences of length (in words) below a
predefined threshold (10) were given a score of zero2.
Otherwise, the scoring formula is as follows:

n∑
i=0

wi ∗ fi (1)

where wi represents the weight of feature fi. For
TAC, weights values are shown in table 1.

Feature Pos. Query Neg. Query
sim...Snippets +100 +100
sim...Query +40 +40
sim...Target +20 +20
sentiment +20 -20
sim...FirstSent. +10 +10
centroid +10 +10
position +10 +10
isLongestSent. -10 -10

Table 1: Feature weights

We can see that an important weight was attributed
to sentences with a high degree of similarity with the
snippets. Long sentences were marginally penalized.
A negative sentiment weight for negative queries can
be explained by the fact that the value of a negative
sentiment feature was -1.

Re-ranking Before being selected for the final sum-
mary, highly scored sentences go through a re-ranking
1For example, there were ten documents in the cluster

1001.2 for the target Carmax and the query What mo-
tivated negative opinions regarding purchasing a car from
CARMAX?

2After careful examination of the nuggets size, a more
advisable upper limit would have been much less than ten
words.

phase to avoid repetition. Starting from the highest
ranked sentences, the re-ranker only inserts a highly
scored sentence into the summary if the summary
current compression rate has not yet fall below its
compression requirement and the sentence is not too
similar (is below a threshold of similarity) to any of
the sentences already in the summary. The side ef-
fect is that the final compression ratio may end up
above requirement. We have set our target compres-
sion rate to 25 sentences.

Merging At this point we have 48 distinct target:query
clusters which have been summarized. The final task
is to merge clusters with the same target. This pro-
cess involves ranking sentences according to their
original position in the summary to eliminate redun-
dant (that is too similar) sentences in the same fash-
ion as we did in re-ranking. The final result is 25
summaries corresponding to the 25 targets (reduced
to 22 by the examiners).

2.2 Feature computation
This section presents the computation methodology for
each of the eight sentence features.
sentiment We have attempted to give each sentence

a meaningful positive or negative polarity by using
a supervised approach where a set of labelled doc-
uments were used for training two SVM classifiers,
one for categorising queries and one for categorising
sentences from blog posts. Queries had rather reg-
ular structures with a few repetitive patterns that
could be learned rather easily using only a few train-
ing queries. The queries provided in an early TAC
release of a sample queries served this purpose. The
learned classifier was then used to classify each query
of the test data. The classification of sentences from
the blog posts presented a rather more challenging
task, given the variable length, structures and do-
main targeted. All these obstacles were arguments
to adopt the following safer, although not necessarily
more accurate, strategy: a document classifier was
built to classify each blog posts, in which each sen-
tence was attributed the same polarity as the blog
post itself. The document classifier was trained on
the self-annotated movie reviews corpus3 freely avail-
able online. The assumption behind this simplifica-
tion is that blog posts tend to express views which are
rather unbalanced, leaning most of the time towards
one particular pole of the sentiment scale, which leads
to sentences sharing the same polarity as the overall
post. Negative sentences were attributed value -1 and
positive sentences value +1.

isLongestSentence The longest sentence for each
post is attributed a value of one, zero otherwise.
3http://www.cs.cornell.edu/People/pabo/

movie-review-data/

similarityWithTarget The lexical/semantic similar-
ity (see section 2.3) of a sentence and the target is
attributed a value between zero and one.

similarityWithQuery The lexical/semantic similar-
ity of a sentence and the query is attributed a value
between zero and one.

similarityWithFirstSentence The lexical/semantic
similarity of a sentence and the first sentence of a
post is attributed a value between zero and one.

similarityWithSnippets A list of snippets were pro-
vided for each target. A snippet was a piece of infor-
mation responding to the information need of queries
and the snippets provided by NIST contained all the
nuggets used in the evaluation. Each sentence was
attributed a value of similarity between zero and one
corresponding to the similarity with the most similar
snippet.

centroid The centroid value measures how significant
a sentence is with regards to other sentences in a
text, based on the TF*IDF technique. The centroid
of sentence s is calculated as follows:

centroids =
∑
word

tfword,s ∗ idfword,s (2)

The final centroid value for a sentence is normalized
to a value between zero and one by dividing each
centroid by the highest centroid in the text.

position This value reflects how close to the top (sno
= 1) of the text sentence s is located.

positions =
√

1/snos (3)

2.3 Similarity measure
A summarization system based on sentence selection
relies heavily on its ability to compute precisely and
effectively a large number of similarity values between
sentences. One such measure has enjoyed a great deal of
popularity, because it is conceptually simple and com-
putationally attractive: the cosine measure of similarity
represents sentences as weighted vectors of TF*IDF and
similar vectors are simply those separated by a small
angle. The only extrinsic resource needed is a good
lexicon of IDF values for each word. TAC is a good
opportunity to look at two slightly more refined alter-
natives in computing sentence similarity involving word
order and the use of a lexical database4. As opposed
to the cosine measure that models sentences as a bag
of words, the Levenshtein distance (Ristad & Yianilos
1998) does consider word order by attributing a penalty
to operations aiming at transforming one sentence into
another: insertion, deletion and replacement of words.
In the basic version of the method, each operation is
worth a penalty of one. In the more advanced ver-
sion, the penalty for replacement is commensurate with

4Wordnet: http://wordnet.princeton.edu/

the continuous value of semantic dissimilarity between
two words, based on a measure of relatedness (Ped-
ersen, Patwardhan, & Michelizzi 2004) of two words
by comparing the glosses of each in Wordnet. Other
approaches that use Wordnet and the Levenshtein dis-
tance to classify paraphrases can be found in (Brockett
& Dolan 2005).

To provide a comparison as objective as possible,
we have computed similarity values for the Microsoft
Research Paraphrase Corpus5 which consists of 4076
paraphrases (1323 fair paraphrases FPs and 2753 good
paraphrases GPs). The paraphrases in the corpus were
constructed on the basis of news sources from the web,
and each paraphrase was annotated by humans indicat-
ing whether each pair captures a paraphrase/semantic
equivalence relationship. Unlike blog posts, which con-
sist mostly of opinionated texts, the paraphrases from
the corpus are by and large factual in nature, which
limits the scope of the conclusion we can make about
the use of such similarity measures for our task.

The corpus was completed with 4076 pairs of phrases
not paraphrase of each other (NPs). Pairs of phrases
4, 5 and 6 are examples of non-paraphrases, fair and
good paraphrases respectively. The similarity values
computed using the three methods are also provided
with each example.
(4) A 1991 Florida straw poll helped catapult a

little-known Bill Clinton to national prominence. /
Two Democrats, Sen. Charles Robb of Virginia and
Wendell Ford of Kentucky, voted with the 40
Republicans. (levenshtein = 0.00,
levenshtein+wordnet = 0.03, cosine = 0.00)

(5) Under the settlement, Solutia will pay $50 million
in equal installments over a period of 10 years. /
Under the agreement, Solutia will pay $50 million
and Monsanto will pay $390 million. (levenshtein =
0.41, levenshtein+wordnet = 0.22, cosine = 0.32)

(6) EU ministers were invited to the conference but
cancelled because the union is closing talks on
agricultural reform, said Gerry Kiely, a EU
agriculture representative in Washington. / Gerry
Kiely, a EU agriculture representative in
Washington, said EU ministers were invited but
cancelled because the union is closing talks on
agricultural reform. (levenshtein = 0.19,
levenshtein+wordnet = 0.21, cosine = 0.96)
We can see that the corpus includes paraphrases us-

ing different word order (see 6) and/or semantically re-
lated terms (see 5, settlement vs agreement).

We have measured similarity for each of the
three groups (NPs, FPs and GPs) using the three
methods described above (cosine, levenshtein, leven-
shtein+wordnet).

The mean and variance N(µ,σ2) for all similarity val-
ues of the three groups are presented in table 2.

5http://research.microsoft.com/research/
downloads/default.aspx

Method 4076 NPs 1323 FPs 2753 GPs

cosine N(.004,.001) N(.499,.038) N(.624,.032)
range [.000,.423] [.000,.944] [.000,.985]

lev N(.026,.001) N(.342,.029) N(.492,.037)
range [.000,.429] [.000,.800] [.000,.900]

lev+wn N(.100,.001) N(.399,.026) N(.530,.033)
range [.012,.460] [.035,.857] [.044,1.0]

Table 2: Similarity methods compared

First, we note that all average values of similarity are
consistent with the level of gradation for each groups,
non-paraphrases having the smallest values while good
paraphrases the highest values of similarity. Dispersion
around the mean is roughly the same, except for non-
paraphrases, that have significantly lower dispersion.
This is partly due to the fact that they are bound by
zero on the left, but this also reflects the fact that all
three methods won’t find any similarity when there is
none. On the other hand, all methods appear to miss
a few similar semantic cues among paraphrases, which
explains a larger dispersion around the mean for para-
phrases.

Some experiments (Leite et al. 2007) have shown that
specific areas of document summarization may benefit
from the use of more linguistic knowledge. However,
our results show that there does not seem to be any
improvement in the measurement of similarity when we
consider word order and include a more refined measure
of similarity between each word. In fact, the cosine
method provides a greater range of values for similarity,
a characteristic that shows a better ability to separate
paraphrases from non-paraphrases. Therefore, we have
adopted and integrated the cosine measure as part of
our summarizer, and set a similarity threshold of 0.7
for detecting paraphrases.

2.4 Discussion of evaluation results
As can be seen table 3, our run (aforementioned LIPN1-
opinion, identifier 19) obtained more than competitive
results.

Pyramid Grammaticality
0.393 F-measure 6.636 score

(best: 0.534, last: 0.101) (best: 7.545, last: 3.545)
Non-redundancy Structure/Coherence

6.818 score 3.045 score
(best: 8.045, last: 4.364) (best: 3.591, last: 2.000)
Fluency/Readability Responsiveness

4.591 score 4.500 score
(best: 5.318, last: 2.636) (best: 5.773, last: 1.682)

Table 3: Evaluation results

If we group the results by content, fluency/readability

and overall responsiveness6, then we have the following
rankings:
Content LIPN1-opinion (0.393 F-measure, best:0.534

last:0.101) is ranked fifth behind one manual run and
three automatic runs

Fluency/readability LIPN1-opinion (4.218 score,
best:4.873 last:2.727) is ranked fourth behind one
manual run and two automatic runs

Overall responsiveness LIPN1-opinion (4.500 score,
best:5.318 last:2.636) is ranked eighth behind one
manual run and six automatic runs
If we give each of the six categories the same weight,

then LIPN1-opinion is ranked first with an average
score of 0.492 (last:0.290). It is interesting to exam-
ine more in depth the results and look for insights into
the summarization of opinionated texts. Our feature-
oriented system lends itself naturally to evaluation as
weights can be modified to see how discriminative the
corresponding feature is. Ideally all the manual eval-
uation from TAC should be repeated for each rele-
vant combination of features we wish to evaluate, how-
ever this is a labour intensive task clearly beyond our
means. The alternative is to use off-the-shelves state-
of-art automated evaluation software: ROUGE7 pro-
vides a widely accepted approach to evaluate a sum-
mary against a set of gold standard summaries. For
our purpose gold standard summaries are built by con-
catenating all nuggets for a specific target. A legiti-
mate concern with this strategy is how well ROUGE
evaluation correlates with the PYRAMID evaluation
adopted in TAC. Table 4 shows that for all the tar-
gets of our run LIPN1-opinion, ROUGE correlates only
weakly to PYRAMID F-measures (coefficient of corre-
lation is 0.23)

However, ROUGE presents the same basic behaviour
to PYRAMID, so that a summary covering only and
only a subset of the nuggets will have lower recall and
unit precision, while a summary covering all nuggets
and more will have unit recall but lower precision.
Other summaries will exhibit behavior between these
two extremes.

We wish to evaluate the impact of each features on
the summary evaluation measures by varying the weight
associated with each feature. To make comparison pos-
sible, we vary weights from the basic configuration used
in the submitted run (see section 2.1) and which is rep-
resented by the middle row for each of the feature types
in table 5.

6We group the different result categories as suggested
in the README file provided by NIST with the results:
1. Content = Pyramid; 2. Fluency/Readability = Gram-
maticality, Non-redundancy, Structure/Coherence and Flu-
ency/Readability; and 3. Overall responsiveness = Respon-
siveness

7http://haydn.isi.edu/ROUGE/latest.html

Target PYRAMID ROUGE
1018 0,892 0,304
1030 0,701 0,293
1026 0,541 0,406
1049 0,491 0,332
1024 0,483 0,207
1021 0,476 0,174
1008 0,458 0,457
1010 0,440 0,326
1022 0,434 0,252
1001 0,393 0,179
1009 0,386 0,177
1005 0,385 0,174
1043 0,384 0,242
1044 0,381 0,161
1019 0,351 0,325
1003 0,334 0,310
1027 0,308 0,202
1050 0,271 0,266
1033 0,182 0,506
1047 0,176 0,215
1004 0,127 0,270
1045 0,051 0,041

Table 4: Correlation between PYRAMID and ROUGE

Sentiment Analysis Let’s recall that our basic strat-
egy to match the polarity of each sentence from the
blogs to a pair target:question was to assume that the
sentence would share the same polarity as the blog
itself. In view of the inverse relationship between sen-
timent weight and evaluation scores, it seems that in
the domain of summarization at least, the assump-
tion may not hold. Given that the assumption can
be apparented to an approximation, this does not
entail however that sentiment analysis per se is not
useful for summarizing opinionated documents. To
get a more complete picture of the use of sentiment
analysis, a more comprehensive method of labelling
sentences for sentiment is necessary.

Longest Sentence The idea here is to avoid populat-
ing summaries with long sentences, which we hypoth-
esize could adversely affect readability. This does not
seem to be the case.

Similarities with Target and Query The inclu-
sion of similarity scores between the blog sentences
and target or query follows from the observation
that the main topics in the target (e.g. Carmax) and
the query (e.g. What motivated negative opinions
regarding purchasing a car from CARMAX?) tend
to be repeated in opinions expressed toward the
subject matter. This is probably true for targets,
but probably not to the same extent for queries, as
is exemplified by the following nugget (e.g. It costs
more to purchase a car from CARMAX than from
other used car dealers).

Feature Weight Recall Prec. F-sc.
sentiment +000 0.605 0.200 0.288
sentiment +020 0.622 0.177 0.265
sentiment +050 0.610 0.154 0.228

isLongestSent -050 0,605 0,184 0,270
isLongestSent -010 0.622 0.177 0.265
isLongestSent +000 0,627 0,175 0,262
sim. . .Target +000 0,628 0,178 0,266
sim. . .Target +020 0.622 0.177 0.265
sim. . .Target +050 0,615 0,181 0,267
sim. . .Query +000 0,622 0,181 0,267
sim. . .Query +040 0.622 0.177 0.265
sim. . .Query +080 0,623 0,179 0,265
sim. . .1stSent +000 0,627 0,177 0,265
sim. . .1stSent +010 0.622 0.177 0.265
sim. . .1stSent +040 0,614 0,179 0,265
sim. . .snippets +000 0.509 0.130 0.191
sim. . .snippets +100 0.622 0.177 0.265
sim. . .snippets +150 0.632 0.186 0.276

centroid +000 0.622 0.185 0.272
centroid +010 0.622 0.177 0.265
centroid +050 0.631 0.156 0.240
position +000 0,625 0,180 0,266
position +010 0.622 0.177 0.265
position +040 0,623 0,177 0,265

Table 5: Features impact

Similarity with First Sentence Works on summa-
rizing factual documents has shown that the first sen-
tence often captures essential elements of the whole
text. However, the contribution of such sentence ap-
pears of no use in evaluation measures of summary
content for opinionated texts.

Snippets Similarity Of all the features, we have sub-
stantial evidence that comparing our candidate sen-
tences with the snippets by TAC has had a positive
influence on the results. Although not surprising, to
tap efficiently into this feature requires the use of a
decent text similarity method, while the rather mod-
est contribution of the feature suggests that it is by
no means the sole responsible for the good results of
the system.

Centroid Cluster Centroid clusters are at the very
core of the traditional summarizing systems such as
MEAD. Results show that although they seem to
have improve recall slightly, a weight as high as 50
has not had any positive impact on precision and F-
measures. One explanation is that the contribution of
centroids is mitigated by the larger weight (and con-
tribution) of snippets similarity, a feature not usually
present in summarizing systems built around cen-
troids.

Position This feature is a generalization of the
simWithFirstSentence feature to all sentences in a
document. We observe that there is a weak inverse

relationship between the position of the sentence and
evaluation measures. This suggests that authors may
keep their most striking comments until the very end?

Compression Ratio By augmenting compression ra-
tion, i.e. by keeping a smaller number of sentences
in the final summary, we tend to lower recall and
increase precision, although not at the same rate so
that the F-measure steadily increase as we compress
the summary. As the relation between compression
rate and F-measure does not show a gradual increase
followed by a decrease (see table 6), it is not a sim-
ple matter of choosing the rate corresponding to the
highest F-measure. Instead, the appropriate rate is
a matter of trade-off between high enough semantic
recall while not impairing on the quality and read-
ability of the results by sustaining an adequate level
of precision.

Feature Nb. sent. Rec. Prec. F-sc.
compression 010 0.441 0.301 0.335
compression 025 0.622 0.177 0.265
compression 050 0.719 0.103 0.173
compression 075 0.767 0.072 0.127

Table 6: Compression rate impact

2.5 Concluding Remarks on the
LIPN1-Opinion System

We have presented an architecture to summarize opin-
ionated texts which combines fairly standard features
for text analysis with more exploratory features ensu-
ing from sentiment analysis. Given that our system
has had very good results for evaluation measures for
quality and content, we conclude that this combination
appears to be a good starting point to capture key ele-
ments that authors wish to express in subjective texts
such as blog posts. Although our post-mortem analy-
sis showed that snippet snooping has had a undeniable
positive impact on the results, we have offered some
insights on each feature contribution to help out un-
derstand how the interaction of the parts played out
together to produce proper summaries.

3 Around CBASES: A New Algorithm
for Automatic Summarization

As presented above, LIPN1-Opinion was based on an
adaptation of the MEAD system (Radev et al. 2004)
integrating a sentiment analysis component. We have
performed a series of other experiments and runs us-
ing a new algorithm called CBASES, which has been
applied to the Opinion Summarization track (LIPN2-
Opinion) as well as to the Update Summarization track
(LIPN1-Update). We also participated in the Update
track with a baseline system (LIPN2-Update) to be able

to compare the results obtained by LIPN1-Update with
a more basic approach.

We obtained surprising results since CBASES per-
formed quite badly on the Update task but gave in-
teresting results on the Opinion Summarization task,
without using the snippets. In what follows, we first
give a description of CBASES, our summarization al-
gorithm. We then describe the results obtained for the
different tracks.

3.1 CBASES: A Clustering-Based
Sentence Extractor for Automatic
Summarization

We assume that redundant pieces of information are
the most important thing in order to produce a good
summary. Therefore, the sentences which carry those
pieces of information have to be extracted. Detecting
groups of sentences conveying the same information is
the first step of our approach. The developed algorithm
first establishes the similarities between all sentences
of the documents to summarize, then apply a cluster-
ing algorithm — fast global k-means (Lopez-Escobar,
Carrasco-Ochoa, & Martinez Trinidad 2006) — to the
similarity matrix in order to create clusters in which
sentences convey the same information.

Similarity between sentences is computed using a
variant of the “Jaccard” measure. If two terms are
not equal, we test their synonymy/hyperonymy us-
ing Wordnet taxonomy (Fellbaum 1998). In case they
are synonyms or hyperonym/hyponym, these terms are
taken into account in the similarity calculation, but
weighted in order to reflect that terms equality is more
important than terms semantic relation. We do this
in order to solve the problem pointed out in (Erkan &
Radev 2004) (synonymy was not taken into account for
sentence similarity measures) and so to enhance sen-
tence similarity measure. It is crucial to our system
based on redundancy location as redundancy assump-
tion is dependant on sentence similarities.

We cluster the sentences using fast-global kmeans
(description of the algorithm is in figure 1). If it does
not behave well on large data set, it works well on small
data set, with a small number of dimensions. This algo-
rithm is easy to adapt, and this will prove to be of use
when working on slightly different tasks than automatic
summary, such as “update task” of TAC campaign.

This clustering step completed, we select one sen-
tence per cluster in order to produce a summary that
contains most of the relevant information/ideas in the
original documents. We do so by choosing the central
sentence in each cluster. The central sentence is the
one which maximizes the sum of similarities with the
other sentences of its cluster. It should be the one that
characterizes best the cluster in terms of information
vehicled.

The overall process of our summarization system is
shown in fig. 2.

for all ejinE
C1 ← ej

for i from 1 to k do
for j from 1 to i

center(Cj) ← em|emmaximizes
∑

eninCj

sim(em, en)

for all ej in E
ej → Cl|Clmaximizessim(center(Cl, ej)

add a new cluster: Ci. It initially contains only its
center, the worst represented element in its cluster.

done

Figure 1: Fast global k-means algorithm

Figure 2: Summarization system

3.2 LIPN2-Opinion: Summarizing
Opinions using CBASES

In this section, we present the results obtained by
CBASES when applied to the summarization of opin-
ions from blog (Opinion Summarization Pilot track).
We first give information on how the runs were pro-
duced (we re-used some of the components described in
previous 2) and then detail our results.

3.2.1 How the runs were produced

Snippets were not used for this system, as we want to
keep a rather generic approach8. Runs were produced
as described below:

Cleaning XML formatted blog posts were cleaned as
described in 2.1.

Opinion tagging Using the method presented in the
previous section (2.4), sentences are tagged as posi-
tive, negative or even neutral.

Summarizing For each target, a summary is created
using CBASES, which is detailed in section 3.

Question tagging Each question is tagged as positive
or negative, using a small lexicon we created which
links a few verbs and adjectives to either a positive or
negative trait. Negation also is taken into account.
The question is tagged as positive or negative de-
pending on what feature prevails.

Reranking Every summary is reranked: sentences are
grouped into three different groups: the first two
groups are for positive and negative tagged sentences,
the third one for neutral sentences. Groups of sen-
tences appear in the same order as the question: if
the first question is tagged as positive, the first sen-
tences will be positive ones.

3.2.2 Results

LIPN2-Opinion obtained quite good results on the
“opinion task”: it is ranked second for quality, fifth
on semantic ranking, and third on overall results.

However, we stated that the quality of our summaries
is very erratic. We assume this is due to the length of
our summaries, as the longest summaries are the ones
which get the worst scores (fig 3).

Solutions to fix this problem could be:
• Define a score for correspondence to user question

and extract sentences which are above a threshold;
• Extract sentences from the clusters that contain more

than a predefined number of elements only.
8It seems quite unlikely that in real conditions, a system

can make use of queries, relevant documents and snippets.
In our opinion, it seems more promising to imagine a search
engine coupled with a summarization system, even if we
have explored an alternative approach making use of the
snippets in the system presented in section 2. Of course the
snippets help getting more accurate results

Figure 3: Opinion task LIPN2 results

This would result in improving the pertinence of the
extracted sentences.

3.2.3 Concluding Remarks on LIPN2-
Opinion

We have presented above our approach for creating ex-
tract summaries. The system we used for opinion task
obtained good results but can be improved by some
post-processing methods. Other improvements could
also be studied, such as:

• Taking into account the task for establishing a task-
adapted sentence similarity measure;

• Studying Wordnet contribution: as shown in 2.2,
use of Wordnet is not necessarily synonym to system
quality improvement.

3.3 Update task: LIPN systems
The Document Understanding Conference (DUC) 2007
had introduced a new pilot task that fits well with new
paradigms on document automatic summary. In TAC
2008, this pilot task, called “Update Task”, consists
of producing two summaries: the first one about a first
group of documents, and the second one for information
that represents novelty in a second group of documents.

In this section, we describe how we adapted our sum-
marizing system, CBASES, to the update task and dis-
cuss the results and how they can be improved.

3.3.1 Managing Update

We have a summarizing system, CBASES, at our dis-
posal. It is described in 3.1. This system clusters sen-
tences from documents to summarize in order to create

Figure 4: CBASES Update system

clusters in which sentences convey the same informa-
tion.

The update task in TAC2008 consists in summariz-
ing a first group of documents, and then summarizing
what is new in a second group of documents. The first
summary is established using CBASES. Then, summa-
rizing the second group of documents consists in man-
aging updates. This should be done by detecting what
is new in the second group of documents, compared to
the first group of documents, and summarizing only the
part of documents which represents an update.

3.3.2 LIPN1-Update: CBASES adapta-
tion to update task

Detecting novelty is the first step in managing novelty.
Detecting sentences in the second document set which
are redundant with sentences in the first document set
is the method we have chosen for that purpose. We con-
sider that sentences are not conveying novelty if they
are closer to sentences belonging to the first document
set than sentences belonging to the second document
set.

After having summarized the first document set (see
fig.2), we recomputed all sentence similarities after in-
cluding the new sentences from the second document
set. We then marked all sentences in the clustering
first obtained as immobile. Using fast global kmeans,
we continued the clustering adding new clusters, with
the following constraints:

• the documents from the first document set must not
be moved to another cluster;

Figure 5: Results of our system on the “Update” task

• the cluster centers from the first clustering must not
be recalculated.
Doing so, sentences from the second document set

which are close to sentences from the first one are added
to old clusters, whereas sentences which appear to bring
novelty are added to new clusters. These new clusters
are the ones we will select sentences for the second docu-
ment set from. Fig 4 gives a view of our update system.

3.3.3 LIPN2-Update: A Baseline system

We wanted to compare our system to a basic system for
sentence selection. The feature on which is based this
system is sentence specialty: it selects sentences whose
terms are close to the bottom of the Wordnet hierarchy.

3.3.4 Results Analysis

Results were surprising: CBASES (v0.1) obtained
worse scores than our baseline. We identified two major
problems:
• document set B summaries were inferior to document

set A summaries in terms of precision and recall;
• recall for all summaries was two times worse than

precision.
This was due to bad choices we made about building

summaries: we chose to extract only sentences which
are not alone in their cluster; this had the effect to re-
duce the size of document set B summaries and to lower
recall for these summaries. We also chose to prefer sum-
maries which do not exceed 100 words. For that reason,
our system often preferred 60 words long to more than
100 words long summaries. That resulted in artificially
lowering recall for document set A and document set B
summaries.

We decided not to remove lone sentences, and to
avoid getting sentences which do not fit the topic, we
filter sentences featuring their similarity to topic.

We then adopted another strategy to produce sum-
maries that are always 100 words long: we arbitrary
chose to select seven sentences from each document set.
That is enough to always get 100 words, and not too
much as we will add noise to extracted sentences when
increasing the number of clusters (CBASES v0.2).

The last change we made to our system was to extract
from a cluster not the sentence closest to the centre but
the sentence which maximizes similarity with a query
(CBASES v0.5).

The results of the first version of our system and of
the new ones are shown in fig.5.

What is important to notice is that our system also
obtained poor results in manual evaluation, for the
same reasons as for automatic evaluation.

3.4 Concluding Remarks on
LIPN1-Update

We presented in this paper our automatic summariza-
tion system. If the results obtained during the evalua-
tion were disappointing, the corrected system behaves
well. There are three ways CBASES can be improved
furthermore:

• Improving query scores by introducing sentence po-
sition and features such as numerical expressions and
query extensions;

• Sentence compression: deleting parts of the sentence
which are not relevant;

• Introducing request extensions.

4 Conclusion

We have presented in this paper the system developed
by LIPN for TAC 2008. We have obtained encourag-
ing results, especially for the Opinion Summarization
track. We are currently in the process of evaluating
the different components of our systems, their relative
performance and their contribution to the task. Since
it was our first experiments in summarization and our
first participation in TAC, we know that a lot of work
remains to be done to improve the quality and the ac-
curacy of our systems. We have presented in this doc-
ument some proposals to enhance the overall quality of
the different components and algorithms that remain to
be tested.

Acknowledgement

This work has been conducted under the project In-
fom@gic as part of the French Business Cluster Cap
Digital.

References

Brockett, C., and Dolan, W. B. 2005. Support vec-
tor machines for paraphrase identification and corpus
construction. In The 3rd International Workshop on
Paraphrasing (IWP2005).
Erkan, G., and Radev, D. R. 2004. Lexrank:
Graph-based centrality as salience in text summa-
rization. Journal of Artificial Intelligence Research
(JAIR) 22:457–479.
Fellbaum, C., ed. 1998. WordNet, an Electronic Lexi-
cal Database. Cambridge: MIT Press.
Fry, E. B.; Kress, J. E.; and Fountoukidis, D. L. 2000.
The Reading Teachers Book of Lists. Hoboken: Jossey-
Bass, 4th edition.
Leite, D.; Rino, L.; Pardo, T.; and Nunes, M. 2007.
Extractive automatic summarization: Does more lin-
guistic knowledge make a difference? In HLT/NAACL
Workshop on TextGraphs-2: Graph-Based Algorithms
for Natural Language Processing, 17–24.
Lopez-Escobar, S.; Carrasco-Ochoa, J. A.; and Mar-
tinez Trinidad, J. F. 2006. Fast global k-means with
similarity functions algorithm. In Corchado, E.; Yin,
H.; Botti, V. J.; and Fyfe, C., eds., IDEAL, volume
4224 of Lecture Notes in Computer Science, 512–521.
Springer.
Pedersen, T.; Patwardhan, S.; and Michelizzi, J. 2004.
Wordnet: : Similarity - measuring the relatedness of
concepts. In Proceedings of the Conference of the As-
sociation for the Advancement of Artificial Intelligence
(AAAI 2004), 1024–1025.
Radev, D.; Jing, H.; Styś, M.; and Tam, D. 2004.
Centroid-based summarization of multiple documents.
Information Processing and Management 40:919–938.
Ristad, E. S., and Yianilos, P. N. 1998. Learning
string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence 20(5):522–532.

