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Abstract We study the consistency of parameter estimators in adaptive designs generated by a one-

step ahead D-optimal algorithm. We show that when the design space is finite, under mild conditions the

least-squares estimator in a nonlinear regression model is strongly consistent and the information matrix

evaluated at the current estimated value of the parameters strongly converges to the D-optimal matrix for

the unknown true value of the parameters. A similar property is shown to hold for maximum-likelihood

estimation in Bernoulli trials (dose-response experiments). Some examples are presented.
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1 Introduction: motivation and problem statement

We consider experimental design for a parametric model for which N independent observations Y1, . . . , YN

yield the information matrix

M(XN
1 , θ) = M(x1, . . . , xN , θ) =

N∑

i=1

µ(xi, θ) ,

where xi ∈ X ⊂ Rd is the i-th design point, characterizing the experimental conditions for the i-th

observation, and θ is the p-dimensional vector of model parameters to be estimated. Two situations will

be considered in more detail, namely nonlinear regression and Bernoulli trials. When rN (xi) denotes

the number of (repetitions of) observations made at x = xi, the normalized information matrix per

observation can be written as M(ξN , θ) = (1/N) M(XN
1 , θ) =

∑K
i=1[rN (xi)/N ]µ(xi, θ), where K is the

number of distinct design points and ξN is the design measure (a probability measure on X ) that puts

mass rN (xi)/N at xi. Following the usual approximate-design approach, we shall relax the constraints

on design measures by considering ξ as any element of Ξ, the set of probability measures on X , and

write M(ξ, θ) =
∫
X µ(x, θ) ξ(dx). We shall denote λmin(M) and λmax(M) the minimum and maximum

eigenvalues of the matrix M.

Local D-optimal design consists of determining a measure ξ∗D that maximizes log detM(ξ, θ) for a given

value of θ. The denomination ‘local’ comes from the fact that in nonlinear situations M(ξ, θ) depends on

θ, and the optimal ξ∗D for estimating θ thus depends on the value θ to be estimated. Minimax-optimal

and average-optimal (also called bayesian-optimal) designs can be used to avoid the dependency of ξ∗D

in θ. However, in practice these approaches only replace the choice of a prior nominal value (for local

design) by that of a prior admissible set (minimax design) or a prior distribution for θ (bayesian design),

see, e.g., Melas (1978); Fedorov (1980); Pronzato and Walter (1985, 1988); Chaloner and Larntz (1989).

See also Pázman and Pronzato (2007) for an approach based on quantile and probability-level criteria.

Another rather common and intuitively appealing approach consists of making the design adaptive.

The design points x1, x2 . . . , xk, xk+1, . . . associated with a sequence of observations are then chosen

sequentially, the determination of the point xk+1 being based on the value θ̂k estimated from the k
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previous observations (by least-squares, maximum likelihood or a bayesian method). The motivation

is that alternating estimations based on previous observations with determinations of the next design

points where to observe may hopefully force the empirical design measure to progressively adapt to the

correct (true) value of the model parameters. It is the purpose of this paper to show that under suitable

conditions, in particular when the xk’s are restricted to belong to a finite set, the estimator θ̂k is strongly

consistent and the corresponding adaptive design is asymptotically optimal. Although the condition that

the design space X is finite is often imposed by practical considerations, it can be perceived here as a

restriction compared to results in the literature obtained under more general conditions. It is important

to notice, however, that those results are based on different types of designs or estimators. Hu (1998)

considers Bayesian estimation by posterior mean; Lai (1994) and Chaudhuri and Mykland (1995) require

the introduction of a subsequence of non-adaptive design points to ensure consistency of the estimator,

see Example 2 of Sect. 5; Chaudhuri and Mykland (1993) require that the size of the initial experiment

(non-adaptive) should be allowed to grow with the increase in size of the total experiment. No such

conditions are required here and the design is fully adaptive.

We only consider the case of adaptive D-optimal design, see Sect. 2, but the results can presumably

be extended to design approaches based on other global criteria (such that the information matrix has

full rank at the optimum). Sect. 3 concerns adaptive design for least-squares estimation in nonlinear

regression, whereas Sect. 4 is about design for maximum-likelihood estimation in Bernoulli-trial experi-

ments. Sect. 5 provides a few illustrative examples. The proofs of lemmas and theorems are collected in

an appendix.

2 One-step ahead adaptive D-optimal design

Consider the criterion φ(ξ) = log det M(ξ, θ). For any ξ ∈ Ξ such that M(ξ, θ) is non-singular, the direc-

tional derivative Fφ(ξ, ν) = limα→0+{φ[(1−α)ξ+αν]−φ(ξ)}/α is given by Fφ(ξ, ν) = tr[M(ν, θ)M−1(ξ, θ)]−

p, with p = dim(θ). The measure ν∗ ∈ Ξ that maximizes Fφ(ξ, ν) is then ν∗ = δx∗ , with x∗ =

arg maxx∈X tr[µ(x, θ)M−1(ξ, θ)] and δz the delta measure that puts mass 1 at z. Moreover, the celebrated
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Kiefer and Wolfowitz (1960) equivalence theorem states that ξ∗D ∈ Ξ is locally D-optimal (it maximizes

log det M(ξ, θ)) if and only if Fφ(ξ∗D, δx∗) = 0, that is, maxx∈X tr[µ(x, θ)M−1(ξ∗D, θ)] = p. Based on these

considerations, the k-th iteration of a vertex-direction algorithm for local D-optimal design transforms the

current design measure ξk into ξk+1 = (1−αk)ξk+αkδxk+1 , with xk+1 = arg maxx∈X tr[µ(x, θ)M−1(ξk, θ)]

the support point that gives the steepest-ascent direction and αk some suitably chosen step-length, see,

e.g., Fedorov (1972); Atkinson and Donev (1992).

The idea is similar in adaptive design and, after k observations, one-step ahead adaptive D-optimal

design chooses the next design point xk+1 as

xk+1 = arg max
x∈X

tr[µ(x, θ̂k)M−1(ξk, θ̂k)] , (1)

where θ̂k ∈ Rp is the current estimated value for θ, based on x1, Y1, . . . , xk, Yk, and ξk = (1/k)
∑k

i=1 δxi

is the current empirical design measure. We leave aside initialisation issues and throughout the paper

we assume that the first p design points x1, . . . , xp are such that M(ξp, θ) is non-singular for any θ (and

M(ξk, θ) is thus non-singular for any k ≥ p).

Remark 1 Note that (1) can only be considered as an algorithm for choosing design points, in the

sense that M(ξk, θ) is not the information matrix for parameters θ due to the sequential construction

of the design. It is common, however, to still use M(ξk, θ̂k) as a characterization of the precision of

the estimation in a sequential context, see Ford and Silvey (1980); Ford et al. (1985); Wu (1985) for a

justification. The difficulty disappears in a bayesian context where M(ξk, θ̂k) is used in an approximation

of the posterior covariance matrix of the parameters, see, e.g., Chaloner and Verdinelli (1995). From

the same repeated-sampling principle as that used by Wu (1985), the characterization of the precision of

the estimation through M(ξk, θ̂k) is also justified asymptotically (k → ∞) when the admissible set X for

the xk’s is finite, see Sect. 3. See also Rosenberger et al. (1997) for maximum-likelihood estimation in a

more general context.

When θ̂k is frozen to a fixed value θ, the iteration (1) corresponds to one step of a steepest-ascent

vertex-direction algorithm, with step-length 1/(k+1) at step k since M(ξk+1, θ) = [1−1/(k+1)]M(ξk, θ)+
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[1/(k + 1)]M(δxk+1 , θ). Convergence to an optimal design measure is proved in Wynn (1970). The fact

that θ̂k is estimated in adaptive design makes the proof of convergence a much more complicated issue

for which few results are available, see e.g. Ford and Silvey (1980); Wu (1985); Müller and Pötscher

(1992) for least-squares estimation and Hu (1998) for bayesian estimation. The idea that the almost sure

convergence of θ̂k to some θ̂∞ would imply the convergence of ξk to a D-optimal design measure for θ̂∞

is rather well admitted (it follows from Lemma 3 given in Sect. 3). Conversely, the convergence of ξk to a

design ξ∞ such that M(ξ∞, θ) is non-singular for any θ would be enough in general to make an estimator

consistent. It is clearly the interplay between estimation and design iterations that generates difficulties.

As shown below, those difficulties disappear when X is a finite set. Notice that the assumption that

X is finite is seldom limiting since practical considerations often impose such a restriction on possible

choices for the xk’s. This can be contrasted with the much less natural assumption that would consist in

considering the feasible parameter set as finite. Although the interest of studying asymptotic properties

of designs and estimators in contexts where the number of observations is usually limited might seem

questionable, we think it is reassuring to know that, at least in the idealized framework of a known model

with independent observations, the iterations (1) ensure suitable convergence properties. The results

apply to a wide range of situations, but we focuss here on least-squares estimation in nonlinear regression

and maximum-likelihood estimation for Bernoulli trials, which share many common aspects. The former

case is considered in the next section, the modifications required for the latter are presented in Sect. 4.

3 Least-squares estimation in nonlinear regression

We first consider the case of a regression model with observations

Yi = Y (xi) = η(xi, θ̄) + εi , (2)

with θ̄ in the interior of Θ, a compact subset of Rp, xi ∈ X ⊂ Rd, and {εi} a sequence of independently

and identically distributed random variables with IE{ε1} = 0 and IE{ε2
1} = σ2 < ∞. We denote

SN (θ) =
N∑

k=1

[Y (xk)− η(xk, θ)]2
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and θ̂N
LS the least-squares estimator minimizing SN (θ), that is, θ̂N

LS = arg minθ∈Θ SN (θ). We restrict

our attention to ordinary least-squares and stationary errors and assume, without any further loss of

generality, that σ2 = 1. Assuming that η(x, θ) is differentiable with respect to θ for any x, the contribution

of the design point x to the information matrix is then µ(x, θ) = fθ(x) f>θ (x), where we denote

fθ(x) =
∂η(x, θ)

∂θ
.

The results can easily be extended to non stationary errors and weighted least-squares. In the case of

maximum-likelihood estimation, the contribution of x to the Fisher information matrix only differs by a

multiplicative constant and is given by µ(x, θ) = I fθ(x) f>θ (x), with I the Fisher information for location:

I =
∫

[ϕ′(t)/ϕ(t)]2 ϕ(t) dt, with ϕ(·) the probability density function of ε1 and ϕ′(·) its derivative.

We shall need the following lemma, see Wu (1981, p. 504).

Lemma 1 If for any δ > 0

lim inf
N→∞

inf
‖θ−θ̄‖≥δ

[SN (θ)− SN (θ̄)] > 0 almost surely , (3)

then θ̂N
LS

a.s.→ θ̄ as N →∞ (almost sure convergence). If for any δ > 0

Pr
{

inf
‖θ−θ̄‖≥δ

[SN (θ)− SN (θ̄)] > 0
}
→ 1 , N →∞ , (4)

then θ̂N
LS

p→ θ̄ as N →∞ (convergence in probability).

One can then show that the convergence of the least-squares estimator is a consequence of

DN (θ, θ̄) =
N∑

k=1

[η(xk, θ)− η(xk, θ̄)]2 (5)

tending to infinity fast enough for ‖θ − θ̄‖ ≥ δ > 0. When the design space X for the xk’s is finite, the

rate of increase required for the strong consistency of θ̂N
LS (θ̂N

LS
a.s.→ θ̄, N → ∞) is quite slow, and the

result is much stronger than what is needed to obtain strong consistency under the adaptive design (1)

with θ̂k = θ̂k
LS . However, we think the result is interesting per se and state it as a theorem.
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Theorem 1 Let {xi} be a non-random design sequence on a finite set X . If DN (θ, θ̄) given by (5)

satisfies

for all δ > 0 ,

[
inf

‖θ−θ̄‖≥δ
DN (θ, θ̄)

]
/(log log N) →∞ , N →∞ , (6)

then θ̂N
LS

a.s.→ θ̄ as N → ∞. This result remains valid for {xi} a random sequence on X finite when (6)

holds almost surely. If DN (θ, θ̄) simply satisfies

for all δ > 0 , inf
‖θ−θ̄‖≥δ

DN (θ, θ̄) →∞ , N →∞ , (7)

then θ̂N
LS

p→ θ̄, N →∞. This result remains valid for {xi} a random sequence on X finite when (7) holds

in probability.

Remark 2 The condition

for all θ 6= θ̄ , DN (θ, θ̄) =
N∑

k=1

[η(xk, θ)− η(xk, θ̄)]2 →∞ as N →∞ ,

is sufficient for the strong consistency of θ̂N
LS when the parameter set Θ is finite, see Wu (1981). From

Theorem 1, when X is finite this condition is also sufficient for the weak consistency of θ̂N
LS without

restriction on Θ. It is proved in (Wu, 1981) to be necessary for the existence of a weakly consistent

estimator of θ̄ in the regression model (2) when the errors εi are independent with a distribution having

a density ϕ(·) positive almost everywhere and absolutely continuous with respect to the Lebesgue measure

with finite Fisher information for location. Notice that a classical condition for strong consistency of

least-squares estimation in nonlinear regression is DN (θ, θ̄) = O(N) for θ 6= θ̄, see e.g. Jennrich (1969),

which is much stronger than (6).

A major interest of Theorem 1 is that it does require the xk’s to be non-random constants and also

applies for sequential design.

Remark 3 In the context of sequential design, it is interesting to compare the results of the theorem with

those obtained without the assumption of a finite design space X . For linear regression, the condition (6)

takes the form

log log N = o{λmin[NM(ξN )]} .

7



Noticing that λmax[NM(ξN )] = O(N), we thus get a condition much weaker than the sufficient condition

{log(λmax[NM(ξN )])}1+α = o{λmin[NM(ξN )]} for some α > 0 ,

derived by Lai and Wei (1982) for the strong convergence of the least-squares estimator in a linear

regression model under a sequential design. Also, in nonlinear regression, (6) is much less restrictive

than the condition obtained by Lai (1994) for the strong consistency of the least-squares estimator under

a sequential design; indeed, his proof, based on properties of Hilbert space-valued martingales, requires a

condition that gives for linear regression

λmax[NM(ξN )] = O{(λmin[NM(ξN )])ρ} for some ρ ∈ (1, 2) .

We shall make the following assumptions on the model (2), the parameter space Θ and experimental

domain X .

Hf : For all x in X , fθ(x) is a continuous function of θ in the interior of Θ.

HX -(i): The design space X is finite, X = {x(1), x(2), . . . , x(K)}.

HX -(ii): infθ∈Θ λmin

[∑K
i=1 fθ(x(i))f>θ (x(i))

]
> γ > 0.

HX -(iii): The regression model (2) satisfies the following identifiability condition. For all δ > 0 there

exists ε(δ) > 0 such that for any subset {i1, . . . , ip} of distinct elements of {1, . . . , K},

inf
‖θ−θ̄‖≥δ

p∑

j=1

[η(x(ij), θ)− η(x(ij), θ̄)]2 > ε(δ) .

HX -(iv): For any subset {i1, . . . , ip} of distinct elements of {1, . . . ,K},

λmin




p∑

j=1

fθ̄(x
(ij))f>̄θ (x(ij))


 ≥ γ̄ > 0 .

HX -(iv) and Hf imply that HX -(ii) is satisfied when Θ corresponds to some neighborhood of θ̄. As

such HX -(iii) is a global identifiability condition, which can be violated in some trivial examples (take

for instance p = 1 and η(x, θ) = xθ(1− θ), so that η(x, 1− θ̄) = η(x, θ̄) for all x). When this happens, it

indicates a difficulty in the LS estimation problem, in the sense that the LS estimator θ̂N
LS may not be
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unique if only p design points are used in the experiment. Notice, however, that only values of θ ∈ Θ

have to be considered. This difficulty may thus disappear when Θ is small enough (note that HX -(iv)

can be considered as a local version of HX -(iii) for θ close to θ̄). Finally, when Hf and HX -(i) are

satisfied, the maximum eigenvalue λmax[M(ξ, θ)] of any information matrix M(ξ, θ), ξ ∈ Ξ, is bounded

by L = maxx∈X , θ∈Θ ‖fθ(x)‖2. Therefore, λmin[M(ξ, θ)] ≥ detM(ξ, θ)/Lp−1 and HX -(ii), HX -(iv) can

be replaced by similar conditions involving the determinants of the matrices instead of their minimum

eigenvalues. These assumptions will be discussed in Section 5 in the light of a series of examples showing

that they are not very restrictive.

In order to avoid the difficulties raised by the interplay between estimation and design in (1) when

θ̂k
LS is substituted for θ̂k, we first state a uniform result on the number of design points receiving a weight

bounded away from zero, by considering (θ̂k) in (1) as any sequence taking values in Θ. We then have

the following.

Lemma 2 Let (θ̂k) be an arbitrary sequence in Θ used to generate design points according to (1) for

k ≥ p, with an initialisation such that M(ξp, θ) is non-singular for all θ in Θ. Let rN,i = rN (x(i)) denote

the number of times x(i) appears in the sequence x1, . . . , xN , i = 1, . . . , K, and consider the associated

order statistics rN,1:K ≥ rN,2:K ≥ · · · ≥ rN,K:K . Define

q∗ = max{j : there exists α > 0 such that lim inf
N→∞

rN,j:K/N > α} .

Then, HX -(i) and HX -(ii) imply q∗ ≥ p. When the sequence (θ̂k) is random, the statement holds with

probability one.

Consider now a regression model satisfying HX -(i-iii). Lemma 2 implies that there exist N0 and α > 0

such that rN,j:K > αN for all N > N0 and all j = 1, . . . , p, and HX -(iii) thus implies that DN (θ, θ̄) given

by (5) satisfies inf‖θ−θ̄‖≥δ DN (θ, θ̄) > αNε(δ), N > N0. Therefore, θ̂N
LS

a.s.→ θ̄ (N →∞) from Theorem 1.

This holds for any sequence (θ̂k) in Θ and thus in particular when θ̂k
LS is substituted for θ̂k in (1). The

last step before stating the main result of the paper concerns the following continuity argument.
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Lemma 3 Under the conditions of Lemma 2 and the additional assumptions Hf and HX -(iv) we have

the continuity property: for all ε > 0 there exists β > 0 such that

‖θ̂k − θ̄‖ < β for all k larger than some K0

implies lim infk→∞ log detM(ξk, θ̄) ≥ log detM[ξ∗D(θ̄), θ̄]− ε, with ξ∗D(θ̄) a D-optimal design measure for

θ̄.

We finally obtain the following.

Theorem 2 Suppose that in the regression model (2) the design points are generated sequentially accord-

ing to (1) for k ≥ p with the least-squares estimator θ̂k
LS substituted for θ̂k, and that the first p design

points are such that the information matrix M(x1, . . . , xp, θ) is non-singular for any θ in Θ. Then, under

Hf and HX -(i-iv) we have θ̂k
LS

a.s.→ θ̄ and M(ξk, θ̄) a.s.→ M[ξ∗D(θ̄), θ̄], k →∞, with ξ∗D(θ̄) a D-optimal design

measure for θ = θ̄.

The proof directly follows from Lemma 2, Theorem 1 and Lemma 3.

Remark 4 One may notice that the property q∗ ≥ p in Lemma 2 is in fact a property on the rank of the

matrix M(1)
N (θ), see (17). Under the condition

for all ξ ∈ Ξ , rank[M(ξ, θ)] = r(ξ) is independent of θ ∈ Θ ,

Theorem 2 remains valid when the assumptions HX -(iii-iv) are replaced by: for all δ > 0 there exists

ε(δ) > 0 such that, for any subset {i1, . . . , im} of {1, . . . , K} such that rank
[∑m

j=1 fθ̄(x(ij))f>̄
θ

(x(ij))
]

= p,

we have inf‖θ−θ̄‖≥δ

∑m
j=1[η(x(ij), θ)− η(x(ij), θ̄)]2 > ε(δ) and λmin

[∑m
j=1 fθ̄(x(ij))f>̄

θ
(x(ij))

]
≥ γ̄ > 0.

We conclude the section by a justification of the use M(ξk, θ̂k
LS) as an asymptotic characterization of

the precision of the estimation (k →∞). Complementing Hf by the assumption that η(x, θ) is two times

continuously differentiable for θ in some open neighborhood of θ̄ for any x in X , we can easily obtain the

following. A first-order series expansion of the components of the gradient ∇θSN (θ) around θ̄ gives

{∇θSN (θ̂N
LS)}i = 0 = {∇θSN (θ̄)}i + {∇2

θSN (θ̃N
i )(θ̂N

LS − θ̄)}i , i = 1, . . . , p ,
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where ∇2
θSN (θ) is the (Hessian) matrix of second-order derivatives of SN (θ) and θ̃N

i = (1 − γN,i)θ̄ +

γN,iθ̂
N
LS , γN,i ∈ (0, 1), with θ̃N

i measurable, see Jennrich (1969). Using the fact that X is finite,

straightforward calculations then give limδ→0 sup‖θ−θ̄‖≤δ ‖∇2
θSN (θ)/N − 2M[ξ∗D(θ̄), θ̄]‖ a.s.→ 0, N → ∞,

and therefore, under the conditions of Theorem 2, ∇2
θSN (θ̃N

i )/N a.s.→ 2M[ξ∗D(θ̄), θ̄] when N → ∞. Also,

N−1/2∇θSN (θ̄) = −2
∑

x vN (x), where vN (x) = ζN (x)αN (x)fθ̄(x) with ζN (x) = (
∑N

k=1, xk=x εk)/
√

rN (x)

and αN (x) =
√

rN (x)/N . For x such that rN (x) tends to infinity, ζN (x) tends to be distributed as a

standard normal random variable, ζN (x) d→ ζ(x) ∼ N (0, 1), N → ∞; moreover, ζ(x(i)) and ζ(x(j)) are

independent for x(i) 6= x(j). From Theorem 2,
∑

x α2
N (x)fθ̄(x)f>̄

θ
(x) a.s.→ M[ξ∗D(θ̄), θ̄], N → ∞. Finally

from the series expansion above, we obtain
√

N(θ̂N
LS − θ̄) d→ z ∼ N (0, M−1[ξ∗D(θ̄), θ̄]), and therefore

[N M(ξN , θ̂N
LS)]1/2(θ̂N

LS − θ̄) d→ ω ∼ N (0, I), N → ∞, which justifies the use of the information matrix

to characterize the precision of the estimation under the adaptive design scheme (1) when the set X is

finite.

The results above obtained for least-squares estimation in nonlinear regression can be extended to

maximum-likelihood estimation in Bernoulli-trial experiments. This is considered in the next section.

4 Maximum-likelihood estimation in Bernoulli trials

Consider a Bernoulli-trial experiment (a dose-response problem for instance) with single response Y equal

to 0 or 1 (efficacy or toxicity response at the dose x) and Pr{Y = 1|θ, x} = π(x, θ). The log-likelihood

for the observation Y at the design point x is

l(θ|Y, x) = Y log[π(x, θ)] + (1− Y ) log[1− π(x, θ)] . (8)

Suppose that π(x, θ) is differentiable with respect to θ for any x and denote

fθ(x) =
∂π(x, θ)

∂θ

1√
π(x, θ)[1− π(x, θ)]

so that the contribution of the point x to the Fisher information matrix is µ(x, θ) = fθ(x)f>θ (x). Mul-

tivariate extensions (e.g., where both efficacy and toxicity responses are observed at a dose x) could be

considered similarly; see, e.g., Dragalin and Fedorov (2006) for Gumbel and Cox models. In terms of
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design, the main difference with the single response case is the fact that µ(x, θ) may have rank two, so

that less than p support points in ξ may suffice to estimate θ consistently. Note that the same situation

occurs for the regression model (2) when dim(η) > 1 (it also happens when the variance function is not

homogeneous and depends on unknown parameters of the model, see, e.g., Downing et al. (2001); Pázman

and Pronzato (2004)).

We suppose that π(x, θ) ∈ (0, 1) for any θ ∈ Θ and x ∈ X and denote by θN
ML the maximum-likelihood

estimator θ̂N
ML = arg maxθ∈Θ LN (θ), with LN (θ) =

∑N
i=1 l(θ|Yi, xi), see (8). We also suppose that Θ is a

compact subset of Rp and that θ̄, the ‘true’ value of θ that generates the observations, lies in the interior

of Θ. We have the following equivalent of Lemma 1 for this context of binary trials.

Lemma 4 If for any δ > 0

lim inf
N→∞

inf
‖θ−θ̄‖≥δ

[LN (θ̄)− LN (θ)] > 0 almost surely (resp. in probability) ,

then θ̂N
ML

a.s.→ θ̄ (resp. θ̂N
ML

p→ θ̄) as N →∞.

The proof is identical to that of Lemma 1, see Wu (1981). We then obtain a property similar to Theorem 1.

Theorem 3 Let {xi} be a non-random design sequence on a finite set X . Assume that

DN (θ, θ̄) =
N∑

i=1

π(xi, θ̄) log
[
π(xi, θ̄)
π(xi, θ)

]
+ [1− π(xi, θ̄)] log

[
1− π(xi, θ̄)
1− π(xi, θ)

]
(9)

satisfies (6). Then, θ̂N
ML

a.s.→ θ̄ as N → ∞. The same is true for a random sequence on a finite X when

(6) holds almost surely. If DN (θ, θ̄) simply satisfies (7), or inf‖θ−θ̄‖≥δ DN (θ, θ̄)
p→∞ as N →∞ for all

δ > 0, then θ̂N
ML

p→ θ̄.

Lemmas 2 and 3 are still valid and Theorem 2 still applies, with HX -(iii) replaced by.

HX -(iii’): For all δ > 0 there exists ε(δ) > 0 such that for any subset {i1, . . . , ip} of distinct elements

of {1, . . . , K},

inf
‖θ−θ̄‖≥δ

p∑

j=1

π(x(ij), θ̄) log
[
π(x(ij), θ̄)
π(x(ij), θ)

]
+ [1− π(x(ij), θ̄)] log

[
1− π(x(ij), θ̄)
1− π(x(ij), θ)

]
> ε(δ) .
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Finally, similarly to the case of least-squares estimation in nonlinear regression, M(ξk, θ̂k
ML) can be

used as an asymptotic characterization of the precision of the estimation (k → ∞) under the adaptive

scheme (1) when X is finite and π(x, θ) is two times continuously differentiable for θ in some open

neighborhood of θ̄ for any x in X .

Remark 5 Defining g(a, b) = a log(a/b)+(1−a) log[(1−a)/(1−b)], a, b ∈ (0, 1), we can easily check that,

for any fixed a ∈ (0, 1), g(a, b) ≥ 2(a− b)2 with g(a, a) = 0, so that each term of the sum (9) is positive.

Indeed, define h(a, b) = g(a, b) − 2(a − b)2; we have ∂h(a, b)/∂b = (2b − 1)2(b − a)/[b(1 − b)] so that, as

a function of b, h(a, b) monotonically decreases for 0 < b < a and monotonically increases for a < b < 1.

Also, Theorem 3 is satisfied when DN (θ, θ̄) is replaced by D′
N (θ, θ̄) =

∑N
i=1

[
π(xi, θ̄)− π(xi, θ)

]2, and a

sufficient condition for HX -(iii’) is inf‖θ−θ̄‖≥δ

∑p
j=1

[
π(x(ij), θ̄)− π(x(ij), θ)

]2
> ε(δ) > 0 for any δ > 0

and any subset {i1, . . . , ip} of {1, . . . , K}.

5 Examples

We consider the same four models as in (Hu, 1998). The response function, or probability of success, is

continuously differentiable with respect to θ for each of them so that Hf is satisfied.

Example 1: Dilution method for estimating the density of an organism. Suppose that π(x, θ) = Pr(Y =

1|θ, x) = exp(−θx), with Y ∈ {0, 1}, x ∈ R+, θ ∈ Θ = [a, b], 0 < a < b, and θ̄, the unknown true value

of θ satisfying a < θ̄ < b. The Fisher information matrix at θ for β = log θ and a design measure ξ is

then M(ξ, β) =
∫
X θ2x2/[exp(θx)− 1] ξ(dx). The D-optimal measure is ξ∗D(θ) = δx∗/θ with x∗ satisfying

(2−x∗) exp(x∗) = 2, that is, x∗ ' 1.5936. Following this optimal design consideration, Hu (1998) suggests

the adaptive construction xk+1 = x∗/θ̂k with θ̂k an estimate of θ based on x1, Y1, . . . , xk, Yk. When θ̂k

is the Bayes estimator θ̂k
B = IE{θ|Fk}, with Fk the σ-field generated by the observations Y1, . . . , Yk, his

results imply the almost sure convergence of θ̂k
B to θ̄ and of the empirical measure ξk to ξ∗D(θ̄).

One can easily check that HX (ii-iv) are satisfied for θ ∈ Θ when X ⊂ R+ is finite and does not contain

0 (indeed, a < θ < b implies [π(x, θ) − π(x, θ̄)]2 ≥ exp(−2bx)(θ − θ̄)2{1 − exp[(a − b)x]}2/(b − a)2 and
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µ(x, β) = θ2x2/[exp(θx)− 1] > 0). Since p = 1 in this example, q∗ of Lemma 2 satisfies q∗ ≥ p and any

adaptive design ensures that the maximum-likelihood estimator is strongly consistent when X is finite

and 0 6∈ X . In particular, when X corresponds to the discretization of some set X ′, taking xk+1 as the

point in X closest to x∗/θ̂k
ML ensures θ̂k

ML
a.s.→ θ̄ and the empirical design measure ξk converges a.s. to a

design that can be made arbitrarily close to the D-optimal design on X ′ for θ̄ when the discretization of

X ′ is fine enough. Note that a similar consistency result can be obtained in general for one-parameter

models.

Example 2: Michaelis-Menten regression. Suppose that Yi = θ̄1xi/(θ̄2 + xi) + εi, with (εi) satisfying

the assumptions of Sect. 3, Θ = [L1, U1] × [L2, U2], 0 < Li < θ̄i < Ui, i = 1, 2. When X = (0, x̄], the

D-optimal measure for θ on X is

ξ∗D(θ) = (1/2) δx∗1(θ) + (1/2) δx∗2 (10)

with x∗1(θ) = θ2x̄/(2θ2 + x̄) < x∗2 = x̄. Lai (1994) suggests the following design sequence




xk = x∗1(θ̂
k−1
LS ) if k is even and k 6∈ {k1, k2, . . .}

xk = x̄ if k is odd and k 6∈ {k1, k2, . . .}

c/(1 + log k) if k ∈ {k1, k2, . . .}

where ki ∼ iα as i →∞, for some c > 0 and 1 < α < 2, in order to obtain the strong convergence of θ̂k
LS ,

see also Remark 3. Hu (1998) shows that the introduction of the perturbations xk = c/(1 + log k) if k ∈

{k1, k2, . . .} is not necessary when using the Bayes estimator θ̂k−1
B = IE{θ|Fk−1}, and that the sequence





xk = x∗1(θ̂
k−1
B ) if k is even

xk = x̄ if k is odd
(11)

ensures θ̂k
B

a.s.→ θ̄, k →∞.

Suppose now that X is finite, with 0 < min(X ) < max(X ) = x̄. One can easily check that HX -(iii) is

satisfied for θ ∈ Θ. Indeed, η(x, θ) = η(x, θ̄) and η(z, θ) = η(z, θ̄) for θ, θ̄ ∈ Θ, x > 0, z > 0 and x 6= z

imply θ = θ̄. Also, det[fθ(x)f>θ (x) + fθ(z)f>θ (z)] = x2z2θ2
1(x − z)2/[θ2 + x)4(θ2 + z)4] so that HX -(ii),

HX -(iv) are satisfied and Theorem 2 applies. This means in particular that we do not need to know the
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form (10) of the D-optimal design and can directly generate the design through (1) with θ̂k = θ̂k
LS , the

least-squares estimator which is much easier to obtain than the Bayes estimator θ̂k
B . Moreover, numerical

simulations indicate that when θ̂k is frozen to some given value θ, the convergence to the D-optimal

design for θ is generally faster and more regular for (1) than for (11).

Example 3: First-order exponential regression. Suppose that Yi = θ̄1 exp(−θ̄2xi) + εi, with (εi) sat-

isfying the assumptions of Sect. 3 and Θ as in Example 2. Take X finite with min(X ) = x ≥ 0. The

D-optimal design measure is then ξ∗D(θ) = (1/2) δx + (1/2) δx+1/θ2 . One can easily check that HX -(iii)

is satisfied for θ ∈ Θ (η(x, θ) = η(x, θ̄) and η(z, θ) = η(z, θ̄) for x 6= z imply θ = θ̄); HX -(ii), HX -(iv)

are satisfied too since det[fθ(x)f>θ (x) + fθ(z)f>θ (z)] = θ2
1(x− z)2 exp[−2θ2(x + z)], and Theorem 2 applies

again.

Example 4: Binary logistic regression. Take π(x, θ) = exp(θ1 +θ2x)/[1+exp(θ1 +θ2x)] in Sect. 4, with

x ∈ X finite and θ ∈ Θ compact. Using Remark 5 one can easily show that HX -(iii’) is satisfied. Indeed,

π(x, θ) = π(x, θ̄) is equivalent to θ1 + θ2x = θ̄1 + θ̄2x, so that π(x, θ) = π(x, θ̄) and π(x, θ) = π(x, θ̄) with

x 6= z imply θ = θ̄. Also, det[fθ(x)f>θ (x) + fθ(z)f>θ (z)] = (x − z)2 exp[2θ1 + θ2(x + z)]/{[1 + exp(θ1 +

θ2x)][1 + exp(θ1 + θ2z)]}2 so that HX -(ii) and HX -(iv) are satisfied. Therefore, Theorem 2 applies and

the almost sure convergence of the maximum-likelihood estimator θ̂k
ML to the true parameter value θ̄ and

of ξk to a D-optimal design for θ̄ is guaranteed when using (1) with θ̂k
ML substituted for θ̂k.

Appendix: proofs

Proof of Theorem 1. The proof is based on Lemma 1. We have

SN (θ)− SN (θ̄) = DN (θ, θ̄)


1 + 2

∑
x∈X

(∑N
k=1, xk=x εk

)
[η(x, θ̄)− η(x, θ)]

DN (θ, θ̄)




≥ DN (θ, θ̄)


1− 2

∑
x∈X

∣∣∣∑N
k=1, xk=x εk

∣∣∣ |η(x, θ̄)− η(x, θ)|
DN (θ, θ̄)


 .
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From Lemma 1, under the condition (6) it suffices to prove that

sup
‖θ−θ̄‖≥δ

∑
x∈X

∣∣∣∑N
k=1, xk=x εk

∣∣∣ |η(x, θ̄)− η(x, θ)|
DN (θ, θ̄)

a.s.→ 0 (12)

for any δ > 0 to obtain the strong consistency of θ̂N
LS . Since DN (θ, θ̄) → ∞ and X is finite, only the

design points such that rN (x) → ∞ have to be considered, where rN (x) denotes the number of times x

appears in the sequence x1, . . . , xN . Define β(n) =
√

n log log n. From the law of the iterated logarithm,

we have

for all x ∈ X , lim sup
rN (x)→∞

∣∣∣∣∣∣
1

β[rN (x)]

N∑

k=1, xk=x

εk

∣∣∣∣∣∣
= σ

√
2 , almost surely , (13)

see e.g. Shiryaev (1996, p. 397). Next, for any x ∈ X ,

β[rN (x)]|η(x, θ̄)− η(x, θ)|
DN (θ, θ̄)

≤ [log log rN (x)]1/2

D
1/2
N (θ, θ̄)

,

which, together with (6) and (13), gives (12). When the sequence {xi} is random, the only modification

consists in working conditionally on the event (6).

When inf‖θ−θ̄‖≥δ DN (θ, θ̄) →∞ as N →∞, we only need to prove that

sup
‖θ−θ̄‖≥δ

∑
x∈X

∣∣∣∑N
k=1, xk=x εk

∣∣∣ |η(x, θ̄)− η(x, θ)|
DN (θ, θ̄)

p→ 0 (14)

for any δ > 0 to obtain the weak consistency of θ̂N
LS . We proceed as above and only consider the design

points such that rN (x) → ∞, with now β(n) =
√

n. From the central limit theorem, for any x ∈ X ,
(∑N

k=1, xk=x εk

)
/
√

rN (x) d→ ζx ∼ N (0, σ2) as rN (x) →∞ and is thus bounded in probability. Also, for

any x ∈ X ,
√

rN (x)|η(x, θ̄)− η(x, θ)|/DN (θ, θ̄) ≤ D
−1/2
N (θ, θ̄), so that (7) implies (14).

Proof of Lemma 2. First note that q∗ ≥ 1 since X is finite. Suppose that p ≥ 2 and q∗ < p. We show

that this leads to a contradiction.

For any N we can write

M(ξN , θ) =
1
N

N∑

k=1

fθ(xk)f>θ (xk)

=
1
N

q∗∑

i=1

rN,i:K fθ(x(iN ))f>θ (x(iN )) +
1
N

∑

xk 6∈XN (q∗)

fθ(xk)f>θ (xk) , (15)
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where iN is the index (depending on N) of a design point appearing rN,i:K times in x1, . . . , xN and

XN (q∗) = {x(1N ), . . . , x(q∗N )} is the set of such points for i ≤ q∗. Let MN (θ) denote the first matrix on

the right-hand side of (15). For any x(iN ) ∈ XN (q∗) we have

f>θ (x(iN ))M−1(ξN , θ)fθ(x(iN )) ≤ f>θ (x(iN ))M−
N (θ)fθ(x(iN )) =

N

rN,i:K
,

with M−
N (θ) any g-inverse of MN (θ). Therefore, from the definition of q∗, there exists N0 such that

for all i ≤ q∗ , N > N0 and θ ∈ Θ , f>θ (x(iN ))M−1(ξN , θ)fθ(x(iN )) ≤ 1
α

. (16)

Let βN = rN,(q∗+1):K/N . Showing that lim infN→∞ βN ≥ β for some β > 0 will contradict the definition

of q∗.

Define

M(1)
N (θ) =

q∗∑

i=1

fθ(x(iN ))f>θ (x(iN )) , M(2)
N (θ) =

K∑

i=1

fθ(x(iN ))f>θ (x(iN )) . (17)

We have (1−βN )M(1)
N (θ)+ βN M(2)

N (θ)−M(ξN , θ) ∈M≥, where M≥ is the set of symmetric nonnegative

definite p× p matrices. For any u ∈ Rp,

u>M−1(ξN , θ)u ≥ u>[(1− βN ) M(1)
N (θ) + βN M(2)

N (θ)]−1u

= max
z∈Rp

2z>u− z>[(1− βN )M(1)
N (θ) + βN M(2)

N (θ)]z

≥ max
z∈N [M

(1)
N (θ)]

2z>u− z>[(1− βN )M(1)
N (θ) + βN M(2)

N (θ)]z

with N (M) = {v : Mv = 0} the null-space of the matrix M. Direct calculations then give

u>M−1(ξN , θ)u ≥ 1
βN

u>[M(2)
N (θ)]−1 [I− PN (θ)] u (18)

with I the p-dimensional identity matrix and PN (θ) the projector

PN (θ) = M(1)
N (θ)

[
M(1)

N (θ)[M(2)
N (θ)]−1M(1)

N (θ)
]−

M(1)
N (θ)[M(2)

N (θ)]−1 .

Note that the right-hand side of (18) is zero when u ∈ M[M(1)
N (θ)] (i.e., when u = M(1)

N (θ)v for some

v ∈ Rp). When u = fθ(x(iN )) for some i ∈ {q∗ + 1, . . . , K} we can construct a lower bound for this term,

of the form C/βN with C constant. Indeed, from (17) and HX -(ii),

for all θ ∈ Θ and v ∈ Rp , v>


M(1)

N (θ) +
K∑

i=q∗+1

fθ(x(iN ))f>θ (x(iN ))


 v > γ ‖v‖2
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so that for all θ ∈ Θ and z ∈ N [M(1)
N (θ)],

max
i=q∗+1,...,K

[z>fθ(x(iN ))]2 >
γ

K − q∗
‖z‖2 . (19)

Take z = zθ,iN
= [M(2)

N (θ)]−1[I−PN (θ)]fθ(x(iN )) for some i ∈ {q∗ + 1, . . . , K}, so that zθ,iN
∈ N [M(1)

N (θ)]

and

f>θ (x(iN ))[M(2)
N (θ)]−1 [I− PN (θ)] fθ(x(iN )) = z>θ,iN

fθ(x(iN )) = z>θ,iN
M(2)

N (θ)zθ,iN
.

We obtain

max
i=q∗+1,...,K

f>θ (x(iN ))[M(2)
N (θ)]−1 [I− PN (θ)] fθ(x(iN )) = max

i,j=q∗+1,...,K
z>θ,iN

M(2)
N (θ)zθ,jN

= max
i,j=q∗+1,...,K

z>θ,iN
fθ(x(jN )) ,

and thus from (19),

for all θ ∈ Θ , max
i=q∗+1,...,K

f>θ (x(iN ))[M(2)
N (θ)]−1 [I− PN (θ)] fθ(x(iN )) >

(
γ

K − q∗

)1/2

max
i=q∗+1,...,K

‖zθ,i∗N ‖ .

Let i∗N denote the argument of the maximum on the left-hand side. We have,

z>θ,i∗N
fθ(x(i∗N )) = z>θ,i∗N

M(2)
N (θ)zθ,i∗N ≤ K L ‖zθ,i∗N ‖2

with L = maxx∈X , θ∈Θ ‖fθ(x)‖2, so that finally

for all θ ∈ Θ , max
i=q∗+1,...,K

f>θ (x(iN ))[M(2)
N (θ)]−1 [I− PN (θ)] fθ(x(iN )) >

γ

LK(K − q∗)
.

To summarize, from (16, 18), there exists N0 such that for any N > N0 and for all θ ∈ Θ,

max
i=1,...,q∗

f>θ (x(iN ))M−1(ξN , θ)fθ(x(iN )) ≤ 1
α

max
i=q∗+1,...,K

f>θ (x(iN ))M−1(ξN , θ)fθ(x(iN )) ≥ 1
βN

γ

LK(K − q∗)
.

Therefore, for N > N0, βN < β∗ = γα/[LK(K − q∗)] implies xN+1 ∈ {x((q∗+1)N ), . . . , x(KN )} in the

sequence (1). Define

β∗N =

∑K
i=q∗+1 rN,i:K

(K − q∗)N
,
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so that βN ≥ β∗N ≥ βN/(K − q∗). Also, when N > N0, (
∑q∗

i=1 rN,i:K)/N > q∗α, so that β∗N <

(1− q∗α)/(K − q∗). By construction, βN < β∗ and N > N0 then give

βN+1 ≥ β∗N+1 =
Nβ∗N (K − q∗) + 1
(K − q∗)(N + 1)

= β∗N +
1

N + 1

(
1

K − q∗
− β∗N

)

> β∗N +
1

N + 1
q∗α

K − q∗
≥ βN

K − q∗
+

1
N + 1

q∗α
K − q∗

.

By induction, this lower bound on βN+k increases with k,

βN+k >
βN

K − q∗
+

q∗α
K − q∗

k∑

i=1

1
N + i

,

until βN+k becomes larger that β∗. Suppose that the threshold β∗ is crossed downwards at N1 > N0, i.e.,

βN1−1 ≥ β∗ and βN1 < β∗. This implies βN1 = βN1−1(N1 − 1)/N1 and thus β∗(N1 − 1)/N1 ≤ βN1 < β∗,

so that βN1 tends to β∗ when N1 →∞.

We thus obtain lim infN→∞ βN ≥ β = β∗/(K − q∗), showing that q∗ ≥ p, which concludes the proof.

Proof of Lemma 3. With the same notations as in Lemma 2, there exists N0 and α > 0 such that

for all N > N0 , rN,j:K > αN , j = 1, . . . , q∗ ≥ p

and thus, from HX -(iv), λmin[M(ξN , θ̄)] > αγ̄. From Hf and HX -(i),

for all ε1 > 0 , there exists β1 such that ‖θ − θ̄‖ ≤ β1 ⇒ max
x∈X

‖fθ(x)− fθ̄(x)‖ < ε1 .

Direct calculations then give maxx∈X max‖θ−θ̄‖≤β1
|f>θ (x)M−1(ξN , θ)fθ(x)− f>̄

θ
(x)M−1(ξN , θ̄)fθ̄(x)| < Cε1

for ε1 small enough and N > N0, with C a constant depending on α, γ̄ and f̄ = maxx∈X ‖fθ̄(x)‖.

Therefore, for all ε > 0, there exists β > 0 such that for all N > N0, ‖θ̂N − θ̄‖ < β in the algorithm (1)

implies

f>̄θ (xN+1)M−1(ξN , θ̄)fθ̄(xN+1) > f>
θ̂N (xN+1)M−1(ξN , θ̂N )fθ̂N (xN+1)− ε

2

= max
x∈X

f>
θ̂N (x)M−1(ξN , θ̂N )fθ̂N (x)− ε

2

> max
x∈X

f>̄θ (x)M−1(ξN , θ̄)fθ̄(x)− ε .
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The rest of the proof only exploits the consequences of this property.

Take ε, β as above and suppose that there exists δ > 0 such that

log detM(ξN , θ̄) < Ψ∗ − ε− δ (20)

for all N larger than some N1, where Ψ∗ = log detM(ξ∗D, θ̄) with ξ∗D = ξ∗D(θ̄) a D-optimal design measure

for θ̄. By concavity, this implies maxx∈X f>̄
θ

(x)M−1(ξN , θ̄)fθ̄(x) > p + ε + δ for all N > N1, and thus

f>̄θ (xN+1)M−1(ξN , θ̄)fθ̄(xN+1) > p + δ , for all N > max(N0, N1,K0)

when ‖θ̂k − θ̄‖ < β for all k > K0. Direct calculations give

log det M(ξN+1, θ̄)− log detM(ξN , θ̄) = log

[
1 +

f>̄
θ

(xN+1)M−1(ξN , θ̄)fθ̄(xN+1)
N

]
− p log

(
1 +

1
N

)
(21)

and thus,

log det M(ξN+1, θ̄)− log detM(ξN , θ̄) ≥ log
(

1 +
p + δ

N

)
− p log

(
1 +

1
N

)
≥ δ

2N

for N large enough. This implies log det M(ξN , θ̄) → ∞ as N → ∞, which is in contradiction with Hf .

Therefore, there exists a subsequence ξNt such that lim supt→∞ log det M(ξNt , θ̄) ≥ Ψ∗ − ε. From (21),

for all δ > 0 , there exists N1 such that for all N > N1 log det M(ξN+1, θ̄) > log det M(ξN , θ̄)− δ .

Also, from the developments just above, there exists N2 such that for all N > N2, (20) implies

log det M(ξN+1, θ̄) > log detM(ξN , θ̄) .

Take any Nt > max(N1, N2) satisfying log detM(ξNt , θ̄) > Ψ∗ − ε− δ, we obtain

log det M(ξN , θ̄) > Ψ∗ − ε− 2δ , for all N > Nt .

Since δ is arbitrary, lim infN→∞ log det M(ξN , θ̄) ≥ Ψ∗ − ε.

Proof of Theorem 3. We can write

LN (θ̄)− LN (θ) = DN (θ, θ̄)


1 +

∑
x∈X

(∑N
k=1, xk=x[Yk − π(x, θ̄)]

)
log π(x,θ̄)[1−π(x,θ)]

π(x,θ)[1−π(x,θ̄)]

DN (θ, θ̄)




≥ DN (θ, θ̄)


1−

∑
x∈X

∣∣∣∑N
k=1, xk=x[Yk − π(x, θ̄)]

∣∣∣
∣∣∣log π(x,θ̄)[1−π(x,θ)]

π(x,θ)[1−π(x,θ̄)]

∣∣∣
DN (θ, θ̄)


 .
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From Lemma 4, under the condition (6) it suffices to prove that

sup
‖θ−θ̄‖≥δ

∑
x∈X

∣∣∣∑N
k=1, xk=x[Yk − π(x, θ̄)]

∣∣∣
∣∣∣log π(x,θ̄)[1−π(x,θ)]

π(x,θ)[1−π(x,θ̄)]

∣∣∣
DN (θ, θ̄)

a.s.→ 0

for any δ > 0 to obtain the strong consistency of θ̂N
LS . Similarly to the case of Theorem 1, since

DN (θ, θ̄) →∞ only the design points such that rN (x) →∞ have to be considered, and, from the law of

the iterated logarithm,

for all x ∈ X , lim sup
rN (x)→∞

∣∣∣∣∣∣
1

β[rN (x)]

N∑

k=1, xk=x

[Yk − π(x, θ̄)]

∣∣∣∣∣∣
=

√
2π(x, θ̄)[1− π(x, θ̄)] , almost surely ,

with β(n) =
√

n log log n. The rest of the proof for almost sure convergence is as for Theorem 1. We have

β[rN (x)]
∣∣∣log π(x,θ̄)[1−π(x,θ)]

π(x,θ)[1−π(x,θ̄)]

∣∣∣
√

π(x, θ̄)[1− π(x, θ̄)]

DN (θ, θ̄)
≤ (log log rN (x))1/2

D
1/2
N (θ, θ̄)

ρ[π(x, θ̄), π(x, θ)]

where

ρ(a, b) =

∣∣∣log a(1−b)
b(1−a)

∣∣∣
√

a(1− a)
[
a log(a/b) + (1− a) log

(
1−a
1−b

)]1/2
, a, b ∈ (0, 1) ,

which, for any fixed a ∈ (0, 1), tends to infinity for b tending to 0 or 1 and has a unique minimum in

(0, 1) at b = 1 − a. Since 0 < π(x, θ) < 1 for all x and all θ in Θ compact, ρ[π(x, θ̄), π(x, θ)] is bounded

and (6) gives the result.

When inf‖θ−θ̄‖≥δ DN (θ, θ̄) →∞ as N →∞, we only need to prove that

sup
‖θ−θ̄‖≥δ

∑
x∈X

∣∣∣∑N
k=1, xk=x[Yk − π(x, θ̄)]

∣∣∣
∣∣∣log π(x,θ̄)[1−π(x,θ)]

π(x,θ)[1−π(x,θ̄)]

∣∣∣
DN (θ, θ̄)

p→ 0

for any δ > 0 to obtain the weak consistency of θ̂N
LS . We proceed as above and only consider the

design points such that rN (x) → ∞, with now β(n) =
√

n. From the central limit theorem, for any

x ∈ X ,
(∑N

k=1, xk=x[Yk − π(x, θ̄)]
)

/
√

rN (x) d→ ζx ∼ N (0, π(x, θ̄)[1− π(x, θ̄)]) as rN (x) →∞ and is thus

bounded in probability. The rest of the proof is as above, again using the fact that ρ[π(x, θ̄), π(x, θ)] is

bounded.
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