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random medium
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Abstract

We are concerned with homogenization of stochastic differential equations (SDE)
with stationary coefficients driven by Poisson random measures and Brownian motions
in the critical case, that is when the limiting equation admits both a Brownian part as
well as a pure jump part. We state an annealed convergence theorem. This problem is
deeply connected with homogenization of integral partial differential equations.
Keywords : Itô-Lévy processes; random medium; homogenization; integro-differential
operators; ergodicity.

1 Introduction

If Bt is a Brownian motion, it is well known that the rescaled process ǫBt/ǫ2 is still a Brownian
motion. Starting from this observation, we expect that, under reasonable assumptions on
the coefficients, the solution X of the SDE

Xt = x +

∫ t

0
b(Xr) dr +

∫ t

0
σ(Xr) dBr

admits a scaling limit, namely that the rescaled process ǫXt/ǫ2 should converge towards a
Brownian motion. This problem has been widely studied when the coefficients are peri-
odic or, more recently, when the coefficients are stationary random fields. Quoting all the
references is beyond the scope of the paper.

We can make the same observation concerning an α-stable Lévy process L: the process
Lt and the rescaled process ǫLt/ǫα have the same law. This leads to studying scaling limits
of SDEs driven by Poisson random measures and, more generally, SDEs driven by both
Brownian motions and Poisson random measures (called Itô-Lévy type SDEs). However,
that issue has been poorly studied so far: see [4] in the case of SDEs with periodic coefficients
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only driven by Poisson random measures or [9] for jump processes arising in the context of
boundary problems (the reader may also refer to [11] for an insight of analytical methods in
the context of periodic coefficients).

In [10], the authors investigate the scaling limits of Itô-Lévy type SDEs with stationary
random coefficients. They prove that there are two possible limiting behaviours, depending
on some integrability condition of the compensator of the Poisson random measure. The
limiting equation is either a Brownian motion or an α-stable Lévy process. The first situation
arises when the jumps of the Poisson measure are small and thus exhibit a diffusive behaviour
(this latter situation was predictable in the light of the wide literature about random walks in
random environment). When the Poisson random measure performs sufficiently long jumps,
the jump part overscales the Brownian part. This gives rise to the following question: what
is the natural framework to make the limiting equation exhibit both a diffusive part and a
jump part? That is the issue we investigate in the present paper.

We further stress that our paper is deeply connected to the issue of homogenizing, as
ǫ → 0, integral partial differential equations (IPDE) with stationary coefficients of the type

∂tu
ǫ(t, x) = ∂x

(
a(

x

ǫ
)∂xuǫ(t, x)

)
+ lim

β→0

∫

β<|z|

(
uǫ(t, x + z) − uǫ(t, x)

)c
(

x
ǫ , z

ǫ

)

|z|1+α
dz

with suitable boundary conditions. We will address more precisely that connection (and
homogenization) in the case of nonlinear problems in a forthcoming paper.

2 Statements of the problem

2.1 Random medium

We first introduce the notion of random medium (see e.g. [6]) and the necessary background
about random media

Definition 2.1. Let (Ω,G, µ) be a probability space and {τx;x ∈ R} a group of measure
preserving transformations acting ergodically on Ω:

1) ∀A ∈ G,∀x ∈ R, µ(τxA) = µ(A),
2) If for any x ∈ R, τxA = A then µ(A) = 0 or 1,
3) For any measurable function g on (Ω,G, µ), the function (x, ω) 7→ g(τxω) is measurable

on (R × Ω,B(R) ⊗ G).

The expectation with respect to the random medium is denoted by M. We define as
usually the spaces Lp(Ω,G, µ) for p ∈ [1,+∞], or Lp(Ω) for short. The corresponding norm
are denoted by | · |p. The inner product in L2(Ω) is denoted by ( · , · )2. The operators on
L2(Ω) defined by Txg(ω) = g(τxω) form a strongly continuous group of unitary maps in
L2(Ω). Each function g in L2(Ω) defines in this way a stationary ergodic random field on
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R. The group possesses a generator D, defined by

(1) Dg = lim
R∋h→0

h−1(Thg − g) if the limit exists in the L2(Ω)-sense,

which is closed and densely defined. We distinguish the differential operator in random
medium D from the usual derivative ∂xf of a function f defined on R.
Notations. Recursively, we define the operators (k ≥ 1) Dk = D(Dk−1) with domain
Hk(Ω) = {f ∈ Hk−1(Ω);Dk−1f ∈ Dom(D) = H1(Ω)}. We also define H∞(Ω) =

⋂∞
k=1 Hk(Ω).

We denote with C the dense subspace of L2(Ω) defined by

C = Span {g ⋆ ϕ;g ∈ L∞(Ω), ϕ ∈ C∞
c (R)}

with g ⋆ ϕ(ω) =
∫

R
g(τxω)ϕ(x) dx. We point out that C ⊂ Dom(D), and D(g ⋆ ϕ) =

−g ⋆ ∂ϕ/∂x. This last quantity is also equal to Dg ⋆ ϕ if g ∈ Dom(D). C(Ω) is defined as
the closure of C in L∞(Ω) with respect to the norm | · |∞, whereas C∞(Ω) stands for the
subspace of H∞(Ω), whose elements satisfy: f ∈ C∞(Ω) ⇔ ∀k ≥ 0, |Dkf |∞ < +∞. We
point out that, whenever a function f ∈ H∞(Ω), µ a.s. the mapping fω : x ∈ R 7→ f(τxω)
is infinitely differentiable and ∂xfω(x) = Df(τxω).

2.2 Structure of the coefficients

We consider a Lévy measure ν, that is a σ-finite measure ν on R of the type

(2) ν(dz) =
1

|z|1+α
dz

for some α ∈]0, 2[. We introduce the coefficients V ,σ ∈ L∞(Ω) and γ : Ω×R → R satisfying
the following conditions.

For each fixed ω ∈ Ω, by defining the mapping γω : z 7→ γ(ω, z), we can consider the
measure ν ◦ γ−1

ω : A ⊂ R 7→ ν(γ−1
ω (A)) = ν

(
{z ∈ R;γ(ω, z) ∈ A}

)
.

Assumption A. Symmetry of the kernel. We assume that the measure ν ◦ γ−1
ω can be

rewritten as

ν ◦ γ−1
ω (dz) = e2V (ω) c(ω, z)

|z|1+α
dz

for some measurable nonnegative symmetric kernel c defined on Ω × R. The symmetry of c
means

µ a.s., dz a.s., c(τzω,−z) = c(ω, z).

Assumption B. Limiting kernel. We assume that there exists a function θ ∈ L1(Ω) such
that

lim
|z|→∞

M
[
|c(ω, z) − θ(ω)|

]
= 0.
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Assumption C. Ellipticity. We set a = σ2. There is a constant MC > 0 such that

∀(ω, z) ∈ Ω × R, M−1
C ≤ a(ω) ≤ MC and M−1

C ≤ c(ω, z) ≤ MC .

Assumption D. Regularity. We assume the coefficients satisfy the following assumptions:
1) The coefficients V , σ belong to C∞(Ω). In particular, we can define

b =
1

2
Da− aDV =

e2V

2
D

(
e−2V a

)
∈ C∞(Ω),

2) For dz-almost every z ∈ R, the mapping ω 7→ c(ω, z) belongs to C∞(Ω) and, for each
fixed k ≥ 1, there exists a constant Ck such that |Dkc(·, z)|∞ ≤ Ck, dz a.s.

3) µ a.s., for dz almost every |z| > 1, the mapping x ∈ R 7→ γ(τxω, z) is continuous and
µ a.s., we can find a constant C > 0 such that ∀x, y ∈ R,

∫

|z|≤1
|γ(τyω, z) − γ(τxω, z)|2ν(dz) ≤ C|y − x|2.

4) For every ω ∈ Ω, the limit

e(ω) = lim
β→0

∫

β≤|γ(ω,z)|
γ(ω, z)1I|z|≤1ν(dz)

exists in the L2(Ω) sense and defines a bounded Lipschitzian function, that is (for some
constant MD ≥ 0), |e|∞ ≤ MD and µ a.s., ∀x, y ∈ R, |e(τyω) − e(τxω)| ≤ MD|x − y|.

5) Furthermore, there is a positive constant S such that sup|z|≤1 |γ(·, z)|∞ ≤ S

Even if it means adding to V a renormalization constant (this does not change the drift
b and the jump coefficients γ and ν), we may assume that

M[e−2V ] = 1

and consider the probability measure dπ = e−2V dµ on (Ω,G). We denote by Mπ the
expectation w.r.t. this probability measure.

2.3 Jump-diffusion processes in random medium

We suppose that we are given a complete probability space (Ω′,F , P) with a right-continuous
increasing family of complete sub σ-fields (Ft)t of F , a Ft-adapted Brownian motion {Bt; t ≥
0} and Ft-adapted Poisson random measure N(dt, dz) with intensity ν. Ñ(dt, dz) = N(dt, dz)−
ν(dz)dt denotes the corresponding compensated random measure and N̂ ǫ(dt, dz) the trun-
cated compensated random measure N(dt, dz) − 1I|z|≤ǫν(dz)dt, ǫ > 0. We further assume
that the Brownian motion, the Poisson random measure and the random medium are inde-
pendent.
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For each fixed ω ∈ Ω and ǫ > 0, Assumptions D.3 and D.4 are enough to ensure existence
and pathwise uniqueness of a Ft-adapted process Xǫ (see [1, Ch.6, Sect.2]) solution to the
following SDE

Xǫ
t = x +

∫ t

0
(
1

ǫ
b+ ǫ1−αe)(τX

ǫ
r−

ω) dr +

∫ t

0

∫

R

ǫγ(τX
ǫ
r−

ω,
z

ǫ
) N̂ ǫ(dr, dz) +

∫ t

0
σ(τX

ǫ
r−

ω) dBr,

(3)

where we have set X
ǫ
t = Xǫ

t /ǫ.

Remark 2.2. The reader may find the formulation of SDE (3) a bit disturbing. Actually,
this is just a correct formulation for the SDE we have in mind, namely

Xǫ
t = x +

∫ t

0

1

ǫ
b(τX

ǫ
r−

ω) dr +

∫ t

0

∫

R

ǫγ(τX
ǫ
r−

ω,
z

ǫ
)N(dr, dz) +

∫ t

0
σ(τX

ǫ
r−

ω) dBr.

Due to integrability issues, the above formal equation admits the correct formulation (3).

2.4 Main result

We denote with D(R+; R) the space of right-continuous R-valued functions with left limits,
endowed with the Skorohod topology, cf [2]. We fix x ∈ R and we claim

Theorem 2.3. In µ probability, the process Xǫ, starting from x ∈ R, converges in law in the
Skorohod topology towards a Lévy process L with characteristic function E[eiuLt ] = etϕ(u),
where the Lévy exponent ϕ is given by

ϕ(u) = −1

2
Au2 + M[θ]

∫

R

(eiuz − 1 − iuz1I|z|≤1)ν(dz)

for some constant coefficient A.

Remark 2.4. Actually, by looking closely in the proofs in Section 6, we could prove that A
exactly matches the homogenized coefficient when the SDE (3) possesses no jump part. In
particular, we could prove the variational formula

(4) A = inf
ϕ∈C

Mπ

[
a(1 + Dϕ)2

]
,

from which lower and upper bounds for A can be obtained. It is then plain to see that A is
nondegenerate (because a is, see [7] for the derivation of the variational formula).
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3 Dirichlet forms in random medium

We can equip the space L2(Ω) with the inner product (ϕ,ψ)π = M[ϕψe−2V ], and denote
by | · |π the associated norm. Since V is bounded, both inner products (·, ·)2 and (·, ·)π are
equivalent on L2(Ω).

Let us define on C × C the following bilinear forms (with λ > 0)

Bd(ϕ,ψ) =
1

2
(aDϕ,Dψ)π,

Bj(ϕ,ψ) =
1

2
M

∫

R

(Tzϕ−ϕ)(Tzψ −ψ)c(·, z)ν(dz),

Bǫ
λ(ϕ,ψ) = λ(ϕ,ψ)π + Bd(ϕ,ψ) + ǫ2−αBj(ϕ,ψ)

(5)

We can thus consider on C×C the inner product Bǫ
λ and the closure H of C w.r.t. the associ-

ated norm (note that the definition of H does not depend on λ, ǫ > 0 since the corresponding
norms are equivalent from Assumption C).

Fix ǫ > 0. In what follows, we use the same strategy as in [10, Sect. 3] to which the reader
is referred for further details (as well as the references therein). For any λ > 0, Bǫ

λ extends
to H × H. This extension, still denoted Bǫ

λ, defines a resolvent operator Gǫ
λ : L2(Ω) → H,

which is one-to-one and continuous. It thus defines an unbounded operator Lǫ = λ− (Gǫ
λ)−1

on L2(Ω) with domain Dom(Lǫ) = Gǫ
λ(L2(Ω)). This definition does not depend on λ > 0.

The unbounded operator Lǫ is closed, densely defined and seld-adjoint. We further stress
that the weak form of the resolvent equation λGǫ

λf −LǫGǫ
λf = f reads: ∀ψ ∈ H

λ(Gǫ
λf ,ψ)π+

1

2
(aDGǫ

λf ,Dψ)π +
ǫ2−α

2
M

∫

R

(TzG
ǫ
λf − Gǫ

λf)(Tzψ −ψ)c(·, z)ν(dz)

= (f ,ψ)π.(6)

For sufficiently smooth functions, Lǫ can be easily identified (the proof does not differ
from [10, Lemma 3.1]): if ϕ ∈ H∞(Ω), then ϕ ∈ Dom(Lǫ) and

Lǫϕ = ǫ2−αeDϕ+ ǫ2−α

∫

R

(
ϕ(τγ(ω,z)ω) −ϕ(ω) − γ(ω, z)1I{|z|≤1}Dϕ(ω)

)
ν(dz)(7)

+
1

2
aD2ϕ+ bDϕ.

Following the proof in [10], we can prove:

Proposition 3.1. 1) For each λ > 0, the resolvent operator Gǫ
λ maps L2 into H2(Ω), and

Hm(Ω) into Hm+2(Ω) for any m ≥ 1. In particular Dom((Lǫ)m) = H2m(Ω).
2) The self-adjoint operator Lǫ generates a strongly continuous contraction semi-group

(P ǫ
t )t of self-adjoint operators. Moreover, we have

f ∈ L2(Ω) ⇒ t 7→ P ǫ
t f ∈ C([0;+∞[;L2(Ω)) ∩ C∞(]0;+∞[;H∞(Ω)),(8)

f ∈ H∞(Ω) ⇒ t 7→ P ǫ
t f ∈ C∞([0;+∞[;H∞(Ω))(9)
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where, given an interval I ⊂ R, C(I;L2(Ω)) (resp. C∞(I;H∞(Ω))) stands for the space
of continuous functions from I to L2(Ω) (resp. infinitely differentiable functions from I to
H∞(Ω)).

3) The semi-group (P ǫ
t )t is sub-Markovian. Put in other words, for any f ∈ L2(Ω)

such that 0 ≤ f ≤ 1 µ a.s., we have 0 ≤ P ǫ
t f ≤ 1 µ a.s. for any t > 0. In particular,

P ǫ
t : L∞(Ω) → L∞(Ω) and Gǫ

λ : L∞(Ω) → L∞(Ω) are continuous with respective norms 1
and 1/λ.

Similarly, we can consider on C × C the bilinear form

Dλ(ϕ,ψ) = λ(ϕ,ψ)π + Bd(ϕ,ψ).

The form Dλ on C × C defines an inner product and we can define the closure H
d of C × C

with respect to Dλ. Once again, the definition of H
d does not depend on λ > 0 since the

corresponding norms are equivalent. For any λ > 0, Dλ continuously extends to H
d × H

d.
This extension is still denoted Dλ and defines a resolvent operator Gd

λ : L2(Ω) → H
d, which

is one-to-one and continuous. It thus defines an unbounded operator Ld = λ − (Gd
λ)−1 on

L2(Ω) with domain Dom(Ld) = Gd
λ(L2(Ω)). This definition does not depend on λ > 0.

Moreover, Ld is self-adjoint and it is plain to see that Ld is given on C by

Ldϕ =
e2V

2
D

(
ae−2V Dϕ

)
=

1

2
aD2ϕ+ bDϕ.

Lemma 3.2. If the function ϕ belongs to Dom(Ld), then ϕ also belongs to H.

Proof of Lemma 3.2. It is plain to see that the lemma results from the following inequality

∀ϕ ∈ C, Bj(ϕ,ϕ) ≤ CDλ(ϕ,ϕ)

for some positive constant C that may depend on λ. Since this result is quite classical,
details are left to the reader.

4 Invariant measure

In what follows, Xǫ denotes the solution of (3) starting from 0.

Proposition 4.1. For each function f ∈ C(Ω), we have

Mπ[E[f(τX
ǫ
t
ω)]] = Mπ[E[f(τX

ǫ
t−

ω)]] = Mπ[f ].

Proof. Given ϕ ∈ C ⊂ H∞(Ω) and t > 0, the mapping (s, ω) 7→ P ǫ
ǫ−2(t−s)ϕ belongs to

C∞([0, t];H∞(Ω)) and is bounded (cf Prop 3.1). We can thus apply the Itô formula between
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0 and t, which reads µ a.s. (use ∂tP
ǫ
tϕ = LǫP ǫ

tϕ):

ϕ(τX
ǫ
t
ω) = P ǫ

ǫ−2tϕ(ω) + ǫ−1

∫ t

0
DP ǫ

ǫ−2(t−r)ϕσ(τX
ǫ
r−

ω) dBr(10)

+

∫ t

0

(
P ǫ

ǫ−2(t−r)ϕ(τX
ǫ
r−+γ(τX

ǫ
r−

ω,z)ω) − P ǫ
ǫ−2(t−r)ϕ(τX

ǫ
r−

ω)
)
Ñ(dr, dz)

We remind the reader that µ a.s., P(Xǫ is càd-làg on [0,+∞[) = 1. Hence, for any t > 0,
we have P(sup0≤s≤t |Xǫ

s | < +∞) = 1. We deduce that the sequence of stopping times
Sn = inf{s ≥ 0; |Xǫ

s | > n} satisfies: µ a.s., P a.s. Sn → +∞ as n → ∞. By replacing t by
t ∧ Sn (i.e. min(t, Sn)) in (10) and by taking the expectation, the martingale terms vanish
and we get

E[ϕ(τX
ǫ
t∧Sn

ω)] = E[P ǫ
ǫ−2t∧Sn

ϕ(ω)].

Using the boundedness of ϕ, P ǫ
t ϕ and the continuity of the mappings x 7→ ϕ(τxω), t 7→ P ǫ

tϕ,
we can pass to the limit as n → ∞ in the above equality to prove P ǫ

ǫ−2tϕ(ω) = E[ϕ(τX
ǫ
t
ω)]

for ϕ ∈ C.
In case f ∈ C(Ω), we can find a sequence (ϕn)n ∈ C converging towards f in L∞(Ω)-norm

(for instance (f ⋆ ρn)n for some regularizing sequence (ρn)n ⊂ C∞
c (R)). By passing to the

limit in the relation P ǫ
ǫ−2tϕn(ω) = E[ϕn(τX

ǫ
t
ω)], we get the relation P ǫ

ǫ−2tf(ω) = E[f(τX
ǫ
t
ω)]

for each f ∈ C(Ω). Finally, we complete the proof by noticing that Mπ[P ǫ
t f ] = Mπ[f ] by

construction of (P ǫ
t )t and that E[f(τX

ǫ
t
ω)] = E[f(τX

ǫ
t−

ω)] since ∀t, P
(
Xǫ

t = Xǫ
t−

)
= 1.

Remark 4.2. As a direct consequence, for each ǫ > 0, the mapping

f ∈ C(Ω) 7→
(
t 7→

∫ t

0
f(τX

ǫ
r
ω) dr ∈ L1(Ω;C([0, T ]))

)

continuously (and uniquely) extends to L1(Ω). The extension is still denoted by
∫ t
0 f(τX

ǫ
r
ω) dr

for f ∈ L1(Ω).

5 Ergodic problems

The main purpose of this section is to establish the following results:

Theorem 5.1. Ergodic theorem I. For any f ∈ L1(Ω), the following convergence holds

lim
ǫ→0

MπE

[
sup

0≤t≤T

∣∣
∫ t

0
f(τX

ǫ
r−

ω) dr − tMπ[f ]
∣∣
]

= 0.

Corollary 5.2. Given a family (f ǫ)ǫ converging towards f ∈ L1(Ω), we have

lim
ǫ→0

MπE

[
sup

0≤t≤T

∣∣
∫ t

0
f ǫ(τX

ǫ
r−

ω) dr − tMπ[f ]
∣∣
]

= 0.
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Corollary 5.3. Given a continuous function g satisfying |g(z)| ≤ min(1, z2) for all z ∈ R,
the following convergence holds

lim
ǫ→0

MπE

[∣∣
∫ t

0

∫

R

g
(
ǫγ(τX

ǫ
r−

ω,
z

ǫ
)
)
ν(dz)dr − tM[θ]

∫

R

g(z)ν(dz)
∣∣
]

= 0.

Proof of Corollary 5.2. Clearly, the result follows from Theorem 5.1 applied to f and from
the inequality

MπE

[
sup

0≤t≤T

∣∣
∫ t

0
(f ǫ − f)(τX

ǫ
r−

ω) dr
∣∣
]
≤ TMπ[|f ǫ − f |].

Proof of Corollary 5.3. Consider such a function g. We have

∫ t

0

∫

R

g
(
ǫγ(τX

ǫ
r−

ω,
z

ǫ
)
)
ν(dz)dr =ǫ−α

∫ t

0

∫

R

g
(
ǫγ(τX

ǫ
r−

ω, z)
)
ν(dz)dr

=ǫ−α

∫ t

0

∫

R

g(ǫz)c(τX
ǫ
r−

ω, z)e
2V (τX

ǫ
r−

ω)
ν(dz)dr

=

∫ t

0

∫

R

g(z)c(τX
ǫ
r−

ω,
z

ǫ
)e

2V (τX
ǫ
r−

ω)
ν(dz)dr.

We define Gǫ(ω) =
∫

R
g(z)c(ω, z

ǫ )e
2V (ω)ν(dz). From Assumption B, the family (Gǫ)ǫ con-

verges towards G(ω) = θ(ω)e2V (ω)
∫

R
g(z)ν(dz) in L1(Ω). The proof can be completed with

Corollary 5.2.
The proof of Theorem 5.1 is based on several auxiliary results listed (and proved) below

Proposition 5.4. Given f ∈ L2(Ω) and a family (λ(ǫ))ǫ>0 ⊂]0;+∞[ such that

lim
ǫ→0

λ(ǫ) = 0,

we define uǫ (for any ǫ > 0) as the solution of the resolvent equation

λ(ǫ)uǫ −Lǫuǫ = f .

Then we have
lim
ǫ→0

|λ(ǫ)uǫ − Mπ[f ]|2 = 0

and the estimates

(11) λ(ǫ)|Duǫ|2π +
λ(ǫ)ǫ2−α

2
M

∫

R

(Tzu
ǫ − uǫ)2c(ω, z)ν(dz) ≤ |f |2π.
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Proof. From the resolvent equation (6) (where we choose ψ = uǫ), we have

λ(ǫ)|uǫ|2π +
1

2
(aDuǫ,Duǫ)π +

ǫ2−α

2
M

∫

R

(Tzu
ǫ − uǫ)2c(ω, z)ν(dz) = (f ,uǫ)π.(12)

We use the Cauchy-Schwarz inequality in the right-hand side to obtain:

(f ,uǫ)π ≤ |f |2π
2λ(ǫ)

+
λ(ǫ)|uǫ|2π

2
.

By plugging this inequality into (12) and by multiplying by λ(ǫ), we obtain

λ2(ǫ)|uǫ|2π
2

+
λ(ǫ)

2
(aDuǫ,Duǫ)π +

λ(ǫ)

2
ǫ2−α

M

∫

R

(Tzu
ǫ − uǫ)2c(ω, z)ν(dz) ≤ |f |2π

2
.(13)

Estimate (11) then results from Assumption C. Moreover, the family (λ(ǫ)uǫ)ǫ is bounded
in L2(Ω) and, along a subsequence, we can find f ∈ L2(Ω) such that

λ(ǫ)uǫ → f weakly in L2(Ω).

From the resolvent equation (6), we have for any ϕ ∈ H,

λ(ǫ)2(uǫ,ϕ)π +
λ(ǫ)

2
(aDuǫ,Dϕ)π +

λ(ǫ)

2
ǫ2−α

M

∫

R

(Tzu
ǫ − uǫ)(Tzϕ−ϕ)c(ω, z)ν(dz)

= (f ,ϕ)πλ(ǫ).(14)

Thanks to lemma 3.2, (14) also holds for any ϕ ∈ Dom(Ld).
We now investigate the limit of each term in (14) as ǫ → 0 when the function ϕ is assumed

to belong to Dom(Ld). We use the relation (valid for ϕ ∈ Dom(Ld)): 1
2(aDuǫ,Dϕ)π =

−(uǫ,Ldϕ)π and we deduce

λ(ǫ)(aDuǫ,Dϕ)π = −(λ(ǫ)uǫ,Ldϕ)π → −(f ,Ldϕ)π as ǫ → 0.

On the other hand, from (11), we have

lim
ǫ→0

[
λ(ǫ)2(uǫ,ϕ)π +

λ(ǫ)

2
ǫ2−α

M

∫

R

(Tzu
ǫ −uǫ)(Tzϕ−ϕ)c(ω, z)ν(dz)

]
≤ lim

ǫ→0
λ(ǫ)|f |2π/2 = 0.

So we are in position to pass to the limit as ǫ → 0 in (14) and we obtain (f ,Ldϕ)π = 0
for any ϕ ∈ Dom(Ld). Since Ld is self-adjoint, we deduce f ∈ Dom(Ld) and Ldf = 0. In
particular, (Ldf ,f) = −1

2(aDf ,Df) = 0. As a consequence we deduce that f is constant
µ almost surely.

We now determine the constant f . Plugging the function ψ = 1 into the relation (6)
yields for every ǫ > 0,

Mπ[λ(ǫ)uǫ] = Mπ[f ].
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It just remains to let ǫ go to 0 and to use the weak convergence to obtain Mπ[f ] = Mπ[f ].
As a consequence Mπ[f ] = f . This establishes uniqueness of the weak limit of the family
(λ(ǫ)uǫ)ǫ so that the whole family is weakly converging (not along a subsequence).

Finally we establish the strong convergence of the family (λ(ǫ)uǫ)ǫ towards f as ǫ → 0.
To that purpose, it is enough to show that limǫ→0 |λ(ǫ)uǫ|π = |f |π. We multiply (12) by
λ(ǫ) and we deduce

limǫ→0|λ(ǫ)uǫ|2π ≤ limǫ→0(f , λ(ǫ)uǫ)π = (f ,f)π = |f |2π
which yields the desired result since |f |π ≤ limǫ→0|λ(ǫ)uǫ|2π as a consequence of the weak
convergence.
Proof of Theorem 5.1. It is enough to investigate the case of a function f ∈ C. Indeed,
the general case the results from the inequality

MπE

[
sup

0≤t≤T

∣∣
∫ t

0
f(τX

ǫ
r−

ω) dr − tMπ[f ]
∣∣
]
≤MπE

[
sup

0≤t≤T

∣∣
∫ t

0
fn(τX

ǫ
r−

ω) dr − tMπ[fn]
∣∣
]

+ 2TMπ[|f − fn|].

and the density of C in L1(Ω).
So we consider a function f ∈ C. Furthermore, even if it means replacing f by f −

Mπ[f ], we may (and will) assume that Mπ[f ] = 0. Since C ⊂ H∞(Ω) ∩L∞(Ω), Proposition
3.1 ensures that the solution uǫ of the resolvent equation λ(ǫ)uǫ − Lǫuǫ = f belongs to
H∞(Ω) ∩ L∞(Ω). So we can apply the Itô formula:

uǫ(τX
ǫ
t
ω) =uǫ(τx/ǫω) +

∫ t

0

1

2ǫ2
Lǫuǫ(τX

ǫ
r−

ω) dr +

∫ t

0

1

ǫ
σDuǫ(τX

ǫ
r−

ω) dBr

+

∫ t

0

∫

R

[
uǫ(τX

ǫ
r−+γ(τX

ǫ
r−

ω, z
ǫ
)ω) − uǫ(τX

ǫ
r−

ω)
]
Ñ(dr, dz).

By using the relation λ(ǫ)uǫ −Lǫuǫ = f , we deduce for every ǫ > 0 and t ≥ 0,
∫ t

0
f(τX

ǫ
r−

ω)dr = −ǫ2(uǫ(τX
ǫ
t
ω) − uǫ(τx/ǫω)) +

∫ t

0
λ(ǫ)uǫ(τX

ǫ
r−

ω)dr + ǫ

∫ t

0
σDuǫ(τX

ǫ
r−

ω)dBr

+ ǫ2

∫ t

0

∫

R

[
uǫ(τX

ǫ
r−+γ(τX

ǫ
r−

ω, z
ǫ
)ω) − uǫ(τX

ǫ
r−

ω)
]
Ñ(dr, dz).(15)

We now establish the convergence to 0 of each term of the above right-hand side as ǫ → 0.
From Proposition 3.1, we have

(16) Mπ

[
sup

0≤t≤T
|ǫ2uǫ(τX

ǫ
r−

ω)|2
]
≤ ǫ4λ(ǫ)−2|f |2∞.

Furthermore, the Jensen inequality and Proposition 4.1 yield

(17) Mπ

[
sup

0≤t≤T
|
∫ t

0
λ(ǫ)uǫ(τX

ǫ
r−

ω)dr|2
]
≤ Tλ(ǫ)2|uǫ|2π.
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Concerning the Brownian martingale, we use in turn the Doob inequality, Proposition 4.1,
Assumption C and (11) to obtain

MπE

[
sup

0≤t≤T

∣∣ǫ
∫ t

0
σDuǫ(τX

ǫ
r−

ω)dBr

∣∣2
]
≤4Tǫ2(aDuǫ,Duǫ)π ≤ 4TMCǫ2|Duǫ|2π

=4TMC(ǫ2/λ(ǫ))λ(ǫ)|Duǫ|2π ≤ 4TMC(ǫ2/λ(ǫ)) |f |2π.(18)

We treat the jump martingale with Lemma A.2 and (11)

MπE

[
sup

0≤t≤T

∣∣ǫ2

∫ t

0

∫

R

[
uǫ(τX

ǫ
r−+γ(τX

ǫ
r−

ω, z
ǫ
)ω) − uǫ(τX

ǫ
r−

ω)
]
Ñ(dr, dz)

∣∣2
]

= 4Tǫ4−α
M

∫

R

(
Tzu

ǫ − uǫ
)2
c(ω, z) ν(dz)

≤ 4T
(
ǫ2/λ(ǫ)

)
|f |2π.(19)

We choose now a family (λ(ǫ))ǫ such that

lim
ǫ→0

λ(ǫ) = 0 and lim
ǫ→0

ǫ2/λ(ǫ) = 0.

Estimates (16) (17) (18) (19) and Proposition 5.4 ensure that all the terms involved in the
right-hand side of (15) converge to 0 in L1(Ω;C([0, T ])) as ǫ → 0. This completes the
proof.

6 Construction of the correctors

Proposition 6.1. For any ǫ > 0, we define uǫ as the solution of the resolvent equation

ǫ2uǫ −Lǫuǫ = b,

that is uǫ = Gǫ
ǫ2b. Then we can find ξ ∈ L2(Ω) such that

lim
ǫ→0

[
ǫ2|uǫ|2π + |Duǫ − ξ|2π + ǫ2−α

M

∫

R

(Tzu
ǫ − uǫ)2c(ω, z)ν(dz)

]
= 0

Proof. By plugging the function ψ = uǫ into the weak form of the resolvent equation (6),
we get

ǫ2|uǫ|2π +
1

2
(aDuǫ,Duǫ)π +

ǫ2−α

2
M

∫

R

(Tzu
ǫ − uǫ)2c(ω, z)ν(dz) = (b,uǫ)π(20)

We estimate the right-hand side by

(b,uǫ)π =
1

2
(D(ae−2V ),uǫ)π = −1

2
(ae−2V ,Duǫ)π = −1

2
(a,Duǫ)π.

12



By using the Cauchy Schwarz inequality, we obtain for some constant C > 0 (independent
of ǫ)

(b,uǫ)π ≤ C +
1

4
(aDuǫ,Duǫ)π.

Plugging this inequality into (20) yields

ǫ2|uǫ|2π +
1

4
(aDuǫ,Duǫ)π +

ǫ2−α

2
M

∫

R

(Tzu
ǫ − uǫ)2c(ω, z)ν(dz) ≤ C

Assumption C then ensures that the family (Duǫ)ǫ is bounded in L2(Ω). Therefore we can
find ξ ∈ L2(Ω) such that, along a subsequence, the family (Duǫ)ǫ>0 converges weakly in
L2(Ω) towards ξ as ǫ → 0. We further stress that the previous bound implies that

ǫ2uǫ strongly−−−−−→
L2(Ω)

0; ǫ2−α(Tzu
ǫ − uǫ)

strongly−−−−−−−−−−−−−−−−−→
L2(Ω×R;c(ω,z)ν(dz)µ(dω))

0.

Now we establish that the whole family (Duǫ)ǫ>0 is weakly converging. From the resol-
vent equation (6), we have for any ϕ ∈ H,

(21) (ǫ2uǫ,ϕ)π +
1

2
(aDuǫ,Dϕ)π +

ǫ2−α

2
M

∫

R

(Tzu
ǫ − uǫ)(Tzϕ−ϕ)c(ω, z)ν(dz) = (b,ϕ)π

Letting ǫ → 0 yields for any ϕ ∈ H, 1
2(aξ,Dϕ)π = (b,ϕ)π. This equation characterizes the

function ξ and therefore establishes the uniqueness of the weak limit. So the whole family
(Duǫ)ǫ>0 is weakly converging.

We now establish the strong convergence. As a consequence of the previous equality, we
have

lim
ǫ→0

(b,uǫ)π = lim
ǫ→0

1

2
(aξ,Duǫ)π =

1

2
(aξ, ξ)π.

We take the limǫ→0 in both sides of (20), we obtain

(22) limǫ→0

[
ǫ2|uǫ|2π +

1

2
(aDuǫ,Duǫ)π +

ǫ2−α

2
M

∫

R

(Tzu
ǫ − uǫ)2c(ω, z)ν(dz)

]
≤ 1

2
(aξ, ξ)π.

We deduce

(23) limǫ→0(aDuǫ,Duǫ)π ≤ (aξ, ξ)π.

Note that both inner products (·, ·)π and (a·, ·)π define equivalent norms on L2(Ω) since a is
uniformly elliptic (Assumption C). The family (Duǫ)ǫ>0 therefore weakly converges towards
ξ in L2(Ω) with respect to the norm associated to (a·, ·)π. The weak convergence implies

(24) limǫ→0(aDuǫ,Duǫ)π ≥ (aξ, ξ)π.
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Gathering (23) and (24) yields limǫ→0(aDuǫ,Duǫ)π = (aξ, ξ)π. The convergence of the
norms together with the weak convergence implies the strong convergence of the family
(Duǫ)ǫ>0 towards ξ in L2(Ω) with respect to the norm associated to (a·, ·)π. Since the
norm associated to (a·, ·)π is equivalent to that associated to (·, ·)π , we deduce the strong
convergence of the family (Duǫ)ǫ>0 towards ξ in L2(Ω). Once that convergence established,
(22) also implies

limǫ→0

[
ǫ2|uǫ|2π +

ǫ2−α

2
M

∫

R

(Tzu
ǫ − uǫ)2c(ω, z)ν(dz)

]
= 0,

and this completes the proof.

7 Homogenization

We apply the Itô formula to the function x 7→ ǫuǫ(τx/ǫω) where uǫ = Gǫ
ǫ2(b) (see Section 6)

and we get:

ǫuǫ(τX
ǫ
t
ω) − ǫuǫ(τx/ǫω) =

∫ t

0
ǫuǫ(τX

ǫ
r−

ω)dr −
∫ t

0

1

ǫ
b(τX

ǫ
r−

ω)dr +

∫ t

0
Duǫσ(τX

ǫ
r
ω) dBr

+ ǫ

∫ t

0

∫

R

(
uǫ(τX

ǫ
r−+γ(τ

X
ǫ
r−

ω,z)ω) − uǫ(τX
ǫ
r−

ω)
)
Ñ(dr, dz).(25)

Therefore, by summing with (3), we get:

ǫuǫ(τX
ǫ
t
ω) + Xǫ

t = x + ǫuǫ(τx/ǫω) +

∫ t

0
ǫuǫ(τX

ǫ
r−

ω)dr +

∫ t

0
(1 + Duǫ)σ(τX

ǫ
r−

ω) dBr

+ ǫ

∫ t

0

∫

R

(
uǫ(τX

ǫ
r−+γ(τX

ǫ
r−

ω, z
ǫ
)ω) − uǫ(τX

ǫ
r−

ω)
)
Ñ(dr, dz)

+ ǫ

∫ t

0

∫

R

γ(τX
ǫ
r−

ω,
z

ǫ
) N̂ ǫ(dr, dz) +

∫ t

0
ǫ1−αe(τX

ǫ
r−

ω)dr

In order to prove the result, we consider each term in the above sum separately.

Lemma 7.1. We have the following convergence:

Mπ

[
|ǫuǫ(τX

ǫ
t
ω)|2 + |ǫuǫ(τx/ǫω)|2 +

∫ t

0
ǫuǫ(τX

ǫ
r−

ω)dr|2
]
→ 0, as ǫ → 0

and

MπE

[
|ǫ

∫ t

0

∫

R

(
uǫ(τX

ǫ
r−+γ(τX

ǫ
r−

ω, z
ǫ
)ω) − uǫ(τX

ǫ
r−

ω)
)
Ñ(dr, dz)|2

]
→ 0, as ǫ → 0.
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Thus, we just have to investigate the convergence of the following semimartingale:

Y ǫ
t =

∫ t

0
(1 + Duǫ)σ(τX

ǫ
r−

ω) dBr + ǫ

∫ t

0

∫

R

γ(τX
ǫ
r−

ω,
z

ǫ
) N̂ ǫ(dr, dz) +

∫ t

0
ǫ1−αe(τX

ǫ
r−

ω)dr

In order to obtain the desired result, we introduce the truncation function h defined by
h(z) = z if |z| ≤ 1 and h(z) = sign(z) if |z| > 1 and we use theorem VIII.4.1 in [5].
Following the notations of [5], we introduce the following processes:

Y̌
ǫ,(h)
t =

∑

0<s≤t

∆Y ǫ
s − h(∆Y ǫ

s )

and
Y

ǫ,(h)
t = Y ǫ

t − Y̌
ǫ,(h)
t .

Note that we can decompose the semimartingale Y ǫ,(h) into its martingale part and its
predictable bounded variation part as:

Y ǫ
t = M

ǫ,(h)
t + B

ǫ,(h)
t ,

where M ǫ,(h), Bǫ,(h) are given by:

M
ǫ,(h)
t =

∫ t

0
(1 + Duǫ)σ(τX

ǫ
r−

ω) dBr +

∫ t

0

∫

R

h(ǫγ(τXr−
ω,

z

ǫ
)) Ñ (dr, dz)

and

B
ǫ,(h)
t =

∫ t

0
ǫ1−αe(τX

ǫ
r−

ω)dr +

∫ t

0

∫

R

h(ǫγ(τXr−
ω,

z

ǫ
))1I{|z|>ǫ} ν(dz)dr

According to theorem VIII.4.1 in [5], to prove the convergence of the semimartingale Y ǫ in
the Skorohod topology towards a Lévy process with characteristic function given by Theorem
2.3, we have to establish:

1) Bǫ,(h) converges towards 0 in C([0, T ]; R) with respect to the sup-norm in probability,
2) we denote by < M ǫ,(h) > the compensator of the martingale M ǫ,(h), that is the

unique Ft-predictable process such that M ǫ,(h)− < M ǫ,(h) > becomes a Ft-martingale. Then
< M ǫ,(h) > converges towards At + tM[θ]

∫
R

h2(z)ν(dz) in probability for all t ≥ 0.
3) for every bounded continuous function g vanishing in a neighborhood of 0, the following

convergence holds:

∫ t

0

∫

R

g
(
ǫγ(τX

ǫ
r−

ω,
z

ǫ
)
)
ν(dz)dr → tM[θ]

∫

R

g(z)ν(dz)

in probability for all t ≥ 0.
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So we check now that all the above points are satisfied. Point 3) clearly results from
corollary 5.3. The compensator of the martingale M ǫ,(h) is given by

< M ǫ,(h) >t=

∫ t

0
(1 + Duǫ)2a(τX

ǫ
r−

ω) dr +

∫ t

0

∫

R

h2(ǫγ(τXr−
ω,

z

ǫ
)) ν(dz)dr.

Point 2) then results from the combination of Section 6 (in particular Duǫ → ξ in L2(Ω),
Corollary 5.2 and Corollary 5.3.

We admit for a while the following result, which is proved in the appendix.

Lemma 7.2. The process Bǫ,(h) converges to 0 in D([0, T ]; R) in probability for the Skorohod
topology.

To sum up, the three characteristics of the semimartingale Y ǫ converge as ǫ → 0 to those
of a Lévy process L with Lévy exponent:

ϕ(u) = −1

2
Au2 +

∫

R

(eiuz − 1 − iuz1I{|z|≤1})M[θ]ν(dz).

Using theorem VIII.4.1 in [5], we conclude that the following convergence holds for the
Skorohod topology:

Y ǫ ǫ→0−→ L.

We deduce that the finite-dimensional distributions of the process Xǫ converge to those of
the process L. It remains to prove that the process Xǫ is tight for the Skorohod topology.
This is the purpose of the next section.

8 Tightness

Arguing exactly as in Section 7, we can prove that the semimartingale

Y ǫ
t =

∫ t

0
σ(τX

ǫ
r−

ω) dBr + ǫ

∫ t

0

∫

R

γ(τX
ǫ
r−

ω,
z

ǫ
) N̂ ǫ(dr, dz) +

∫ t

0
ǫ1−αe(τX

ǫ
r−

ω)dr

converges for the Skorohod topology as ǫ → 0. So it is tight. The difficult term actually is

1

ǫ

∫ t

0
b(τX

ǫ
r−

ω) dr.

The strategy to establish its tightness is inspired from [7, Section 3.3] (idea originally adapted
from [12]). The adaptation to the setup of jump-diffusion processes is given in [10]. The
present setup does not give rise to additional difficulties. So we just outline the proof and
write properly the intermediate steps to stick with the notations of the present paper. The
reader is referred to [10] or [7] for further details.

Our purpose is to establish the following result:
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Theorem 8.1. We have the following estimation of the continuity modulus:

(26) MπE

[
sup

|t−s|≤δ
0≤s,t≤T

∣∣1
ǫ

∫ t

0
b(τX

ǫ
r−

ω) dr
∣∣
]
≤ C(T )δ1/2 ln δ−1

for some positive constant C(T ) only depending on T .

The tightness of 1
ǫ

∫ t
0 b(τX

ǫ
r−

ω) dr in the Skorohod topology is a direct consequence.

Guideline of the proof. We assume that the starting point x is 0 in (3). We will explain
thereafter how to deduce the general case.

1) Since b = e2V

2 D(ae−2V ), we can make an integration by parts to check that

(27) ∀ϕ ∈ C, (b,ϕ2)π ≤ PBd(ϕ,ϕ)1/2|ϕ|π ≤ P
(
Bd(ϕ,ϕ) + ǫ2−αBj(ϕ,ϕ)

)1/2|ϕ|π

for some positive constant P .
2) Then we estimate the exponential moments of the random variable 1

ǫ

∫ t
0 b(τX

ǫ
r−

ω) dr.

To that purpose, the Feynmann-Kac formula provides a connection between the exponential
moments and the solution of a certain evolution equation:

Theorem 8.2. Feynmann-Kac formula. Fix β ∈ R. The function

uǫ(t, ω) = E

[
exp

(β

ǫ

∫ t

0
b(τX

ǫ
r−

ω) dr
)]

is a solution of the equation

∂tu
ǫ = ǫ−2Lǫuǫ + βǫ−1buǫ

with initial condition uǫ(0, ω) = 1.

Remark 8.3. By solution, we mean a function uǫ such that ∀t ≥ 0, uǫ(t, ·) ∈ Dom(Lǫ) and

lim
s→0

uǫ(t + s, ·) − uǫ(t, ·)
s

= ǫ−2Lǫuǫ(t, ·) + βǫ−1b(·)uǫ(t, ·) in L2(Ω).

By using the Dirichlet form associated to the operator Lǫ, we can prove

Proposition 8.4. Let uǫ(t, ·) be the function of Theorem 8.2. Then

Mπ[uǫ(t, ·)2] ≤ e2λǫt

where λǫ is defined as λǫ = sup |ϕ|π=1,
ϕ∈DomLǫ

(ϕ, (ǫ−2Lǫ + βǫ−1b)ϕ)π.
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By using the stationnarity of the process τX
ǫ
r
ω under the measure π and Proposition 8.4,

we then establish

(28) MπE

[
exp

∣∣∣β
1

ǫ

∫ t

s
b(τX

ǫ
r−

ω) dr
∣∣∣
]
≤ 2 exp

(
λǫ(t − s)

)
.

By using (27), we get for each function ϕ ∈ Dom(Lǫ) such that |ϕ|π = 1:

(ϕ, (ǫ−2Lǫ + βǫ−1b)ϕ)π ≤− ǫ−2
(
Bd(ϕ,ϕ) + ǫ2−αBj(ϕ,ϕ)

)

+ Pβǫ−1
(
Bd(ϕ,ϕ) + ǫ2−αBj(ϕ,ϕ)

)1/2
.

Optimizing the polynom P (x) = −ǫ−2x2 +Pβǫ−1x with respect to the variable x ∈ R yields

(29) λǫ ≤ β2P 2/4.

We gather (28) and (29) to obtain

MπE

[
exp

∣∣∣β
1

ǫ

∫ t

s
b(τX

ǫ
r−

ω) dr
∣∣∣
]
≤ 2 exp

(
β2P 2(t − s)/4

)
.

3) The last step is to use the GRR inequality to exploit the exponential bounds we have
just established

Proposition 8.5. (Garsia-Rodemich-Rumsey’s inequality). Let p and Ψ be strictly
increasing continuous functions on [0,+∞[ satisfying p(0) = Ψ(0) = 0 and limt→∞ Ψ(t) =
+∞. For given T > 0 and g ∈ C([0, T ]; Rd), suppose that there exists a finite B such that;

(30)

∫ T

0

∫ T

0
Ψ

( |g(t) − g(s)|
p(|t − s|)

)
ds dt ≤ B < ∞.

Then, for all 0 ≤ s ≤ t ≤ T ,

(31) |g(t) − g(s)| ≤ 8

∫ t−s

0
Ψ−1(4B/u2) dp(u).

We conclude by using the GRR inequality (with g(t) = 1
ǫ

∫ t
s b(τX

ǫ
r−

ω) dr, p(t) =
√

t,

Ψ(t) = et − 1), by taking the expectation and by using the above estimate.
4) In the case the starting point x is not necessary equal to 0. We denote by Xǫ,ω,x the

solution of (3) starting from x ∈ R in the environment ω. It is plain to see that the processes

x + X
ǫ,τx

ǫ
ω,0

and Xǫ,ω,x are both solution of the same SDE. So they have the same law. In
what follows, C denotes a positive constant such that C−1

M[f ] ≤ Mπ[f ] ≤ CM[f ] for all
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measurable nonnegative functions f : Ω → R. We deduce

MπE

[
sup

|t−s|≤δ
0≤s,t≤T

∣∣1
ǫ

∫ t

0
b(τX

ǫ,ω,x
r−

ω) dr
∣∣
]

= MπE

[
sup

|t−s|≤δ
0≤s,t≤T

∣∣1
ǫ

∫ t

0
b(τ

x
ǫ
+X

ǫ,τx/ǫω,0

r−

ω) dr
∣∣
]

= MπE

[
sup

|t−s|≤δ
0≤s,t≤T

∣∣1
ǫ

∫ t

0
b
(
τ
X

ǫ,τx/ǫω,0

r−

(τx
ǫ
ω)

)
dr

∣∣
]

≤ CME

[
sup

|t−s|≤δ
0≤s,t≤T

∣∣1
ǫ

∫ t

0
b
(
τ
X

ǫ,τx/ǫω,0

r−

(τx
ǫ
ω)

)
dr

∣∣
]

By invariance of the measure µ under translations, the last quantity matches

CME

[
sup

|t−s|≤δ
0≤s,t≤T

∣∣1
ǫ

∫ t

0
b
(
τ
X

ǫ,ω,0
r−

ω
)
dr

∣∣
]
.

Finally, we deduce

MπE

[
sup

|t−s|≤δ
0≤s,t≤T

∣∣1
ǫ

∫ t

0
b(τX

ǫ,ω,x
r−

ω) dr
∣∣
]
≤C2

MπE

[
sup

|t−s|≤δ
0≤s,t≤T

∣∣1
ǫ

∫ t

0
b
(
τ
X

ǫ,ω,0
r−

ω
)
dr

∣∣
]

≤C(T )δ1/2 ln δ−1.

So we have established the tightness estimates for any starting point x ∈ R.

Appendix

A Auxiliary lemmas

Lemma A.1. If the function h : R → R is given by h(z) = z if |z| ≤ 1 and h(z) = sign(z)
otherwise, then the following limit holds in the L∞(Ω) sense

lim
β↓0

∫

β<|z|
h(z)c(ω,

z

ǫ
)e2V (ω)ν(dz)

uniformly with respect to ǫ > 0.

Proof. It it plain to adapt the proof of Lemma A.2 in [10] with g(ω, z) = h(z)e2V (ω) and
k = 0. The function C is here given by C(ω) = 2V (ω) since h(z) + h(−z) = 0. Following
the proof in [10], it is not difficult to see that the convergence is uniform with respect to ǫ.
We let the reader check the details.
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Lemma A.2. If ϕ ∈ H then

Mπ

[
sup

0≤t≤T

∣∣
∫ t

0

∫

R

(
ϕ(τX

ǫ
r−+γ(τX

ǫ
r−

ω, z
ǫ
)ω) −ϕ(τX

ǫ
r−

ω)
)
Ñ(dr, dz)

∣∣2
]

≤ 4Tǫ−α

∫ t

0
M

[ ∫

R

(
Tyϕ−ϕ

)2
c(ω, y) ν(dy)

]
.

Proof. By using in turn the Doob inequality, Proposition 4.1, the change of variables z/ǫ = y
and the relation ν ◦ γ−1

ω = c(ω, z)e2V (ω)ν(dz), we obtain

Mπ

[
sup

0≤t≤T

∣∣
∫ t

0

∫

R

(
ϕ(τX

ǫ
r−+γ(τX

ǫ
r−

ω, z
ǫ
)ω) −ϕ(τX

ǫ
r−

ω)
)
Ñ(dr, dz)

∣∣2
]

≤ 4

∫ T

0

∫

R

Mπ

[∣∣ϕ(τγ(ω, z
ǫ
)ω) −ϕ(ω)

∣∣2
]
ν(dz)

= 4Tǫ−α

∫ t

0
M

[ ∫

R

(
Tyϕ−ϕ

)2
c(ω, y) ν(dy)

]

B Proofs

Proof of Lemma 7.1. By using Section 4 and the properties of the correctors (see Section
6), we have

MπE
[
|ǫuǫ(τX

ǫ
t
ω)|2 + |ǫuǫ(τx/ǫω)|2

]
≤ 2ǫ2|uǫ|2π → 0, as ǫ → 0.

Similarly,

MπE
[
|
∫ t

0
ǫuǫ(τX

ǫ
r−

ω)dr|2
]
≤ t

∫ t

0
MπE

[
|ǫuǫ(τX

ǫ
r−

ω)|2
]
dr ≤ tǫ2|uǫ|2π → 0, as ǫ → 0.

Concerning the jump martingale, we use Lemma A.2

MπE

[
|ǫ

∫ t

0

∫

R

(
uǫ(τX

ǫ
r−+γ(τ

X
ǫ
r−

ω, z
ǫ
)ω) − uǫ(τX

ǫ
r−

ω)
)
Ñ(dr, dz)|2

]

≤ ǫ2−αtM

∫

R

(
Tzu

ǫ − uǫ
)2
c(ω, z) ν(dz) → 0, as ǫ → 0

Proof of Lemma 7.2. The expression of Bǫ,(h) can be rewritten as
∫ t
0 gǫ(τX

ǫ
r−

ω)dr where

gǫ(ω) =ǫ1−αe(ω) +

∫

R

h(ǫγ(ω,
z

ǫ
))1I{|z|>ǫ} ν(dz)

= lim
β→0

∫

{β≤|γ(ω, z
ǫ
)|}

ǫγ(ω,
z

ǫ
)1I{|z|≤ǫ}ν(dz) +

∫

R

h(ǫγ(ω,
z

ǫ
))1I{|z|>ǫ} ν(dz)

= lim
β→0

∫

{β≤|γ(ω, z
ǫ
)|}

h(ǫγ(ω,
z

ǫ
)) ν(dz),
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the last equality resulting from sup|z|≤ǫ |ǫγ(ω, z
ǫ )| ≤ ǫS (see Assumption D.5). Finally, by

using the relation ν ◦ γ−1
ω = c(ω, z)e2V (ω)ν(dz), we have

gǫ(ω) = lim
β→0

∫

{β≤|z|}
h(z)c(ω,

z

ǫ
)e2V (ω)ν(dz).

We now prove that gǫ → 0 in L1(Ω). For each fixed β > 0, Assumption B implies that
the following convergence holds in L1(Ω)

lim
ǫ→0

∫

|z|>β
h(z)c(ω,

z

ǫ
)ν(dz) = θ(ω)

∫

|z|>β
h(z)ν(dz) = 0.

From Lemma A.1, the family
( ∫

|z|>β h(z)c(ω, z
ǫ )ν(dz)

)
β>0

converges in L∞(Ω) as β → 0

uniformly with respect to ǫ > 0. We deduce that, in L1(Ω),

lim
ǫ→0

lim
β→0

∫

|z|>β
h(z)c(ω,

z

ǫ
)ν(dz) = 0.

We conclude the proof with the help of the following estimate

lim
ǫ→0

MπE

[
sup

0≤t≤T

∣∣
∫ t

0
gǫ(τX

ǫ
r−

) dr
∣∣
]
≤ lim

ǫ→0
MπE

[ ∫ T

0
|gǫ(τX

ǫ
r−

)| dr
]
≤ TMπ[|gǫ|] → 0

as ǫ → 0.
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