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DISTANCE TO THE DISCRIMINANT

C. RAFFALLI

Abstract. We will study algebraic hyper-surfaces on the real unit sphere
Sn−1 given by an homogeneous polynomial of degree d in n variables with

the view point, rarely exploited, of Euclidian geometry using Bombieri’s scalar
product and norm. This view point is mostly present in work about the topol-

ogy of random hyper-surfaces [4, 3].
Our first result (lemma 2.2 page 4) is a formula for the distance dist(P,∆)

of a polynomial to the real discriminant ∆, i.e. the set of polynomials with a
real singularity on the sphere. This formula is given for any distance coming
from a scalar product on the vector space of polynomials.

Then, we concentrate on Bombieri scalar product and its remarkable prop-
erties. For instance we establish a combinatoric formula for the scalar product
of two products of linear-forms (lemma 3.2 page 5) which allows to give a
(new ?) proof of the invariance of Bombieri’s norm by composition with the

orthogonal group. These properties yield a simple formula for the distance in
theorem 4.3 page 9 from which we deduce the following inequality:

dist(P,∆) ≤ min
x critical point of P on Sn−1

|P (x)|

The definition 4.2 page 8 classifies in two categories the ways to make a

polynomial singular to realise the distance to the discriminant. Then, we show,
in theorem 5.3 page 15, that one of the category is forbidden in the case of an
extremal hyper-surfaces (i.e. with maximal Betti numbers). This imples as a
corollary 5.4 (page 19) that the above inequality becomes an equality is that
case.

The main result in this paper concerns extremal hyper-surfaces P = 0
that maximize the distance to the discriminant (with ‖P‖ = 1). They are

very remarkable objects which enjoy properties similar to those of quadratic
forms: they are linear combination of power of linear forms x 7→ 〈x|ui〉

d where

the vector ui are the critical points of P on Sn−1 corresponding to the least
positive critical value of |P |. This is corollary 6.2 page 21 of a similar theorem
6.1 page 20 for all algebraic hyper-surfaces.

We also obtain metric information about algebraic hyper-surfaces. First, in
the case of extremal hyper-surface, we give an upper bound (theorem 7.3 page
22) on the length of an integral curve of the gradient of P in the band where
|P | is less that the least positive critical value of |P |. Then, a general lower
bound on the size and distance between the connected components (corollary
8.1 and theorem 8.2).

The last section will present experimental results among which are five
extremal sextic curves far from the discriminant. These are obtained by ver

long running numerical optimisation (many months).
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1. Notation

Let Sn−1 be the unit sphere of Rn. We write ‖x‖ the usual Euclidean norm on R
n.

We consider E = R[X1, . . . , Xn]d the vector space of homogeneous polynomials in
n > 1 variables of degree d > 1. Let N be the dimension of this vector space, we
have N =

(

d+n−1
n−1

)

≥ n

Let 〈 , 〉 be a scalar product on E and ‖ ‖ the associated norm. We use the same
notation for the scalar product and norm of E as for Rn, the context should make
it clear what norm we are using.

Let B = (E1, . . . , EN ) be an orthonormal basis of E.

For x ∈ R
n, C(x) denotes the line vector (E1(x), . . . , EN (x)) and Bi(x) for i ∈

{1, . . . , n} denotes the line vector (∂E1(x)
∂xi

, . . . , ∂EN (x)
∂xi

). Let B(x) be the n × N

matrix whose lines are Bi(x) for i ∈ {1, . . . , n}.
For P ∈ E, let PB be the column vector coordinates of P in the basis B. We may
write:

P (x) = C(x)PB,
∂P (x)

∂xi

= Bi(x)PB and ∇P (x) = B(x)PB

We will also use the following notation for the normal and tangent component of a
vector field V (x) defined for x ∈ Sn−1:

V N (x) = 〈x|V (x)〉x
V T (x) = V (x)− V (x)N

In the particular case of ∇P (x), we write ∇TP (x) and we have Euler’s relation
∇NP (x) = dP (x)x, which gives:

∇P (x) = ∇TP (x) + dP (x)x with 〈∇TP (x)|x〉 = 0
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Similarly, we write HP (x) for the hessian matrix of P at x. We have that
tVHP (x)x = txHP (x)V = (d− 1)〈∇P (x)|V 〉

= (d− 1)〈∇TP (x)|V 〉+ d(d− 1)P (x)〈x|V 〉
and txHP (x)x = d(d− 1)P (x)||x||2

Hence, we can find a symmetrix matrix HTP (x) whose kernel contains x and such
that :

tVHP (x)V = d(d− 1)P (x)〈x|V 〉2 + 2(d− 1)〈∇TP (x)|V 〉〈x|V 〉+ tVHTP (x)V

Geometrically, HTP (x) is the matrix of the linear application defined has π(x) ◦
∇2P (x) ◦π(x) where π(x) is the projection on the plane tangent to the unit sphere
at x and ∇2P (x) is the second derivative of P seen as a linear application.

Fact 1.1. The matrix B(x) is always of maximal rank (i.e. of rank n) for all x 6= 0.

Proof. Let us prove first that B(x) is of maximal rank when the elements of B are
monomials with arbitrary coefficients. By symmetry, we may assume that x1 6= 0.
Thus, B(x) contains the following columns coming from the partial derivatives of
aix

n−1
1 xi for 1 ≤ i ≤ n:














a1nx
n−1
1 a2(n− 1)xn−2

1 x2 a3(n− 1)xn−2
1 x3 . . . an(n− 1)xn−2

1 xn

0 a2x
n−1
1 0 . . . 0

0 0 a3x
n−1
1 . . . 0

...
...

...
. . .

...
0 0 0 . . . anx

n−1
1















This proves that the n lines of B(x) are linearly independent when the basis con-
tains only monomials. Second, If for some basis B(x) where of rank less that
n, this would yield a linear combination with some non zero coefficients such
that

∑

1≤i≤n λiBi(x) = 0, implying that for any polynomial P we would have

(λ1, . . . , λn)B(x)PB =
∑

1≤i≤n λi
∂P
∂xi

(x) = 0, and this being independent of the

basis would mean that B(x) is never of maximal rank for that x. �

2. Distance to the real discriminant

Definition 2.1. The real discriminant ∆ of the space E of polynomials of degree
d in n variables is the set of polynomials P ∈ E such that there exists x ∈ Sn−1

where P (x) = 0 and ∇P (x) = 0.

This can be written

∆ =
⋃

x∈Sn−1

∆x where ∆x = {P ∈ E;B(x)PB = 0 and C(x)PB = 0}

As usual, the equation C(x)PB = 0 is redundant because of the Euler’s relation
which can be written here C(x) = 1

d
(x1, . . . , xn)B(x).

Therefore, the discriminant ∆ is a union of sub-vector spaces of E of codimension
n (given that B(x) is of maximal rank).
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Let P be a given polynomial in E. We give a way to compute the distance between
P and ∆.

We first choose x0 6= 0 and we compute the distance from P to ∆x0
. Therefore, we

look for Q ∈ E, such that:

• P +Q ∈ ∆x0
.

• ‖Q‖ minimal.

The first condition may be written

B(x0)(PB +QB) = 0

The second condition is equivalent to Q orthogonal to ∆x0
, which means that QB

is a linear combination of the vectors tBi(x0), the columns of tB(x0).

This means that there exists a column vector H of size n such that

QB = tB(x0)H.

This gives:
B(x0)PB +B(x0)

tB(x0)H = 0

Let us define
A(x) = B(x)tB(x) and M(x) = A(x)−1

B(x) is a n×N matrix of maximal rank with n ≤ N . This implies that A(x) is an
n × n symmetrical and definite matrix for all x 6= 0. Hence, M(x) is well defined
and symmetrical.

We have

B(x0)PB +A(x0)H = 0 which implies H = −M(x0)B(x0)PB

and
QB = −tB(x0)M(x0)B(x0)PB

We can now write the distance to ∆x0
by

dist2(P,∆x0
) = ‖Q‖2

= tQBQB

= tPB
tB(x0)M(x0)B(x0)

tB(x0)M(x0)B(x0)PB

= tPB
tB(x0)M(x0)A(x0)M(x0)B(x0)PB

= tPB
tB(x0)M(x0)B(x0)PB

= t∇P (x0)M(x0)∇P (x0)

The above formula established for any x0 6= 0 is homogeneous in x0. We can
therefore state our first lemma:

Lemma 2.2. Let (E1, . . . , EN ) be an orthornomal basis of E = R[X1, . . . , Xn]d for
a given scalar product. Let B(x) be the n×N matrix defined by:

B(x) =

(

∂Ej(x)

∂xi

)

1≤i≤n

1≤j≤N
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For any homogeneous polynomial P ∈ E, the distance to the discriminant ∆ asso-
ciated to the given scalar product is given by

dist(P,∆) = min
x∈Sn−1

√

t∇P (x)M(x)∇P (x) with M(x) = (B(x)tB(x))−1

3. The Bombieri norm

The above lemma can be simplified in the particular case of Bombieri norm[1]. To
do so, we recall the definition and properties of Bombieri norm and scalar product.

Notation: let α = (αi, . . . , αn) be a vector in N
n and x = (x1, . . . , xn) ∈ R

n, we
write:

• |α| = Σn
i=1αi = d,

• α! = Πn
i=1αi!,

• xα = Πn
i=1x

αi

i for x ∈ R
n,

• χi = (0, . . . , 0, 1, 0, . . . , 0) where the index of 1 is i.

Definition 3.1 (Bombieri norm and scalar product). The Bombieri scalar product
[1] for homogeneous polynomial of degree d is defined by

‖xα‖2 =
α!

|α|! and 〈xα|xβ〉 = 0 if α 6= β

The Bombieri scalar product and the associated norm have the remarkable property
to be invariant by the action of the orthogonal group of R

n. It was originally
introduced because it verifies the Bombieri inequalities for product of polynomials.
However, we do not use this property here.

We now give a lemma establishing the invariance and a result we need later in this
article:

Lemma 3.2. Let {ui}1≤i≤d and {vi}1≤i≤d be two families of vectors of Rn. Let
us consider the two following homogeneous polynomials in E:

U(x) =
∏

1≤i≤d

〈x|ui〉 V (x) =
∏

1≤i≤d

〈x|vi〉

The Bombieri scalar product of these polynomials is given by the following formula
which directly relates the Bombieri scalar product of polynomials to the Euclidian
one in R

n:

〈U |V 〉 = 1

d!

∑

σ∈Sn

∏

1≤i≤d

〈ui|vσ(i)〉

When the two families are constant i.e. U(x) = 〈x|u〉d and V (x) = 〈x|v〉d, this
simplifies to:

〈U |V 〉 = 〈u|v〉d

Proof. We start by developing the polynomials U and V . For this, we use ρ, ρ′

to denote applications from {1, . . . , d} to {1, . . . , n} and we write M(ρ) ∈ N
n the

vector such that Mi(ρ) = Card(ρ−1({i})).
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〈U |V 〉 =
〈

∑

|α|=d

xα
∑

M(ρ)=α

∏

1≤i≤d

ui,ρ(i)

∣

∣

∣

∣

∣

∣

∑

|α|=d

xα
∑

M(ρ′)=α

∏

1≤j≤d

vj,ρ′(j)

〉

=
∑

|α|=d

α!

|α|!
∑

M(ρ)=M(ρ′)=α

∏

1≤i,j≤d

ui,ρ(i)vj,ρ′(j)

=
∑

|α|=d

1

|α|!
∑

σ∈Sd

∑

M(ρ)=α

∏

1≤i≤d

ui,ρ(i)vσi,ρ(i)

Using the α! permutations in Sd such that ρ′ = ρ ◦ σ

=
1

d!

∑

σ∈Sd

∑

|α|=d

∑

M(ρ)=α

∏

1≤i≤d

ui,ρ(i)vσi,ρ(i)

=
1

d!

∑

σ∈Sd

∏

1≤i≤d

〈ui|vσ(i)〉

�

Corollary 3.3. The Bombieri norm is invariant by composition with the orthogonal
group.

Proof. Proving this corollary is just proving that the Bombieri norm does not de-
pend upon the choice of coordinates in R

n. The last theorem establishes this for
product of linear forms that generate all polynomials. �

We will use the following inequality which are proved in appendix A:

Lemma 3.4. For all P ∈ E and all x ∈ R
n, we have:

|P (x)| ≤ ‖P‖‖x‖d
‖∇P (x)‖ ≤ d ‖P‖ ‖x‖d−1

‖HP (x)‖2 ≤ ‖HP (x)‖F ≤ d(d− 1) ‖P‖ ‖x‖d−2

Using the following norms:

• The Euclidian norm on R
n (for x and ∇P (x)),

• The Bombieri norm for polynomials (for P )
• The Frobenius norm written ‖ ‖F which is the square root of the sum of the
squares of the matrix coefficients (for the Hessian HP (x)).

• The spectral norm written ‖ ‖2 which is the largest absolute value of the
eigenvalues of the matrix (also for the Hessian HP (x)).

All this inequalities are equalities for the monomial xd
i for 1 ≤ i ≤ n and by

invariance for d power of linear form. In this case, the Hessian matrix will have
only one non null eigenvalue which implies that ‖HP (x)‖2 = ‖HP (x)‖F .
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4. Distance with Bombieri norm

Here is the formulation of the lemma 2.2 in the particular case of Bombieri’s norm.
It can be established from lemma 2.2, but we propose a more direct proof using the
invariance by composition with the orthogonal group.

Theorem 4.1. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables. The distance to the real discriminant ∆ for the Bombieri norm is given
by:

dist(P,∆) = min
x∈Sn−1

√

P (x)2 +
‖∇TP (x)‖2

d

Proof. Consider c ∈ Sn−1. We want to compute dist(P,∆c). One can always find
h an element of the orthogonal group such that

h(0, . . . , 0, 1) = c and h(1, 0, . . . , 0) =
∇TP (c)

||∇TP (c)|| which implies

P ◦ h(x) = P (c)xd
n + ||∇TP (c)||x1x

d−1
n +Q(x)(4.1)

where the monomials xd
n and xix

d−1
n for i ∈ {1, . . . , n} do not appear in Q(x).

Then, using the fact that the Bombieri norm is invariant by isometry, the fact that
distinct monomials are othogonal and the fact that Q ∈ ∆(0,...,0,1) which implies

that Q ◦ h−1 ∈ ∆c, we have:

dist2(P,∆c) = dist2(P ◦ h,Q)

= ||P (c)xd
n +∇TP (c)x1x

d−1
n ||2

= P (c)2 +
1

d
||∇TP (c)||2

=
1

d2
||∇NP (c)||2 + 1

d
||∇TP (c)||2

=
d2P (c)2

d2
+

‖∇TP (c)‖2
d

= P (c)2 +
‖∇TP (c)‖2

d
(4.2)

We can also give an alternate formulation avoiding the decomposition of the gradi-
ent in normal and tangent components:

dist2(P,∆c) =
‖∇NP (c)‖2

d2
+

‖∇TP (c)‖2
d

=
‖∇NP (c)‖2

d2
− ‖∇NP (c)‖2

d
+

‖∇P (c)‖2
d

= (1− d)P (c)2 +
‖∇P (c)‖2

d
(4.3)

�
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Let us define from equation (4.3) δP (x) =
‖∇P (x)‖2

d
− (d− 1)P (x)2. In the theorem

4.1, it is enough to consider the critical points of δP on the unit sphere, that is
points where ∇T δP (x) = 0. This means we have:

dist(P,∆) = min
x∈Sn−1,∇T δP (x)=0

√

δP (x)

Using HP (x)x = (d− 1)∇P (x) and 〈∇P (x)|x〉 = dP (x), we compute:

d

2
∇δP (x) = HP (x)∇P (x)− d(d− 1)P (x)∇P (x)

= HP (x)∇P (x)− 〈∇P (x)|x〉HP (x)x

= HP (x)(∇P (x)− 〈∇P (x)|x〉x)
= HP (x)∇TP (x)

= HTP (x)∇TP (x) + (d− 1)||∇TP (x)||2x(4.4)

The first term in (4.4) is d
2∇T δP (x). Hence, we have:

dist(P,∆) = min
x∈Sn−1,HTP (x)∇TP (x)=0

√

P (x)2 +
‖∇TP (x)‖2

d
(4.5)

This motivates the following definition:

Definition 4.2 (quasi-singular points, contact polynomial, contact radius). We
will call quasi-singular points for P ∈ E the critical points of δd with norm 1 where
the distance to the discriminant is reached. This means that

c ∈ Sn−1 is a quasi-singular points iff dist(P,∆) = δP (c).

A necessary condition for c to be a quasi singular point of P is

HTP (c)∇TP (c) = 0

We will say that Q is a contact polynomial for P at c if c is a quasi-singular point
for P , Q ∈ ∆c (this means that {x ∈ Sn−1;Q(x) = 0} has a singularity at c) and
dist(P,∆) = ||Q− P ||.
When Q is contact polynomial for P at c, we will say that R = Q− P is a contact
radius for P at c. A contact radius R is therefore the smallest polynomial for
Bombieri norm that must be added to P to create a singularity.

Then, we distinguish two kinds of quasi-singular points for P (their names will be
explaned later):

quasi-double points: c is quasi-double point if it is a quasi-singular point of
P and a critical point of P on the unit sphere (i.e. satisfying ∇TP (c) = 0).

quasi-cusp points: c is quasi-cups point for P if it is a quasi-singular point
of P which is not a critical point of P . In this case, ∇TP (c) is a non zero
member of the kernel of HTP (c).

First, using the quasi-double points, we can find a very simple inequality for the
distance to the discriminant:
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Theorem 4.3. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables. The distance to the real discriminant ∆ for the Bombieri norm satisfies:

dist(P,∆) ≤ min
x∈Sn−1,∇TP (x)=0

|P (x)|

The condition ∇TP (x) = 0 means that x is a critical point of P and our theorem
means that the distance to the discriminant is less or equal to the minimal critical
value of P in absolute value.

Proof. We use the theorem 4.1:

dist2(P,∆) = min
x∈Sn−1

(

P (x)2 +
‖∇TP (x)‖2

d

)

≤ min
x∈Sn−1,∇TP (x)=0

P (x)2(4.6)

�

Theorem 4.4. Let P ∈ E be an homogeneous polynomial of degree d ≥ 2 with n
variables. Let c be a quasi-singular point for P . Then, the contact radius at c is
the polynomial

R(x) = −P (c)〈x | c〉d − 〈x | ∇TP (c)〉〈x | c〉d−1.

and Q(x) = P (x)+R(x), the contact polynomial for P at c, has no other singularity
than c and −c.

Moreover, when d = 2, c is always a quasi double point (i.e. ∇TP (c) = 0).

Proof. The formula for R(x) is a consequence of the equation 4.1 established in the
proof of theorem 4.1 (given just after the theorem).

Let us assume that Q has another singularity c′ 6= c and c′ 6= −c on the unit sphere
(recall that we imposed quasi-singular point to lie on the unit sphere). This means
that dist(P,∆c) = dist(P,∆c′), Q lying at the intersection of ∆c and ∆c′ .

We can therefore write Q(x) = P (x) + S(x), where S is the contact radius at c′:

S(x) = −P (c′)〈x | c′〉d − 〈x | ∇TP (c′)〉〈x | c′〉d−1.

We necessarily have S = R. It remains to show that this is impossible. We have:

R(x) = −〈x | c〉d−1〈x | P (c)c+∇TP (c)〉
S(x) = −〈x | c′〉d−1〈x | P (c′)c′ +∇TP (c′)〉

When d ≥ 3, the hyper-surface R(x) = 0 contains the plane 〈x | c〉 = 0 with
multiplicity d− 1 union the plane 〈x | P (c)c+∇TP (c)〉 = 0 with multiplicity one.
S(x) = 0 uses that same plane with c replaced by c′, which imposes c = c′ or
c = −c′.
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When d = 2, we will show in the study of quasi-cusp point that they exist only
from degree 3, hence we know that we only have quasi-double points, which means
that ∇TP (c) = ∇TP (c′) = 0. Therefore, R and S become:

R(x) = −P (c)〈x | c〉d

S(x) = −P (c′)〈x | c′〉d

And again, R = S implies c = c′ or c = −c′. �

4.1. Study of quasi-double points. Let P ∈ E be an homogeneous polynomial
of degree d with n variables. Let c be a quasi-double point for P , meaning that we
have ∇TP (c) = 0 and dist2(P,∆) = P (c)2 > 0.

The Bombieri norm being invariant by the orthogonal group, using a rotation we
can assume that c = (0, . . . , 0, 1) and that the matrix HTP (c) is diagonal.

Knowing that ∇TP (c) = 0, we can write:

P (x) = αxd
n +

1

2

∑

1≤i<n

λ1x
2
ix

d−2
n + T (x) with α = P (c) and λi =

∂2P

∂x2
i

(c)

with no monomial of degree ≤ 2 in x1, ..., xn−1 in T (x), i.e. T has valuation at least
3 in x1, ..., xn−1.

Then, by theorem 4.4, the contact radius is

R(x) = −α〈x | c〉d

and the contact polynomial is

Q(x) = P (x) +R(x) =
1

2

∑

1≤i<n

λix
2
ix

d−2
n + T (x)

The singularity at c of the variety {x ∈ Sn−1|Q(x) = 0} is at least a double
point (justifying the name quasi-double point) and it has no other singularities by
theorem 4.4.

Next, we will reveal some constraints on the eigenvalues λi =
∂2P
∂x2

i

(c) of the hessian

matrix. For this, we consider the point

ch =
1√

1 + h2
(h, 0, . . . , 0, 1)

and compute (dist2(P,∆ch)− dist2(P,Q))(1 + h2)d which is non negative because
dist(P,∆ch) ≥ dist(P,Q).
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(

dist2(P ,∆ch)− dist2(P,Q)
)

(1 + h2)d

=

(

(1− d)P 2(ch) +
||∇P (ch)||2

d
− P (c)2

)

(1 + h2)d

= (1− d)P 2(h, 0, . . . , 0, 1)

+
||∇P (h, 0, . . . , 0, 1)||2

d
(1 + h2)− P (c)2(1 + h2)d

= (1− d)(α+
1

2
λ1h

2 + o(||h||2))2

+

(

dα+ (d− 2) 12λ1h
2 + o(||h||2)

)2
+ (λ1h+ o(||h||))2

d
(1 + h2)

− α2(1 + dh2 + o(||h||2))

= ((1− d) + d− 1)α2 + ((1− d) + (d− 2))αλ1h
2 +

1

d
λ2
1h

2

+ dα2h2 − dα2h2 + o(||h||2)

=

(

−αλ1 +
1

d
λ2
1

)

h2 + o(||h||2)

Therefore, dist(P,∆ch) > dist(P,∆) implies:

λ1 (λ1 − dα) ≥ 0

The same is true for all the eigenvalues and this means that when λi and P (c) have
the same sign then |λi| ≥ d|P (c)| (recall that by definition α = P (c)).

This study establishes the following theorem:

Theorem 4.5. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables, let c be a quasi-double point for P and Q a corresponding contact polynomial
at c. Then, the contact radius is

R(x) = −P (c)〈x|c〉d

The contact polynomial Q(x) = P (x)+R(x) has only one singularity in c on Sn−1

which is at least a double-point.

Moreover, if λ is an eigenvalue of HTP (x) with the same sign than P (c), then
|λ| ≥ d|P (c)| > 0.

4.2. Study of quasi-cusp point. Let P ∈ E be an homogeneous polynomial of
degree d with n variables. Let c be a quasi-cusp point for P , meaning that we have
∇TP (c) 6= 0 and HTP (c)∇TP (c) = 0.

The Bombieri norm being invariant by the orthogonal group, using a rotation we
can assume that c = (0, . . . , 0, 1) and that the matrix HTP (c) is diagonal and that
(0, 1, 0, . . . , 0) is the direction of ∇TP (c) which is an eigenvector of HTP (c).

We can write:

P (x) = αxd
n + βx1x

d−1
n +

1

2

∑

2≤i<n

λix
2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n + T (x)
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with α = P (c), β = ∂P
∂x1

(c), λi =
∂2P
∂x2

i

(c), µ1 = ∂3P
∂x3

1

(c) and no monomial of degree

≤ 2 in x1, ..., xn−1, nor x
3
1x

d−3
n in T (x).

The fact that the coefficient of x2
1x

d−1
n is null is the condition HTP (c)∇TP (c) = 0.

Then, by theorem 4.4, the contact radius is

R(x) = −αxd
n − βx1x

d−1
n

and the contact polynomial is

Q(x) = P (x) +R(x) =
∑

2≤i<n

1

2
λix

2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n + T (x)

The singularity at c of Q(x) = 0 on the unit sphere is at least a cusp (justifying
the name quasi-cusp point) and it has no other singularities by theorem 4.4.

We now use a computation similar to the previous case to reveal a constraint
on µ1. For this, we consider the point ch = 1√

1+h2
(h, 0, . . . , 0, 1) and compute

(dist2(P,∆ch)−dist2(P,Q))(1+h2)d which is non negative because dist(P,∆ch) ≥
dist(P,Q).

(

dist2(P ,∆ch)− dist2(P,Q)
)

(1 + h2)d

=

(

(1− d)P 2(ch) +
||∇P (ch)||2

d
− P (c)2 − ||∇TP (c)||2

d

)

(1 + h2)d

= (1− d)P 2(h, 0, . . . , 0, 1) +
||∇P (h, 0, . . . , 0, 1)||2

d
(1 + h2)

−
(

α2 +
β2

d

)

(1 + h2)d

= (1− d)(α+ βh+ o(||h||2))2

+
(dα+ (d− 1)βh+ o(||h||2))2 + (β + 1

2µ1h
2 + o(||h||2))2

d
(1 + h2)

−
(

α2 +
β2

d

)

(1 + dh2 + o(||h||2))

= ((1− d) + d− 1)α2 +

(

1

d
− 1

d

)

β2 + (2(1− d) + 2(d− 1))αβh

+

(

(1− d) +
(d− 1)2

d
+

1

d
− 1

)

β2h2 +
1

d
βµ1h

2 + o(||h||2)

=

(

2− 2d

d
β2 +

1

d
βµ1

)

h2 + o(||h||2)

Therefore, dist(P,∆ch) > dist(P,∆) implies:

β(2(1− d)β + µ1) ≥ 0

This forces βµ1 > 0 hence µ1 6= 0 (because d = 2).
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We remark that if d = 2, then µ1 = 0 and together with β 6= 0, this implies
dist(P,∆ch) < dist(P,∆) for h small enough. This proves that quasi-cusp points
exist only when d > 2. This computation does not requires theorem 4.4 (we just
use the fact that c is a local minima of δP ). This fills the gap in the proof of
theorem 4.4 for the degree 2.

It remains to explicit the constraints on the eigenvalues λi =
∂2P
∂x2

i

(c) for 2 ≤ i < n.

They change compared to the case of quasi-double points. In this case, we have
to take into account the coefficient of x1x

2
i for 2 ≤ i < n which is 1

2µi with µi =
∂3P

∂x1∂x
2

i

(c).

For this, we consider the point ch = 1√
1+h2

(0, h, 0, . . . , 0, 1) and compute (dist2(P,∆ch)−
dist2(P,Q))(1 + h2)d which is non negative because dist(P,∆ch) ≥ dist(P,Q).

(dist(P ,∆ch)− dist(P,Q)) (1 + h2)d

=

(

(1− d)P 2(ch) +
||∇P (ch)||2

d
− P (c)2 − ||∇TP (c)||2

d

)

(1 + h2)d

= (1− d)P 2(0, h, 0, . . . , 0, 1) +
||∇P (0, h, 0, . . . , 0, 1)||2

d
(1 + h2)

−
(

α2 +
β2

d

)

(1 + h2)d

= (1− d)(α+
1

2
λ2h

2 + o(||h||2))2

+
(dα+ (d− 2) 12λ2h

2 + o(||h||2))2
d

(1 + h2)

+
(β + 1

2µ2h
2 + o(||h||2))2 + (λ2h+ o(||h||2))2

d
(1 + h2)

−
(

α2 +
β2

d

)

(1 + dh2 + o(||h||2))

= ((1− d) + d− 1)α2 +

(

1

d
− 1

d

)

β2 + ((1− d) + (d− 2))αλ2h
2

+

(

1

d
− 1

)

β2h2 +
1

d
λ2
2h

2 +
1

d
βµ2h

2 + o(||h||2)

=
1

d
((1− d)β2 − dαλ2 + λ2

2 + βµ2)h
2 + o(||h||2)

Therefore, dist(P,∆ch) > dist(P,∆) implies:

(1− d)β2 − dαλ2 + λ2
2 + βµ2 ≥ 0

Hence, if λ2 = 0 we have µ2 6= 0 with the same sign as β.

By symmetry, the same holds for λi with i ≥ 2. Moreover, up to reordering, we
may assume that λ2 = · · · = λk = 0 and that λi 6= 0 for k < i < n. In fact, k + 1
is the dimension of the kernel of the matrix HTP , this is at least 2, because in
contains at least (1, 0, . . . , 0) and (0, . . . , 0, 1).
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Then, we consider the hessian matrix of ∂P
∂x1

, restricted to the variables x1, . . . , xk

and consider a change of coordinates such that this matrix is diagonal. In such a
coordinates system, we can write:

P (x) = αxd
n+βx1x

d−1
n +

1

2

∑

k<i<n

λix
2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n +

1

2

∑

2≤i≤k

µix1x
2
ix

d−3
n +T (x)

where T has no monomial of degree less than 3 in x1, . . . , xn−1 and no monomial
of degree 3 in x1, . . . , xn−1, using only the variables x1, . . . , xk.

This study allows us to state the following theorem:

Theorem 4.6. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables. Let c be a quasi-cusp point for P . Then, the contact radius at c is the
polynomial

R(x) = −P (c)〈x | c〉d − 〈x | ∇TP (c)〉〈x | c〉d−1.

The contact polynomial Q(x) = P (x) +R(x) has only one singularity in c which is
at least a cusp.

We also have

HTP (c).∇TP (c) = 0 and ∇TP (c) 6= 0

Moreover, we can choose coordinates where c = (0, . . . , 0, 1), ∇TP (c) = (β, 0, . . . , 0)
and k+ 1 ≥ 2 is the dimension of the kernel of the matrix HTP (c) (c and ∇TP (c)
are in the kernel of HTP (c)) and

P (x) = αxd
n+βx1x

d−1
n +

1

2

∑

k<i<n

λix
2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n +

1

2

∑

2≤i≤k

µix1x
2
ix

d−3
n +T (x)

where T has no monomial of degree less than 3 in x1, . . . , xn−1 and no monomial
of degree 3 in x1, . . . , xn−1, using only the variables x1, . . . , xk. We also have the
following constraints:

• β, µ1, . . . , µk are non zero and have the same sign and

• (1− d)β2 − dαλi + λ2
i + βµi ≥ 0 for 2 ≤ i < n where µi =

∂3P
∂x1∂2xi

(c).
• λi 6= 0 for k < i < n.

5. Application to extremal hyper-surfaces

Definition 5.1 (Extremal hyper-surface). An hyper-surface on the projective space
or the unit sphere of dimension n−1 defined by an equation P (x) = 0 where P is an
homogeneous polynomial of degree d in n variables is extremal if the tuple of its Betti
numbers (b0, . . . , bn−2) is maximal for pointwise ordering for such polynomials.

Remark: considering the same polynomial on the projective space or the sphere
just doubles the Betti numbers.

The next theorem also applied to locally extremal surface:

Definition 5.2 (Locally extremal hyper-surface). An algebraic hyper-surface H
in the projective plane or the unit sphere of dimension n − 1 is locally extremal if
there exists no algebraic hyper-surface of the same degree isotopic to H with a disc
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replaced by a disc with a m-handle for 0 ≤ m ≤ n− 2 (m = 0 or m = n− 2 means
adding a connected components).

It is clear that an extremal hyper-surface is locally extremal, but the converse is
not true in general.

Theorem 5.3. Let P ∈ E be an homogeneous polynomial of degree d in n variables.
Assume that the zero level of P on the unit sphere is smooth and locally extremal.
Then, we have:

• P admit no quasi-cusp point.
• If c is a quasi-double point of P , then at least one of the eigenvalue λ of
HTP (c) for an eigen vector distinct from c itself satisfies λP (c) ≤ 0 (we
always have (HTP (c))c = 0 by definition of HT ).

Proof. Let P ∈ E be an homogeneous polynomial of degree d in n variables with a
smooth and extremal zero level on the unit sphere.

For the first item, assume that c is a quasi-cusp of P , and that R and Q are
respectively the contact radius and polynomial of P at c.

By theorem 4.6, we can find coordinates where c = (0, . . . , 0, 1) and

P (x) = αxd
n+βx1x

d−1
n +

1

2

∑

k<i<n

λix
2
ix

d−2
n +

1

6
µ1x

3
1x

d−3
n +

1

2

∑

2≤i≤k

µix1x
2
ix

d−3
n +T (x)

with the properties given above by theorem 4.6 and especially µi > 0 for 1 ≤ i ≤ k.

First, without loss of generality, we can assume α ≥ 0 (by considering −P instead
of P ) and β > 0 (using the transformation x1 7→ −x1). We furthermore reorder
variables and define m ∈ N to have

• λk+1, . . . , λm > 0
• λm+1, . . . , λn−1 < 0.

We will study and change the topology of the zero level of P in a neighbourhood
of the point c : (0, . . . , 0, 1). Hence we will work till the end of the proof with affine
coordinates and set xn = 1.
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We will study the following families of polynomials (only the coefficient of x1 is
changing):

Pt(x) = αt5 + βtx1 +
∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i

+
1

6
µ1x

3
1 +

1

2

∑

2≤i≤k

µix1x
2
i + T (x)

P+
t (x) = αt5 + βt3x1 +

∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i

+
1

6
µ1x

3
1 +

1

2

∑

2≤i≤k

µix1x
2
i + T (x)

P−
t (x) = αt5 − βt3x1 +

∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i

+
1

6
µ1x

3
1 +

1

2

∑

2≤i≤k

µix1x
2
i + T (x)

We have dist2(P, Pt) = α2(1− t5)2 + β2

d
(1− t)2 + 2(k−1)

d(d−1) t
2 = α2 + β2

d
(1− 2t) + o(t)

and this is smaller that dist2(P,∆) = α2+ β2

d
for t small enough. This implies that

Pt(x) = 0 has the same topology than P (x) = 0 for t ∈]0, ǫ[ for some ǫ > 0 (1).

For t small enough, the topologies of Pt(x) = 0, P+
t (x) = 0 and P−

t (x) = 0 can
be computed using Viro’s theorem [5, 6]. To do so, we attribute a height to each
vertex of Newton’s polyhedra: if xα1

1 , . . . , x
αn−1

n−1 is a monomial of Pt, we consider
the point (α1, . . . , αn−1, hα) ∈ N

n. To simplify the discussion, we will identify the
point (α1, . . . , αn−1, hα) ∈ N

n with the corresponding monomial.

All monomials are given 0 height except 1 which we place at height 5, x2
i for

2 ≤ i ≤ k which we place at height 1, x2
1 which height changes among the three

families.

The triangulation needed by Viro’s theorem is computed as the projection of the
convex hull of the points of Newton’s polytopes with their given height. It is easy
to see that all vertices with non zero coefficient are on the convex hull, just looking
at the axes.

In what follows, we consider that t is small enough to have (1) and for the topologies
of Pt(x) = 0, P+

t (x) = 0 and P−
t (x) = 0 to be given by Viro’s theorem, gluing the

topologies of the polynomial in each polyhedron.

Hence, we only need to consider polyhedra changing among the three polynomials.
The only vertices that belong to a polyhedra which is not the same for the Viro’s
decomposition of Pt, P

+
t and P−

t are among

• 1, x1, x
2
1, x

3
1,

• x1x
2
i for 2 ≤ i ≤ k,

• x2
i for k < i < n and

• monomials without x1.
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This is true because the only monomial that changes height is x1. Therefore, if a
polyhedron that contains a monomial xα changes, then, it must contain a segment
from xα to x1. Because the vertices of x3

1, x1x
2
i for 2 ≤ i ≤ k and x2

i for k < i < n
are at height 0, if xα is not among those, it must satisfies α1 = 0 because otherwise
the segment joining xα to x1 can not have 0 height when it crosses the simplex
corresponding to x3

1, x1x
2
i for 2 ≤ i ≤ k and x2

i for k < i < n.

This means that to study the change of topology of Pt(x) = 0, P+
t (x) = 0 and

P−
t (x) = 0, we can consider that T is constant in x1.

The rest of the proof is in two steps: we already know that P (x) = 0 and Pt(x) = 0
have the same topology. It remains to show that Pt(x) = 0, P+

t (x) = 0 also have
the same topology and that P−

t (x) = 0, compared to P−
t (x) = 0, has at least two

Betti numbers that increase while the others are non decreasing.

For the first two polynomials: P (x) = 0 and Pt(x) = 0, they have the same topology
because, considering that T is constant in x1, they can be written :

Pt(x) =
1

6
µx3

1 +



βt+
1

2

∑

1<i≤k

µix
2
i



x1 +



αt5 +
1

2

∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i + T (x)





and

P+
t (x) =

1

6
µx3

1 +



βt3 +
1

2

∑

1<i≤k

µix
2
i



x1 +



αt5 +
1

2

∑

2≤i≤k

tx2
i +

1

2

∑

k<i<n

λix
2
i + T (x)





In both case, all non constant coefficients in x1 are positive, implying that the
polynomial has exactly one root because its discriminant in x1 is negative. This
means that Pt(x) = 0 and P+

t (x) = 0 defines a graph of x1 as a function of the
other variables and hence have the same topology. Moreover, the infinite branch are
the same in both case, not changing the gluing with the polyhedra corresponding
to neglected monomials in T (those using x1).

Finally, for the change of topology between P+
t (x) = 0 and P−

t (x) = 0, we only
need to consider the following polyhedra which are simplices:

A: with vertices 1, x1 and x2
i for 1 < i < n.

B: with vertices x1, x
3
1 and x2

i for 1 < i < n.

It is easy to check that the chosen height for the monomials forces these simplices
to appear.

In the case of P+
t (x) = 0, all coefficients are positive (see figure 1), which leads to

a disc of dimension n − 2 inside the polyhedra A and B, regardless of the sign of
the coefficient λi.

In the case of P−
t (x) = 0, only the sign of x2

1 changes. The change is illustrated by
figure 2 and 3.

We show that the topology of the hyper-surface P−
t (x) = 0 in the polyhedra A

and B and their counterparts in all orthants is a disc with a pair of handles. The
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x1

x2

x3

+ +
+

+

+

+

+

−
−

Figure 1. Topology of P+
t (x) = 0 near c, with k = n.

x1

x2

x3

+ −
+

+

+

+

+

+
−

Figure 2. Topology of P−
t (x) = 0 near c with λ3 > 0. Only the

rear faces are shown, rear border dashed.

two polyhedra A and B being simplices, the topology is given by the sign at the
vertices.

First, we see that the polynomial admits three roots on the x1 axes, one negative
and two positive. Let us name those roots φ−, φ0 and φ+ (φ0 being the positive
root nearest to 0).

In the dimension x1, . . . , xm, the monomial x1 is negative surrounded by positive
monomials in polyhedra A and B. This gives us a component SA homeomorphic
to a sphere of dimension m− 1, inside the hypersurface P−

t (x) = 0. Moreover, we
can also find a topological sphere S′

A (by inflating SA a little) that does not meet
the hyper-surface P−

t (x) = 0 and that contains a point on the x1 axes between φ−

and φ0.
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x1

x2

x3

+ −
+

−

−

+

+

+

−

Figure 3. Topology of P−
t (x) = 0 near c with k = 2 or λ2 > 0

and λ3 < 0. Only the rear faces are shown, rear border dashed.

Similarly, In the dimension x1, xm+1, . . . , xn−1, the monomials −x1 and 1 (−x1

alone if α = 0) are positive and surrounded by negative vertices.

This gives us a component SB homeomorphic to a sphere of dimension n−m− 1,
inside the hypersurface P−

t (x) = 0. Moreover, we can also find a topological sphere
S′
B (by inflating SB a little) that does not meet the same hyper-surface and that

contains a point on the x1 axes between φ0 and φ+.

Now, the sum of the dimensions of the spheres SA and SB ism−1+n−m−1 = n−2
which is one less than the dimension of the ambient space R

n−1. The spheres SA

(resp. SB) are non contractile because of the existence of the spheres S′
B (resp. S′

A)
that do not meet the hypersurface. Therefore, the presence of SA and SB ensures
that we have at least a m−1-handle on a disc of dimension n−2 inside the polyhedra
A and B.

This means that P+
t (x) = 0 is a desingularisation of Q(x) = 0 that creates a disc

while P−
t (x) = 0 creates a dist with at least one handle (in fact no more, but we

don’t need to prove this). But, P+
t (x) = 0 gives us the topology of P (x) = 0. This

establishes the equation P (x) = 0 does not define a locally extremal hyper-surface.

The last part of the theorem is easier: a quasi-double point c for P such that all
eigen values of HTP (c) (except c itself) satisfies λP (c) > 0 would mean that c is a
local minimum of |P (c)| and therefore, c is an isolated point of the hyper-surface
Q(x) = 0 where Q ∈ ∆ is the contact polynomial Q(x) = P (x)− P (c)〈x|c〉d for P .
This allows to add a new connected component to the variety of equation P (x) = 0.
This is also impossible in the case of a locally extremal algebraic hyper-surface. �

Corollary 5.4. Let P ∈ E be an homogeneous polynomial of degree d with n
variables. Assume that the zero level of P is extremal. Then, the distance to the
discriminant is the minimal absolute critical value of P i.e.
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dist(P,∆) = min
∇TP (x)=0

|P (x)|

Remark: this implies that the right member of the above equality is continuous in
the coefficient of P which is not true in general.

Proof. Immediate from the first item of the previous theorem, the definition 4.2
and the equation 4.5 that precedes it. �

6. Further from the discriminant

We now establish a property verified by polynomials that maximise the distance to
the discriminant:

Theorem 6.1. Let P be an homogenous polynomial in n variables, of degree d,
Bombieri norm 1 and such that dist(P,∆) is locally maximal among polynomials of
Bombieri norm 1.

Let {c1,−c1, . . . , ck,−ck} be the set of the quasi-singular points of P . Let R1, . . . , Rk

be the corresponding contact radius (we choose one for each pair (c,−c) because the
contact radius corresponding to c and −c are equal or opposite, depending upon the
degree).

Then, P is a linear combination of the Ri.

Proof. We consider an homogeneous polynomial P satisfying the condition of the
theorem, its quasi-critical points {c1,−c1, . . . , ck,−ck} and R1, . . . , Rk the corre-
sponding contact radius (which means that the contact polynomial Qi = Pi + Ri

has a singularity in ci and −ci for 1 ≤ i ≤ k).

By absurd, let us assume that P is not a linear combination of R1, . . . , Rk. Let
P1 be the orthogonal projection of P on the vector space generated by R1, . . . , Rk

and let D = P1 − P 6= 0. We also consider the sphere SP , centered at P of radius
dist(P,∆). This is schematically represented in figure 4.

Next, we define Pt = P + tD. Let us choose a contact polynomial Qt for Pt which
means that dist(Pt,∆) = dist(Pt, Qt). We consider Qs

t , the intersection of the
segment [Pt, Qt] with the sphere SP . Let ht be the distance from Qs

t to the affine
sub-space containing P and directed by R1, . . . , Rk. We know that limt→0 ht = 0
because Qt converges to the set {P +R1, . . . , P +Rk}.
We have :

dist2(Pt,∆) = dist2(Pt, Qt)

≤ dist2(Pt, Q
s
t )

≤ (ht − t||D||)2 + dist2(P,∆)− h2
t

≤ dist2(P,∆)− 2tht||D||+ t2||D||2

But, Pt is not of norm 1: ||Pt||2 = ||P1||2 + (1 − t)2||D||2 = 1 − 2t||D||2 + t2||D||2
because ||P1||2 + ||D||2 = ||P ||2 = 1. Thus, we consider the polynomial P̂t =

Pt

||Pt||
and we have:
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P R1R2

D

P1

Pt

Qs
t Qt

ht

SP ∆

Figure 4. Figure for the proof of theorem 6.1

dist2(P̂t,∆) =
dist2(Pt,∆)

1− 2t||D||2 + t2||D||2

≤ dist2(P,∆)− 2tht||D||+ t2||D||2
1− 2t||D||2 + t2||D||2

≤ (dist2(P,∆)− 2tht||D||+ t2||D||2)(1 + 2t||D||2 + o(t))

≤ dist2(P,∆)(1 + 2t||D||2) + o(t) because tht ∈ o(t)

This proves that dist2(P̂t,∆) > dist(P,∆) when t is positive and small enough
contradicting the fact that P is a local maxima for the distance to ∆. �

Remarque: This gives a descent direction for an algorithm to compute local maxima
for the distance to ∆. However, our experiments show that this is not a very good
direction. We got much better results using the direction T given by 〈P |T 〉 = 0 and
for 1 ≤ i ≤ k, 〈Ri|T 〉 < 0. This descent direction is orthogonal to ||D|| and is much
better in practice, despite the fact that it produces a vector of norm greater than
one that needs normalisation. However, from the fact that P is a local maxima, we
only get, using T , that P,R1, . . . , Rk are linearly dependant which is weaker than
the previous theorem.

This means that the better descent direction to do proofs is not the best one to do
local optimisation.

Corollary 6.2. Let P be an homogeneous polynomial in n variables, of degree d,
Bombieri norm 1 and such that dist(P,∆) is locally maximal among polynomials of
Bombieri norm 1. Assume also that P = 0 defines an extremal hyper-surface.
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Let {c1,−c1, . . . , ck,−ck} be the set of quasi-double points of P (which are the crit-
ical points of P on Sn−1 corresponding to the smallest critical value in absolute
value).

Then, we can find λ1, . . . , λk such that:

P (x) =
k

∑

i=1

λi〈x|ci〉d

Proof. We established that P is a linear combination of {R1, . . . , Rk}. By theo-
rem 5.3, P admits no quasi-cusp point and therefore Ri(x) = −P (ci)〈ci|x〉d with
|P (ci)| = dist(P,∆). �

7. Critical band of extremal hyper-surfaces

Corollary 7.1. Let P ∈ E be an homogeneous polynomial of degree d with n
variables. Assume that the zero level of P on the unit sphere is locally extremal.
Let m = dist(P,∆),

if ||x|| = 1 and |P (x)| ≤ m then ||∇TP (x)||2 > d(m2 − P (x)2)

Proof. By theorem 4.1, we have for all x in the unit sphere:

dist(P,∆x) = P (x)2 +
1

d
||∇TP (x)||2 ≥ dist(P,∆) = m

If it existed x ∈ Sn−1 such that P (x)2 + 1
d
||∇TP (x)||2 = dist(P,∆), x would be a

quasi-cusp, by definition, contradicting the first item of the previous theorem.

Thus, for all x ∈ Sn−1 we have P (x)2+ 1
d
||∇TP (x)||2 > m which yields the wanted

inequality. �

Definition 7.2. Let P ∈ E be an homogeneous polynomial of degree d with n
variables. Let m = dist(P,∆), the critical band of P is the following set:

Bc(P ) = {x ∈ Sn−1 s.t. |P (x)| < m}

Theorem 7.3. Let P ∈ E be an homogeneous polynomial of degree d with n vari-
ables. Assume that the zero level of P on the unit sphere is locally extremal.

Let γ : [a, b] → Bc(P ) be an integral curve of ∇TP . Then, we have the following
inequality:

length(γ) <
1√
d

∣

∣

∣

∣

arcsin

(

b

m

)

− arcsin
( a

m

)

∣

∣

∣

∣

This is bounded by π√
d
and, if a and b have the same sign, by half of it.

Proof. We can consider that γ is parametrised by the value of P because ∇TP does
not vanish in Bc(P ) and therefore, the value of P will be monotonous along the
arc. We may also assume without loss of generality that a < b.

This means that we have P (γ(y)) = y which by derivation gives
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Sn−1

x

v

y

∇P (x)

∇P (y)

α
0

Figure 5.

〈∇P (γ(y))|γ′(y)〉 = 〈∇TP (γ(y))|γ′(y)〉 = 1

The previous corollary and the fact that γ′(y) and ∇TP (γ(y)) are colinear yields:

||γ′(y)|| = 1

||∇TP (γ(y))|| <
1

√

d(m2 − P (γ(y))2)
=

1
√

d(m2 − y2)

Finally, for the length, we have:

length(γ) =

∫ b

a

||γ′(y)||dy

<
1√
d

∫ b

a

dy
√

m2 − y2

<
1√
d

(

arcsin

(

b

m

)

− arcsin
( a

m

)

)

If b < a, reversing the arc gives the wanted result. �

8. Large components far from the discriminant

The following proposition will have as consequence a lower bound for the size of
connected components of an algebraic hyper-surfaces:

Proposition 1. Let P ∈ E (i.e. P is an homogeneous polynomial of degree d with
n variables). Let dist(P,∆) 6= 0 be the distance between P and the real discriminant
of E, then for any x ∈ Sn−1 a critical point of P , the open spherical cap of Sn−1

with center x and radius angle α = 1
d

√

2dist(P,∆)
‖P‖ does not meet the zero level of P .

Proof. Let us consider x ∈ Sn−1 a critical point of P and y ∈ Sn−1 such that
P (y) = 0. Consider α the measure of the angle x0y, and consider v ∈ Sn−1 such
that v orthogonal to x and y = cos(α)x+ sin(α)v. See figure 5.

Then, we define:
f(θ) = P (cos(θ)x+ sin(θ)v)
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We have:

f(0) = P (x)
f(α) = P (y) = 0
f ′(θ) = t(− sin(θ)x+ cos(θ)v)∇P (cos(θ)x+ sin(θ)v)
f ′(0) = tv∇P (x) = 0 because v orthogonal to x and ∇P (x)
f ′′(θ) = t(− sin(θ)x+ cos(θ)v)HP (cos(θ)x+ sin(θ)v)(− sin(θ)x+ cos(θ)v)

+ t(− cos(θ)x− sin(θ)v)∇P (cos(θ)x+ sin(θ)v)

Using the inequality of lemma 3.4 and the fact that cos(θ)x+ sin(θ)v ∈ Sn−1, we
have:

|f ′′(θ)| ≤ ‖HP (cos(θ)x+ sin(θ)v)‖2 ‖ − sin(θ)x+ cos(θ)v‖2
+ ‖∇P (cos(θ)x+ sin(θ)v)‖ ‖ − cos(θ)x− sin(θ)v‖

= ‖HP (cos(θ)x+ sin(θ)v)‖2 + ‖∇P (cos(θ)x+ sin(θ)v)‖
≤ d(d− 1) ‖P‖ ‖ cos(θ)x+ sin(θ)v)‖d−2 + d ‖P‖ ‖ cos(θ)x+ sin(θ)v)‖d−1

= d2‖P‖
Then, using Taylor-Lagrange equality, we find θ ∈ [0, α] such that

0 = f(α) = f(0) + αf ′(0) +
α2

2
f ′′(θ) = P (x) +

α2

2
f ′′(θ)

This implies:

|P (x)| ≤ d2α2

2
‖P‖

and therefore with theorem 4.3, we have

α ≥ 1

d

√

2 dist(P,∆)

‖P‖
�

Corollary 8.1. Let P ∈ E and dist(P,∆) 6= 0 be the distance between P and the
discriminant for E. Each connected component of the complement of the zero level
of P in Sn−1 contains an open spherical cap of Sn−1 with center x and radius angle

α = 1
d

√

2dist(P,∆)
‖P‖

Proof. Immediate because every connected component of the complement of the
zero level of P contains at least one extrema of P which is a critical point of P . �

These two last results can also be used in the projective space Pn−1(R) with the
metric induced by the metric on the sphere Sn−1 because the radius angle of the
spherical cap in Sn−1 is the radius of a disk is Pn−1(R).

Theorem 8.2. Let P ∈ S and dist(P,∆) 6= 0 be the distance between P and
the discriminant for E. The distance (measured as an arc length) between two
distinct connected components of the zero level of P in Sn−1 is greater of equal to

α = 2
d

√

2dist(P,∆)
‖P‖

Proof. Consider an arc [A,B] on Sn−1 joining two distinct connected components
of the zero level of P . By the Ehresmann theorem [2], There is a point C on [A,B]
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where P reaches a value greater, in absolute value, than a critical value of P . We
can take C a point where |P (x)| is maximum on [A,B].

Then, by exactly the same computation than for the previous theorem, using the
fact that ∇P (C) is zero in the direction of the segment, we find that the arc length

of [A,C] and [C,B] are greater or equal to 1
d

√

2dist(P,∆)
‖P‖ which ends the proof.

�

9. Experiments with extremal curves

Section 6 suggests an algorithm to numerically optimise the distance to the discrim-
inant of an hyper-surface: this algorithm requires to compute the quasi-singular
points and solve a linear system to get a direction in which the distance increase.
At each step, we do not need to recompute the quasi-singular points because we
can use Newton’s method to move the previous ones.

We have implemented such an algorithm as part of our GlSurf software. It is not
a robust algorithm and it sometimes encounter numerical problems. Nevertheless,
we managed to use it on all maximal curves up to degree 6 (inclusive) and some
curves of higher degree. We relate those experiments in the table 1 in the hope
that they could help to build new conjectures.

Remark: because we deal with curves, we reinforced our theorem taking into ac-
count the nesting of connected components which give more locally extremal hyper-
surfaces that just considering the number of connected components: there are two
sextic curves with nine ovals that do not have the maximum b0 = 11 but that are
locally extremal.

It is important to note that these experiments only produce polynomials of Bombieri
norm 1 that are likely to be near a local maxima of the distance to the discriminant.
We currently have no way to find accurately (numerically or theoretically) the global
maxima in each connected component of the complement of the real discriminant.

Degree 2, 3 and maximally nested ovals. Curves which have the maximum
number of nested ovals are a particular case (i.e. d/2 nested ovals if the degree d is
even and (d− 1)/2 nested ovals plus a projective line otherwise).

It seems from experiments that the polynomial maximising the distance to the
discriminant in these cases is obtained as the revolution of a polynomial in two
variables that has the maximum number of roots equally spaced on the unit circle.
This may be defined as:

Tn(x, t) =

⌊n
2
⌋

∑

k=0

(−1)k
(

n

2k

)

tkxn−2k

Pn(x, y, z) = Tn(x, y
2 + z2)

The polynomials Pn are not of norm 1, and have infinitely many critical points
with the critical value ±1. In fact the curve Pn(1, x, y) = 0 is a union of concentric
circles centred in 0 plus one line at infinity, when n is odd. Therefore, they are
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Degree Topology dist(P,∆) ||D|| k = k+ + k−

2 O 1√
3
≃ 0.577 0 ∞ = 1 +∞

3 | O 1√
7
≃ 0.378 0 ∞ = 1 +∞

4 O × 4 7.1210−2 1.4910−28 10 = 4 + 6

4 (O)
√
3√
47

≃ 0.253 0 ∞ = ∞+∞
5 | O × 6 2.4910−3 1.7210−20 15 = 6 + 9

5 | (O)
√
3√

103
≃ 0.171 0 ∞ = ∞+∞

6 (O) O × 9 9.6110−5 1.0110−13 22 = 9 + 13
6 (O × 5) O × 5 6.5310−11 2.1710−1 21 = 10 + 11
6 (O × 9) O 5.8110−9 6.9110−3 21 = 11 + 10
6 (O × 2) O × 6 2.4810−4 6.5610−12 21 = 10 + 11
6 (O × 6) O × 2 6.5610−7 2.9310−6 20 = 10 + 10

6 ((O))
√
5√

371
0 ∞ = ∞+∞

7 | O × 15 2.3810−6 1.5810−7 30 = 15 + 15
8 (O × 3)O × 18 1.7810−8 9.2910−1 39 = 18 + 21

Degree: the degree of the polynomial (which has Bombieri norm 1)
Topology: O represents an oval, | a projective lines (...) an oval containing

other curves and we use × to shorten the representation.
dist(P,∆): the distance to the discriminant at the stage we stopped the

optimisation.
‖D‖: following the notation of the proof of theorem 6.1. It converges toward

0 and gives a good indication to know it we are near the local minima. We
highlighted in bold values which are not small enough to draw definitive
conclusion.

k = k+ + k−: The number of pairs of quasi-double points together with the
sign of the polynomials. For odd degree, this make only sense if we assume
that the sign is taken on same half of Sn−1, split by the projective line that
is always present in P = 0. We count in k+ the critical values which are
inside ovals not contained in other ovals.

Table 1. Experimental results

not irreducible. The point (1, 0, 0) is the only isolated critical point. This is how
we filled the corresponding lines of the table 1 with 1

||Pn|| . Experiments seems to

indicate that these are global maxima of the corresponding connected components
of ∆c.

Extremal sextic curves and beyond. The table 1 includes five locally extremal
sextic curves including the three curves with eleven components.

The most difficult one is Gudkov’s sextic followed by Hilbert’s. We have run our
optimisation algorithm on these curves for several months! Yet, more computation
are needed, as shown in the table. Computing accurately the direction of descent
requires to use more than the 64 bits of precision available in modern processor. It
is a pity that 128 bits have been abandoned in hardware, but luckily we used GNU
MP.
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Figure 6. Harnack’s sextic

Figure 7. Hilberts’ sextic

Remark: those curves are most of the time (always as far as the author knows)
shown in literature as schemata. We give here in figure 6 to 10 drawing of the real
curves. If you are interested to get the corresponding polynomials, you are welcome
to visit the following web page:

http://lama.univ-savoie.fr/~raffalli/glsurf-optimisation.php
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Figure 8. Gudkov’s sextic

Figure 9. Sextic with topology (O × 6) OO

The extremal curves which have only nine components are interesting. They show
some useless pikes which are quite surprising. Probably, these pikes are necessary
to have enough critical points.

We have also included results for Harnack’s curves of degree seven and height. The
later is also not yet optimised enough.
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Figure 10. Sextic with topology (OO) O × 6
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Appendix A. Proof of the inequalities for the Bombieri norm

We now prove the inequalities of lemma 3.4:

|P (x)| ≤ ‖P‖‖x‖d

‖∇P (x)‖ ≤ d ‖P‖ ‖x‖d−1

‖HP (x)‖2 ≤ ‖HP (x)‖F ≤ d(d− 1) ‖P‖ ‖x‖d−2

We consider that PB = (aα)|α|=d and therefore, P (x) =
∑

|α|=d

aα

√

d!

α!
xα:

(1) For the first inequality, the proof is easy:

P (x)2 =





∑

|α|=d

aα

√

d!

α!
xα





2

≤
∑

|α|=d

a2α
∑

|α|=d

d!

α!
x2α by Cauchy-Schwartz inequality

= ‖P‖2‖x‖2d

(2) For the second inequality, we first consider the partial derivative ∂P (x)
∂xi

:

(

∂P (x)

∂xi

)2

=





∑

|α|=d

aα

√

d!

α!
αix

α−χi





2

≤
∑

|α|=d

αia
2
α

∑

|α|=d

d!

α!
αix

2(α−χi) by Cauchy-Schwartz

= d
∑

|α|=d

αia
2
α

∑

|α|=d,αi 6=0

(d− 1)!

(α− χi)!
x2(α−χi)

= d
∑

|α|=d

αia
2
α

∑

|β|=d−1

(d− 1)!

β!
x2β

= d‖x‖2(d−1)
∑

|α|=d

αia
2
α
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This means that:

‖∇P (x)‖2 =
∑

1≤i≤n

(

∂P (x)

∂xi

)2

≤
∑

1≤i≤n



d‖x‖2(d−1)
∑

|α|=d

αia
2
α





= d‖x‖2(d−1)
∑

1≤i≤n

∑

|α|=d

αia
2
α

= d‖x‖2(d−1)
∑

|α|=d





∑

1≤i≤n

αi



 a2α

= d2‖x‖2(d−1)
∑

|α|=d

a2α

= d2‖P‖2‖x‖2(d−1)

(3) For the last inequality, we consider the partial derivative
∂2P (x)

∂xixj

when

i 6= j:

(

∂2P (x)

∂xixj

)2

=





∑

|α|=d

aα

√

d!

α!
αiαjx

α−χi−χj





2

≤
∑

|α|=d

αiαja
2
α

∑

|α|=d

d!

α!
αiαjx

2(α−χi−χj) by Cauchy-Schwartz

= d(d− 1)
∑

|α|=d

αiαja
2
α

∑

|α|=d,αi 6=0,αj 6=0

(d− 2)!

α− χi − χj !
x2(α−χi−χj)

= d(d− 1)
∑

|α|=d

αiαja
2
α

∑

|β|=d−2

(d− 2)!

β!
x2β

= d(d− 1)‖x‖2(d−2)
∑

|α|=d

αiαja
2
α

Now, we consider the partial derivative ∂2P (x)
∂x2

i

:

(

∂2P (x)

∂x2
i

)2

=





∑

|α|=d

aα

√

d!

α!
αi(αi − 1)xα−2χi





2

≤
∑

|α|=d

αi(αi − 1)a2α
∑

|α|=d

d!

α!
αi(αi − 1)x2(α−2χi) by Cauchy-Schwartz

= d(d− 1)
∑

|α|=d

αi(αi − 1)a2α
∑

|α|=d,αi≥2

(d− 2)!

(α− 2χi)!
x2(α−2χi)

= d(d− 1)
∑

|α|=d

αi(αi − 1)a2α
∑

|β|=d−2

(d− 2)!

β!
x2β

= d(d− 1)‖x‖2(d−2)
∑

|α|=d

αi(αi − 1)a2α
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Let us define ιi,j = 0 when i 6= j and ιi,i = 1. Then, we have:

‖HP (x)‖2F =
∑

1≤i,j≤n

(

∂2P (x)

xixj

)2

≤
∑

1≤i,j≤n



d(d− 1)‖x‖2(d−2)
∑

|α|=d

αi(αj − ιi,j)a
2
α





= d(d− 1)‖x‖2(d−2)
∑

1≤i,j≤n

∑

|α|=d

αi(αj − ιi,j)a
2
α

= d(d− 1)‖x‖2(d−2)
∑

1≤i≤n

∑

|α|=d

αi(d− 1)a2α

= d(d− 1)‖x‖2(d−2)
∑

|α|=d

d(d− 1)a2α

= d2(d− 1)2‖P‖2‖x‖2(d−2)
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