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DISTANCE TO THE DISCRIMINANT

C. RAFFALLI

1. Abstract

We will study algebraic hyper-surfaces on the real unit sphere Sn−1 given by
an homogeneous polynomial of degree d in n variables with the view point, rarely
exploited, of Euclidian geometry using Bombieri’s scalar product and norm. This
view point is mostly present in works about the topology of random hyper-surfaces
[5, 4].

Our first result (lemma 3.2 page 5) is a formula for the distance dist(P,∆) of
a polynomial to the real discriminant ∆, i.e. the set of polynomials with a real
singularity on the sphere. This formula is given for any distance coming from a
scalar product on the vector space of polynomials.

Then, we concentrate on Bombieri scalar product and its remarkable properties.
For instance we establish a combinatoric formula for the scalar product of two
products of linear-forms (lemma 4.2 page 6) which allows to give a (new ?) proof
of the invariance of Bombieri’s norm by composition with the orthogonal group.
These properties yield a simple formula for the distance in theorem 5.3 page 9 from
which we deduce the following inequality:

dist(P,∆) ≤ min
x critical point of P on Sn−1

|P (x)|

The definition 5.2 page 9 classifies in two categories the ways to make a polyno-
mial singular to realise the distance to the discriminant. Then, we show, in theorem
6.3 page 16, that one of the category is forbidden in the case of an extremal hyper-
surfaces (i.e. with maximal Betti numbers). This implies as a corollary 6.4 (page
20) that the above inequality becomes an equality is that case.

The main result in this paper concerns extremal hyper-surfaces P = 0 that max-
imise the distance to the discriminant (with ‖P‖ = 1). They are very remarkable
objects which enjoy properties similar to those of quadratic forms: they are linear
combination of powers of linear forms x 7→ 〈x|ui〉d where the vectors ui are the
critical points of P on Sn−1 corresponding to the least positive critical value of
|P |. This is corollary 7.2 page 22 of a similar theorem 7.1 page 20 for all algebraic
hyper-surfaces.

The next section is devoted to homogeneous polynomials in 2 variables. We prove
that a polynomial of degree d with 2d regularly spaced roots on the unit circle is
a local maximum of the distance to the discriminant among polynomials with the
same norm and number of roots. We conjecture that it is a global maximum and

Date: June 16, 2014.
We wish to thank for the fruitful discussions and their advises our colleagues: Frédéric Bihan,
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2 C. RAFFALLI

that the polynomial of degree d with 2r regularly spaced roots on the unit circle is
also a similar global maximum when d < r ≤ 2d. This claim is supported by the fact
that we were able to prove the consequence of this together with corollary 7.2 which
yields to interesting trigonometric identities that we could not find somewhere else
(proposition 8.2 page 23).

We also obtain metric information about algebraic hyper-surfaces. First, in the
case of extremal hyper-surface, we give an upper bound (theorem 9.3 page 26) on
the length of an integral curve of the gradient of P in the band where |P | is less
that the least positive critical value of |P |. Then, a general lower bound on the size
and distance between the connected components of the zero locus of P (corollary
10.2 and theorem 10.3).

The last section will present experimental results among which are five extremal
sextic curves far from the discriminant. These are obtained by very long running
numerical optimisation (many months) some of which are not terminated.
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2. Notation

Let Sn−1 be the unit sphere of Rn. We write ‖x‖ the usual Euclidean norm on R
n.

We consider E = R[X1, . . . , Xn]d the vector space of homogeneous polynomials in
n > 1 variables of degree d > 1. Let N be the dimension of this vector space, we
have N =

(

d+n−1
n−1

)

≥ n

Let 〈 , 〉 be a scalar product on E and ‖ ‖ the associated norm. We use the same
notation for the scalar product and norm of E as for Rn, the context should make
it clear what norm we are using.

Let B = (E1, . . . , EN ) be an orthonormal basis of E.

For x ∈ R
n, C(x) denotes the line vector (E1(x), . . . , EN (x)) and Bi(x) for i ∈

{1, . . . , n} denotes the line vector (∂E1(x)
∂xi

, . . . , ∂EN (x)
∂xi

). Let B(x) be the n × N

matrix whose lines are Bi(x) for i ∈ {1, . . . , n}.
For P ∈ E, let PB be the column vector coordinates of P in the basis B. We may
write:

P (x) = C(x)PB,
∂P (x)

∂xi

= Bi(x)PB and ∇P (x) = B(x)PB

We will also use the following notation for the normal and tangent component of a
vector field V (x) defined for x ∈ Sn−1:

V N (x) = 〈x|V (x)〉x
V T (x) = V (x)− V (x)N

In the particular case of ∇P (x), we write ∇TP (x) and we have Euler’s relation
∇NP (x) = dP (x)x, which gives:

∇P (x) = ∇TP (x) + dP (x)x with 〈∇TP (x)|x〉 = 0

Similarly, we write HP (x) for the hessian matrix of P at x. We have that

tVHP (x)x = txHP (x)V = (d− 1)〈∇P (x)|V 〉
= (d− 1)〈∇TP (x)|V 〉+ d(d− 1)P (x)〈x|V 〉

and txHP (x)x = d(d− 1)P (x)||x||2

Hence, we can find a symmetrix matrix HTP (x) whose kernel contains x and such
that :

tVHP (x)V = d(d− 1)P (x)〈x|V 〉2 + 2(d− 1)〈∇TP (x)|V 〉〈x|V 〉+ tVHTP (x)V

Geometrically, HTP (x) is the matrix of the linear application defined as π(x) ◦
∇2P (x) ◦ π(x) where x 7→ π(x) is the projection on the plane tangent to the unit
sphere at x and ∇2P (x) is the second derivative of P seen as a linear application.

Fact 2.1. The matrix B(x) is always of maximal rank (i.e. of rank n) for all x 6= 0.

Proof. Let us prove first that B(x) is of maximal rank when the elements of B are
monomials with arbitrary coefficients. By symmetry, we may assume that x1 6= 0.
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Thus, B(x) contains the following columns coming from the partial derivatives of
aix

n−1
1 xi for 1 ≤ i ≤ n:














a1nx
n−1
1 a2(n− 1)xn−2

1 x2 a3(n− 1)xn−2
1 x3 . . . an(n− 1)xn−2

1 xn

0 a2x
n−1
1 0 . . . 0

0 0 a3x
n−1
1 . . . 0

...
...

...
. . .

...
0 0 0 . . . anx

n−1
1















This proves that the n lines of B(x) are linearly independent when the basis con-
tains only monomials. Second, If for some basis B(x) where of rank less that
n, this would yield a linear combination with some non zero coefficients such
that

∑

1≤i≤n λiBi(x) = 0, implying that for any polynomial P we would have

(λ1, . . . , λn)B(x)PB =
∑

1≤i≤n λi
∂P
∂xi

(x) = 0, and this being independent of the

basis would mean that B(x) is never of maximal rank for that x. �

3. Distance to the real discriminant

Definition 3.1. The real discriminant ∆ of the space E of polynomials of degree
d in n variables is the set of polynomials P ∈ E such that there exists x ∈ Sn−1

where P (x) = 0 and ∇P (x) = 0.

This can be written

∆ =
⋃

x∈Sn−1

∆x where ∆x = {P ∈ E;B(x)PB = 0 and C(x)PB = 0}

As usual, the equation C(x)PB = 0 is redundant because of the Euler’s relation
which can be written here C(x) = 1

d
(x1, . . . , xn)B(x).

Therefore, the discriminant ∆ is a union of sub-vector spaces of E of codimension
n (given that B(x) is of maximal rank).

Let P be a given polynomial in E. We give a way to compute the distance between
P and ∆.

We first choose x0 6= 0 and we compute the distance from P to ∆x0
. Therefore, we

look for Q ∈ E, such that:

• P +Q ∈ ∆x0
.

• ‖Q‖ minimal.

The first condition may be written

B(x0)(PB +QB) = 0

The second condition is equivalent to Q orthogonal to ∆x0
, which means that QB

is a linear combination of the vectors tBi(x0), the columns of tB(x0).

This means that there exists a column vector H of size n such that

QB = tB(x0)H.

This gives:
B(x0)PB +B(x0)

tB(x0)H = 0
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Let us define

A(x) = B(x)tB(x) and M(x) = A(x)−1

B(x) is a n×N matrix of maximal rank with n ≤ N . This implies that A(x) is an
n × n symmetrical and definite matrix for all x 6= 0. Hence, M(x) is well defined
and symmetrical.

We have

B(x0)PB +A(x0)H = 0 which implies H = −M(x0)B(x0)PB

and

QB = −tB(x0)M(x0)B(x0)PB

We can now write the distance to ∆x0
by

dist2(P,∆x0
) = ‖Q‖2

= tQBQB

= tPB
tB(x0)M(x0)B(x0)

tB(x0)M(x0)B(x0)PB

= tPB
tB(x0)M(x0)A(x0)M(x0)B(x0)PB

= tPB
tB(x0)M(x0)B(x0)PB

= t∇P (x0)M(x0)∇P (x0)

The above formula, established for any x0 6= 0, is homogeneous in x0. We can
therefore state our first lemma:

Lemma 3.2. Let (E1, . . . , EN ) be an orthornomal basis of E = R[X1, . . . , Xn]d for
a given scalar product. Let B(x) be the n×N matrix defined by:

B(x) =

(

∂Ej(x)

∂xi

)

1≤i≤n

1≤j≤N

For any homogeneous polynomial P ∈ E, the distance to the discriminant ∆ asso-
ciated to the given scalar product is given by

dist(P,∆) = min
x∈Sn−1

√

t∇P (x)M(x)∇P (x) with M(x) = (B(x)tB(x))−1

4. The Bombieri norm

The above lemma can be simplified in the particular case of Bombieri norm[1]. To
do so, we recall the definition and properties of Bombieri norm and scalar product.

Notation: let α = (αi, . . . , αn) be a vector in N
n and x = (x1, . . . , xn) ∈ R

n, we
write:

• |α| = Σn
i=1αi = d,

• α! = Πn
i=1αi!,

• xα = Πn
i=1x

αi

i for x ∈ R
n,

• χi = (0, . . . , 0, 1, 0, . . . , 0) where the index of 1 is i.
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Definition 4.1 (Bombieri norm and scalar product). The Bombieri scalar product
[1] for homogeneous polynomial of degree d is defined by

‖xα‖2 =
α!

|α|! and 〈xα|xβ〉 = 0 if α 6= β

The Bombieri scalar product and the associated norm have the remarkable property
to be invariant by the action of the orthogonal group of R

n. It was originally
introduced because it verifies the Bombieri inequalities for product of polynomials.
However, we do not use this property here.

We now give a lemma establishing the invariance and a result we need later in this
article:

Lemma 4.2. Let {ui}1≤i≤d and {vi}1≤i≤d be two families of vectors of Rn. Let
us consider the two following homogeneous polynomials in E:

U(x) =
∏

1≤i≤d

〈x|ui〉 V (x) =
∏

1≤i≤d

〈x|vi〉

The Bombieri scalar product of these polynomials is given by the following formula
which directly relates the Bombieri scalar product of polynomials to the Euclidian
one in R

n:

〈U |V 〉 = 1

d!

∑

σ∈Sn

∏

1≤i≤d

〈ui|vσ(i)〉

When the two families are constant i.e. U(x) = 〈x|u〉d and V (x) = 〈x|v〉d, this
simplifies to:

〈U |V 〉 = 〈u|v〉d

Proof. We start by developing the polynomials U and V . For this, we use ρ, ρ′

to denote applications from {1, . . . , d} to {1, . . . , n} and we write M(ρ) ∈ N
n the

vector such that Mi(ρ) = Card(ρ−1({i})).

〈U |V 〉 =
〈

∑

|α|=d

xα
∑

M(ρ)=α

∏

1≤i≤d

ui,ρ(i)

∣

∣

∣

∣

∣

∣

∑

|α|=d

xα
∑

M(ρ′)=α

∏

1≤j≤d

vj,ρ′(j)

〉

=
∑

|α|=d

α!

|α|!
∑

M(ρ)=M(ρ′)=α

∏

1≤i,j≤d

ui,ρ(i)vj,ρ′(j)

=
∑

|α|=d

1

|α|!
∑

σ∈Sd

∑

M(ρ)=α

∏

1≤i≤d

ui,ρ(i)vσi,ρ(i)

Using the α! permutations in Sd such that ρ′ = ρ ◦ σ

=
1

d!

∑

σ∈Sd

∑

|α|=d

∑

M(ρ)=α

∏

1≤i≤d

ui,ρ(i)vσi,ρ(i)

=
1

d!

∑

σ∈Sd

∏

1≤i≤d

〈ui|vσ(i)〉
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Corollary 4.3. The Bombieri norm is invariant by composition with the orthogonal
group.

Proof. Proving this corollary is just proving that the Bombieri norm does not de-
pend upon the choice of coordinates in R

n. The last theorem establishes this for
product of linear forms that generate all polynomials. �

We also have the following corollary, which is a way to see the Veronese embedding
in the particular case of Bombieri norm:

Corollary 4.4. Let P be an homogeneous polynomial of degree d with n variables,
then we have

P (u) = 〈P |U〉 with U(x) = 〈x|u〉d

Proof. If we write P has a linear combination of monomials, the lemma 4.2 imme-
diately gives the result. �

We will use the following inequality which are proved in appendix A:

Lemma 4.5. For all P ∈ E and all x ∈ R
n, we have:

|P (x)| ≤ ‖P‖‖x‖d
‖∇P (x)‖ ≤ d ‖P‖ ‖x‖d−1

‖HP (x)‖2 ≤ ‖HP (x)‖F ≤ d(d− 1) ‖P‖ ‖x‖d−2

Using the following norms:

• The Euclidian norm on R
n (for x and ∇P (x)),

• The Bombieri norm for polynomials (for P )
• The Frobenius norm written ‖ ‖F which is the square root of the sum of the
squares of the matrix coefficients (for the Hessian HP (x)).

• The spectral norm written ‖ ‖2 which is the largest absolute value of the
eigenvalues of the matrix (also for the Hessian HP (x)).

All this inequalities are equalities for the monomial xd
i for 1 ≤ i ≤ n and by

invariance for d power of linear form. In this case, the Hessian matrix will have
only one non null eigenvalue which implies that ‖HP (x)‖2 = ‖HP (x)‖F .

5. Distance with Bombieri norm

Here is the formulation of the lemma 3.2 in the particular case of Bombieri’s norm.
It can be established from lemma 3.2, but we propose a more direct proof using the
invariance by composition with the orthogonal group.

Theorem 5.1. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables. The distance to the real discriminant ∆ for the Bombieri norm is given
by:

dist(P,∆) = min
x∈Sn−1

√

P (x)2 +
‖∇TP (x)‖2

d
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Proof. Consider c ∈ Sn−1. We want to compute dist(P,∆c). One can always find
h an element of the orthogonal group such that

h(0, . . . , 0, 1) = c and h(1, 0, . . . , 0) =
∇TP (c)

||∇TP (c)|| which implies

P ◦ h(x) = P (c)xd
n + ||∇TP (c)||x1x

d−1
n +Q(x)(5.1)

where the monomials xd
n and xix

d−1
n for i ∈ {1, . . . , n} do not appear in Q(x).

Then, using the fact that the Bombieri norm is invariant by isometry, the fact that
distinct monomials are othogonal and the fact that Q ∈ ∆(0,...,0,1) which implies

that Q ◦ h−1 ∈ ∆c, we have:

dist2(P,∆c) = dist2(P ◦ h,Q)

= ||P (c)xd
n +∇TP (c)x1x

d−1
n ||2

= P (c)2 +
‖∇TP (c)‖2

d
(5.2)

We can also give an alternate formulation avoiding the decomposition of the gradi-
ent in normal and tangent components:

dist2(P,∆c) = P (c)2 +
||∇TP (c)||2

d

=
‖∇NP (c)‖2

d2
+

‖∇TP (c)‖2
d

=
‖∇NP (c)‖2

d2
− ‖∇NP (c)‖2

d
+

‖∇P (c)‖2
d

= (1− d)P (c)2 +
‖∇P (c)‖2

d
(5.3)

�

Let us define from equation (5.3) δP (x) =
‖∇P (x)‖2

d
− (d− 1)P (x)2. In the theorem

5.1, it is enough to consider the critical points of δP on the unit sphere, that is
points where ∇T δP (x) = 0. This means we have:

dist(P,∆) = min
x∈Sn−1,∇T δP (x)=0

√

δP (x)

Using HP (x)x = (d− 1)∇P (x) and 〈∇P (x)|x〉 = dP (x), we compute:

d

2
∇δP (x) = HP (x)∇P (x)− d(d− 1)P (x)∇P (x)

= HP (x)∇P (x)− 〈∇P (x)|x〉HP (x)x

= HP (x)(∇P (x)− 〈∇P (x)|x〉x)
= HP (x)∇TP (x)

= HTP (x)∇TP (x) + (d− 1)||∇TP (x)||2x(5.4)

The first term in (5.4) is d
2∇T δP (x). Hence, we have:
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dist(P,∆) = min
x∈Sn−1,HTP (x)∇TP (x)=0

√

P (x)2 +
‖∇TP (x)‖2

d
(5.5)

This motivates the following definition:

Definition 5.2 (quasi-singular points, contact polynomial, contact radius). We
will call quasi-singular points for P ∈ E the critical points of δd with norm 1 where
the distance to the discriminant is reached. This means that

c ∈ Sn−1 is a quasi-singular points iff dist(P,∆) = δP (c).

A necessary condition for c to be a quasi singular point of P is

HTP (c)∇TP (c) = 0

We will say that Q is a contact polynomial for P at c if c is a quasi-singular point
for P , Q ∈ ∆c (this means that {x ∈ Sn−1;Q(x) = 0} has a singularity at c) and
dist(P,∆) = ||Q− P ||.
When Q is contact polynomial for P at c, we will say that R = Q− P is a contact
radius for P at c. A contact radius R is therefore the smallest polynomial for
Bombieri norm that must be added to P to create a singularity.

Then, we distinguish two kinds of quasi-singular points for P (their names will be
explaned later):

quasi-double points: c is quasi-double point if it is a quasi-singular point of
P and a critical point of P on the unit sphere (i.e. satisfying ∇TP (c) = 0).

quasi-cusp points: c is quasi-cups point for P if it is a quasi-singular point
of P which is not a critical point of P . In this case, ∇TP (c) is a non zero
member of the kernel of HTP (c).

First, using the quasi-double points, we can find a very simple inequality for the
distance to the discriminant:

Theorem 5.3. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables. The distance to the real discriminant ∆ for the Bombieri norm satisfies:

dist(P,∆) ≤ min
x∈Sn−1,∇TP (x)=0

|P (x)|

The condition ∇TP (x) = 0 means that x is a critical point of P and our theorem
means that the distance to the discriminant is less or equal to the minimal critical
value of P in absolute value.

Proof. We use the theorem 5.1:

dist2(P,∆) = min
x∈Sn−1

(

P (x)2 +
‖∇TP (x)‖2

d

)

≤ min
x∈Sn−1,∇TP (x)=0

P (x)2(5.6)

�
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Theorem 5.4. Let P ∈ E be an homogeneous polynomial of degree d ≥ 2 with n
variables. Let c be a quasi-singular point for P . Then, the contact radius at c is
the polynomial

R(x) = −P (c)〈x | c〉d − 〈x | ∇TP (c)〉〈x | c〉d−1.

and Q(x) = P (x)+R(x), the contact polynomial for P at c, has no other singularity
than c and −c.

Moreover, when d = 2, c is always a quasi double point (i.e. ∇TP (c) = 0).

Proof. The formula for R(x) is a consequence of the equation 5.1 established in the
proof of theorem 5.1 (given just after the theorem).

Let us assume that Q has another singularity c′ 6= c and c′ 6= −c on the unit sphere
(recall that we imposed quasi-singular point to lie on the unit sphere). This means
that dist(P,∆c) = dist(P,∆c′), Q lying at the intersection of ∆c and ∆c′ .

We can therefore write Q(x) = P (x) + S(x), where S is the contact radius at c′:

S(x) = −P (c′)〈x | c′〉d − 〈x | ∇TP (c′)〉〈x | c′〉d−1.

We necessarily have S = R. It remains to show that this is impossible. We have:

R(x) = −〈x | c〉d−1〈x | P (c)c+∇TP (c)〉
S(x) = −〈x | c′〉d−1〈x | P (c′)c′ +∇TP (c′)〉

When d ≥ 3, the hyper-surface R(x) = 0 contains the plane 〈x | c〉 = 0 with
multiplicity d− 1 union the plane 〈x | P (c)c+∇TP (c)〉 = 0 with multiplicity one.
S(x) = 0 uses that same plane with c replaced by c′, which imposes c = c′ or
c = −c′.

When d = 2, we will show in the study of quasi-cusp point that they exist only
from degree 3, hence we know that we only have quasi-double points, which means
that ∇TP (c) = ∇TP (c′) = 0. Therefore, R and S become:

R(x) = −P (c)〈x | c〉d

S(x) = −P (c′)〈x | c′〉d

And again, R = S implies c = c′ or c = −c′. �

5.1. Study of quasi-double points. Let P ∈ E be an homogeneous polynomial
of degree d with n variables. Let c be a quasi-double point for P , meaning that we
have ∇TP (c) = 0 and dist2(P,∆) = P (c)2 > 0.

The Bombieri norm being invariant by the orthogonal group, using a rotation we
can assume that c = (0, . . . , 0, 1) and that the matrix HTP (c) is diagonal.

Knowing that ∇TP (c) = 0, we can write:

P (x) = αxd
n +

1

2

∑

1≤i<n

λ1x
2
ix

d−2
n + T (x) with α = P (c) and λi =

∂2P

∂x2
i

(c)
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with no monomial of degree ≤ 2 in x1, ..., xn−1 in T (x), i.e. T has valuation at least
3 in x1, ..., xn−1.

Then, by theorem 5.4, the contact radius is

R(x) = −α〈x | c〉d

and the contact polynomial is

Q(x) = P (x) +R(x) =
1

2

∑

1≤i<n

λix
2
ix

d−2
n + T (x)

The singularity at c of the variety {x ∈ Sn−1|Q(x) = 0} is at least a double
point (justifying the name quasi-double point) and it has no other singularities by
theorem 5.4.

Next, we will reveal some constraints on the eigenvalues λi =
∂2P
∂x2

i

(c) of the hessian

matrix. For this, we consider the point

ch =
1√

1 + h2
(h, 0, . . . , 0, 1)

and compute (dist2(P,∆ch)− dist2(P,Q))(1 + h2)d which is non negative because
dist(P,∆ch) ≥ dist(P,Q).

(

dist2(P ,∆ch)− dist2(P,Q)
)

(1 + h2)d

=

(

(1− d)P 2(ch) +
||∇P (ch)||2

d
− P (c)2

)

(1 + h2)d

= (1− d)P 2(h, 0, . . . , 0, 1)

+
||∇P (h, 0, . . . , 0, 1)||2

d
(1 + h2)− P (c)2(1 + h2)d

= (1− d)(α+
1

2
λ1h

2 + o(||h||2))2

+

(

dα+ (d− 2) 12λ1h
2 + o(||h||2)

)2
+ (λ1h+ o(||h||))2

d
(1 + h2)

− α2(1 + dh2 + o(||h||2))

= ((1− d) + d− 1)α2 + ((1− d) + (d− 2))αλ1h
2 +

1

d
λ2
1h

2

+ dα2h2 − dα2h2 + o(||h||2)

=

(

−αλ1 +
1

d
λ2
1

)

h2 + o(||h||2)

Therefore, dist(P,∆ch) > dist(P,∆) implies:

λ1 (λ1 − dα) ≥ 0

The same is true for all the eigenvalues and this means that when λi and P (c) have
the same sign then |λi| ≥ d|P (c)| (recall that by definition α = P (c)).
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This study establishes the following theorem:

Theorem 5.5. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables, let c be a quasi-double point for P and Q a corresponding contact polynomial
at c. Then, the contact radius is

R(x) = −P (c)〈x|c〉d

The contact polynomial Q(x) = P (x)+R(x) has only one singularity in c on Sn−1

which is at least a double-point.

Moreover, if λ is an eigenvalue of HTP (x) with the same sign than P (c), then
|λ| ≥ d|P (c)| > 0.

5.2. Study of quasi-cusp point. Let P ∈ E be an homogeneous polynomial of
degree d with n variables. Let c be a quasi-cusp point for P , meaning that we have
∇TP (c) 6= 0 and HTP (c)∇TP (c) = 0.

The Bombieri norm being invariant by the orthogonal group, using a rotation we
can assume that c = (0, . . . , 0, 1) and that the matrix HTP (c) is diagonal and that
(0, 1, 0, . . . , 0) is the direction of ∇TP (c) which is an eigenvector of HTP (c).

We can write:

P (x) = αxd
n + βx1x

d−1
n +

1

2

∑

2≤i<n

λix
2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n + T (x)

with α = P (c), β = ∂P
∂x1

(c), λi =
∂2P
∂x2

i

(c), µ1 = ∂3P
∂x3

1

(c) and no monomial of degree

≤ 2 in x1, ..., xn−1, nor x
3
1x

d−3
n in T (x).

The fact that the coefficient of x2
1x

d−1
n is null is the condition HTP (c)∇TP (c) = 0.

Then, by theorem 5.4, the contact radius is

R(x) = −αxd
n − βx1x

d−1
n

and the contact polynomial is

Q(x) = P (x) +R(x) =
∑

2≤i<n

1

2
λix

2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n + T (x)

The singularity at c of Q(x) = 0 on the unit sphere is at least a cusp (justifying
the name quasi-cusp point) and it has no other singularities by theorem 5.4.

We now use a computation similar to the previous case to reveal a constraint
on µ1. For this, we consider the point ch = 1√

1+h2
(h, 0, . . . , 0, 1) and compute

(dist2(P,∆ch)−dist2(P,Q))(1+h2)d which is non negative because dist(P,∆ch) ≥
dist(P,Q).
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(

dist2(P ,∆ch)− dist2(P,Q)
)

(1 + h2)d

=

(

(1− d)P 2(ch) +
||∇P (ch)||2

d
− P (c)2 − ||∇TP (c)||2

d

)

(1 + h2)d

= (1− d)P 2(h, 0, . . . , 0, 1) +
||∇P (h, 0, . . . , 0, 1)||2

d
(1 + h2)

−
(

α2 +
β2

d

)

(1 + h2)d

= (1− d)(α+ βh+ o(||h||2))2

+
(dα+ (d− 1)βh+ o(||h||2))2 + (β + 1

2µ1h
2 + o(||h||2))2

d
(1 + h2)

−
(

α2 +
β2

d

)

(1 + dh2 + o(||h||2))

= ((1− d) + d− 1)α2 +

(

1

d
− 1

d

)

β2 + (2(1− d) + 2(d− 1))αβh

+

(

(1− d) +
(d− 1)2

d
+

1

d
− 1

)

β2h2 +
1

d
βµ1h

2 + o(||h||2)

=

(

2− 2d

d
β2 +

1

d
βµ1

)

h2 + o(||h||2)

Therefore, dist(P,∆ch) > dist(P,∆) implies:

β(2(1− d)β + µ1) ≥ 0

This forces βµ1 > 0 hence µ1 6= 0 (because d = 2).

We remark that if d = 2, then µ1 = 0 and together with β 6= 0, this implies
dist(P,∆ch) < dist(P,∆) for h small enough. This proves that quasi-cusp points
exist only when d > 2. This computation does not requires theorem 5.4 (we just
use the fact that c is a local minima of δP ). This fills the gap in the proof of
theorem 5.4 for the degree 2.

It remains to explicit the constraints on the eigenvalues λi =
∂2P
∂x2

i

(c) for 2 ≤ i < n.

They change compared to the case of quasi-double points. In this case, we have
to take into account the coefficient of x1x

2
ix

d−3
n for 2 ≤ i < n which is 1

2µi with

µi =
∂3P

∂x1∂x
2

i

(c).

For this, we consider the point ch = 1√
1+h2

(0, h, 0, . . . , 0, 1) and compute (dist2(P,∆ch)−
dist2(P,Q))(1 + h2)d which is non negative because dist(P,∆ch) ≥ dist(P,Q).
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(dist(P ,∆ch)− dist(P,Q)) (1 + h2)d

=

(

(1− d)P 2(ch) +
||∇P (ch)||2

d
− P (c)2 − ||∇TP (c)||2

d

)

(1 + h2)d

= (1− d)P 2(0, h, 0, . . . , 0, 1) +
||∇P (0, h, 0, . . . , 0, 1)||2

d
(1 + h2)

−
(

α2 +
β2

d

)

(1 + h2)d

= (1− d)(α+
1

2
λ2h

2 + o(||h||2))2

+
(dα+ (d− 2) 12λ2h

2 + o(||h||2))2
d

(1 + h2)

+
(β + 1

2µ2h
2 + o(||h||2))2 + (λ2h+ o(||h||2))2

d
(1 + h2)

−
(

α2 +
β2

d

)

(1 + dh2 + o(||h||2))

= ((1− d) + d− 1)α2 +

(

1

d
− 1

d

)

β2 + ((1− d) + (d− 2))αλ2h
2

+

(

1

d
− 1

)

β2h2 +
1

d
λ2
2h

2 +
1

d
βµ2h

2 + o(||h||2)

=
1

d
((1− d)β2 − dαλ2 + λ2

2 + βµ2)h
2 + o(||h||2)

Therefore, dist(P,∆ch) > dist(P,∆) implies:

(1− d)β2 − dαλ2 + λ2
2 + βµ2 ≥ 0

Hence, if λ2 = 0 we have µ2 6= 0 with the same sign as β.

By symmetry, the same holds for λi with i ≥ 2. Moreover, up to reordering, we
may assume that λ2 = · · · = λk = 0 and that λi 6= 0 for k < i < n. In fact, k + 1
is the dimension of the kernel of the matrix HTP , this is at least 2, because in
contains at least (1, 0, . . . , 0) and (0, . . . , 0, 1).

Then, we consider the hessian matrix of ∂P
∂x1

, restricted to the variables x1, . . . , xk

and consider a change of coordinates such that this matrix is diagonal. In such a
coordinates system, we can write:

P (x) = αxd
n+βx1x

d−1
n +

1

2

∑

k<i<n

λix
2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n +

1

2

∑

2≤i≤k

µix1x
2
ix

d−3
n +T (x)

where T has no monomial of degree less than 3 in x1, . . . , xn−1 and no monomial
of degree 3 in x1, . . . , xn−1, using only the variables x1, . . . , xk.

This study allows us to state the following theorem:

Theorem 5.6. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables. Let c be a quasi-cusp point for P . Then, the contact radius at c is the
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polynomial

R(x) = −P (c)〈x | c〉d − 〈x | ∇TP (c)〉〈x | c〉d−1.

The contact polynomial Q(x) = P (x) +R(x) has only one singularity in c which is
at least a cusp.

We also have

HTP (c).∇TP (c) = 0 and ∇TP (c) 6= 0

Moreover, we can choose coordinates where c = (0, . . . , 0, 1), ∇TP (c) = (β, 0, . . . , 0)
and k+ 1 ≥ 2 is the dimension of the kernel of the matrix HTP (c) (c and ∇TP (c)
are in the kernel of HTP (c)) and

P (x) = αxd
n+βx1x

d−1
n +

1

2

∑

k<i<n

λix
2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n +

1

2

∑

2≤i≤k

µix1x
2
ix

d−3
n +T (x)

where T has no monomial of degree less than 3 in x1, . . . , xn−1 and no monomial
of degree 3 in x1, . . . , xn−1, using only the variables x1, . . . , xk. We also have the
following constraints:

• β, µ1, . . . , µk are non zero and have the same sign and

• (1− d)β2 − dαλi + λ2
i + βµi ≥ 0 for 2 ≤ i < n where µi =

∂3P
∂x1∂2xi

(c).
• λi 6= 0 for k < i < n.

6. Application to extremal hyper-surfaces

Definition 6.1 (Extremal and maximal hyper-surfaces). An hyper-surface on the
projective space or the unit sphere of dimension n−1 defined by an equation P (x) =
0 where P is an homogeneous polynomial of degree d in n variables is extremal if
the tuple of its Betti numbers (b0, . . . , bn−2) is maximal for pointwise ordering for
such polynomials.

We say that such an hyper-surface is maximal when the sum of its Betti numbers
is maximal.

Remark: considering the same polynomial on the projective space or the sphere
just doubles the Betti numbers.

The next theorem also applies to locally extremal surface:

Definition 6.2 (Locally extremal hyper-surfaces). An algebraic hyper-surface H
in the projective plane or the unit sphere of dimension n− 1 is locally extremal if
there exists no algebraic hyper-surface of the same degree isotopic to H with a disc
Dn−1 (whose border is Sn−2) replaced by another surface with the same border and
greater Betti numbers than the disc. This definition includes the addition of new
connected components.

It is clear that an extremal hyper-surface is locally extremal (because doing a con-
nected sum mostly corresponds to adding Betti numbers). But the converse is not
true in general. For instance the plane sextic curve with nine ovals where 2 or 6 lie
in another oval are locally extremal but not extremal, nor maximal.
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Theorem 6.3. Let P ∈ E be an homogeneous polynomial of degree d in n variables.
Assume that the zero level of P on the unit sphere is smooth and locally extremal.
Then, we have:

• P admit no quasi-cusp point.
• If c is a quasi-double point of P , then at least one of the eigenvalue λ of
HTP (c) for an eigen vector distinct from c itself satisfies λP (c) ≤ 0 (we
always have (HTP (c))c = 0 by definition of HT ).

Proof. Let P ∈ E be an homogeneous polynomial of degree d in n variables with a
smooth and locally extremal zero locus on the unit sphere.

For the first item, assume that c is a quasi-cusp of P , and that R and Q are
respectively the contact radius and polynomial of P at c.

By theorem 5.6, we can find coordinates where c = (0, . . . , 0, 1) and

P (x) = αxd
n+βx1x

d−1
n +

1

2

∑

k<i<n

λix
2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n +

1

2

∑

2≤i≤k

µix1x
2
ix

d−3
n +T (x)

with the properties given above by theorem 5.6 and especially βµi > 0 for 1 ≤ i ≤ k.

First, without loss of generality, we can assume α ≥ 0 (by considering −P instead
of P ) and β > 0 (using the transformation x1 7→ −x1). We furthermore reorder
variables and define m ∈ N to have

• λk+1, . . . , λm > 0
• λm+1, . . . , λn−1 < 0.

We will study and change the topology of the zero level of P in a neighbourhood
of the point c : (0, . . . , 0, 1). Hence we will work till the end of the proof with affine
coordinates and set xn = 1.

We will study the following families of polynomials (only the coefficient of x1 is
changing):

Pt(x) = αt5 + βtx1 +
∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i

+
1

6
µ1x

3
1 +

1

2

∑

2≤i≤k

µix1x
2
i + T (x)

P+
t (x) = αt5 + βt3x1 +

∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i

+
1

6
µ1x

3
1 +

1

2

∑

2≤i≤k

µix1x
2
i + T (x)

P−
t (x) = αt5 − βt3x1 +

∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i

+
1

6
µ1x

3
1 +

1

2

∑

2≤i≤k

µix1x
2
i + T (x)
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We have dist2(P, Pt) = α2(1− t5)2 + β2

d
(1− t)2 + 2(k−1)

d(d−1) t
2 = α2 + β2

d
(1− 2t) + o(t)

and this is smaller that dist2(P,∆) = α2+ β2

d
for t small enough. This implies that

Pt(x) = 0 has the same topology than P (x) = 0 for t ∈]0, ǫ[ for some ǫ > 0 (1).

For t small enough, the topologies of Pt(x) = 0, P+
t (x) = 0 and P−

t (x) = 0 can
be computed using Viro’s theorem [6, 7]. To do so, we attribute a height to each
vertex of Newton’s polyhedra: if xα1

1 , . . . , x
αn−1

n−1 is a monomial of Pt, we consider
the point (α1, . . . , αn−1, hα) ∈ N

n. To simplify the discussion, we will identify the
point (α1, . . . , αn−1, hα) ∈ N

n with the corresponding monomial.

All monomials are given 0 height except 1 which we place at height 5, x2
i for

2 ≤ i ≤ k which we place at height 1, x1 which height changes among the three
families.

The triangulation needed by Viro’s theorem is computed as the projection of the
convex hull of the points of Newton’s polytopes with their given height. It is easy
to see that all vertices with non zero coefficient are on the convex hull, just looking
at the axes.

In what follows, we consider that t is small enough to have (1) and for the topologies
of Pt(x) = 0, P+

t (x) = 0 and P−
t (x) = 0 to be given by Viro’s theorem, gluing the

topologies of the polynomial in each polyhedron.

Hence, we only need to consider polyhedra changing among the three polynomials.
The only vertices that belong to a polyhedra which is not the same for the Viro’s
decomposition of Pt, P

+
t and P−

t are among

• 1, x1, x
2
1, x

3
1,

• x1x
2
i for 2 ≤ i ≤ k,

• x2
i for k < i < n and

• monomials without x1.

This is true because the only monomial that changes height is x1. Therefore, a
changing polyhedron, that contains a monomial xα must contain a segment from
xα to x1. Because the vertices of x3

1, x1x
2
i for 2 ≤ i ≤ k and x2

i for k < i < n are
at height 0, if xα is not among those, it must satisfies α1 = 0 because otherwise
the segment joining xα to x1 can not have 0 height when it crosses the simplex
corresponding to x3

1, x1x
2
i for 2 ≤ i ≤ k and x2

i for k < i < n.

This means that to study the change of topology of Pt(x) = 0, P+
t (x) = 0 and

P−
t (x) = 0, we can consider that T is constant in x1.

The rest of the proof is in two steps: we already know that P (x) = 0 and Pt(x) = 0
have the same topology. It remains to show that Pt(x) = 0, P+

t (x) = 0 also have
the same topology and that P−

t (x) = 0, compared to P−
t (x) = 0, has at least two

Betti numbers that increase while the others are non decreasing.

For the first two polynomials: P (x) = 0 and Pt(x) = 0, they have the same topology
because, considering that T is constant in x1, they can be written :

Pt(x) =
1

6
µx3

1 +



βt+
1

2

∑

1<i≤k

µix
2
i



x1 +



αt5 +
1

2

∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i + T (x)
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x1

x2

x3

+ +
+

+

+

+

+

−
−

Figure 1. Topology of P+
t (x) = 0 near c, with k = n.

and

P+
t (x) =

1

6
µx3

1 +



βt3 +
1

2

∑

1<i≤k

µix
2
i



x1 +



αt5 +
1

2

∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i + T (x)





In both cases, all non constant coefficients in x1 are positive, implying that the
polynomial has exactly one root because its discriminant in x1 is negative. This
means that Pt(x) = 0 and P+

t (x) = 0 defines a graph of x1 as a function of the
other variables and hence have the same topology. Moreover, the infinite branch are
the same in both cases, not changing the gluing with the polyhedra corresponding
to neglected monomials in T (those using x1).

Finally, for the change of topology between P+
t (x) = 0 and P−

t (x) = 0, we only
need to consider the following polyhedra which are simplices:

A: with vertices 1, x1 and x2
i for 1 < i < n.

B: with vertices x1, x
3
1 and x2

i for 1 < i < n.

It is easy to check that the chosen height for the monomials forces these simplices
to appear.

In the case of P+
t (x) = 0, all coefficients are positive (see figure 1), which leads to

a disc of dimension n − 2 inside the polyhedra A and B, regardless of the sign of
the coefficient λi, again because the discriminant is negative.

In the case of P−
t (x) = 0, only the sign of x2

1 changes. The change is illustrated by
figure 2 and 3.

We show that the topology of the hyper-surface P−
t (x) = 0 in the polyhedra A and

B and their counterparts in all orthants is a disc with a handle. The two polyhedra
A and B being simplices, the topology is given by the sign at the vertices.
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x1

x2

x3

+ −
+

+

+

+

+

+
−

Figure 2. Topology of P−
t (x) = 0 near c with λ3 > 0. Only the

rear faces are shown, rear border dashed.

x1

x2

x3

+ −
+

−

−

+

+

+

−

Figure 3. Topology of P−
t (x) = 0 near c with k = 2 or λ2 > 0

and λ3 < 0. Only the rear faces are shown, rear border dashed.

First, we see that the polynomial admits three roots φ− < 0 ≤ φ0 < φ+ on the x1

axes.

In the dimension x1, . . . , xm, the monomial x1 is negative surrounded by positive
monomials in polyhedra A and B. This gives us a component SA homeomorphic
to a sphere of dimension m− 1, inside the hypersurface P−

t (x) = 0 and containing
φ0 and φ+. Moreover, we can also find a topological sphere S′

A (by inflating SA a
little) that does not meet the hyper-surface P−

t (x) = 0 and that contains a point
on the x1 axes between φ− and φ0.

Similarly, In the dimension x1, xm+1, . . . , xn−1, the monomials x1 and 1 (−x1 alone
if α = 0) are positive and surrounded by negative vertices.
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This gives us a component SB homeomorphic to a sphere of dimension n−m− 1,
inside the hypersurface P−

t (x) = 0 and containing φ− and φ0. Moreover, we can
also find a topological sphere S′

B (by inflating SB a little) that does not meet the
same hyper-surface and that contains a point on the x1 axes between φ0 and φ+.

Now, the sum of the dimensions of the spheres SA and SB ism−1+n−m−1 = n−2
which is one less than the dimension of the ambient space Rn−1. This means we can
compute the linking number of SA and S′

B (resp. SB and S′
A). It may be computed

as the intersection of S′
B and DA, the disc inside SA in the m first dimensions.

This intersection number is 1 because the intersection is {φ0} and this indicates that
the spheres SA (resp. SB) is not homotope to 0 (i.e. non contractile) in Sn−1 \ S′

B

(resp. Sn−1 \ S′
A) hence not homotope to 0 in the zero locus of P−

t (0). Therefore,
the presence of SA and SB ensures that we have at least an hyper-surface, inside
the polyhedra A and B, with the two Betti numbers bm−1 and bn−m−1 which are
positive (if m = 1 or m = n− 1, b0 > 1). This can not be just a disc.

This means that P+
t (x) = 0 is a desingularisation of Q(x) = 0 that creates a disc

while P−
t (x) = 0 creates a disc with at least one handle. But, P+

t (x) = 0 gives us
the topology of P (x) = 0. This establishes the equation P (x) = 0 does not define
a locally extremal hyper-surface.

The last part of the theorem is easier: a quasi-double point c for P such that all
eigen values of HTP (c) (except c itself) satisfies λP (c) > 0 would mean that c is a
local minimum of |P (c)| and therefore, c is an isolated point of the hyper-surface
Q(x) = 0 where Q ∈ ∆ is the contact polynomial Q(x) = P (x)− P (c)〈x|c〉d for P .
This allows to add a new connected component to the variety of equation P (x) = 0.
This is also impossible in the case of a locally extremal algebraic hyper-surface. �

Corollary 6.4. Let P ∈ E be an homogeneous polynomial of degree d with n
variables. Assume that the zero level of P is locally extremal. Then, the distance
to the discriminant is the minimal absolute critical value of P i.e.

dist(P,∆) = min
∇TP (x)=0

|P (x)|

Remark: this implies that the right member of the above equality is continuous in
the coefficient of P which is not true in general.

Proof. Immediate from the first item of the previous theorem, the definition 5.2
and the equation 5.5 that precedes it. �

7. Further from the discriminant

We now establish a property verified by polynomials that maximise the distance to
the discriminant:

Theorem 7.1. Let P be an homogenous polynomial in n variables, of degree d,
Bombieri norm 1 and such that dist(P,∆) is locally maximal among polynomials of
Bombieri norm 1.

Let {c1,−c1, . . . , ck,−ck} be the set of the quasi-singular points of P . Let R1, . . . , Rk

be the corresponding contact radius (we choose one for each pair (c,−c) because the
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P R1R2

D

P1

Pt

Qs
t Qt

ht

SP ∆

Figure 4. Figure for the proof of theorem 7.1

contact radius corresponding to c and −c are equal or opposite, depending upon the
degree).

Then, P is a linear combination of the Ri.

Proof. We consider an homogeneous polynomial P satisfying the condition of the
theorem, its quasi-critical points {c1,−c1, . . . , ck,−ck} and R1, . . . , Rk the corre-
sponding contact radius (which means that the contact polynomial Qi = Pi + Ri

has a singularity in ci and −ci for 1 ≤ i ≤ k).

By absurd, let us assume that P is not a linear combination of R1, . . . , Rk. Let
P1 be the orthogonal projection of P on the vector space generated by R1, . . . , Rk

and let D = P1 − P 6= 0. We also consider the sphere SP , centered at P of radius
dist(P,∆). This is schematically represented in figure 4.

Next, we define Pt = P + tD. Let us choose a contact polynomial Qt for Pt which
means that dist(Pt,∆) = dist(Pt, Qt). We consider Qs

t , the intersection of the
segment [Pt, Qt] with the sphere SP . Let ht be the distance from Qs

t to the affine
sub-space containing P and directed by R1, . . . , Rk. We know that limt→0 ht = 0
because Qt converges to the set {P +R1, . . . , P +Rk}.
We have :

dist2(Pt,∆) = dist2(Pt, Qt)

≥ dist2(Pt, Q
s
t )

= (ht − t||D||)2 + dist2(P,∆)− h2
t

= dist2(P,∆)− 2tht||D||+ t2||D||2

But, Pt is not of norm 1: ||Pt||2 = ||P1||2 + (1 − t)2||D||2 = 1 − 2t||D||2 + t2||D||2
because ||P1||2 + ||D||2 = ||P ||2 = 1. Thus, we consider the polynomial P̂t =

Pt

||Pt||
and we have:
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dist2(P̂t,∆) =
dist2(Pt,∆)

1− 2t||D||2 + t2||D||2

≥ dist2(P,∆)− 2tht||D||+ t2||D||2
1− 2t||D||2 + t2||D||2

= (dist2(P,∆)− 2tht||D||+ t2||D||2)(1 + 2t||D||2 + o(t))

= dist2(P,∆)(1 + 2t||D||2) + o(t) because tht ∈ o(t)

This proves that dist2(P̂t,∆) > dist(P,∆) when t is positive and small enough
contradicting the fact that P is a local maxima for the distance to ∆. �

Remarque: This gives a descent direction for an algorithm to compute local maxima
for the distance to ∆ that we use in the experiments related in section 11.

Corollary 7.2. Let P be an homogeneous polynomial in n variables, of degree d,
Bombieri norm 1 and such that dist(P,∆) is locally maximal among polynomials of
Bombieri norm 1. Assume also that P = 0 defines a locally extremal hyper-surface.

Let {c1,−c1, . . . , ck,−ck} be the set of quasi-double points of P (which are the crit-
ical points of P on Sn−1 corresponding to the smallest critical value in absolute
value).

Then, we can find λ1, . . . , λk such that:

P (x) =

k
∑

i=1

λi〈x|ci〉d

Proof. We established that P is a linear combination of {R1, . . . , Rk}. By theo-
rem 6.3, P admits no quasi-cusp point and therefore Ri(x) = −P (ci)〈ci|x〉d with
|P (ci)| = dist(P,∆). �

8. The univariate case

In this section, we assume n = 2, that is we consider homogeneous polynomials
of degree d ≥ 2 with 2 variables, which corresponds to univariate inhomogeneous
polynomials.

For this section, it is simpler to manipulate trigonometric polynomials in one
variable. Therefore, to an homogeneous polynomial T , we associate the function
T̆ : R → R defined as T̆ (θ) = T (uθ) with uθ = (cos(θ), sin(θ)).

It is clear that T 7→ T̆ is one to one and we can therefore extend the Bombieri
norm and scalar product to univariate trigonometric polynomials of degree d as
‖T̆‖ = ‖T‖.
Simple calculation shows that T̆ ′(θ) = 〈∇T (uθ)|u⊥

θ 〉 and T̆ ′′(θ) = tu⊥
θ HTT (uθ)u

⊥
θ −

dT (uθ).

We can guess that the polynomial of degree d with 2r roots on the unit circle that
maximizes the distance to the discriminant, among polynomials of the same norm
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and number of roots, are likely to be the polynomials with regularly spaced roots
and having only two opposite critical values.

This leads to the polynomials Tr,d satisfying T̆ (θ) = cos(r(θ + ϕ)). This gives for
ϕ = 0:

Tr,d(x, y) = (x2 + y2)
d−r
2

⌊ r
2
⌋

∑

k=0

(−1)k
(

r

2k

)

y2kxr−2k

=

⌊ d
2
⌋

∑

p=0





min(p, r
2
)

∑

k=max(0,p+ r−d
2

)

(−1)k
(

r

2k

)(

d− r

2(p− k)

)



 y2pxd−2p

We can give a simple expression for the Bombieri norm of this polynomial when
r = d:

‖Td,d‖2 =

⌊n
2
⌋

∑

k=0

(

d

2k

)

= 2d−1

However, numerical experiments show that if 2r ≤ d, Tr,d does not maximises the
distance to the discriminant. Therefore, we can only state the following conjecture:

Conjecture 8.1. Let P an homogeneous polynomial in two variables with 2r > d
roots on the unit circle. Let α = dist(P,∆), we have:

α ≤ ‖Tn,d‖
‖P‖

If this conjecture is true, from the corollary 7.2 and assuming Tr,d has no quasi-
cusp points, we deduce that cos(rθ) should be a linear combination of the family
ck(θ) = cosd(θ − θk) where θk = kπ

r
are the extrema of cos(rθ) on the upper half

of S1.

This is indeed true and we have the following (new ?) trigonometric identities:

Proposition 8.2. The following identities are true for any positive integer d:

cos(dθ) =
2d−1

d

d−1
∑

k=0

(−1)k cosd(θ − kπ

d
)

sin(dθ) =
2d−1

d

d−1
∑

k=0

(−1)k cosd(θ − 2k + 1

2d
π)
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and if d < 2r ≤ 2d with d− r even:

cos(rθ) =
2d−1

r
(

d
d−r
2

)

r−1
∑

k=0

(−1)k cosd(θ − kπ

r
)

sin(rθ) =
2d−1

r
(

d
d−r
2

)

r−1
∑

k=0

(−1)k cosd(θ − 2k + 1

2r
π)

Proof. The first and second identities are particular cases of the third and fourth
when r = d. We use the following reasonning for the third identity:

2d
r−1
∑

k=0

(−1)k cosd(θ − k

r
π) =

r−1
∑

k=0

(−1)k
(

ei(θ−
k
r
π) + e−i(θ− k

r
π)
)d

=

r−1
∑

k=0

(−1)k
d

∑

p=0

(

d

p

)

eip(θ−
k
r
π)ei(p−d)(θ− k

r
π)

=
d

∑

p=0

(

d

p

) r−1
∑

k=0

(−1)kei(2p−d)(θ− k
r
π)

=

d
∑

p=0

(

d

p

)

ei(2p−d)θ
r−1
∑

k=0

(−1)kei(d−2p) k
r
π

=

d
∑

p=0

(

d

p

)

ei(2p−d)θ
r−1
∑

k=0

e−i d−2p−r

r
π

The inner sum is non null only for 2p ≡ d− r (mod 2r), i.e. 2p = d± r where it is r.

= r

(

d
d−r
2

)

(eirθ + e−irθ) = 2r

(

d
d−r
2

)

cos(rθ)

The last identity is a consequence of the third one:

sin(rθ) = cos
(

rθ − π

2

)

=
2d−1

r
(

d
d−r
2

)

r−1
∑

k=0

(−1)k cosd
(

θ − π

2r
− k

r
π

)

=
2d−1

r
(

d
d−r
2

)

r−1
∑

k=0

(−1)k cosd
(

θ − 2k + 1

2r
π

)

�

The condition 2r > d is necessary. Let us consider a polynomial of degree 5 with
2 roots on the unit circle. Let us look at the possible quasi-singular points of
T1,5(x, y) = x(x2 + y2)2 = x5 + 2x3y2 + xy4. We have T̆1,5(θ) = cos(θ) which
make it easy to compute the quasi-singular point of T1,5 by minimising δ(θ) =

T̆ 2
1,5(θ) +

T̆ ′2

1,5(θ)

5 from theorem 5.1. We have δ(θ) = cos2(θ) + sin2(θ)
5 and therefore

δ′(θ) = − 8
5 cos(θ) sin(θ). From δ(0) = δ(π) = 1 and δ(π2 ) = δ(−π

2 ) = 1
5 . This

means that T1,5(x, y) only has two quasi-cusp points (0, 1) and (0,−1). If it were
a maximum of the distance to the discriminant, we would therefore have, using
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theorem 7.1, T1,5(x, y) = Ky4x for some K ∈ R, which is not the case. The same
computation applies to T2,6.

We were not able to prove that Tr,d is a global maximum of the distance of the
discriminant when d < 2r ≤ 2d. We were only able to prove that Td,d is a local
maximum:

Proposition 8.3. Td,d is a local maximum of the distance to the discriminant
among polynomials of the same norm.

Proof. The first thing to remark is that the polynomials of degree d such that
T̆ (θ) = cos(d(θ+ϕ)) for some ϕ ∈ R, are generated by the two polynomials Cd and

Sd verifying C̆d(θ) = cos(dθ) and S̆d(θ) = sin(dθ) (Cd = Td,d). Moreover, it is easy
to see that Sd and Cd are orthogonal for the Bombieri scalar product.

If a polynomial P is in the affine space generated by Cd and Sd, then we have
dist( P

‖P‖ ,∆) = dist( C
‖C‖ ,∆) using the invariance of the Bombieri norm.

Let us now consider a polynomial not in the affine space generated by Cd and Sd and
having the same norm as Sd and Cd. Composing P with a rotation, we can assume
that P = αQ+βCd with 〈Q|Cd〉 = 0, 〈Q|Sd〉 = 0, α2+β2 = 1, α, β ≥ 0 and ‖Q‖ =
‖Sd‖ = ‖Cd‖. We also define Uk(x) = 〈x|u kπ

d
〉d with u kπ

d
= (cos(kπ

d
), sin(kπ

d
)). By

proposition 8.2, we have

Cd =
2d−1

d

d−1
∑

k=0

(−1)kUk

This gives:

0 = 〈Q|Cd〉

=
2d−1

d

d−1
∑

k=0

(−1)k〈Q|Uk〉

=
2d−1

d

d−1
∑

k=0

(−1)kQ(u kπ
d
) using corollary 4.4

We have Q(u kπ
d
) 6= 0 for some k, otherwise, Q would be orthogonal to Sd and all

Uk which implies Q = 0 since {Sd, U1, . . . , Uk} generates all polynomials. Indeed,
the Uk are independant from proposition B.1 and orthogonal to Sd using corollary
4.4 that gives 〈Sd|Uk〉 = Sd(u kπ

d
= sin(kπ

d
) = 0.

This implies that there exists k such that (−1)kQ(u kπ
d
) < 0. We have Cd(u kπ

d
) =

cos(kπ
d
) = (−1)k which has an opposite sign to Q(u kπ

d
). Hence, using Cd(u kπ

d
) =

(−1)k, C̆ ′
d = dS̆d and Sd(u kπ

d
) = 0,

dist2(P,∆) ≤ dist2(P,∆u kπ
d

)

= P̆ 2(kπ
d
) + 1

d
P̆ ′2(kπ

d
)

= β2 + 2αβ(−1)kQ̆(kπ
d
) + α2(Q̆2(kπ

d
) + 1

d
Q̆′2(kπ

d
))

We may compute directly α2 = 1 − β2 and β2 = 〈P |Cd〉2
‖P‖2‖Cd‖2 + 〈P |Sd〉2

‖P‖2‖Sd‖2 . Hence,

from β(−1)kQ(uk) < 0 for some k, we deduce that if P is near enough to the
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affine space generated Cd and Sd with the same norm as those, then dist(P,∆) <
dist(Cd,∆). �

9. Critical band of extremal hyper-surfaces

Corollary 9.1. Let P ∈ E be an homogeneous polynomial of degree d with n
variables. Assume that the zero level of P on the unit sphere is locally extremal.
Let m = dist(P,∆),

if ||x|| = 1 and |P (x)| ≤ m then ||∇TP (x)||2 > d(m2 − P (x)2)

Proof. By theorem 5.1, we have for all x in the unit sphere:

dist(P,∆x) = P (x)2 +
1

d
||∇TP (x)||2 ≥ dist(P,∆) = m

If it existed x ∈ Sn−1 such that P (x)2 + 1
d
||∇TP (x)||2 = dist(P,∆), x would be a

quasi-cusp, by definition, contradicting the first item of the previous theorem.

Thus, for all x ∈ Sn−1 we have P (x)2+ 1
d
||∇TP (x)||2 > m which yields the wanted

inequality. �

Definition 9.2. Let P ∈ E be an homogeneous polynomial of degree d with n
variables. Let m = dist(P,∆), the critical band of P is the following set:

Bc(P ) = {x ∈ Sn−1 s.t. |P (x)| < m}
Theorem 9.3. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables. Assume that the zero level of P on the unit sphere is locally extremal.

Let γ : [a, b] → Bc(P ) be an integral curve of ∇TP with a, b ∈] −m,m[. Then, we
have the following inequality:

length(γ) <
1√
d

∣

∣

∣

∣

arcsin

(

b

m

)

− arcsin
( a

m

)

∣

∣

∣

∣

This is bounded by π√
d
and, if a and b have the same sign, by half of it.

Proof. We can consider that γ is parametrised by the value of P because ∇TP does
not vanish in Bc(P ) and therefore, the value of P will be monotonous along the
arc. We may also assume without loss of generality that a < b.

This means that we have P (γ(y)) = y which by derivation gives

〈∇P (γ(y))|γ′(y)〉 = 〈∇TP (γ(y))|γ′(y)〉 = 1

The previous corollary and the fact that γ′(y) and ∇TP (γ(y)) are colinear yields:

||γ′(y)|| = 1

||∇TP (γ(y))|| <
1

√

d(m2 − P (γ(y))2)
=

1
√

d(m2 − y2)

Finally, for the length, we have:
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Sn−1

x

v

y

∇P (x)

∇P (y)

α
0

Figure 5.

length(γ) =

∫ b

a

||γ′(y)||dy

<
1√
d

∫ b

a

dy
√

m2 − y2

<
1√
d

(

arcsin

(

b

m

)

− arcsin
( a

m

)

)

If b < a, reversing the arc gives the wanted result. �

10. Large components far from the discriminant

The following proposition will have as consequence a lower bound for the size of
connected components of an algebraic hyper-surfaces:

Proposition 10.1. Let P ∈ E (i.e. P is an homogeneous polynomial of degree
d with n variables). Let dist(P,∆) 6= 0 be the distance between P and the real
discriminant of E, then for any x ∈ Sn−1 a critical point of P , the open spherical

cap of Sn−1 with center x and radius angle α = 1
d

√

2dist(P,∆)
‖P‖ does not meet the

zero level of P .

Proof. Let us consider x ∈ Sn−1 a critical point of P and y ∈ Sn−1 such that
P (y) = 0. Consider α the measure of the angle x0y, and consider v ∈ Sn−1 such
that v orthogonal to x and y = cos(α)x+ sin(α)v. See figure 5.

Then, we define:

f(θ) = P (cos(θ)x+ sin(θ)v)

We have:

f(0) = P (x)
f(α) = P (y) = 0
f ′(θ) = t(− sin(θ)x+ cos(θ)v)∇P (cos(θ)x+ sin(θ)v)
f ′(0) = tv∇P (x) = 0 because v orthogonal to x and ∇P (x)
f ′′(θ) = t(− sin(θ)x+ cos(θ)v)HP (cos(θ)x+ sin(θ)v)(− sin(θ)x+ cos(θ)v)

+ t(− cos(θ)x− sin(θ)v)∇P (cos(θ)x+ sin(θ)v)
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Using the inequality of lemma 4.5 and the fact that cos(θ)x+ sin(θ)v ∈ Sn−1, we
have:

|f ′′(θ)| ≤ ‖HP (cos(θ)x+ sin(θ)v)‖2 ‖ − sin(θ)x+ cos(θ)v‖2
+ ‖∇P (cos(θ)x+ sin(θ)v)‖ ‖ − cos(θ)x− sin(θ)v‖

= ‖HP (cos(θ)x+ sin(θ)v)‖2 + ‖∇P (cos(θ)x+ sin(θ)v)‖
≤ d(d− 1) ‖P‖ ‖ cos(θ)x+ sin(θ)v)‖d−2 + d ‖P‖ ‖ cos(θ)x+ sin(θ)v)‖d−1

= d2‖P‖
Then, using Taylor-Lagrange equality, we find θ ∈ [0, α] such that

0 = f(α) = f(0) + αf ′(0) +
α2

2
f ′′(θ) = P (x) +

α2

2
f ′′(θ)

This implies:

|P (x)| ≤ d2α2

2
‖P‖

and therefore with theorem 5.3, we have

α ≥ 1

d

√

2 dist(P,∆)

‖P‖
�

Corollary 10.2. Let P ∈ E and dist(P,∆) 6= 0 be the distance between P and the
discriminant for E. Each connected component of the complement of the zero level
of P in Sn−1 contains an open spherical cap of Sn−1 with center x and radius angle

α = 1
d

√

2dist(P,∆)
‖P‖

Proof. Immediate because every connected component of the complement of the
zero level of P contains at least one extrema of P which is a critical point of P . �

These two last results can also be used in the projective space Pn−1(R) with the
metric induced by the metric on the sphere Sn−1 because the radius angle of the
spherical cap in Sn−1 is the radius of a disk is Pn−1(R).

Theorem 10.3. Let P ∈ S and dist(P,∆) 6= 0 be the distance between P and
the discriminant for E. The distance (measured as an arc length) between two
distinct connected components of the zero level of P in Sn−1 is greater of equal to

α = 2
d

√

2dist(P,∆)
‖P‖

Proof. Consider an arc [A,B] on Sn−1 joining two distinct connected components
of the zero level of P . By the Ehresmann theorem [3], There is a point C on [A,B]
where P reaches a value greater, in absolute value, than a critical value of P . We
can take C a point where |P (x)| is maximum on [A,B].

Then, by exactly the same computation than for the previous theorem, using the
fact that ∇P (C) is zero in the direction of the segment, we find that the arc lengths

of [A,C] and [C,B] are greater or equal to 1
d

√

2dist(P,∆)
‖P‖ which ends the proof.

�
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11. Experiments with extremal curves

Section 7 suggests an algorithm to numerically optimise the distance to the discrim-
inant of an hyper-surface: this algorithm requires to compute the quasi-singular
points and solve a linear system to get a direction in which the distance increases.
At each step, we do not need to recompute the quasi-singular points because we
can use Newton’s method to move the previous ones.

We have implemented such an algorithm as part of our GlSurf software. It is not
a robust algorithm and it sometimes encounter numerical problems. Nevertheless,
we managed to use it on all maximal curves up to degree 6 (inclusive) and some
curves of higher degree. We relate those experiments in the table 1 in the hope
that they could help to build new conjectures.

Remark: because we deal with curves, we reinforced our theorem taking into ac-
count the nesting of connected components which give more locally extremal hyper-
surfaces that just considering the number of connected components: there are two
sextic curves with nine ovals that do not have the maximum b0 = 11 but that are
locally extremal.

It is important to note that these experiments only produce polynomials of Bombieri
norm 1 that are likely to be near a local maxima of the distance to the discriminant.
We currently have no way to find accurately (numerically or theoretically) the global
maxima in each connected component of the complement of the real discriminant.

Degree 2, 3 and maximally nested ovals. Curves which have the maximum
number of nested ovals are a particular case (i.e. d/2 nested ovals if the degree d is
even and (d− 1)/2 nested ovals plus a projective line otherwise).

It seems from experiments that the polynomial maximising the distance to the
discriminant in these cases is obtained as the revolution of a polynomial in two
variables that has the maximum number of roots equally spaced on the unit circle.
This may be defined as:

Td(x, t) =

⌊ d
2
⌋

∑

k=0

(−1)k
(

d

2k

)

tkxd−2k

Pd(x, y, z) = Td(x, y
2 + z2)

The polynomials Pd are not of norm 1, and have infinitely many critical points
with the critical value ±1. In fact the curve Pd(1, x, y) = 0 is a union of concentric
circles centred in (1, 0, 0) plus one line at infinity, when d is odd. Therefore, they
are not irreducible. The point (1, 0, 0) is the only isolated critical point. This is how
we filled the corresponding lines of the table 1 with 1

||Pd|| . Experiments seems to

indicate that these are global maxima of the corresponding connected components
of ∆c, but proving this probably implies finishing to study the univariate case.

Extremal sextic curves and beyond. The table 1 includes five locally extremal
sextic curves including the three curves with eleven components.

The most difficult one is Gudkov’s sextic followed by Hilbert’s. We have run our
optimisation algorithm on these curves for several months! Yet, more computation
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Degree Topology dist(P,∆) ||D||2 k = k+ + k−

2 O 1√
3
≃ 0.577 0 ∞ = 1 +∞

3 | O 1√
7
≃ 0.378 0 ∞ = 1 +∞

4 O × 4 7.1210−2 2.0310−35 10 = 4 + 6

4 (O)
√
3√
47

≃ 0.253 0 ∞ = ∞+∞
5 | O × 6 2.4910−3 4.2710−19 15 = 6 + 9

5 | (O)
√
3√

103
≃ 0.171 0 ∞ = ∞+∞

6 (O) O × 9 9.6110−5 1.3010−28 22 = 9 + 13
6 (O × 5) O × 5 6.7910−11 1.6410−1 21 = 10 + 11
6 (O × 9) O 5.8210−9 5.0510−4 21 = 11 + 10
6 (O × 2) O × 6 2.4910−4 3.1410−13 21 = 10 + 11
6 (O × 6) O × 2 6.5610−7 3.2510−15 20 = 10 + 10

6 ((O))
√
5√

371
0 ∞ = ∞+∞

7 | O × 15 2.3810−6 5.5410−12 30 = 15 + 15
8 (O × 3)O × 18 3.4310−8 1.5110−6 39 = 18 + 21

Degree: the degree of the polynomial (which has Bombieri norm 1)
Topology: O represents an oval, | a projective lines (...) an oval containing

other curves and we use × to shorten the representation.
dist(P,∆): the distance to the discriminant at the stage we stopped the

optimisation.
‖D‖: following the notation of the proof of theorem 7.1. It converges toward

0 and gives a good indication to know it we are near the local minima.
We highlighted in bold values which are not small enough to draw defin-
itive conclusion. We choosed ||D||2 < dist2(P,∆) which ensures a correct
topology for the linear combination given by corollary 7.2.

k = k+ + k−: The number of pairs of quasi-double points together with the
sign of the polynomials. For odd degree, this make only sense if we assume
that the sign is taken on same half of Sn−1, split by the projective line that
is always present in P = 0. We count in k+ the critical values which are
inside ovals not contained in other ovals.

Table 1. Experimental results

are needed, as shown in the table. Computing accurately the direction of descent
requires to use more than the 64 bits of precision available in modern processors. It
is a pity that 128 bits have been abandoned in hardware, but luckily we used GNU
MP.

Remark: those curves are most of the time (always as far as the author knows)
shown in literature as schemata. We give here in figure 6 to 10 drawing of the real
curves. If you are interested to get the corresponding polynomials, you are welcome
to visit the following web page:

http://lama.univ-savoie.fr/~raffalli/glsurf-optimisation.php

The extremal curves which have only nine components are interesting. They show
some useless pikes which are quite surprising. Probably, these pikes are necessary
to have enough critical points for corollary 7.2 to hold.
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Figure 6. Harnack’s sextic

Figure 7. Hilberts’ sextic

We have also included results for Harnack’s curves of degree seven and height. The
later is also not yet optimised enough.
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Figure 8. Gudkov’s sextic

Figure 9. Sextic with topology (O × 6) OO

12. Conclusion

There remains a lot of open problems in this work. Those we find the most inter-
esting are:
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Figure 10. Sextic with topology (OO) O × 6

(1) Complete the univariate case. We were surprised that proving that the
polynomials Tr,d are (or not) the global maximum to the distance to the
discriminant among polynomials with the same norm and number of roots,
is not easy, even when r = d.

(2) In the general case, we could search for an upper bound to the number of
terms in the identity given by corollary 7.2, from a bound for the number
of critical values of a polynomials on two levels. For curves, such a bound
is given by Chmutov in [2]; an asymptotic equivalent is 7

8d
2. However, this

result gives a bound which is greater than the dimension of the space of
curves: ≃ 1

2d
2 and we expect a better bound from our experimental results.

(3) A lower bound for the same quantity seems much harder and could lead to
proof that some topology can not be realised with a given degree ...

(4) More generally, the points {c1, . . . , ck} on the sphere that are used by the
identity

P (x) =

k
∑

i=1

λi〈x|ci〉d

in corollary 7.2 are solution of a family of algebraic systems. If we know k
and the sign si ∈ {−1, 1} of P at ci for 1 ≤ i ≤ k, we have linear equations
for the λi by writing P (ci) = si. Then, writing that ci is a critical point of
P completes the algebraic system.

Finding all solutions of these systems for all possible k ∈ N and s1, . . . , sk ∈
{−1, 1} and determining the topology of the corresponding polynomials
would mean solving Hilbert’s 16th problem about the topology of algebraic
curves.
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Appendix A. Proof of the inequalities for the Bombieri norm

We now prove the inequalities of lemma 4.5:

|P (x)| ≤ ‖P‖‖x‖d

‖∇P (x)‖ ≤ d ‖P‖ ‖x‖d−1

‖HP (x)‖2 ≤ ‖HP (x)‖F ≤ d(d− 1) ‖P‖ ‖x‖d−2

We consider that PB = (aα)|α|=d and therefore, P (x) =
∑

|α|=d

aα

√

d!

α!
xα:

(1) For the first inequality, the proof is easy:

P (x)2 =





∑

|α|=d

aα

√

d!

α!
xα





2

≤
∑

|α|=d

a2α
∑

|α|=d

d!

α!
x2α by Cauchy-Schwartz inequality

= ‖P‖2‖x‖2d

(2) For the second inequality, we first consider the partial derivative ∂P (x)
∂xi

:

(

∂P (x)

∂xi

)2

=





∑

|α|=d

aα

√

d!

α!
αix

α−χi





2

≤
∑

|α|=d

αia
2
α

∑

|α|=d

d!

α!
αix

2(α−χi) by Cauchy-Schwartz

= d
∑

|α|=d

αia
2
α

∑

|α|=d,αi 6=0

(d− 1)!

(α− χi)!
x2(α−χi)

= d
∑

|α|=d

αia
2
α

∑

|β|=d−1

(d− 1)!

β!
x2β

= d‖x‖2(d−1)
∑

|α|=d

αia
2
α
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This means that:

‖∇P (x)‖2 =
∑

1≤i≤n

(

∂P (x)

∂xi

)2

≤
∑

1≤i≤n



d‖x‖2(d−1)
∑

|α|=d

αia
2
α





= d‖x‖2(d−1)
∑

1≤i≤n

∑

|α|=d

αia
2
α

= d‖x‖2(d−1)
∑

|α|=d





∑

1≤i≤n

αi



 a2α

= d2‖x‖2(d−1)
∑

|α|=d

a2α

= d2‖P‖2‖x‖2(d−1)

(3) For the last inequality, we consider the partial derivative
∂2P (x)

∂xixj

when

i 6= j:

(

∂2P (x)

∂xixj

)2

=





∑

|α|=d

aα

√

d!

α!
αiαjx

α−χi−χj





2

≤
∑

|α|=d

αiαja
2
α

∑

|α|=d

d!

α!
αiαjx

2(α−χi−χj) by Cauchy-Schwartz

= d(d− 1)
∑

|α|=d

αiαja
2
α

∑

|α|=d,αi 6=0,αj 6=0

(d− 2)!

α− χi − χj !
x2(α−χi−χj)

= d(d− 1)
∑

|α|=d

αiαja
2
α

∑

|β|=d−2

(d− 2)!

β!
x2β

= d(d− 1)‖x‖2(d−2)
∑

|α|=d

αiαja
2
α

Now, we consider the partial derivative ∂2P (x)
∂x2

i

:

(

∂2P (x)

∂x2
i

)2

=





∑

|α|=d

aα

√

d!

α!
αi(αi − 1)xα−2χi





2

≤
∑

|α|=d

αi(αi − 1)a2α
∑

|α|=d

d!

α!
αi(αi − 1)x2(α−2χi) by Cauchy-Schwartz

= d(d− 1)
∑

|α|=d

αi(αi − 1)a2α
∑

|α|=d,αi≥2

(d− 2)!

(α− 2χi)!
x2(α−2χi)

= d(d− 1)
∑

|α|=d

αi(αi − 1)a2α
∑

|β|=d−2

(d− 2)!

β!
x2β

= d(d− 1)‖x‖2(d−2)
∑

|α|=d

αi(αi − 1)a2α
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Let us define ιi,j = 0 when i 6= j and ιi,i = 1. Then, we have:

‖HP (x)‖2F =
∑

1≤i,j≤n

(

∂2P (x)

xixj

)2

≤
∑

1≤i,j≤n



d(d− 1)‖x‖2(d−2)
∑

|α|=d

αi(αj − ιi,j)a
2
α





= d(d− 1)‖x‖2(d−2)
∑

1≤i,j≤n

∑

|α|=d

αi(αj − ιi,j)a
2
α

= d(d− 1)‖x‖2(d−2)
∑

1≤i≤n

∑

|α|=d

αi(d− 1)a2α

= d(d− 1)‖x‖2(d−2)
∑

|α|=d

d(d− 1)a2α

= d2(d− 1)2‖P‖2‖x‖2(d−2)

Appendix B. Independance of Uk(x) = 〈x|uk〉d

We need the following lemma:

Lemma B.1. Let {u0, . . . , ud} be distinct points in S1. Let Uk(x) = 〈x|uk〉d for
0 ≤ k ≤ d.

Then, the family of polynomials {U0, . . . , Ud} is linearly independant and therefore
a base of the space of homogeneous polynomials of degree d in 2 variables.

Proof of the lemma. We define θk ∈ [0, 2π[ such that ck = (cos(θk), sin(θk)).

Using lemma 4.2, we find that

〈Ri|Rj〉 = 〈ci|cj〉d

= cosd(θi − θj)

We define the (d + 1) × (d + 1) symmetrical matrix which is the Gramian matrix
of the family {U0, . . . , Ud} with respect to Bombieri scalar product:

G =











1 cosd(θ0 − θ1) . . . cosd(θ0 − θd)
cosd(θ1 − θ0) 1 . . . cosd(θ1 − θd)

...
...

. . .
...

cosd(θd − θ0) cosd(θd − θ1) . . . 1











We find that G is the matrix with its (i, j) coefficient equal to

cosd(θi − θj) = (cos(θi) cos(θj)− sin(θi) sin(θj))
d

=

d
∑

k=0

(

d

k

)

cosk(θi) sin
d−k(θi) cos

k(θj) sin
d−k(θj)

Hence, we find that

G = tV DV

where D is the diagonal matrix with coefficient (k, k) equals to
(

d
k

)

and V is a

matrix with the (k, i) coefficient equals to cosk(θi) sin
d−k(θi).
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We remark that V is an homogeneous Vandermonde matrix whose determinant is
∏

0≤i<j≤d sin(θi − θj) which gives the wanted result. �
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