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We study the consistency of parameter estimators in adaptive designs generated by a onestep ahead D-optimal algorithm. We show that when the design space is finite, under mild conditions the least-squares estimator in a nonlinear regression model is strongly consistent and the information matrix evaluated at the current estimated value of the parameters strongly converges to the D-optimal matrix for the unknown true value of the parameters. A similar property is shown to hold for maximum-likelihood estimation in Bernoulli trials (dose-response experiments). Some examples are presented.

Introduction: motivation and problem statement

We consider experimental design for a parametric model for which N independent observations Y 1 , . . . , Y N yield the information matrix

M(X N 1 , θ) = M(x 1 , . . . , x N , θ) = N i=1 µ(x i , θ) ,
where x i ∈ X ⊂ R d is the i-th design point, characterizing the experimental conditions for the i-th observation, and θ is the p-dimensional vector of model parameters to be estimated. Two situations will be considered in more detail, namely nonlinear regression and Bernoulli trials. When r N (x i ) denotes the number of (repetitions of) observations made at x = x i , the normalized information matrix per observation can be written as M(ξ

N , θ) = (1/N ) M(X N 1 , θ) = K i=1 [r N (x i )/N ] µ(x i , θ)
, where K is the number of distinct design points and ξ N is the design measure (a probability measure on X ) that puts mass r N (x i )/N at x i . Following the usual approximate-design approach, we shall relax the constraints on design measures by considering ξ as any element of Ξ, the set of probability measures on X , and write M(ξ, θ) = X µ(x, θ) ξ(dx). We shall denote λ min (M) and λ max (M) the minimum and maximum eigenvalues of the matrix M.

Local D-optimal design consists of determining a measure ξ * D that maximizes log det M(ξ, θ) for a given value of θ. The denomination 'local' comes from the fact that in nonlinear situations M(ξ, θ) depends on θ, and the optimal ξ * D for estimating θ thus depends on the value θ to be estimated. Minimax-optimal and average-optimal (also called bayesian-optimal) designs can be used to avoid the dependency of ξ * D in θ. However, in practice these approaches only replace the choice of a prior nominal value (for local design) by that of a prior admissible set (minimax design) or a prior distribution for θ (bayesian design), see, e.g., [START_REF] Melas | Optimal designs for exponential regressions[END_REF]; [START_REF] Fedorov | Convex design theory[END_REF]; Pronzato andWalter (1985, 1988); [START_REF] Chaloner | Optimal Bayesian design applied to logistic regression experiments[END_REF].

See also [START_REF] Pázman | Quantile and probability-level criteria for nonlinear experimental design[END_REF] for an approach based on quantile and probability-level criteria.

Another rather common and intuitively appealing approach consists of making the design adaptive.

The design points x 1 , x 2 . . . , x k , x k+1 , . . . associated with a sequence of observations are then chosen sequentially, the determination of the point x k+1 being based on the value θk estimated from the k previous observations (by least-squares, maximum likelihood or a bayesian method). The motivation is that alternating estimations based on previous observations with determinations of the next design points where to observe may hopefully force the empirical design measure to progressively adapt to the correct (true) value of the model parameters. It is the purpose of this paper to show that under suitable conditions, in particular when the x k 's are restricted to belong to a finite set, the estimator θk is strongly consistent and the corresponding adaptive design is asymptotically optimal. Although the condition that the design space X is finite is often imposed by practical considerations, it can be perceived here as a restriction compared to results in the literature obtained under more general conditions. It is important to notice, however, that those results are based on different types of designs or estimators. [START_REF] Hu | On sequential designs in nonlinear problems[END_REF] considers Bayesian estimation by posterior mean; [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF] and [START_REF] Chaudhuri | On efficiently designing of nonlinear experiments[END_REF] require the introduction of a subsequence of non-adaptive design points to ensure consistency of the estimator, see Example 2 of Sect. 5; [START_REF] Chaudhuri | Nonlinear experiments: optimal design and inference based likelihood[END_REF] require that the size of the initial experiment (non-adaptive) should be allowed to grow with the increase in size of the total experiment. No such conditions are required here and the design is fully adaptive.

We only consider the case of adaptive D-optimal design, see Sect. 2, but the results can presumably be extended to design approaches based on other global criteria (such that the information matrix has full rank at the optimum). Sect. 3 concerns adaptive design for least-squares estimation in nonlinear regression, whereas Sect. 4 is about design for maximum-likelihood estimation in Bernoulli-trial experiments. Sect. 5 provides a few illustrative examples. The proofs of lemmas and theorems are collected in an appendix.

One-step ahead adaptive D-optimal design

Consider the criterion φ(ξ) = log det M(ξ, θ). For any ξ ∈ Ξ such that M(ξ, θ) is non-singular, the direc-

tional derivative F φ (ξ, ν) = lim α→0 + {φ[(1-α)ξ+αν]-φ(ξ)}/α is given by F φ (ξ, ν) = tr[M(ν, θ)M -1 (ξ, θ)]- p, with p = dim(θ). The measure ν * ∈ Ξ that maximizes F φ (ξ, ν) is then ν * = δ x * , with x * = arg max x∈X tr[µ(x, θ)M -1 (ξ, θ)
] and δ z the delta measure that puts mass 1 at z. Moreover, the celebrated

log det M(ξ, θ)) if and only if F φ (ξ * D , δ x * ) = 0, that is, max x∈X tr[µ(x, θ)M -1 (ξ * D , θ)] = p.
Based on these considerations, the k-th iteration of a vertex-direction algorithm for local D-optimal design transforms the current design measure

ξ k into ξ k+1 = (1-α k )ξ k +α k δ x k+1 , with x k+1 = arg max x∈X tr[µ(x, θ)M -1 (ξ k , θ)]
the support point that gives the steepest-ascent direction and α k some suitably chosen step-length, see, e.g., [START_REF] Fedorov | Theory of Optimal Experiments[END_REF]; [START_REF] Atkinson | Optimum Experimental Design[END_REF].

The idea is similar in adaptive design and, after k observations, one-step ahead adaptive D-optimal design chooses the next design point x k+1 as

x k+1 = arg max x∈X tr[µ(x, θk )M -1 (ξ k , θk )] , (1) 
where θk ∈ R p is the current estimated value for θ, based on x 1 , Y 1 , . . . , x k , Y k , and

ξ k = (1/k) k i=1 δ xi
is the current empirical design measure. We leave aside initialisation issues and throughout the paper we assume that the first p design points x 1 , . . . , x p are such that M(ξ p , θ) is non-singular for any θ (and

M(ξ k , θ) is thus non-singular for any k ≥ p).
Remark 1 Note that (1) can only be considered as an algorithm for choosing design points, in the sense that M(ξ k , θ) is not the information matrix for parameters θ due to the sequential construction of the design. It is common, however, to still use M(ξ k , θk ) as a characterization of the precision of the estimation in a sequential context, see [START_REF] Ford | A sequentially constructed design for estimating a nonlinear parametric function[END_REF]; [START_REF] Ford | Inference and sequential design[END_REF]; [START_REF] Wu | Asymptotic inference from sequential design in a nonlinear situation[END_REF] for a justification. The difficulty disappears in a bayesian context where M(ξ k , θk ) is used in an approximation of the posterior covariance matrix of the parameters, see, e.g., [START_REF] Chaloner | Bayesian experimental design: a review[END_REF]. From the same repeated-sampling principle as that used by [START_REF] Wu | Asymptotic inference from sequential design in a nonlinear situation[END_REF], the characterization of the precision of the estimation through M(ξ k , θk ) is also justified asymptotically (k → ∞) when the admissible set X for the x k 's is finite, see Sect. 3. See also [START_REF] Rosenberger | Asymptotic normality of maximum likelihood estimators for multiparameter response-driven designs[END_REF] for maximum-likelihood estimation in a more general context.

When θk is frozen to a fixed value θ, the iteration (1) corresponds to one step of a steepest-ascent vertex-direction algorithm, with step-length 1/(k+1) at step

k since M(ξ k+1 , θ) = [1-1/(k+1)]M(ξ k , θ)+ [1/(k + 1)]M(δ x k+1 , θ).
Convergence to an optimal design measure is proved in [START_REF] Wynn | The sequential generation of D-optimum experimental designs[END_REF]. The fact that θk is estimated in adaptive design makes the proof of convergence a much more complicated issue for which few results are available, see e.g. [START_REF] Ford | A sequentially constructed design for estimating a nonlinear parametric function[END_REF]; [START_REF] Wu | Asymptotic inference from sequential design in a nonlinear situation[END_REF]; [START_REF] Müller | Batch sequential design for a nonlinear estimation problem[END_REF] for least-squares estimation and Hu (1998) for bayesian estimation. The idea that the almost sure convergence of θk to some θ∞ would imply the convergence of ξ k to a D-optimal design measure for θ∞ is rather well admitted (it follows from Lemma 3 given in Sect. 3). Conversely, the convergence of ξ k to a design ξ ∞ such that M(ξ ∞ , θ) is non-singular for any θ would be enough in general to make an estimator consistent. It is clearly the interplay between estimation and design iterations that generates difficulties.

As shown below, those difficulties disappear when X is a finite set. Notice that the assumption that X is finite is seldom limiting since practical considerations often impose such a restriction on possible choices for the x k 's. This can be contrasted with the much less natural assumption that would consist in considering the feasible parameter set as finite. Although the interest of studying asymptotic properties of designs and estimators in contexts where the number of observations is usually limited might seem questionable, we think it is reassuring to know that, at least in the idealized framework of a known model with independent observations, the iterations (1) ensure suitable convergence properties. The results apply to a wide range of situations, but we focuss here on least-squares estimation in nonlinear regression and maximum-likelihood estimation for Bernoulli trials, which share many common aspects. The former case is considered in the next section, the modifications required for the latter are presented in Sect. 4.

Least-squares estimation in nonlinear regression

We first consider the case of a regression model with observations

Y i = Y (x i ) = η(x i , θ) + ε i , ( 2 
)
with θ in the interior of Θ, a compact subset of R p , x i ∈ X ⊂ R d , and {ε i } a sequence of independently and identically distributed random variables with IE{ε 1 } = 0 and IE{ε 2 1 } = σ 2 < ∞. We denote

S N (θ) = N k=1 [Y (x k ) -η(x k , θ)] 2
and θN LS the least-squares estimator minimizing S N (θ), that is, θN LS = arg min θ∈Θ S N (θ). We restrict our attention to ordinary least-squares and stationary errors and assume, without any further loss of generality, that σ 2 = 1. Assuming that η(x, θ) is differentiable with respect to θ for any x, the contribution of the design point x to the information matrix is then µ(x, θ) = f θ (x) f θ (x), where we denote

f θ (x) = ∂η(x, θ) ∂θ .
The results can easily be extended to non stationary errors and weighted least-squares. In the case of maximum-likelihood estimation, the contribution of x to the Fisher information matrix only differs by a multiplicative constant and is given by µ(x, θ) = I f θ (x) f θ (x), with I the Fisher information for location:

I = [ϕ (t)/ϕ(t)]
2 ϕ(t) dt, with ϕ(•) the probability density function of ε 1 and ϕ (•) its derivative.

We shall need the following lemma, see Wu (1981, p. 504).

Lemma 1 If for any δ > 0 lim inf

N →∞ inf θ-θ ≥δ [S N (θ) -S N ( θ)] > 0 almost surely , (3) then θN LS a.s. → θ as N → ∞ (almost sure convergence). If for any δ > 0 Pr inf θ-θ ≥δ [S N (θ) -S N ( θ)] > 0 → 1 , N → ∞ , ( 4 
)
then θN LS p → θ as N → ∞ (convergence in probability).
One can then show that the convergence of the least-squares estimator is a consequence of

D N (θ, θ) = N k=1 [η(x k , θ) -η(x k , θ)] 2 (5) 
tending to infinity fast enough for θ -θ ≥ δ > 0. When the design space X for the x k 's is finite, the rate of increase required for the strong consistency of θN LS ( θN LS a.s.

→ θ, N → ∞) is quite slow, and the result is much stronger than what is needed to obtain strong consistency under the adaptive design (1)

with θk = θk LS . However, we think the result is interesting per se and state it as a theorem.

Theorem 1 Let {x i } be a non-random design sequence on a finite set X . If D N (θ, θ) given by ( 5) satisfies for all δ > 0 , inf

θ-θ ≥δ D N (θ, θ) /(log log N ) → ∞ , N → ∞ , ( 6 
)
then θN LS a.s.

→ θ as N → ∞. This result remains valid for {x i } a random sequence on X finite when ( 6)

holds almost surely. If D N (θ, θ) simply satisfies for all δ > 0 , inf θ-θ ≥δ D N (θ, θ) → ∞ , N → ∞ , ( 7 
)
then θN LS p → θ, N → ∞.
This result remains valid for {x i } a random sequence on X finite when ( 7) holds in probability.

Remark 2

The condition

for all θ = θ , D N (θ, θ) = N k=1 [η(x k , θ) -η(x k , θ)] 2 → ∞ as N → ∞ ,
is sufficient for the strong consistency of θN LS when the parameter set Θ is finite, see [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF]. From Theorem 1, when X is finite this condition is also sufficient for the weak consistency of θN LS without restriction on Θ. It is proved in [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF] to be necessary for the existence of a weakly consistent estimator of θ in the regression model (2) when the errors ε i are independent with a distribution having a density ϕ(•) positive almost everywhere and absolutely continuous with respect to the Lebesgue measure with finite Fisher information for location. Notice that a classical condition for strong consistency of least-squares estimation in nonlinear regression is D N (θ, θ) = O(N ) for θ = θ, see e.g. [START_REF] Jennrich | Asymptotic properties of nonlinear least squares estimation[END_REF], which is much stronger than (6).

A major interest of Theorem 1 is that it does require the x k 's to be non-random constants and also applies for sequential design.

Remark 3 In the context of sequential design, it is interesting to compare the results of the theorem with those obtained without the assumption of a finite design space X . For linear regression, the condition ( 6) takes the form

log log N = o{λ min [N M(ξ N )]} .
Noticing that λ max [N M(ξ N )] = O(N ), we thus get a condition much weaker than the sufficient condition

{log(λ max [N M(ξ N )])} 1+α = o{λ min [N M(ξ N )]} for some α > 0 ,
derived by [START_REF] Lai | Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems[END_REF] for the strong convergence of the least-squares estimator in a linear regression model under a sequential design. Also, in nonlinear regression, ( 6) is much less restrictive than the condition obtained by [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF] for the strong consistency of the least-squares estimator under a sequential design; indeed, his proof, based on properties of Hilbert space-valued martingales, requires a condition that gives for linear regression

λ max [N M(ξ N )] = O{(λ min [N M(ξ N )]) ρ } for some ρ ∈ (1, 2) .
We shall make the following assumptions on the model ( 2), the parameter space Θ and experimental domain X .

H f : For all x in X , f θ (x) is a continuous function of θ in the interior of Θ. H X -(i):
The design space X is finite, X = {x (1) , x (2) , . . . , x (K) }.

H X -(ii): inf θ∈Θ λ min K i=1 f θ (x (i) )f θ (x (i) ) > γ > 0.
H X -(iii): The regression model (2) satisfies the following identifiability condition. For all δ > 0 there exists (δ) > 0 such that for any subset {i 1 , . . . , i p } of distinct elements of {1, . . . , K},

inf θ-θ ≥δ p j=1 [η(x (ij ) , θ) -η(x (ij ) , θ)] 2 > (δ) . H X -(iv): For any subset {i 1 , . . . , i p } of distinct elements of {1, . . . , K}, λ min   p j=1 fθ(x (i j ) )f θ (x (i j ) )   ≥ γ > 0 .
H X -(iv) and H f imply that H X -(ii) is satisfied when Θ corresponds to some neighborhood of θ. As such H X -(iii) is a global identifiability condition, which can be violated in some trivial examples (take for instance p = 1 and η(x, θ) = xθ(1 -θ), so that η(x, 1 -θ) = η(x, θ) for all x). When this happens, it indicates a difficulty in the LS estimation problem, in the sense that the LS estimator θN LS may not be unique if only p design points are used in the experiment. Notice, however, that only values of θ ∈ Θ have to be considered. This difficulty may thus disappear when Θ is small enough (note that H X -(iv) can be considered as a local version of H X -(iii) for θ close to θ). Finally, when H f and H X -(i) are satisfied, the maximum eigenvalue

λ max [M(ξ, θ)] of any information matrix M(ξ, θ), ξ ∈ Ξ, is bounded by L = max x∈X , θ∈Θ f θ (x) 2 . Therefore, λ min [M(ξ, θ)] ≥ det M(ξ, θ)/L p-1 and H X -(ii), H X -(iv) can
be replaced by similar conditions involving the determinants of the matrices instead of their minimum eigenvalues. These assumptions will be discussed in Section 5 in the light of a series of examples showing that they are not very restrictive.

In order to avoid the difficulties raised by the interplay between estimation and design in (1) when θk LS is substituted for θk , we first state a uniform result on the number of design points receiving a weight bounded away from zero, by considering ( θk ) in (1) as any sequence taking values in Θ. We then have the following.

Lemma 2 Let ( θk ) be an arbitrary sequence in Θ used to generate design points according to (1) for k ≥ p, with an initialisation such that M(ξ p , θ) is non-singular for all θ in Θ. Let r N,i = r N (x (i) ) denote the number of times x (i) appears in the sequence x 1 , . . . , x N , i = 1, . . . , K, and consider the associated

order statistics r N,1:K ≥ r N,2:K ≥ • • • ≥ r N,K:K . Define
q * = max{j : there exists α > 0 such that lim inf

N →∞ r N,j:K /N > α} .
Then, H X -(i) and H X -(ii) imply q * ≥ p. When the sequence ( θk ) is random, the statement holds with probability one.

Consider now a regression model satisfying H X -(i-iii). Lemma 2 implies that there exist N 0 and α > 0 such that r N,j:K > αN for all N > N 0 and all j = 1, . . . , p, and H X -(iii) thus implies that D N (θ, θ) given by ( 5)

satisfies inf θ-θ ≥δ D N (θ, θ) > αN (δ), N > N 0 . Therefore, θN LS a.s. → θ (N → ∞) from Theorem 1.
This holds for any sequence ( θk ) in Θ and thus in particular when θk LS is substituted for θk in (1). The last step before stating the main result of the paper concerns the following continuity argument.

Lemma 3 Under the conditions of Lemma 2 and the additional assumptions H f and H X -(iv) we have the continuity property: for all > 0 there exists β > 0 such that θkθ < β for all k larger than some K 0

implies lim inf k→∞ log det M(ξ k , θ) ≥ log det M[ξ * D ( θ), θ] -, with ξ * D ( θ) a D-optimal design measure for θ.
We finally obtain the following.

Theorem 2 Suppose that in the regression model ( 2 → θ and M(ξ k , θ)

a.s. → M[ξ * D ( θ), θ], k → ∞, with ξ * D ( θ) a D-optimal design measure for θ = θ.
The proof directly follows from Lemma 2, Theorem 1 and Lemma 3.

Remark 4 One may notice that the property q * ≥ p in Lemma 2 is in fact a property on the rank of the matrix M

(1)

N (θ), see (17). Under the condition for all ξ ∈ Ξ , rank[M(ξ, θ)] = r(ξ) is independent of θ ∈ Θ ,
Theorem 2 remains valid when the assumptions H X -(iii-iv) are replaced by: for all δ > 0 there exists

(δ) > 0 such that, for any subset {i 1 , . . . , i m } of {1, . . . , K} such that rank m j=1 fθ(x (i j ) )f θ (x (i j ) ) = p, we have inf θ-θ ≥δ m j=1 [η(x (ij ) , θ) -η(x (ij ) , θ)] 2 > (δ) and λ min m j=1 fθ(x (ij ) )f θ (x (ij ) ) ≥ γ > 0.
We conclude the section by a justification of the use M(ξ k , θk LS ) as an asymptotic characterization of the precision of the estimation (k → ∞). Complementing H f by the assumption that η(x, θ) is two times continuously differentiable for θ in some open neighborhood of θ for any x in X , we can easily obtain the following. A first-order series expansion of the components of the gradient ∇ θ S N (θ) around θ gives

{∇ θ S N ( θN LS )} i = 0 = {∇ θ S N ( θ)} i + {∇ 2 θ S N ( θN i )( θN LS -θ)} i , i = 1, . . . , p ,
where ∇ 2 θ S N (θ) is the (Hessian) matrix of second-order derivatives of S N (θ) and θN

i = (1 -γ N,i ) θ + γ N,i θN LS , γ N,i ∈ (0, 1)
, with θN i measurable, see [START_REF] Jennrich | Asymptotic properties of nonlinear least squares estimation[END_REF]. Using the fact that X is finite, straightforward calculations then give lim δ→0 sup θ-

θ ≤δ ∇ 2 θ S N (θ)/N -2M[ξ * D ( θ), θ] a.s. → 0, N → ∞,
and therefore, under the conditions of Theorem 2,

∇ 2 θ S N ( θN i )/N a.s. → 2M[ξ * D ( θ), θ] when N → ∞. Also, N -1/2 ∇ θ S N ( θ) = -2 x v N (x), where v N (x) = ζ N (x)α N (x)fθ(x) with ζ N (x) = ( N k=1, x k =x ε k )/ r N (x)
and α N (x) = r N (x)/N . For x such that r N (x) tends to infinity, ζ N (x) tends to be distributed as a

standard normal random variable, ζ N (x) d → ζ(x) ∼ N (0, 1), N → ∞; moreover, ζ(x (i) ) and ζ(x (j) ) are independent for x (i) = x (j) . From Theorem 2, x α 2 N (x)fθ(x)f θ (x) a.s. → M[ξ * D ( θ), θ], N → ∞.
Finally from the series expansion above, we obtain

√ N ( θN LS -θ) d → z ∼ N (0, M -1 [ξ * D ( θ), θ]
), and therefore

[N M(ξ N , θN LS )] 1/2 ( θN LS -θ) d → ω ∼ N (0, I), N → ∞,
which justifies the use of the information matrix to characterize the precision of the estimation under the adaptive design scheme (1) when the set X is finite.

The results above obtained for least-squares estimation in nonlinear regression can be extended to maximum-likelihood estimation in Bernoulli-trial experiments. This is considered in the next section.

Maximum-likelihood estimation in Bernoulli trials

Consider a Bernoulli-trial experiment (a dose-response problem for instance) with single response Y equal to 0 or 1 (efficacy or toxicity response at the dose x) and Pr{Y = 1|θ, x} = π(x, θ). The log-likelihood for the observation Y at the design point x is

l(θ|Y, x) = Y log[π(x, θ)] + (1 -Y ) log[1 -π(x, θ)] . ( 8 
)
Suppose that π(x, θ) is differentiable with respect to θ for any x and denote

f θ (x) = ∂π(x, θ) ∂θ 1 π(x, θ)[1 -π(x, θ)]
so that the contribution of the point x to the Fisher information matrix is µ(x, θ) = f θ (x)f θ (x). Multivariate extensions (e.g., where both efficacy and toxicity responses are observed at a dose x) could be considered similarly; see, e.g., [START_REF] Dragalin | Adaptive designs for dose-finding based on efficacy-toxicity response[END_REF] for Gumbel and Cox models. In terms of design, the main difference with the single response case is the fact that µ(x, θ) may have rank two, so that less than p support points in ξ may suffice to estimate θ consistently. Note that the same situation occurs for the regression model (2) when dim(η) > 1 (it also happens when the variance function is not homogeneous and depends on unknown parameters of the model, see, e.g., [START_REF] Downing | Extracting information from the variance function: optimal design[END_REF]; [START_REF] Pázman | Simultaneous choice of design and estimator in nonlinear regression with parameterized variance[END_REF]).

We suppose that π(x, θ) ∈ (0, 1) for any θ ∈ Θ and x ∈ X and denote by θ N M L the maximum-likelihood 8). We also suppose that Θ is a compact subset of R p and that θ, the 'true' value of θ that generates the observations, lies in the interior of Θ. We have the following equivalent of Lemma 1 for this context of binary trials.

estimator θN M L = arg max θ∈Θ L N (θ), with L N (θ) = N i=1 l(θ|Y i , x i ), see ( 
Lemma 4 If for any δ > 0 lim inf

N →∞ inf θ-θ ≥δ [L N ( θ) -L N (θ)] > 0 almost surely (resp. in probability) , then θN M L a.s. → θ (resp. θN M L p → θ) as N → ∞.
The proof is identical to that of Lemma 1, see [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF]. We then obtain a property similar to Theorem 1.

Theorem 3 Let {x i } be a non-random design sequence on a finite set X . Assume that

D N (θ, θ) = N i=1 π(x i , θ) log π(x i , θ) π(x i , θ) + [1 -π(x i , θ)] log 1 -π(x i , θ) 1 -π(x i , θ) (9)
satisfies ( 6). Then, θN M L a.s.

→ θ as N → ∞. The same is true for a random sequence on a finite X when ( 6) holds almost surely. If D N (θ, θ) simply satisfies ( 7), or inf θ-

θ ≥δ D N (θ, θ) p → ∞ as N → ∞ for all δ > 0, then θN M L p → θ.
Lemmas 2 and 3 are still valid and Theorem 2 still applies, with H X -(iii) replaced by.

H X -(iii'): For all δ > 0 there exists (δ) > 0 such that for any subset {i 1 , . . . , i p } of distinct elements of {1, . . . , K},

inf θ-θ ≥δ p j=1 π(x (ij ) , θ) log π(x (ij ) , θ) π(x (i j ) , θ) + [1 -π(x (ij ) , θ)] log 1 -π(x (ij ) , θ) 1 -π(x (i j ) , θ) > (δ) .
Finally, similarly to the case of least-squares estimation in nonlinear regression, M(ξ k , θk M L ) can be used as an asymptotic characterization of the precision of the estimation (k → ∞) under the adaptive scheme (1) when X is finite and π(x, θ) is two times continuously differentiable for θ in some open neighborhood of θ for any x in X . Also, Theorem 3 is satisfied when

D N (θ, θ) is replaced by D N (θ, θ) = N i=1 π(x i , θ) -π(x i , θ) 2 , and a sufficient condition for H X -(iii') is inf θ-θ ≥δ p j=1 π(x (i j ) , θ) -π(x (i j ) , θ) 2 > (δ) > 0 for any δ > 0
and any subset {i 1 , . . . , i p } of {1, . . . , K}.

Examples

We consider the same four models as in [START_REF] Hu | On sequential designs in nonlinear problems[END_REF]. The response function, or probability of success, is continuously differentiable with respect to θ for each of them so that H f is satisfied.

Example 1: Dilution method for estimating the density of an organism. Suppose that π(x, θ One can easily check that H X (ii-iv) are satisfied for θ ∈ Θ when X ⊂ R + is finite and does not contain

) = Pr(Y = 1|θ, x) = exp(-θx), with Y ∈ {0, 1}, x ∈ R + , θ ∈ Θ = [a, b], 0 < a < b,
M(ξ, β) = X θ 2 x 2 /[exp(θx) -1] ξ(dx). The D-optimal measure is ξ * D (θ) = δ x * /θ with x * satisfying (2-x * ) exp(x * ) = 2,
0 (indeed, a < θ < b implies [π(x, θ) -π(x, θ)] 2 ≥ exp(-2bx)(θ -θ) 2 {1 -exp[(a -b)x]} 2 /(b -a) 2 and µ(x, β) = θ 2 x 2 /[exp(θx) -1] > 0)
. Since p = 1 in this example, q * of Lemma 2 satisfies q * ≥ p and any adaptive design ensures that the maximum-likelihood estimator is strongly consistent when X is finite and 0 ∈ X . In particular, when X corresponds to the discretization of some set X , taking x k+1 as the point in

X closest to x * / θk M L ensures θk M L a.s.
→ θ and the empirical design measure ξ k converges a.s. to a design that can be made arbitrarily close to the D-optimal design on X for θ when the discretization of X is fine enough. Note that a similar consistency result can be obtained in general for one-parameter models.

Example 2: Michaelis-Menten regression. Suppose that [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF] suggests the following design sequence

Y i = θ1 x i /( θ2 + x i ) + ε i , with (ε i ) satisfying the assumptions of Sect. 3, Θ = [L 1 , U 1 ] × [L 2 , U 2 ], 0 < L i < θi < U i , i = 1, 2. When X = (0, x], the D-optimal measure for θ on X is ξ * D (θ) = (1/2) δ x * 1 (θ) + (1/2) δ x * 2 (10) with x * 1 (θ) = θ 2 x/(2θ 2 + x) < x * 2 = x.
               x k = x * 1 ( θk-1 LS ) if k is even and k ∈ {k 1 , k 2 , . . .} x k = x if k is odd and k ∈ {k 1 , k 2 , . . .} c/(1 + log k) if k ∈ {k 1 , k 2 , . . .}
where k i ∼ i α as i → ∞, for some c > 0 and 1 < α < 2, in order to obtain the strong convergence of θk LS , see also Remark 3. [START_REF] Hu | On sequential designs in nonlinear problems[END_REF] shows that the introduction of the perturbations

x k = c/(1 + log k) if k ∈ {k 1 , k 2 , .
. .} is not necessary when using the Bayes estimator θk-1

B = IE{θ|F k-1 }, and that the sequence        x k = x * 1 ( θk-1 B ) if k is even x k = x if k is odd (11) ensures θk B a.s. → θ, k → ∞.
Suppose now that X is finite, with 0 < min(X ) < max(X ) = x. One can easily check that H

X -(iii) is satisfied for θ ∈ Θ. Indeed, η(x, θ) = η(x, θ) and η(z, θ) = η(z, θ) for θ, θ ∈ Θ, x > 0, z > 0 and x = z imply θ = θ. Also, det[f θ (x)f θ (x) + f θ (z)f θ (z)] = x 2 z 2 θ 2 1 (x -z) 2 /[θ 2 + x) 4 (θ 2 + z) 4 ] so that H X -(ii),
H X -(iv) are satisfied and Theorem 2 applies. This means in particular that we do not need to know the form (10) of the D-optimal design and can directly generate the design through (1) with θk = θk LS , the least-squares estimator which is much easier to obtain than the Bayes estimator θk B . Moreover, numerical simulations indicate that when θk is frozen to some given value θ, the convergence to the D-optimal design for θ is generally faster and more regular for (1) than for (11).

Example 3: First-order exponential regression. Suppose that

Y i = θ1 exp(-θ2 x i ) + ε i , with (ε i ) sat-
isfying the assumptions of Sect. 3 and Θ as in Example 2. Take X finite with min(X ) = x ≥ 0. The D-optimal design measure is then

ξ * D (θ) = (1/2) δ x + (1/2) δ x+1/θ2 . One can easily check that H X -(iii) is satisfied for θ ∈ Θ (η(x, θ) = η(x, θ) and η(z, θ) = η(z, θ) for x = z imply θ = θ); H X -(ii), H X -(iv) are satisfied too since det[f θ (x)f θ (x) + f θ (z)f θ (z)] = θ 2 1 (x -z) 2 exp[-2θ 2 (x + z)],
and Theorem 2 applies again.

Example 4: Binary logistic regression. Take π(x, θ) = exp(θ

1 + θ 2 x)/[1 + exp(θ 1 + θ 2 x)] in Sect. 4, with
x ∈ X finite and θ ∈ Θ compact. Using Remark 5 one can easily show that H X -(iii') is satisfied. Indeed, π(x, θ) = π(x, θ) is equivalent to θ 1 + θ 2 x = θ1 + θ2 x, so that π(x, θ) = π(x, θ) and π(x, θ) = π(x, θ) with

x = z imply θ = θ. Also, det[f θ (x)f θ (x) + f θ (z)f θ (z)] = (x -z) 2 exp[2θ 1 + θ 2 (x + z)]/{[1 + exp(θ 1 + θ 2 x)][1 + exp(θ 1 + θ 2 z)]} 2 so that H X -(ii)
and H X -(iv) are satisfied. Therefore, Theorem 2 applies and the almost sure convergence of the maximum-likelihood estimator θk M L to the true parameter value θ and of ξ k to a D-optimal design for θ is guaranteed when using (1) with θk M L substituted for θk .

Appendix: proofs

Proof of Theorem 1. The proof is based on Lemma 1. We have

S N (θ) -S N ( θ) = D N (θ, θ)   1 + 2 x∈X N k=1, x k =x ε k [η(x, θ) -η(x, θ)] D N (θ, θ)   ≥ D N (θ, θ)   1 -2 x∈X N k=1, x k =x ε k |η(x, θ) -η(x, θ)| D N (θ, θ)   . sup θ-θ ≥δ x∈X N k=1, x k =x ε k |η(x, θ) -η(x, θ)| D N (θ, θ) a.s. → 0 (12)
for any δ > 0 to obtain the strong consistency of θN LS . Since D N (θ, θ) → ∞ and X is finite, only the design points such that r N (x) → ∞ have to be considered, where r N (x) denotes the number of times x appears in the sequence x 1 , . . . , x N . Define β(n) = √ n log log n. From the law of the iterated logarithm, we have for all x ∈ X , lim sup

r N (x)→∞ 1 β[r N (x)] N k=1, x k =x ε k = σ √ 2 , almost surely , ( 13 
)
see e.g. Shiryaev (1996, p. 397). Next, for any x ∈ X ,

β[r N (x)]|η(x, θ) -η(x, θ)| D N (θ, θ) ≤ [log log r N (x)] 1/2 D 1/2 N (θ, θ)
, which, together with ( 6) and ( 13), gives (12). When the sequence {x i } is random, the only modification consists in working conditionally on the event (6).

When inf θ-θ ≥δ D N (θ, θ) → ∞ as N → ∞, we only need to prove that sup

θ-θ ≥δ x∈X N k=1, x k =x ε k |η(x, θ) -η(x, θ)| D N (θ, θ) p → 0 ( 14 
)
for any δ > 0 to obtain the weak consistency of θN LS . We proceed as above and only consider the design points such that r N (x) → ∞, with now β(n) = √ n. From the central limit theorem, for any x ∈ X ,

N k=1, x k =x ε k / r N (x) d → ζ x ∼ N (0, σ 2 ) as r N (x) → ∞
and is thus bounded in probability. Also, for

any x ∈ X , r N (x)|η(x, θ) -η(x, θ)|/D N (θ, θ) ≤ D -1/2 N
(θ, θ), so that ( 7) implies ( 14).

Proof of Lemma 2. First note that q * ≥ 1 since X is finite. Suppose that p ≥ 2 and q * < p. We show that this leads to a contradiction.

For any N we can write

M(ξ N , θ) = 1 N N k=1 f θ (x k )f θ (x k ) = 1 N q * i=1 r N,i:K f θ (x (i N ) )f θ (x (i N ) ) + 1 N x k ∈X N (q * ) f θ (x k )f θ (x k ) , ( 15 
)
so that for all θ ∈ Θ and z ∈ N [M

(1)

N (θ)], max i=q * +1,...,K [z f θ (x (i N ) )] 2 > γ K -q * z 2 . ( 19 
) Take z = z θ,i N = [M (2) N (θ)] -1 [I -P N (θ)]f θ (x (i N )
) for some i ∈ {q * + 1, . . . , K}, so that z θ,i N ∈ N [M

(1)

N (θ)] and f θ (x (i N ) )[M (2) N (θ)] -1 [I -P N (θ)] f θ (x (i N ) ) = z θ,i N f θ (x (i N ) ) = z θ,i N M (2) N (θ)z θ,i N .
We obtain

max i=q * +1,...,K f θ (x (i N ) )[M (2) N (θ)] -1 [I -P N (θ)] f θ (x (i N ) ) = max i,j=q * +1,...,K z θ,i N M (2) N (θ)z θ,j N = max i,j=q * +1,...,K z θ,i N f θ (x (j N ) ) ,
and thus from ( 19),

for all θ ∈ Θ , max i=q * +1,...,K f θ (x (i N ) )[M (2) N (θ)] -1 [I -P N (θ)] f θ (x (i N ) ) > γ K -q * 1/2 max i=q * +1,...,K z θ,i * N . Let i *
N denote the argument of the maximum on the left-hand side. We have,

z θ,i * N f θ (x (i * N ) ) = z θ,i * N M (2) N (θ)z θ,i * N ≤ K L z θ,i * N 2 with L = max x∈X , θ∈Θ f θ (x) 2 , so that finally for all θ ∈ Θ , max i=q * +1,...,K f θ (x (i N ) )[M (2) N (θ)] -1 [I -P N (θ)] f θ (x (i N ) ) > γ LK(K -q * ) .
To summarize, from (16, 18), there exists N 0 such that for any N > N 0 and for all θ ∈ Θ,

max i=1,...,q * f θ (x (i N ) )M -1 (ξ N , θ)f θ (x (i N ) ) ≤ 1 α max i=q * +1,...,K f θ (x (i N ) )M -1 (ξ N , θ)f θ (x (i N ) ) ≥ 1 β N γ LK(K -q * ) . Therefore, for N > N 0 , β N < β * = γα/[LK(K -q * )] implies x N +1 ∈ {x ((q * +1) N ) , . . . , x (K N ) } in the sequence (1). Define β * N = K i=q * +1 r N,i:K (K -q * )N , so that β N ≥ β * N ≥ β N /(K -q * ). Also, when N > N 0 , ( q * i=1 r N,i:K )/N > q * α, so that β * N <
(1 -q * α)/(K -q * ). By construction, β N < β * and N > N 0 then give

β N +1 ≥ β * N +1 = N β * N (K -q * ) + 1 (K -q * )(N + 1) = β * N + 1 N + 1 1 K -q * -β * N > β * N + 1 N + 1 q * α K -q * ≥ β N K -q * + 1 N + 1 q * α K -q * .
By induction, this lower bound on β N +k increases with k,

β N +k > β N K -q * + q * α K -q * k i=1 1 N + i ,
until β N +k becomes larger that β * . Suppose that the threshold β * is crossed downwards at N 1 > N 0 , i.e.,

β N 1 -1 ≥ β * and β N 1 < β * . This implies β N 1 = β N 1 -1 (N 1 -1)/N 1 and thus β * (N 1 -1)/N 1 ≤ β N 1 < β * , so that β N 1 tends to β * when N 1 → ∞.
We thus obtain lim inf N →∞ β N ≥ β = β * /(K -q * ), showing that q * ≥ p, which concludes the proof.

Proof of Lemma 3. With the same notations as in Lemma 2, there exists N 0 and α > 0 such that for all N > N 0 , r N,j:K > αN , j = 1, . . . , q * ≥ p and thus, from H

X -(iv), λ min [M(ξ N , θ)] > αγ. From H f and H X -(i),
for all 1 > 0 , there exists

β 1 such that θ -θ ≤ β 1 ⇒ max x∈X f θ (x) -fθ(x) < 1 . Direct calculations then give max x∈X max θ-θ ≤β1 |f θ (x)M -1 (ξ N , θ)f θ (x) -f θ (x)M -1 (ξ N , θ)fθ(x)| < C 1
for 1 small enough and N > N 0 , with C a constant depending on α, γ and f = max x∈X fθ(x) .

Therefore, for all > 0, there exists β > 0 such that for all N > N 0 , θNθ < β in the algorithm (1)

implies f θ (x N +1 )M -1 (ξ N , θ)fθ(x N +1 ) > f θN (x N +1 )M -1 (ξ N , θN )f θN (x N +1 ) -2 = max x∈X f θN (x)M -1 (ξ N , θN )f θN (x) -2 > max x∈X f θ (x)M -1 (ξ N , θ)fθ(x) -.
The rest of the proof only exploits the consequences of this property.

Take , β as above and suppose that there exists δ > 0 such that for N large enough. This implies log det M(ξ N , θ) → ∞ as N → ∞, which is in contradiction with H f . Therefore, there exists a subsequence ξ N t such that lim sup t→∞ log det M(ξ N t , θ) ≥ Ψ * -. From ( 21), for all δ > 0 , there exists N 1 such that for all N > N 1 log det M(ξ N +1 , θ) > log det M(ξ N , θ) -δ .

log det M(ξ N , θ) < Ψ * --δ ( 
Also, from the developments just above, there exists N 2 such that for all N > N 2 , (20) implies log det M(ξ N +1 , θ) > log det M(ξ N , θ) .

Take any N t > max(N 1 , N 2 ) satisfying log det M(ξ N t , θ) > Ψ * --δ, we obtain log det M(ξ N , θ) > Ψ * --2δ , for all N > N t .

Since δ is arbitrary, lim inf N →∞ log det M(ξ N , θ) ≥ Ψ * -.

Proof of Theorem 3. We can write 

Remark 5

 5 Defining g(a, b) = a log(a/b)+(1-a) log[(1-a)/(1-b)], a, b ∈ (0, 1), we can easily check that, for any fixed a ∈ (0, 1), g(a, b) ≥ 2(a -b) 2 with g(a, a) = 0, so that each term of the sum (9) is positive. Indeed, define h(a, b) = g(a, b) -2(a -b) 2 ; we have ∂h(a, b)/∂b = (2b -1) 2 (b -a)/[b(1 -b)] so that, as a function of b, h(a, b) monotonically decreases for 0 < b < a and monotonically increases for a < b < 1.

  and θ, the unknown true value of θ satisfying a < θ < b. The Fisher information matrix at θ for β = log θ and a design measure ξ is then

  that is, x * 1.5936. Following this optimal design consideration,[START_REF] Hu | On sequential designs in nonlinear problems[END_REF] suggests the adaptive construction x k+1 = x * / θk with θk an estimate of θ based on x 1 , Y 1 , . . . , x k , Y k . When θk is the Bayes estimator θk B = IE{θ|F k }, with F k the σ-field generated by the observations Y 1 , . . . , Y k , his results imply the almost sure convergence of θk B to θ and of the empirical measure ξ k to ξ * D ( θ).

  20)for all N larger than some N 1 , where Ψ * = log det M(ξ * D , θ) with ξ * D = ξ * D ( θ) a D-optimal design measure for θ. By concavity, this implies max x∈X f θ (x)M -1 (ξ N , θ)fθ(x) > p + + δ for all N > N 1 , and thusf θ (x N +1 )M -1 (ξ N , θ)fθ(x N +1 ) > p + δ , for all N > max(N 0 , N 1 , K 0 ) when θkθ < β for all k > K 0 . Direct calculations give log det M(ξ N +1 , θ) -log det M(ξ N , θ) = log 1 + f θ (x N +1 )M -1 (ξ N , θ)fθ(x N +1 ) N -(ξ N +1 , θ) -log det M(ξ N , θ) ≥ log 1

L

  N ( θ) -L N (θ) = D N (θ, θ) k =x [Y k -π(x, θ)] log π(x, θ)[1-π(x,θ)] k =x [Y k -π(x, θ)] log π(x, θ)[1-π(x,θ)] π(x,θ)[1-π(x, θ)] D N (θ, θ) k =x [Y k -π(x, θ)] log π(x, θ)[1-π(x,θ)] π(x,θ)[1-π(x, θ)] δ > 0 to obtain the strong consistency of θN LS . Similarly to the case of Theorem 1, since D N (θ, θ) → ∞ only the design points such that r N (x) → ∞ have to be considered, and, from the law of the iterated logarithm, for all x ∈ X , lim supr N (x)→∞ 1 β[r N (x)] N k=1, x k =x [Y k -π(x, θ)] = 2π(x, θ)[1 -π(x, θ)] , almost surely , with β(n) =√ n log log n. The rest of the proof for almost sure convergence is as for Theorem 1. We haveβ[r N (x)] log π(x, θ)[1-π(x,θ)] π(x,θ)[1-π(x, θ)] π(x, θ)[1 -π(x, θ)] D N (θ, θ) ≤ (log log r N (x)) , a, b ∈ (0, 1) ,which, for any fixed a ∈ (0, 1), tends to infinity for b tending to 0 or 1 and has a unique minimum in (0, 1) at b = 1 -a. Since 0 < π(x, θ) < 1 for all x and all θ in Θ compact, ρ[π(x, θ), π(x, θ)] is bounded and (6) gives the result.When inf θ-θ ≥δ D N (θ, θ) → ∞ as N → ∞, we only need to prove that supθ-θ ≥δ x∈X N k=1, x k =x [Y k -π(x, θ)] log π(x, θ)[1-π(x,θ)] π(x,θ)[1-π(x, θ)] D N (θ, θ) p → 0for any δ > 0 to obtain the weak consistency of θN LS . We proceed as above and only consider the design points such that r N (x) → ∞, with now β(n) = √ n. From the central limit theorem, for anyx ∈ X , N k=1, x k =x [Y k -π(x, θ)] / r N (x) d → ζ x ∼ N (0, π(x, θ)[1 -π(x, θ)]) as r N (x)→ ∞ and is thus bounded in probability. The rest of the proof is as above, again using the fact that ρ[π(x, θ), π(x, θ)] is bounded.

where i N is the index (depending on N ) of a design point appearing r N,i:K times in x 1 , . . . , x N and X N (q * ) = {x (1 N ) , . . . , x (q * N ) } is the set of such points for i ≤ q * . Let M N (θ) denote the first matrix on the right-hand side of (15). For any x (i N ) ∈ X N (q * ) we have

. Therefore, from the definition of q * , there exists N 0 such that

We have (1 -β N ) M

(1)

(1)

(1)

(1)

(2)

with N (M) = {v : Mv = 0} the null-space of the matrix M. Direct calculations then give

with I the p-dimensional identity matrix and P N (θ) the projector

Note that the right-hand side of ( 18) is zero when u ∈ M[M

(1) N (θ)] (i.e., when u = M

(1)

) for some i ∈ {q * + 1, . . . , K} we can construct a lower bound for this term, of the form C/β N with C constant. Indeed, from ( 17) and H X -(ii), for all θ ∈ Θ and v ∈ R p , v   M

(1)