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Abstract

We will study algebraic hyper-surfaces on the real unit sphere S n-1 given by an homogeneous polynomial of degree d in n variables with the view point, rarely exploited, of Euclidian geometry using Bombieri's scalar product and norm. This view point is mostly present in works about the topology of random hyper-surfaces [START_REF] Shub | Complexity of bezouts theorem ii volumes and probabilities[END_REF][START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF].

Our first result (lemma 3.2 page 5) is a formula for the distance dist(P, ∆) of a polynomial to the real discriminant ∆, i.e. the set of polynomials with a real singularity on the sphere. This formula is given for any distance coming from a scalar product on the vector space of polynomials.

Then, we concentrate on Bombieri scalar product and its remarkable properties. For instance we establish a combinatoric formula for the scalar product of two products of linear-forms (lemma 4.2 page 6) which allows to give a (new ?) proof of the invariance of Bombieri's norm by composition with the orthogonal group. These properties yield a simple formula for the distance in theorem 5.3 page 9 from which we deduce the following inequality: dist(P, ∆) ≤ min x critical point of P on S n-1

|P (x)|

The definition 5.2 page 9 classifies in two categories the ways to make a polynomial singular to realise the distance to the discriminant. Then, we show, in theorem 6.3 page 16, that one of the category is forbidden in the case of an extremal hypersurfaces (i.e. with maximal Betti numbers). This implies as a corollary 6.4 (page 20) that the above inequality becomes an equality is that case.

The main result in this paper concerns extremal hyper-surfaces P = 0 that maximise the distance to the discriminant (with P = 1). They are very remarkable objects which enjoy properties similar to those of quadratic forms: they are linear combination of powers of linear forms x → x|u i d where the vectors u i are the critical points of P on S n-1 corresponding to the least positive critical value of |P |. This is corollary 7.2 page 22 of a similar theorem 7.1 page 20 for all algebraic hyper-surfaces.

The next section is devoted to homogeneous polynomials in 2 variables. We prove that a polynomial of degree d with 2d regularly spaced roots on the unit circle is a local maximum of the distance to the discriminant among polynomials with the same norm and number of roots. We conjecture that it is a global maximum and that the polynomial of degree d with 2r regularly spaced roots on the unit circle is also a similar global maximum when d < r ≤ 2d. This claim is supported by the fact that we were able to prove the consequence of this together with corollary 7.2 which yields to interesting trigonometric identities that we could not find somewhere else (proposition 8.3 page 24).

We also obtain metric information about algebraic hyper-surfaces. First, in the case of extremal hyper-surface, we give an upper bound (theorem 9.3 page 26) on the length of an integral curve of the gradient of P in the band where |P | is less that the least positive critical value of |P |. Then, a general lower bound on the size and distance between the connected components of the zero locus of P (corollary 10.2 and theorem 10.3).

The last section will present experimental results among which are five extremal sextic curves far from the discriminant. These are obtained by very long running numerical optimisation (many months) some of which are not terminated.

Notation

Let S n-1 be the unit sphere of R n . We write x the usual Euclidean norm on R n .

We consider E = R[X 1 , . . . , X n ] d the vector space of homogeneous polynomials in n > 1 variables of degree d > 1. Let N be the dimension of this vector space, we have N = d+n-1 n-1

≥ n

Let , be a scalar product on E and the associated norm. We use the same notation for the scalar product and norm of E as for R n , the context should make it clear what norm we are using.

Let B = (E 1 , . . . , E N ) be an orthonormal basis of E.

For x ∈ R n , C(x) denotes the line vector (E 1 (x), . . . , E N (x)) and B i (x) for i ∈ {1, . . . , n} denotes the line vector ( ∂E1(x) ∂xi , . . . , ∂E N (x) ∂xi ). Let B(x) be the n × N matrix whose lines are B i (x) for i ∈ {1, . . . , n}.

For P ∈ E, let P B be the column vector coordinates of P in the basis B. We may write:

P (x) = C(x)P B , ∂P (x 
) ∂x i = B i (x)P B and ∇P (x) = B(x)P B

We will also use the following notation for the normal and tangent component of a vector field V (x) defined for x ∈ S n-1 :

V N (x) = x|V (x) x V T (x) = V (x) -V (x) N
In the particular case of ∇P (x), we write ∇ T P (x) and we have Euler's relation ∇ N P (x) = dP (x)x, which gives:

∇P (x) = ∇ T P (x) + dP (x)x with ∇ T P (x)|x = 0

Similarly, we write HP (x) for the hessian matrix of P at x. We have that Hence, we can find a symmetrix matrix H T P (x) whose kernel contains x and such that :

t V HP (x)V = d(d -1)P (x) x|V 2 + 2(d -1) ∇ T P (x)|V x|V + t V H T P (x)V
Geometrically, H T P (x) is the matrix of the linear application defined as π(x) • ∇ 2 P (x) • π(x) where x → π(x) is the projection on the plane tangent to the unit sphere at x and ∇ 2 P (x) is the second derivative of P seen as a linear application.

Fact 2.1. The matrix B(x) is always of maximal rank (i.e. of rank n) for all x = 0.

Proof. Let us prove first that B(x) is of maximal rank when the elements of B are monomials with arbitrary coefficients. By symmetry, we may assume that x 1 = 0.

Thus, B(x) contains the following columns coming from the partial derivatives of a i x n-1

1 x i for 1 ≤ i ≤ n:        a 1 nx n-1 1 a 2 (n -1)x n-2 1 x 2 a 3 (n -1)x n-2 1 x 3 . . . a n (n -1)x n-2 1 x n 0 a 2 x n-1 1 0 . . . 0 0 0 a 3 x n-1 1 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . a n x n-1 1       
This proves that the n lines of B(x) are linearly independent when the basis contains only monomials. Second, If for some basis B(x) where of rank less that n, this would yield a linear combination with some non zero coefficients such that 1≤i≤n λ i B i (x) = 0, implying that for any polynomial P we would have (λ 1 , . . . , λ n )B(x)P B = 1≤i≤n λ i ∂P ∂xi (x) = 0, and this being independent of the basis would mean that B(x) is never of maximal rank for that x. As usual, the equation C(x)P B = 0 is redundant because of the Euler's relation which can be written here C(x) = 1 d (x 1 , . . . , x n )B(x). Therefore, the discriminant ∆ is a union of sub-vector spaces of E of codimension n (given that B(x) is of maximal rank).

Let P be a given polynomial in E. We give a way to compute the distance between P and ∆.

We first choose x 0 = 0 and we compute the distance from P to ∆ x0 . Therefore, we look for Q ∈ E, such that:

• P + Q ∈ ∆ x0 . • Q minimal.
The first condition may be written

B(x 0 )(P B + Q B ) = 0
The second condition is equivalent to Q orthogonal to ∆ x0 , which means that Q B is a linear combination of the vectors t B i (x 0 ), the columns of t B(x 0 ). This means that there exists a column vector H of size n such that

Q B = t B(x 0 )H.

This gives:

B(x

0 )P B + B(x 0 ) t B(x 0 )H = 0 Let us define A(x) = B(x) t B(x) and M (x) = A(x) -1
B(x) is a n × N matrix of maximal rank with n ≤ N . This implies that A(x) is an n × n symmetrical and definite matrix for all x = 0. Hence, M (x) is well defined and symmetrical.

We have

B(x 0 )P B + A(x 0 )H = 0 which implies H = -M (x 0 )B(x 0 )P B and Q B = -t B(x 0 )M (x 0 )B(x 0 )P B
We can now write the distance to ∆ x0 by

dist 2 (P, ∆ x0 ) = Q 2 = t Q B Q B = t P B t B(x 0 )M (x 0 )B(x 0 ) t B(x 0 )M (x 0 )B(x 0 )P B = t P B t B(x 0 )M (x 0 )A(x 0 )M (x 0 )B(x 0 )P B = t P B t B(x 0 )M (x 0 )B(x 0 )P B = t ∇P (x 0 )M (x 0 )∇P (x 0 )
The above formula, established for any x 0 = 0, is homogeneous in x 0 . We can therefore state our first lemma: Lemma 3.2. Let (E 1 , . . . , E N ) be an orthornomal basis of E = R[X 1 , . . . , X n ] d for a given scalar product. Let B(x) be the n × N matrix defined by:

B(x) = ∂E j (x) ∂x i 1≤i≤n 1≤j≤N
For any homogeneous polynomial P ∈ E, the distance to the discriminant ∆ associated to the given scalar product is given by

dist(P, ∆) = min x∈S n-1 t ∇P (x)M (x)∇P (x) with M (x) = (B(x) t B(x)) -1

The Bombieri norm

The above lemma can be simplified in the particular case of Bombieri norm [START_REF] Beauzamy | Products of polynomials in many variables[END_REF]. To do so, we recall the definition and properties of Bombieri norm and scalar product.

Notation: let α = (α i , . . . , α n ) be a vector in N n and x = (x 1 , . . . , x n ) ∈ R n , we write:

• |α| = Σ n i=1 α i = d, • α! = Π n i=1 α i !, • x α = Π n i=1 x αi i for x ∈ R n ,
• χ i = (0, . . . , 0, 1, 0, . . . , 0) where the index of 1 is i. Definition 4.1 (Bombieri norm and scalar product). The Bombieri scalar product [START_REF] Beauzamy | Products of polynomials in many variables[END_REF] for homogeneous polynomial of degree d is defined by

x α 2 = α! |α|! and x α |x β = 0 if α = β
The Bombieri scalar product and the associated norm have the remarkable property to be invariant by the action of the orthogonal group of R n . It was originally introduced because it verifies the Bombieri inequalities for product of polynomials. However, we do not use this property here.

We now give a lemma establishing the invariance and a result we need later in this article:

Lemma 4.2. Let {u i } 1≤i≤d and {v i } 1≤i≤d be two families of vectors of R n . Let us consider the two following homogeneous polynomials in E:

U (x) = 1≤i≤d x|u i V (x) = 1≤i≤d x|v i
The Bombieri scalar product of these polynomials is given by the following formula which directly relates the Bombieri scalar product of polynomials to the Euclidian one in R n :

U |V = 1 d! σ∈Sn 1≤i≤d u i |v σ(i)
When the two families are constant i.e. U (x) = x|u d and V (x) = x|v d , this simplifies to:

U |V = u|v d
Proof. We start by developing the polynomials U and V . For this, we use ρ, ρ ′ to denote applications from {1, . . . , d} to {1, . . . , n} and we write M (ρ) ∈ N n the vector such that M i (ρ) = Card(ρ -1 ({i})).

U |V = |α|=d x α M (ρ)=α 1≤i≤d u i,ρ(i) |α|=d x α M (ρ ′ )=α 1≤j≤d v j,ρ ′ (j) = |α|=d α! |α|! M (ρ)=M (ρ ′ )=α 1≤i,j≤d u i,ρ(i) v j,ρ ′ (j) = |α|=d 1 |α|! σ∈S d M (ρ)=α 1≤i≤d u i,ρ(i) v σi,ρ(i) Using the α! permutations in S d such that ρ ′ = ρ • σ = 1 d! σ∈S d |α|=d M (ρ)=α 1≤i≤d u i,ρ(i) v σi,ρ(i) = 1 d! σ∈S d 1≤i≤d u i |v σ(i)
Corollary 4.3. The Bombieri norm is invariant by composition with the orthogonal group.

Proof. Proving this corollary is just proving that the Bombieri norm does not depend upon the choice of coordinates in R n . The last theorem establishes this for product of linear forms that generate all polynomials.

We also have the following corollary, which is a way to see the Veronese embedding in the particular case of Bombieri norm:

Corollary 4.4. Let P be an homogeneous polynomial of degree d with n variables, then we have

P (u) = P |U with U (x) = x|u d
Proof. If we write P has a linear combination of monomials, the lemma 4.2 immediately gives the result.

We will use the following inequality which are proved in appendix A:

Lemma 4.5. For all P ∈ E and all x ∈ R n , we have:

|P (x)| ≤ P x d ∇P (x) ≤ d P x d-1 HP (x) 2 ≤ HP (x) F ≤ d(d -1) P x d-2
Using the following norms:

• The Euclidian norm on R n (for x and ∇P (x)),

• The Bombieri norm for polynomials (for P ) • The Frobenius norm written F which is the square root of the sum of the squares of the matrix coefficients (for the Hessian HP (x)).

• The spectral norm written 2 which is the largest absolute value of the eigenvalues of the matrix (also for the Hessian HP (x)).

All this inequalities are equalities for the monomial x d i for 1 ≤ i ≤ n and by invariance for d power of linear form. In this case, the Hessian matrix will have only one non null eigenvalue which implies that HP (x) 2 = HP (x) F .

Distance with Bombieri norm

Here is the formulation of the lemma 3.2 in the particular case of Bombieri's norm. It can be established from lemma 3.2, but we propose a more direct proof using the invariance by composition with the orthogonal group.

Theorem 5.1. Let P ∈ E be an homogeneous polynomial of degree d with n variables. The distance to the real discriminant ∆ for the Bombieri norm is given by: dist(P, ∆) = min

x∈S n-1 P (x) 2 + ∇ T P (x) 2 d
Proof. Consider c ∈ S n-1 . We want to compute dist(P, ∆ c ). One can always find h an element of the orthogonal group such that h(0, . . . , 0, 1) = c and h(1, 0, . . . , 0) = ∇ T P (c) ∇ T P (c) which implies

P • h(x) = P (c)x d n + ∇ T P (c) x 1 x d-1 n + Q(x) (5.1)
where the monomials x d n and x i x d-1 n for i ∈ {1, . . . , n} do not appear in Q(x).

Then, using the fact that the Bombieri norm is invariant by isometry, the fact that distinct monomials are othogonal and the fact that Q ∈ ∆ (0,...,0,1) which implies that Q • h -1 ∈ ∆ c , we have:

dist 2 (P, ∆ c ) = dist 2 (P • h, Q) = P (c)x d n + ∇ T P (c)x 1 x d-1 n 2 = P (c) 2 + ∇ T P (c) 2 d (5.2)
We can also give an alternate formulation avoiding the decomposition of the gradient in normal and tangent components:

dist 2 (P, ∆ c ) = P (c) 2 + ∇ T P (c) 2 d = ∇ N P (c) 2 d 2 + ∇ T P (c) 2 d = ∇ N P (c) 2 d 2 - ∇ N P (c) 2 d + ∇P (c) 2 d = (1 -d)P (c) 2 + ∇P (c) 2 d (5.3)
Let us define from equation (5.3) 2 . In the theorem 5.1, it is enough to consider the critical points of δ P on the unit sphere, that is points where ∇ T δ P (x) = 0. This means we have:

δ P (x) = ∇P (x) 2 d -(d -1)P (x)
dist(P, ∆) = min x∈S n-1 ,∇ T δ P (x)=0 δ P (x)
Using HP (x)x = (d -1)∇P (x) and ∇P (x)|x = dP (x), we compute:

d 2 ∇δ P (x) = HP (x)∇P (x) -d(d -1)P (x)∇P (x) = HP (x)∇P (x) -∇P (x)|x HP (x)x = HP (x)(∇P (x) -∇P (x)|x x) = HP (x)∇ T P (x) = H T P (x)∇ T P (x) + (d -1) ∇ T P (x) 2 x (5.4)
The first term in (5.4) is d 2 ∇ T δ P (x). Hence, we have:

dist(P, ∆) = min x∈S n-1 ,H T P (x)∇ T P (x)=0 P (x) 2 + ∇ T P (x) 2 d (5.5)
This motivates the following definition: Definition 5.2 (quasi-singular points, contact polynomial, contact radius). We will call quasi-singular points for P ∈ E the critical points of δ d with norm 1 where the distance to the discriminant is reached. This means that c ∈ S n-1 is a quasi-singular points iff dist(P, ∆) = δ P (c).

A necessary condition for c to be a quasi singular point of P is

H T P (c)∇ T P (c) = 0
We will say that Q is a contact polynomial for P at c if c is a quasi-singular point for P , Q ∈ ∆ c (this means that {x ∈ S n-1 ; Q(x) = 0} has a singularity at c) and dist(P, ∆) = Q -P .

When Q is contact polynomial for P at c, we will say that R = Q -P is a contact radius for P at c. A contact radius R is therefore the smallest polynomial for Bombieri norm that must be added to P to create a singularity.

Then, we distinguish two kinds of quasi-singular points for P (their names will be explaned later): quasi-double points: c is quasi-double point if it is a quasi-singular point of P and a critical point of P on the unit sphere (i.e. satisfying ∇ T P (c) = 0). quasi-cusp points: c is quasi-cups point for P if it is a quasi-singular point of P which is not a critical point of P . In this case, ∇ T P (c) is a non zero member of the kernel of H T P (c).

First, using the quasi-double points, we can find a very simple inequality for the distance to the discriminant:

Theorem 5.3. Let P ∈ E be an homogeneous polynomial of degree d with n variables. The distance to the real discriminant ∆ for the Bombieri norm satisfies:

dist(P, ∆) ≤ min x∈S n-1 ,∇ T P (x)=0 |P (x)|
The condition ∇ T P (x) = 0 means that x is a critical point of P and our theorem means that the distance to the discriminant is less or equal to the minimal critical value of P in absolute value.

Proof. We use the theorem 5.1:

dist 2 (P, ∆) = min x∈S n-1 P (x) 2 + ∇ T P (x) 2 d ≤ min x∈S n-1 ,∇ T P (x)=0 P (x) 2 (5.6)
Theorem 5.4. Let P ∈ E be an homogeneous polynomial of degree d ≥ 2 with n variables. Let c be a quasi-singular point for P . Then, the contact radius at c is the polynomial

R(x) = -P (c) x | c d -x | ∇ T P (c) x | c d-1 .
and Q(x) = P (x)+R(x), the contact polynomial for P at c, has no other singularity than c and -c.

Moreover, when d = 2, c is always a quasi double point (i.e. ∇ T P (c) = 0).

Proof. The formula for R(x) is a consequence of the equation 5.1 established in the proof of theorem 5.1 (given just after the theorem).

Let us assume that Q has another singularity c ′ = c and c ′ = -c on the unit sphere (recall that we imposed quasi-singular point to lie on the unit sphere). This means that dist(P, ∆ c ) = dist(P, ∆ c ′ ), Q lying at the intersection of ∆ c and ∆ c ′ .

We can therefore write Q(x) = P (x) + S(x), where S is the contact radius at c ′ :

S(x) = -P (c ′ ) x | c ′ d -x | ∇ T P (c ′ ) x | c ′ d-1 .
We necessarily have S = R. It remains to show that this is impossible. We have: When d = 2, we will show in the study of quasi-cusp point that they exist only from degree 3, hence we know that we only have quasi-double points, which means that ∇ T P (c) = ∇ T P (c ′ ) = 0. Therefore, R and S become:

R(x) = -x | c d-1 x | P (c)c + ∇ T P (c) S(x) = -x | c ′ d-1 x | P (c ′ )c ′ + ∇ T P (c ′ ) When d ≥ 3,
R(x) = -P (c) x | c d S(x) = -P (c ′ ) x | c ′ d And again, R = S implies c = c ′ or c = -c ′ .
5.1. Study of quasi-double points. Let P ∈ E be an homogeneous polynomial of degree d with n variables. Let c be a quasi-double point for P , meaning that we have ∇ T P (c) = 0 and dist 2 (P, ∆) = P (c) 2 > 0.

The Bombieri norm being invariant by the orthogonal group, using a rotation we can assume that c = (0, . . . , 0, 1) and that the matrix H T P (c) is diagonal.

Knowing that ∇ T P (c) = 0, we can write:

P (x) = αx d n + 1 2 1≤i<n λ 1 x 2 i x d-2 n + T (x) with α = P (c) and λ i = ∂ 2 P ∂x 2 i (c)
with no monomial of degree ≤ 2 in x 1 , ..., x n-1 in T (x), i.e. T has valuation at least 3 in x 1 , ..., x n-1 .

Then, by theorem 5.4, the contact radius is

R(x) = -α x | c d
and the contact polynomial is

Q(x) = P (x) + R(x) = 1 2 1≤i<n λ i x 2 i x d-2 n + T (x)
The singularity at c of the variety {x ∈ S n-1 |Q(x) = 0} is at least a double point (justifying the name quasi-double point) and it has no other singularities by theorem 5.4.

Next, we will reveal some constraints on the eigenvalues

λ i = ∂ 2 P ∂x 2 i
(c) of the hessian matrix. For this, we consider the point

c h = 1 √ 1 + h 2 (h, 0, . . . , 0, 1)
and compute (dist

2 (P, ∆ c h ) -dist 2 (P, Q))(1 + h 2 ) d which is non negative because dist(P, ∆ c h ) ≥ dist(P, Q). dist 2 (P , ∆ c h ) -dist 2 (P, Q) (1 + h 2 ) d = (1 -d)P 2 (c h ) + ∇P (c h ) 2 d -P (c) 2 (1 + h 2 ) d = (1 -d)P 2 (h, 0, . . . , 0, 1) + ∇P (h, 0, . . . , 0, 1) 2 d (1 + h 2 ) -P (c) 2 (1 + h 2 ) d = (1 -d)(α + 1 2 λ 1 h 2 + o( h 2 )) 2 + dα + (d -2) 1 2 λ 1 h 2 + o( h 2 ) 2 + (λ 1 h + o( h )) 2 d (1 + h 2 ) -α 2 (1 + dh 2 + o( h 2 )) = ((1 -d) + d -1)α 2 + ((1 -d) + (d -2))αλ 1 h 2 + 1 d λ 2 1 h 2 + dα 2 h 2 -dα 2 h 2 + o( h 2 ) = -αλ 1 + 1 d λ 2 1 h 2 + o( h 2 )
Therefore, dist(P, ∆ c h ) > dist(P, ∆) implies:

λ 1 (λ 1 -dα) ≥ 0
The same is true for all the eigenvalues and this means that when λ i and P (c) have the same sign then |λ i | ≥ d|P (c)| (recall that by definition α = P (c)).

This study establishes the following theorem:

Theorem 5.5. Let P ∈ E be an homogeneous polynomial of degree d with n variables, let c be a quasi-double point for P and Q a corresponding contact polynomial at c. Then, the contact radius is

R(x) = -P (c) x|c d
The contact polynomial Q(x) = P (x) + R(x) has only one singularity in c on S n-1 which is at least a double-point.

Moreover, if λ is an eigenvalue of H T P (x) with the same sign than P (c), then |λ| ≥ d|P (c)| > 0.

5.2. Study of quasi-cusp point. Let P ∈ E be an homogeneous polynomial of degree d with n variables. Let c be a quasi-cusp point for P , meaning that we have

∇ T P (c) = 0 and H T P (c)∇ T P (c) = 0.
The Bombieri norm being invariant by the orthogonal group, using a rotation we can assume that c = (0, . . . , 0, 1) and that the matrix H T P (c) is diagonal and that (0, 1, 0, . . . , 0) is the direction of ∇ T P (c) which is an eigenvector of H T P (c).

We can write:

P (x) = αx d n + βx 1 x d-1 n + 1 2 2≤i<n λ i x 2 i x d-2 n + 1 6 µ 1 x 3 1 x d-3 n + T (x) with α = P (c), β = ∂P ∂x1 (c), λ i = ∂ 2 P ∂x 2 i (c), µ 1 = ∂ 3 P ∂x 3 1
(c) and no monomial of degree

≤ 2 in x 1 , ..., x n-1 , nor x 3 1 x d-3 n in T (x).
The fact that the coefficient of

x 2 1 x d-1 n is null is the condition H T P (c)∇ T P (c) = 0.
Then, by theorem 5.4, the contact radius is

R(x) = -αx d n -βx 1 x d-1 n
and the contact polynomial is

Q(x) = P (x) + R(x) = 2≤i<n 1 2 λ i x 2 i x d-2 n + 1 6 µ 1 x 3 1 x d-3 n + T (x)
The singularity at c of Q(x) = 0 on the unit sphere is at least a cusp (justifying the name quasi-cusp point) and it has no other singularities by theorem 5.4.

We now use a computation similar to the previous case to reveal a constraint on µ 1 . For this, we consider the point c h = 1 √ 1+h 2 (h, 0, . . . , 0, 1) and compute (dist

2 (P, ∆ c h ) -dist 2 (P, Q))(1 + h 2 ) d which is non negative because dist(P, ∆ c h ) ≥ dist(P, Q). dist 2 (P , ∆ c h ) -dist 2 (P, Q) (1 + h 2 ) d = (1 -d)P 2 (c h ) + ∇P (c h ) 2 d -P (c) 2 - ∇ T P (c) 2 d (1 + h 2 ) d = (1 -d)P 2 (h, 0, . . . , 0, 1) + ∇P (h, 0, . . . , 0, 1) 2 d (1 + h 2 ) -α 2 + β 2 d (1 + h 2 ) d = (1 -d)(α + βh + o( h 2 )) 2 + (dα + (d -1)βh + o( h 2 )) 2 + (β + 1 2 µ 1 h 2 + o( h 2 )) 2 d (1 + h 2 ) -α 2 + β 2 d (1 + dh 2 + o( h 2 )) = ((1 -d) + d -1)α 2 + 1 d - 1 d β 2 + (2(1 -d) + 2(d -1))αβh + (1 -d) + (d -1) 2 d + 1 d -1 β 2 h 2 + 1 d βµ 1 h 2 + o( h 2 ) = 2 -2d d β 2 + 1 d βµ 1 h 2 + o( h 2 )
Therefore, dist(P, ∆ c h ) > dist(P, ∆) implies:

β(2(1 -d)β + µ 1 ) ≥ 0 This forces βµ 1 > 0 hence µ 1 = 0 (because d = 2).
We remark that if d = 2, then µ 1 = 0 and together with β = 0, this implies dist(P, ∆ c h ) < dist(P, ∆) for h small enough. This proves that quasi-cusp points exist only when d > 2. This computation does not requires theorem 5.4 (we just use the fact that c is a local minima of δ P ). This fills the gap in the proof of theorem 5.4 for the degree 2.

It remains to explicit the constraints on the eigenvalues

λ i = ∂ 2 P ∂x 2 i (c) for 2 ≤ i < n.
They change compared to the case of quasi-double points. In this case, we have to take into account the coefficient of

x 1 x 2 i x d-3 n for 2 ≤ i < n which is 1 2 µ i with µ i = ∂ 3 P ∂x1∂x 2 i (c).
For this, we consider the point c h = 1 √ 1+h 2 (0, h, 0, . . . , 0, 1) and compute (dist

2 (P, ∆ c h )- dist 2 (P, Q))(1 + h 2 ) d which is non negative because dist(P, ∆ c h ) ≥ dist(P, Q). (dist(P , ∆ c h ) -dist(P, Q)) (1 + h 2 ) d = (1 -d)P 2 (c h ) + ∇P (c h ) 2 d -P (c) 2 - ∇ T P (c) 2 d (1 + h 2 ) d = (1 -d)P 2 (0, h, 0, . . . , 0, 1) + ∇P (0, h, 0, . . . , 0, 1) 2 d (1 + h 2 ) -α 2 + β 2 d (1 + h 2 ) d = (1 -d)(α + 1 2 λ 2 h 2 + o( h 2 )) 2 + (dα + (d -2) 1 2 λ 2 h 2 + o( h 2 )) 2 d (1 + h 2 ) + (β + 1 2 µ 2 h 2 + o( h 2 )) 2 + (λ 2 h + o( h 2 )) 2 d (1 + h 2 ) -α 2 + β 2 d (1 + dh 2 + o( h 2 )) = ((1 -d) + d -1)α 2 + 1 d - 1 d β 2 + ((1 -d) + (d -2))αλ 2 h 2 + 1 d -1 β 2 h 2 + 1 d λ 2 2 h 2 + 1 d βµ 2 h 2 + o( h 2 ) = 1 d ((1 -d)β 2 -dαλ 2 + λ 2 2 + βµ 2 )h 2 + o( h 2 )
Therefore, dist(P, ∆ c h ) > dist(P, ∆) implies:

(1 -d)β 2 -dαλ 2 + λ 2 2 + βµ 2 ≥ 0 Hence, if λ 2 = 0 we have µ 2 = 0 with the same sign as β.

By symmetry, the same holds for λ i with i ≥ 2. Moreover, up to reordering, we may assume that λ 2 = • • • = λ k = 0 and that λ i = 0 for k < i < n. In fact, k + 1 is the dimension of the kernel of the matrix H T P , this is at least 2, because in contains at least (1, 0, . . . , 0) and (0, . . . , 0, 1).

Then, we consider the hessian matrix of ∂P ∂x1 , restricted to the variables x 1 , . . . , x k and consider a change of coordinates such that this matrix is diagonal. In such a coordinates system, we can write:

P (x) = αx d n +βx 1 x d-1 n + 1 2 k<i<n λ i x 2 i x d-2 n + 1 6 µ 1 x 3 1 x d-3 n + 1 2 2≤i≤k µ i x 1 x 2 i x d-3 n +T (x)
where T has no monomial of degree less than 3 in x 1 , . . . , x n-1 and no monomial of degree 3 in x 1 , . . . , x n-1 , using only the variables x 1 , . . . , x k .

This study allows us to state the following theorem:

Theorem 5.6. Let P ∈ E be an homogeneous polynomial of degree d with n variables. Let c be a quasi-cusp point for P . Then, the contact radius at c is the polynomial

R(x) = -P (c) x | c d -x | ∇ T P (c) x | c d-1 .
The contact polynomial Q(x) = P (x) + R(x) has only one singularity in c which is at least a cusp.

We also have H T P (c).∇ T P (c) = 0 and ∇ T P (c) = 0

Moreover, we can choose coordinates where c = (0, . . . , 0, 1), ∇ T P (c) = (β, 0, . . . , 0) and k + 1 ≥ 2 is the dimension of the kernel of the matrix H T P (c) (c and ∇ T P (c) are in the kernel of H T P (c)) and

P (x) = αx d n +βx 1 x d-1 n + 1 2 k<i<n λ i x 2 i x d-2 n + 1 6 µ 1 x 3 1 x d-3 n + 1 2 2≤i≤k µ i x 1 x 2 i x d-3 n +T (x)
where T has no monomial of degree less than 3 in x 1 , . . . , x n-1 and no monomial of degree 3 in x 1 , . . . , x n-1 , using only the variables x 1 , . . . , x k . We also have the following constraints:

• β, µ 1 , . . . , µ k are non zero and have the same sign and

• (1 -d)β 2 -dαλ i + λ 2 i + βµ i ≥ 0 for 2 ≤ i < n where µ i = ∂ 3 P ∂x1∂ 2 xi (c). • λ i = 0 for k < i < n.
6. Application to extremal hyper-surfaces Definition 6.1 (Extremal and maximal hyper-surfaces). An hyper-surface on the projective space or the unit sphere of dimension n-1 defined by an equation P (x) = 0 where P is an homogeneous polynomial of degree d in n variables is extremal if the tuple of its Betti numbers (b 0 , . . . , b n-2 ) is maximal for pointwise ordering for such polynomials.

We say that such an hyper-surface is maximal when the sum of its Betti numbers is maximal.

Remark: considering the same polynomial on the projective space or the sphere just doubles the Betti numbers.

The next theorem also applies to locally extremal surface: Definition 6.2 (Locally extremal hyper-surfaces). An algebraic hyper-surface H in the projective plane or the unit sphere of dimension n -1 is locally extremal if there exists no algebraic hyper-surface of the same degree isotopic to H with a disc D n-1 (whose border is S n-2 ) replaced by another surface with the same border and greater Betti numbers than the disc. This definition includes the addition of new connected components.

It is clear that an extremal hyper-surface is locally extremal (because doing a connected sum mostly corresponds to adding Betti numbers). But the converse is not true in general. For instance the plane sextic curve with nine ovals where 2 or 6 lie in another oval are locally extremal but not extremal, nor maximal. Theorem 6.3. Let P ∈ E be an homogeneous polynomial of degree d in n variables. Assume that the zero level of P on the unit sphere is smooth and locally extremal. Then, we have:

• P admit no quasi-cusp point.

• If c is a quasi-double point of P , then at least one of the eigenvalue λ of H T P (c) for an eigen vector distinct from c itself satisfies λP (c) ≤ 0 (we always have (H T P (c))c = 0 by definition of H T ).

Proof. Let P ∈ E be an homogeneous polynomial of degree d in n variables with a smooth and locally extremal zero locus on the unit sphere.

For the first item, assume that c is a quasi-cusp of P , and that R and Q are respectively the contact radius and polynomial of P at c.

By theorem 5.6, we can find coordinates where c = (0, . . . , 0, 1) and

P (x) = αx d n +βx 1 x d-1 n + 1 2 k<i<n λ i x 2 i x d-2 n + 1 6 µ 1 x 3 1 x d-3 n + 1 2 2≤i≤k µ i x 1 x 2 i x d-3 n +T (x)
with the properties given above by theorem 5.6 and especially βµ i > 0 for 1 ≤ i ≤ k.

First, without loss of generality, we can assume α ≥ 0 (by considering -P instead of P ) and β > 0 (using the transformation x 1 → -x 1 ). We furthermore reorder variables and define m ∈ N to have

• λ k+1 , . . . , λ m > 0 • λ m+1 , . . . , λ n-1 < 0.

We will study and change the topology of the zero level of P in a neighbourhood of the point c : (0, . . . , 0, 1). Hence we will work till the end of the proof with affine coordinates and set x n = 1.

We will study the following families of polynomials (only the coefficient of x 1 is changing):

P t (x) = αt 5 + βtx 1 + 2≤i≤k tx 2 i + 1 2 k<i<n λ i x 2 i + 1 6 µ 1 x 3 1 + 1 2 2≤i≤k µ i x 1 x 2 i + T (x) P + t (x) = αt 5 + βt 3 x 1 + 2≤i≤k tx 2 i + 1 2 k<i<n λ i x 2 i + 1 6 µ 1 x 3 1 + 1 2 2≤i≤k µ i x 1 x 2 i + T (x) P - t (x) = αt 5 -βt 3 x 1 + 2≤i≤k tx 2 i + 1 2 k<i<n λ i x 2 i + 1 6 µ 1 x 3 1 + 1 2 2≤i≤k µ i x 1 x 2 i + T (x)
We have dist 2 (P,

P t ) = α 2 (1 -t 5 ) 2 + β 2 d (1 -t) 2 + 2(k-1) d(d-1) t 2 = α 2 + β 2 d (1 -2t) + o(t)
and this is smaller that dist 2 (P, ∆) = α 2 + β 2 d for t small enough. This implies that P t (x) = 0 has the same topology than P (x) = 0 for t ∈]0, ǫ[ for some ǫ > 0 (1).

For t small enough, the topologies of P t (x) = 0, P + t (x) = 0 and P - t (x) = 0 can be computed using Viro's theorem [START_REF] Viro | Gluing algebraic hypersurfaces and constructions of curves[END_REF][START_REF] Viro | Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7[END_REF]. To do so, we attribute a height to each vertex of Newton's polyhedra: if x α1 1 , . . . , x αn-1 n-1 is a monomial of P t , we consider the point (α 1 , . . . , α n-1 , h α ) ∈ N n . To simplify the discussion, we will identify the point (α 1 , . . . , α n-1 , h α ) ∈ N n with the corresponding monomial.

All monomials are given 0 height except 1 which we place at height 5, x 2 i for 2 ≤ i ≤ k which we place at height 1, x 1 which height changes among the three families.

The triangulation needed by Viro's theorem is computed as the projection of the convex hull of the points of Newton's polytopes with their given height. It is easy to see that all vertices with non zero coefficient are on the convex hull, just looking at the axes.

In what follows, we consider that t is small enough to have (1) and for the topologies of P t (x) = 0, P + t (x) = 0 and P - t (x) = 0 to be given by Viro's theorem, gluing the topologies of the polynomial in each polyhedron.

Hence, we only need to consider polyhedra changing among the three polynomials. The only vertices that belong to a polyhedra which is not the same for the Viro's decomposition of P t , P + t and P - t are among

• 1, x 1 , x 2 1 , x 3 1 , • x 1 x 2 i for 2 ≤ i ≤ k, • x 2 i for k < i < n and • monomials without x 1 .
This is true because the only monomial that changes height is x 1 . Therefore, a changing polyhedron, that contains a monomial x α must contain a segment from x α to x 1 . Because the vertices of x 3 1 , x 1 x 2 i for 2 ≤ i ≤ k and x 2 i for k < i < n are at height 0, if x α is not among those, it must satisfies α 1 = 0 because otherwise the segment joining x α to x 1 can not have 0 height when it crosses the simplex corresponding to x 3 1 , x 1 x 2 i for 2 ≤ i ≤ k and x 2 i for k < i < n. This means that to study the change of topology of P t (x) = 0, P + t (x) = 0 and P - t (x) = 0, we can consider that T is constant in x 1 . The rest of the proof is in two steps: we already know that P (x) = 0 and P t (x) = 0 have the same topology. It remains to show that P t (x) = 0, P + t (x) = 0 also have the same topology and that P - t (x) = 0, compared to P - t (x) = 0, has at least two Betti numbers that increase while the others are non decreasing.

For the first two polynomials: P (x) = 0 and P t (x) = 0, they have the same topology because, considering that T is constant in x 1 , they can be written : and

P t (x) = 1 6 µx 3 1 +   βt + 1 2 1<i≤k µ i x 2 i   x 1 +   αt 5 + 1 2 2≤i≤k tx 2 i + 1 2 k<i<n λ i x 2 i + T (x)   x 1 x 2 x 3 + + + + + + + - -
P + t (x) = 1 6 µx 3 1 +   βt 3 + 1 2 1<i≤k µ i x 2 i   x 1 +   αt 5 + 1 2 2≤i≤k tx 2 i + 1 2 k<i<n λ i x 2 i + T (x)  
In both cases, all non constant coefficients in x 1 are positive, implying that the polynomial has exactly one root because its discriminant in x 1 is negative. This means that P t (x) = 0 and P + t (x) = 0 defines a graph of x 1 as a function of the other variables and hence have the same topology. Moreover, the infinite branch are the same in both cases, not changing the gluing with the polyhedra corresponding to neglected monomials in T (those using x 1 ).

Finally, for the change of topology between P + t (x) = 0 and P - t (x) = 0, we only need to consider the following polyhedra which are simplices:

A: with vertices 1, x 1 and x 2 i for 1 < i < n. B: with vertices x 1 , x 3 1 and x 2 i for 1 < i < n.

It is easy to check that the chosen height for the monomials forces these simplices to appear.

In the case of P + t (x) = 0, all coefficients are positive (see figure 1), which leads to a disc of dimension n -2 inside the polyhedra A and B, regardless of the sign of the coefficient λ i , again because the discriminant is negative.

In the case of P - t (x) = 0, only the sign of x 2 1 changes. The change is illustrated by figure 2 and3.

We show that the topology of the hyper-surface P - t (x) = 0 in the polyhedra A and B and their counterparts in all orthants is a disc with a handle. The two polyhedra A and B being simplices, the topology is given by the sign at the vertices. First, we see that the polynomial admits three roots φ -< 0 ≤ φ 0 < φ + on the x 1 axes.

In the dimension x 1 , . . . , x m , the monomial x 1 is negative surrounded by positive monomials in polyhedra A and B. This gives us a component S A homeomorphic to a sphere of dimension m -1, inside the hypersurface P - t (x) = 0 and containing φ 0 and φ + . Moreover, we can also find a topological sphere S ′ A (by inflating S A a little) that does not meet the hyper-surface P - t (x) = 0 and that contains a point on the x 1 axes between φ -and φ 0 .

Similarly, In the dimension x 1 , x m+1 , . . . , x n-1 , the monomials x 1 and 1 (-x 1 alone if α = 0) are positive and surrounded by negative vertices. This gives us a component S B homeomorphic to a sphere of dimension n -m -1, inside the hypersurface P - t (x) = 0 and containing φ -and φ 0 . Moreover, we can also find a topological sphere S ′ B (by inflating S B a little) that does not meet the same hyper-surface and that contains a point on the x 1 axes between φ 0 and φ + . Now, the sum of the dimensions of the spheres S A and S B is m-1+n-m-1 = n-2 which is one less than the dimension of the ambient space R n-1 . This means we can compute the linking number of S A and S ′ B (resp. S B and S ′ A ). It may be computed as the intersection of S ′ B and D A , the disc inside S A in the m first dimensions. This intersection number is 1 because the intersection is {φ 0 } and this indicates that the spheres S A (resp. S B ) is not homotope to 0 (i.e. non contractile) in S n-1 \ S ′ B (resp. S n-1 \ S ′ A ) hence not homotope to 0 in the zero locus of P - t (0). Therefore, the presence of S A and S B ensures that we have at least an hyper-surface, inside the polyhedra A and B, with the two Betti numbers b m-1 and b n-m-1 which are positive (if m = 1 or m = n -1, b 0 > 1). This can not be just a disc. This means that P + t (x) = 0 is a desingularisation of Q(x) = 0 that creates a disc while P - t (x) = 0 creates a disc with at least one handle. But, P + t (x) = 0 gives us the topology of P (x) = 0. This establishes the equation P (x) = 0 does not define a locally extremal hyper-surface.

The last part of the theorem is easier: a quasi-double point c for P such that all eigen values of H T P (c) (except c itself) satisfies λP (c) > 0 would mean that c is a local minimum of |P (c)| and therefore, c is an isolated point of the hyper-surface Q(x) = 0 where Q ∈ ∆ is the contact polynomial Q(x) = P (x) -P (c) x|c d for P . This allows to add a new connected component to the variety of equation P (x) = 0. This is also impossible in the case of a locally extremal algebraic hyper-surface. Corollary 6.4. Let P ∈ E be an homogeneous polynomial of degree d with n variables. Assume that the zero level of P is locally extremal. Then, the distance to the discriminant is the minimal absolute critical value of P i.e.

dist(P, ∆) = min

∇ T P (x)=0

|P (x)|

Remark: this implies that the right member of the above equality is continuous in the coefficient of P which is not true in general.

Proof. Immediate from the first item of the previous theorem, the definition 5.2 and the equation 5.5 that precedes it.

Further from the discriminant

We now establish a property verified by polynomials that maximise the distance to the discriminant: Theorem 7.1. Let P be an homogenous polynomial in n variables, of degree d, Bombieri norm 1 and such that dist(P, ∆) is locally maximal among polynomials of Bombieri norm 1.

Let {c 1 , -c 1 , . . . , c k , -c k } be the set of the quasi-singular points of P . Let R 1 , . . . , R k be the corresponding contact radius (we choose one for each pair (c, -c) because the Then, P is a linear combination of the R i .

P R 1 R 2 D P 1 P t Q s t Q t h t S P ∆ Figure 4.
Proof. We consider an homogeneous polynomial P satisfying the condition of the theorem, its quasi-critical points {c 1 , -c 1 , . . . , c k , -c k } and R 1 , . . . , R k the corresponding contact radius (which means that the contact polynomial Q i = P i + R i has a singularity in c i and -c i for 1 ≤ i ≤ k).

By absurd, let us assume that P is not a linear combination of R 1 , . . . , R k . Let P 1 be the orthogonal projection of P on the vector space generated by R 1 , . . . , R k and let D = P 1 -P = 0. We also the sphere S P , centered at P of radius dist(P, ∆). This is schematically represented in figure 4.

Next, we define P t = P + tD. Let us choose a contact polynomial Q t for P t which means that dist(P t , ∆) = dist(P t , Q t ). We consider Q s t , the intersection of the segment [P t , Q t ] with the sphere S P . Let h t be the distance from Q s t to the affine sub-space containing P and directed by R 1 , . . . , R k . We know that lim t→0 h t = 0 because Q t converges to the set {P + R 1 , . . . , P + R k }.

We have :

dist 2 (P t , ∆) = dist 2 (P t , Q t ) ≥ dist 2 (P t , Q s t ) = (h t -t D ) 2 + dist 2 (P, ∆) -h 2 t = dist 2 (P, ∆) -2th t D + t 2 D 2
But, P t is not of norm 1:

P t 2 = P 1 2 + (1 -t) 2 D 2 = 1 -2t D 2 + t 2 D 2 because P 1 2 + D 2 = P 2 = 1
. Thus, we consider the polynomial Pt = Pt Pt and we have:

dist 2 ( Pt , ∆) = dist 2 (P t , ∆) 1 -2t D 2 + t 2 D 2 ≥ dist 2 (P, ∆) -2th t D + t 2 D 2 1 -2t D 2 + t 2 D 2 = (dist 2 (P, ∆) -2th t D + t 2 D 2 )(1 + 2t D 2 + o(t)) = dist 2 (P, ∆)(1 + 2t D 2 ) + o(t) because th t ∈ o(t)
This proves that dist 2 ( Pt , ∆) > dist(P, ∆) when t is positive and small enough contradicting the fact that P is a local maxima for the distance to ∆.

Remarque: This gives a descent direction for an algorithm to compute local maxima for the distance to ∆ that we use in the experiments related in section 11.

Corollary 7.2. Let P be an homogeneous polynomial in n variables, of degree d, Bombieri norm 1 and such that dist(P, ∆) is locally maximal among polynomials of Bombieri norm 1. Assume also that P = 0 defines a locally extremal hyper-surface.

Let {c 1 , -c 1 , . . . , c k , -c k } be the set of quasi-double points of P (which are the critical points of P on S n-1 corresponding to the smallest critical value in absolute value).

Then, we can find λ 1 , . . . , λ k such that:

P (x) = k i=1 λ i x|c i d Proof.
We established that P is a linear combination of {R 1 , . . . , R k }. By theorem 6.3, P admits no quasi-cusp point and therefore

R i (x) = -P (c i ) c i |x d with |P (c i )| = dist(P, ∆).

The univariate case

In this section, we assume n = 2, that is we consider homogeneous polynomials of degree d ≥ 2 with 2 variables, which corresponds to univariate inhomogeneous polynomials.

For this section, it is simpler to manipulate trigonometric polynomials in one variable. Therefore, to an homogeneous polynomial T , we associate the function T : R → R defined as T (θ) = T (u θ ) with u θ = (cos(θ), sin(θ)).

It is clear that T → T is one to one and we can therefore extend the Bombieri norm and scalar product to univariate trigonometric polynomials of degree d as T = T .

Simple calculation shows that T

′ (θ) = ∇ T (u θ )|u ⊥ θ and T ′′ (θ) = t u ⊥ θ H T T (u θ )u ⊥ θ - dT (u θ ).
We may think that the polynomial of degree d with 2r roots on the unit circle that maximizes the distance to the discriminant, among polynomials of the same norm and number of roots, are likely to be the polynomials with regularly spaced roots and having only two opposite critical values. This leads to the polynomials T of degree d, satisfying T (θ) = cos(r(θ + ϕ)). This gives for ϕ = 0:

T r,d (x, y) = (x 2 + y 2 ) d-r 2 ⌊ r 2 ⌋ k=0 (-1) k r 2k y 2k x r-2k = ⌊ d 2 ⌋ p=0   min(p, r 2 ) k=max(0,p+ r-d 2 ) (-1) k r 2k d -r 2(p -k)   y 2p x d-2p
We can give a simple expression for the Bombieri norm of this polynomial when r = d: degrees of liberty to move T r,d away from the discriminant. When r ≤ d 2 , we may have enough degree of liberty to increase the distance by changing the r critical values. Therefore, we only state the following conjecture: Conjecture 8.2. Let P an homogeneous polynomial in two variables with 2r > d roots on the unit circle. Let α = dist(P, ∆), we have:

T d,d 2 = ⌊ n 2 ⌋ k=0 d 2k = 2 d-1 Fact 8.1. dist(T r,d , ∆) = min(1, r √ 
α ≤ T n,d P
If this conjecture is true, from the corollary 7.2 and and the fact that T r,d has no quasi-cusp points, we deduce that cos(rθ) should be a linear combination of the family c k (θ) = cos d (θ -θ k ) where θ k = kπ r are the extrema of cos(rθ) on the upper half of S 1 . This is indeed true and we have the following (new ?) trigonometric identities, which implies that the conjecture does not hold if r < d 3 :

Proposition 8.3. The following identities are true for any positive integer d:

cos(dθ) = 2 d-1 d d-1 k=0 (-1) k cos d (θ - kπ d ) sin(dθ) = 2 d-1 d d-1 k=0 (-1) k cos d (θ - 2k + 1 2d π)
and if d 3 < r ≤ d with d -r even:

cos(rθ) = 2 d-1 r d d-r 2 r-1 k=0 (-1) k cos d (θ - kπ r ) sin(rθ) = 2 d-1 r d d-r 2 r-1 k=0 (-1) k cos d (θ - 2k + 1 2r π)
Proof. The first and second identities are particular cases of the third and fourth when r = d. We use the following reasonning for the third identity:

2 d r-1 k=0 (-1) k cos d (θ - kπ r ) = r-1 k=0 (-1) k e i(θ-kπ r ) + e -i(θ-kπ r ) d = r-1 k=0 (-1) k d p=0 d p e ip(θ-kπ r ) e i(p-d)(θ-kπ r ) = d p=0 d p r-1 k=0 (-1) k e i(2p-d)(θ-kπ r ) = d p=0 d p e i(2p-d)θ r-1 k=0 (-1) k e i(d-2p) kπ r = d p=0 d p e i(2p-d)θ r-1 k=0 e -i d-2p-r r kπ
The inner sum is non null only for 2p ≡ d -r (mod 2r), i.e. 2p = d ± r where it is r.

= r d d-r 2 (e irθ + e -irθ ) = 2r d d-r 2 cos(rθ)
The last identity is a consequence of the third one:

sin(rθ) = cos rθ - π 2 = 2 d-1 r d d-r 2 r-1 k=0 (-1) k cos d θ - π 2r - kπ r = 2 d-1 r d d-r 2 r-1 k=0 (-1) k cos d θ - 2k + 1 2r π
The condition that r is not too small is necessary, not only because of the appearance of quasi-cusp points. Let us consider a polynomial of degree 5 with 2 roots on the unit circle. By the previous fact, we know that dist 2 (P, ∆) = 1 5 and that T 1,5 (x, y) only has two quasi-cusp points (0, 1) and (0, -1) when sin(θ) = 0. This means that If it were a maximum of the distance to the discriminant, we would therefore have, using theorem 7.1, T 1,5 (x, y) = Ky 4 x for some K ∈ R, which is not the case because T 1,5 (x, y) = x(x 2 +y 2 ) 2 = x 5 +2x 3 y 2 +xy 4 . The same computation applies to T 2,6 .

We were not able to prove that T r,d is a global maximum of the distance to the discriminant when d < 2r ≤ 2d. We were only able to prove that T d,d is a local maximum: 

C d = 2 d-1 d d-1 k=0 (-1) k U k
This gives:

0 = Q|C d = 2 d-1 d d-1 k=0 (-1) k Q|U k = 2 d-1 d d-1 k=0 (-1) k Q(u kπ d
) using corollary 4.4

We have Q(u kπ d ) = 0 for some k, otherwise, Q would be orthogonal to S d and all U k which implies Q = 0 since {S d , U 1 , . . . , U k } generates all polynomials. Indeed, the U k are independant from proposition B. ) for such a k. Hence, using

C d (u kπ d ) = (-1) k , C′ d = d Sd and S d (u kπ d ) = 0, dist 2 (P, ∆) ≤ dist 2 (P, ∆ u kπ d ) = P 2 ( kπ d ) + 1 d P ′2 ( kπ d ) = β 2 + 2αβ(-1) k Q( kπ d ) + α 2 ( Q2 ( kπ d ) + 1 d Q′2 ( kπ d ))
We may compute directly

α 2 = 1 -β 2 and β 2 = P |C d 2 P 2 C d 2 + P |S d 2 P 2 S d 2 .
Hence, from αβ(-1) k Q(u k ) < 0 for some k, we deduce that if P is near enough to the affine space generated C d and S d with the same norm as those, then dist(P, ∆) < dist(C d , ∆). 9. Critical band of extremal hyper-surfaces Corollary 9.1. Let P ∈ E be an homogeneous polynomial of degree d with n variables. Assume that the zero level of P on the unit sphere is locally extremal. Let m = dist(P, ∆),

if x = 1 and |P (x)| ≤ m then ∇ T P (x) 2 > d(m 2 -P (x) 2 )
Proof. By theorem 5.1, we have for all x in the unit sphere:

dist(P, ∆ x ) = P (x) 2 + 1 d ∇ T P (x) 2 ≥ dist(P, ∆) = m
If it existed x ∈ S n-1 such that P (x) 2 + 1 d ∇ T P (x) 2 = dist(P, ∆), x would be a quasi-cusp, by definition, contradicting the first item of the previous theorem.

Thus, for all x ∈ S n-1 we have P (x) 2 + 1 d ∇ T P (x) 2 > m which yields the wanted inequality.

Definition 9.2. Let P ∈ E be an homogeneous polynomial of degree d with n variables. Let m = dist(P, ∆), the critical band of P is the following set: Proof. We can consider that γ is parametrised by the value of P because ∇ T P does not vanish in B c (P ) and therefore, the value of P will be monotonous along the arc. We may also assume without loss of generality that a < b.

This means that we have P (γ(y)) = y which by derivation gives The previous corollary and the fact that γ ′ (y) and ∇ T P (γ(y)) are colinear yields:

γ ′ (y) = 1 ∇ T P (γ(y)) < 1 d(m 2 -P (γ(y)) 2 ) = 1 d(m 2 -y 2 )
Finally, for the length, we have:

length(γ) = b a γ ′ (y) dy < 1 √ d b a dy m 2 -y 2 < 1 √ d arcsin b m -arcsin a m
If b < a, reversing the arc gives the wanted result.

Large components far from the discriminant

The following proposition will have as consequence a lower bound for the size of connected components of an algebraic hyper-surfaces:

Proposition 10.1. Let P ∈ E (i.e. P is an homogeneous polynomial of degree d with n variables). Let dist(P, ∆) = 0 be the distance between P and the real discriminant of E, then for any x ∈ S n-1 a critical point of P , the open spherical cap of S n-1 with center x and radius angle α = 1 d 2dist(P,∆) P

does not meet the zero level of P .

Proof. Let us consider x ∈ S n-1 a critical point of P and y ∈ S n-1 such that P (y) = 0. Consider α the measure of the angle x0y, and consider v ∈ S n-1 such that v orthogonal to x and y = cos(α)x + sin(α)v. See figure 5.

Then, we define: f (θ) = P (cos(θ)x + sin(θ)v)

We have:

f (0) = P (x) f (α) = P (y) = 0 f ′ (θ) = t (-sin(θ)x + cos(θ)v)∇P (cos(θ)x + sin(θ)v) f ′ (0) = t v∇P (x) = 0 because v orthogonal to x and ∇P (x) f ′′ (θ) = t (-sin(θ)x + cos(θ)v)HP (cos(θ)x + sin(θ)v)(-sin(θ)x + cos(θ)v) + t (-cos(θ)x -sin(θ)v)∇P (cos(θ)x + sin(θ)v)
Using the inequality of lemma 4.5 and the fact that cos(θ)x + sin(θ)v ∈ S n-1 , we have:

|f ′′ (θ)| ≤ HP (cos(θ)x + sin(θ)v) 2 -sin(θ)x + cos(θ)v 2 + ∇P (cos(θ)x + sin(θ)v) -cos(θ)x -sin(θ)v = HP (cos(θ)x + sin(θ)v) 2 + ∇P (cos(θ)x + sin(θ)v) ≤ d(d -1) P cos(θ)x + sin(θ)v) d-2 + d P cos(θ)x + sin(θ)v) d-1 = d 2 P
Then, using Taylor-Lagrange equality, we find θ ∈ [0, α] such that

0 = f (α) = f (0) + αf ′ (0) + α 2 2 f ′′ (θ) = P (x) + α 2 2 f ′′ (θ)
This implies: Proof. Immediate because every connected component of the complement of the zero level of P contains at least one extrema of P which is a critical point of P .

|P (x)| ≤ d 2
These two last results can also be used in the projective space P n-1 (R) with the metric induced by the metric on the sphere S n-1 because the radius angle of the spherical cap in S n-1 is the radius of a disk is P n-1 (R).

Theorem 10.3. Let P ∈ S and dist(P, ∆) = 0 be the distance between P and the discriminant for E. The distance (measured as an arc length) between two distinct connected components of the zero level of P in S n-1 is greater of equal to which ends the proof.

Experiments with extremal curves

Section 7 suggests an algorithm to numerically optimise the distance to the discriminant of an hyper-surface: this algorithm requires to compute the quasi-singular points and solve a linear system to get a direction in which the distance increases. At each step, we do not need to recompute the quasi-singular points because we can use Newton's method to move the previous ones.

We have implemented such an algorithm as part of our GlSurf software. It is not a robust algorithm and it sometimes encounter numerical problems. Nevertheless, we managed to use it on all maximal curves up to degree 6 (inclusive) and some curves of higher degree. We relate those experiments in the table 1 in the hope that they could help to build new conjectures.

Remark: because we deal with curves, we reinforced our theorem taking into account the nesting of connected components which give more locally extremal hypersurfaces that just considering the number of connected components: there are two sextic curves with nine ovals that do not have the maximum b 0 = 11 but that are locally extremal.

It is important to note that these experiments only produce polynomials of Bombieri norm 1 that are likely to be near a local maxima of the distance to the discriminant. We currently have no way to find accurately (numerically or theoretically) the global maxima in each connected component of the complement of the real discriminant.

Degree 2, 3 and maximally nested ovals. Curves which have the maximum number of nested ovals are a particular case (i.e. d/2 nested ovals if the degree d is even and (d -1)/2 nested ovals plus a projective line otherwise).

It seems from experiments that the polynomial maximising the distance to the discriminant in these cases is obtained as the revolution of a polynomial in two variables that has the maximum number of roots equally spaced on the unit circle. This may be defined as: We highlighted in bold values which are not small enough to draw definitive conclusion. We choosed D 2 < dist 2 (P, ∆) which ensures a correct topology for the linear combination given by corollary 7.2. k = k + + k -: The number of pairs of quasi-double points together with the sign of the polynomials. For odd degree, this make only sense if we assume that the sign is taken on same half of S n-1 , split by the projective line that is always present in P = 0. We count in k + the critical values which are inside ovals not contained in other ovals. Table 1. Experimental results

T d (x, t) = ⌊ d 2 ⌋ k=0 (-1) k d 2k t k x d-2k P d (x, y, z) = T d (x, y 2 + z 2 ) Degree Topology dist(P, ∆) D 2 k = k + + k - 2 O 1 √ 3 ≃ 0.577 0 ∞ = 1 + ∞ 3 | O 1 √ 7 ≃ 0.378 0 ∞ = 1 + ∞ 4 O × 4 7.1210 -2 2.0310 -35 10 = 4 + 6 4 (O) √ 3 √ 47 ≃ 0.253 0 ∞ = ∞ + ∞ 5 | O × 6 2.4910 -3 4.2710 -19 15 = 6 + 9 5 | (O) √ 3 √ 103 ≃ 0.171 0 ∞ = ∞ + ∞ 6 (O) O × 9 9.6110 -5
The polynomials P d are not of norm 1, and have infinitely many critical points with the critical value ±1. In fact the curve P d (1, x, y) = 0 is a union of concentric circles centred in (1, 0, 0) plus one line at infinity, when d is odd. Therefore, they are not irreducible. The point (1, 0, 0) is the only isolated critical point. This is how we filled the corresponding lines of the table 1 with 1 P d . Experiments seems to indicate that these are global maxima of the corresponding connected components of ∆ c , but proving this probably implies finishing to study the univariate case.

Extremal sextic curves and beyond. The table 1 includes five locally extremal sextic curves including the three curves with eleven components.

The most difficult one is Gudkov's sextic followed by Hilbert's. We have run our optimisation algorithm on these curves for several months! Yet, more computation are needed, as shown in the table. Computing accurately the direction of descent requires to use more than the 64 bits of precision available in modern processors. It The extremal curves which have only nine components are interesting. They show some useless pikes which are quite surprising. Probably, these pikes are necessary to have enough critical points for corollary 7.2 to hold.

We have also included results for Harnack's curves of degree seven and height. The later is also not yet optimised enough.

Conclusion

There remains a lot of open problems in this work. Those we find the most interesting are:

(1) Complete the univariate case. We were surprised that proving that the polynomials T r,d are (or not) the global maximum to the distance to the discriminant among polynomials with the same norm and number of roots, is not easy, even when r = d. (2) In the general case, we could search for an upper bound to the number of terms in the identity given by corollary 7.2, from a bound for the number of critical values of a polynomials on two levels. For curves, such a bound is given by Chmutov in [START_REF] Chmutov | Extremal distributions of critical point s and critical values[END_REF]; an asymptotic equivalent is 7 8 d 2 . However, this result gives a bound which is greater than the dimension of the space of curves: ≃ 1 2 d 2 and we expect a better bound from our experimental results. (3) A lower bound for the same quantity seems much harder and could lead to proof that some topology can not be realised with a given degree ... We consider that P B = (a α ) |α|=d and therefore, P (x) = |α|=d a α d! α! x α :

(1) For the first inequality, the proof is easy: (3) For the last inequality, we consider the partial derivative ∂ 2 P (x) ∂x i x j when i = j: We find that G is the matrix with its (i, j) coefficient equal to cos d (θ i -θ j ) = (cos(θ i ) cos(θ j ) -sin(θ i ) sin(θ j ))

P (x) 2 =   |α|=d a α d! α! x α
∂ 2 P (x) ∂x i x j 2 =   |α|=d a α d! α! α i α j x α-χi-χj
d = d k=0 d k cos k (θ i ) sin d-k (θ i ) cos k (θ j ) sin d-k (θ j )
Hence, we find that G = t V DV where D is the diagonal matrix with coefficient (k, k) equals to d k and V is a matrix with the (k, i) coefficient equals to cos k (θ i ) sin d-k (θ i ).

We remark that V is an homogeneous Vandermonde matrix whose determinant is 0≤i<j≤d sin(θ i -θ j ) which gives the wanted result.
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  V HP (x)x = t xHP (x)V = (d -1) ∇P (x)|V = (d -1) ∇ T P (x)|V + d(d -1)P (x) x|V and t xHP (x)x = d(d -1)P (x) x 2

3 .

 3 Distance to the real discriminant Definition 3.1. The real discriminant ∆ of the space E of polynomials of degree d in n variables is the set of polynomials P ∈ E such that there exists x ∈ S n-1 where P (x) = 0 and ∇P (x) = 0. This can be written ∆ = x∈S n-1 ∆ x where ∆ x = {P ∈ E; B(x)P B = 0 and C(x)P B = 0}

  the hyper-surface R(x) = 0 contains the plane x | c = 0 with multiplicity d -1 union the plane x | P (c)c + ∇ T P (c) = 0 with multiplicity one. S(x) = 0 uses that same plane with c replaced by c ′ , which imposes c = c ′ or c = -c ′ .

Figure 1 .

 1 Figure 1. Topology of P + t (x) = 0 near c, with k = n.

Figure 2 .

 2 Figure 2. Topology of P - t (x) = 0 near c with λ 3 > 0. Only the rear faces are shown, rear border dashed.

Figure 3 .

 3 Figure 3. Topology of P - t (x) = 0 near c with k = 2 or λ 2 > 0 and λ 3 < 0. Only the rear faces are shown, rear border dashed.

  Figure 4. Figure for the proof of theorem 7.1

  By theorem 5.1, we have: dist 2 (T r,d , ∆) = min θ∈[0,2π[ δ(θ) with δ(θ) = T 2 r,d (θ) + T ′2 r,d (θ) d = cos 2 (rθ) + r 2 sin 2 (rθ) d . We have δ ′ (θ) = 2r r 2 -d d cos(rθ) sin(rθ) hence, δ has critical values when either cos(rθ) = 0 or sin(rθ) = 0 which gives the result. Thus, if r < √ d, then dist(T r,d , ∆) < 1 because the polynomial has quasi-cusp points. More generally, the proof of proposition 8.4 below suggests that we have d-r 2

Proposition 8. 4 .

 4 T d,d is a local maximum of the distance to the discriminant among polynomials of the same norm. Proof. The first thing to remark is that the polynomials of degree d such that T (θ) = cos(d(θ + ϕ)) for some ϕ ∈ R, are generated by the two polynomials C d and S d verifying Cd (θ) = cos(dθ) and Sd (θ) = sin(dθ) (C d = T d,d ). Moreover, it is easy to see that S d and C d are orthogonal for the Bombieri scalar product. If a polynomial P is in the affine space generated by C d and S d , then we have dist( P P , ∆) = dist( C C , ∆) using the invariance of the Bombieri norm. Let us now consider a polynomial not in the affine space generated by C d and S d and having the same norm as S d and C d . Composing P with a rotation, we can assume that P = αQ + βC d with Q|C d = 0, Q|S d = 0, α 2 + β 2 = 1, α, β ≥ 0 and Q = S d = C d . We also define U k (x) = x|u kπ d d with u kπ d = (cos( kπ d ), sin( kπ d )). By proposition 8.3, we have

  1 and orthogonal to S d using corollary 4.4 that gives S d |U k = S d (u kπ d ) = sin( kπ d ) = 0. This implies that there exists k such that (-1) k Q(u kπ d ) < 0. We have C d (u kπ d ) = cos( kπ d ) = (-1) k which has an opposite sign to Q(u kπ d

B

  c (P ) = {x ∈ S n-1 s.t. |P (x)| < m} Theorem 9.3. Let P ∈ E be an homogeneous polynomial of degree d with n variables. Assume that the zero level of P on the unit sphere is locally extremal. Let γ : [a, b] → B c (P ) be an integral curve of ∇ T P with a, b ∈] -m, m[. Then, we have the following inequality: This is bounded by π √ d and, if a and b have the same sign, by half of it.

Figure 5 .

 5 Figure 5.

2 . 1 d

 21 Let P ∈ E and dist(P, ∆) = 0 be the distance between P and the discriminant for E. Each connected component of the complement of the zero level of P in S n-1 contains an open spherical cap of S n-1 with center x and radius angle α = 2dist(P,∆) P

α = 2 d

 2 2dist(P,∆) P Proof. Consider an arc [A, B] on S n-1 joining two distinct connected components of the zero level of P . By the Ehresmann theorem [3], There is a point C on [A, B] where P reaches a value greater, in absolute value, than a critical value of P . We can take C a point where |P (x)| is maximum on [A, B]. Then, by exactly the same computation than for the previous theorem, using the fact that ∇P (C) is zero in the direction of the segment, we find that the arc lengths of [A, C] and [C, B] are greater or equal to 1 d 2dist(P,∆) P

Figure 6 .

 6 Figure 6. Harnack's sextic

Figure 7 .Figure 8 .

 78 Figure 7. Hilberts' sextic

Figure 9 .Figure 10 . 6 ( 4 )

 91064 Figure 9. Sextic with topology (O × 6) OO

  2α by Cauchy-Schwartz inequality = P 2 x 2d

( 2 ) 2 α= d 2 P

 222 For the second inequality, we first consider the partial derivative ∂P (x) ∂xi : 2 x 2(d-1)

|α|=d α i α j a 2 αi α j a 2 α |β|=d- 2 (=i α j a 2 α 2 α |β|=d- 2 (= 2 α∂ 2 P (x) x i x j 2 ≤ 2 α= d 2 Lemma B. 1 .

 222222222221 i α j x 2(α-χi-χj ) by Cauchy-Schwartz= d(d -1) |α|=d,αi =0,αj =0 (d -2)! α -χ i -χ j ! x 2(α-χi-χj ) = d(d -1) |α|=d α d(d -1) x 2(d-2) |α|=d αNow, we consider the partial derivative∂ 2 P (x) i (α i -1)x 2(α-2χi) by Cauchy-Schwartz = d(d -1) |α|=d α i (α i -1)a 2 α |α|=d,αi≥2 (d -2)! (α -2χ i )! x 2(α-2χi) = d(d -1) |α|=d α i (α i -1)a d(d -1) x 2(d-2) |α|=d α i (α i -1)aLet us define ι i,j = 0 when i = j and ι i,i = 1. Then, we have:1≤i,j≤n   d(d -1) x 2(d-2) |α|=d α i (α j -ι i,j )a 2 α   = d(d -1) x 2(d-2) 1≤i,j≤n |α|=d α i (α j -ι i,j )a 2 α = d(d -1) x 2(d-2) 1≤i≤n |α|=d α i (d -1)a 2 α = d(d -1) x 2(d-2) |α|=d d(d -1)a (d -1) 2 P 2 x 2(d-2) Appendix B. Independance of U k (x) = x|u k dWe need the following lemma: Let {u 0 , . . . , u d } be distinct points inS 1 . Let U k (x) = x|u k d for 0 ≤ k ≤ d.Then, the family of polynomials {U 0 , . . . , U d } is linearly independant and therefore a base of the space of homogeneous polynomials of degree d in 2 variables.Proof of the lemma. We defineθ k ∈ [0, 2π[ such that c k = (cos(θ k ), sin(θ k )).Using lemma 4.2, we find thatR i |R j = c i |c j d = cos d (θ i -θ j )We define the (d + 1) × (d + 1) symmetrical matrix which is the Gramian matrix of the family {U 0 , . . . , U d } with respect to Bombieri scalar product: θ 0 -θ 1 ) . . . cos d (θ 0 -θ d ) cos d (θ 1 -θ 0 ) 1 . . . cos d (θ 1 -θ d ) . . . . . . . . . . . . cos d (θ d -θ 0 ) cos d (θ d -θ 1 ) . . .

  Degree: the degree of the polynomial (which has Bombieri norm 1) Topology: O represents an oval, | a projective lines (...) an oval containing other curves and we use × to shorten the representation. dist(P, ∆): the distance to the discriminant at the stage we stopped the optimisation.

				1.3010 -28 22 = 9 + 13
	6 6 6 6 6 7 8	(O × 5) O × 5 (O × 9) O (O × 2) O × 6 (O × 6) O × 2 ((O)) | O × 15 (O × 3)O × 18	6.7910 -11 5.8210 -9 2.4910 -4 6.5610 -7 √ 5 √ 371 2.3810 -6 3.4310 -8	1.6410 -1 21 = 10 + 11 5.0510 -4 21 = 11 + 10 3.1410 -13 21 = 10 + 11 3.2510 -15 20 = 10 + 10 0 ∞ = ∞ + ∞ 5.5410 -12 30 = 15 + 15 1.5110 -6 39 = 18 + 21

D : following the notation of the proof of theorem 7.1. It converges toward 0 and gives a good indication to know it we are near the local minima.