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SUMMARY

Wear phenomena are caused by interactions between contacting structures. The control of these
phenomena is of great importance to predict the remaining lifetime of engineering or biological
structures. In this paper, a precise mixed formulation for unilateral frictional contact problems
involving wear, based upon the use of Archard’s model, is developed. Classical Archard’s model is
shown to be nonlocal in the vicinity of the contact edges and this issue is addressed by carrying out
delocalizing wear simulations. Moreover, a wear geometry update methodology is suggested to account
for material removal due to wear. An extension, in the Arlequin framework, of the resulting wear
simulation tool is suggested to model wear of thin structures submitted to the action of very localized
contact loads. Finally, we suggest a strategy for multiscale and evolution-type contact problems (such
as scratching of thin structures) by using a new concept of ”Moving” Arlequin patch. Some numerical
tests are carried out, showing the potential of our developments.

key words: Fretting wear, unilateral contact, mixed formulation, thin structures, abrasion,

scratching test, Arlequin method

1. INTRODUCTION

Fretting wear is a surface damage process caused by material removal as a consequence of
small-amplitude cycling movement between two contacting bodies. These mechanisms are
experienced in bolted-riveted joints [11, 12], shrink-fitted shafts [13], turbo machinery [14, 15],
deep drawing [30], nuclear industry [37], human articulations/knee-joint protheses [31], etc...
Nuclear industry for instance is interested in useful information for the prediction of the
remaining lifetime of nuclear structures [28, 35, 36]. Information on the fretting wear s is of
great importance for the design of future nuclear clusters and fuel rods.
When dealing with FE analysis of nonlinear contact problems [1, 2, 3, 4, 5, 10], it is of primary
importance to use a precise and robust contact formulation that takes into account the wear
depth to compute the contact forces. In 1994, Johansson [23] incorporates Archard’s model in
a FE contact algorithm within a penalized framework to evaluate the evolution of wear profiles
and the inherent contact pressures under fretting regimes. Later, Stromberg [24] proposed an
augmented lagrangian method all with a modified local form of Archard’s model for FE wear
analysis. Doing so, numerical difficulties such as parasitic oscillations of the discrete mechanical
fields or algorithmic instabilities (see e.g. Podra [32]) are not circumvented. In this paper,
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a continuous hybrid weak-strong Characteristic-Set field and placement based formulation,
addressing the aforementioned issues, is used. In this formalism, unknown Sign-like fields are
introduced to characterize the effective worn contact zone. Besides, the wear evolution law is
given by Archard’s model.
When studying contact wear modeling based on classical Archard’s wear model, it is
experienced that the concentration of contact forces near contact edges leads to a singular
wear behaviour in this local zone [28] and that the use of the FEM gives rise to a mesh-
dependency of the wear profile. Considering contact plastic deformations could be a physical
based treatment (see e.g. [17, 41]). A phenomenological remedy is proposed in this paper and
its stabilizing effect with respect to mesh size is highlighted.
The wear solutions in [23] and [24] did not take into consideration the wear-induced geometry
change of the antagonist contact surfaces. In these works, wear is assumed to be small
enough to have only a modest influence on the contact stress state. Then the use of initial
contact geometries is justified. When wear amounts become significant, one cannot ignore the
coupled evolution of wear and contact geometry. In fact, the wear profile evolution might
change the contacting surface geometry and might also consequently change the contact
stress distribution, which in turn impacts the wear depth rate via the wear model. Published
works where contact geometry change caused by wear was accounted for are reported in
[22, 29, 32, 33, 34, 38]. The strategy used therein precludes a geometry update that is achieved
directly and incrementally, in a post-processing step, on the global mesh. The global mesh is
incrementally updated after each loading cycle computation to take into account the calculated
distribution of wear. Actually, the surface nodes are moved, in a post-processing stage, at a
distance equal to the predicted nodal wear depths in the normal direction. For the next loading
cycle, the finite element analysis is done on the new mesh, and so forth. This incremental global
remeshing procedure ensures a successive improvement of the numerical solution, but is not
efficient.
More recently, Paulin [41] and Madge [40] suggested partial mesh updates of a preselected local
set of contact nodes, labeled ”Wear Box” or ”Wear Patch”, respectively. This technique delimits
the width of the contact region to be remeshed but the ”Wear Patch” gluing to the global
mesh is still a question of great practical and theoretical importance. In fact, gluing the local
”Wear Patch” which geometry is updated to the global structure is still done using Multi-Point
constraints. Thus, achieving conforming gluing requires very demanding matching meshes. This
restrictive condition is not readily reachable for evolution-like contact problems. Moreover,
the use of Lagrange junction forces leads to overconstraint and redundancy situations. Other
more elaborated techniques such as XFEM [44, 45] or IEM [42, 46, 47] have been used to
account for Level-set and Meshless-based description surface propagation, respectively. In this
paper, a local geometry update methodology accounting for material loss is presented. Material
removal is taken into account by means of local super-imposed refined Arlequin patchs that
are geometrically-adapted to reflect the wear depth distribution. Gluing the local patchs is
achieved in the Arlequin framework [7, 8, 9].
All these works have been dedicated to the wear behaviour prediction of mechanical solid
components. Contact problems involving thin structures submitted to localized wear effects
(sheet metal forming, stamping processes,...) have not received a great deal of attention in
engineering and are summarily approached in mechanical literature. Some attempts in model
situations are reported in [26, 25, 27]. Thin structures subjected to wear may experience
contact loads that are so localized (contact edges, abrasive wear, cutting, scratching) that
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their analysis by means of a classical thin structure FE model would be irrelevant. On the
other side, a full three-dimensional analysis of such problems would be too costly. Owing to
the Arlequin framework, we suggest to super-impose a local 3D FE model to a global thin
structure one in the vicinity of the contact zone.
The outline of the paper is the following. Section 2 is devoted to the introduction of the
mechanical wear problem and to the formulation of the virtual work principle for two contacting
and wearing out bodies. The laws that define the frictional contact loads involving wear are
given in section 3. The mixed Lagrangian formulation of the wear problem is then recalled in
section 4. In section 5, some promising multiscale applications in numerical wear simulation
are shown. More precisely, classical Archard’s model is shown to be nonlocal in subsection
5.1 and delocalizing wear simulations are suggested to get rid of this numerical pathology. A
geometry update procedure accounting for material loss due to wear is presented in subsection
5.3. Finally, the wear simulation tool is extended to encompass thin structures.

2. THE VIRTUAL WORK PRINCIPLE

2.1. Notations, hypotheses and problem definition

We consider the problem of frictional wear-contact between two deformable solids S1 and
S2. The classical Lagrangian localization of these two contacting solids relies upon their
respective reference configurations. Because of material removal due to wear, taking into
account finite wear amounts requires a modification of the classical lagrangian formalism.
Indeed, as represented in figure 1, the reference configurations of the worn solids become time-
dependent. Let us notice Ω1

0,t and Ω2
0,t the (unknown) initial domains used to localize the

worn solids at time t. Then, the current configurations of the solids S1 and S2 taking wear
into consideration occupy the closures of the domains Ω1

t,t and Ω2
t,t, defined, for each time t in

the time interval I = [0, T ] of study of the system, by the following deformation (or motion)
application :

ϕi
t : Ωi

0,t → Ωi
t,t(

pi
)
7→ ϕi

t

(
pi

) (1)

The boundary of each domain Ωi
0,t is partitioned into parts Γi

u (assumed to be fixed) where

the displacements are prescribed, Γi
g,t where the surface loads are assumed to be given and

Γi
c,t the reference potential contact surface. The current positions of these boundary parts,

denoted γi
u,t, γi

g,t and γi
c,t respectively, are assumed to constitute a partition of the boundary

of Ωi
t,t.

In the reminder, the inertia terms will be neglected and the (fictive) time t will refer to
increments of loading. Moreover, body and boundary classical forces are also neglected. Only
contact loads will be considered.

2.2. Virtual Work Principle

Using classical notations [10], the Virtual Work Principle (VWP), combined with the action
and reaction principle, reads : (for each fictive 0≤ t ≤ T )
Findu(t)=

(
u1(t),u2(t)

)
∈ CAu,t = CA1

u,t × CA2
u,t,R(t) ∈ R/ ∀w =

(
w1,w2

)
∈ CAu,t :

Gint(u(t),w) = Gc(R,w) (2)
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Figure 1. The contact/wear problem.

with :

Gint(u(t),w) =

2∑

i=1

G
i
int =

2∑

i=1

∫

Ωi
0,t

Tr
[
Πi

(
ui(t)

) (
∇wi

)T
]
dΩi

0,t (3)

Gc(R,w) =

∫

Γc,t

R. [[w]] dΓ (4)

In system (2),
(
CAi

u,t

)
i=1,2

denote the spaces of kinematically admissible fields defined in Ωi
0,t,

ui the displacement field, Γc,t

(
= Γ1

c,t

)
is the potential ”slave” and reference contact surface,

Πi is the first Piola-Kirchhoff stress tensor defined in Ωi
0,t and R = R1 (p, t) = −R2 (p, t) the

nominal vector-valued unknown density of contact forces experienced in Γc,t by the worn solid
S1 from the worn solid S2 where p̄ is the point belonging to the ”master” surface Γ2

c,t paired
with the point p of the ”slave” surface Γ1

c,t by using the classical proximity procedure [6]. The
reference pairing application A1

p is defined as follows :

A1
p : Γ1

c,t → Γ2
c,t(

p1
)
7→ p1(t)

(5)

Moreover, ∀p1 ∈ Γc,t, [[w]]
(
p1

)
= w1

(
p1

)
− w2

(
A1

p

(
p1, t

))
is the jump-like field defined on

Γc,t.
System (2) has to be supplemented with material behaviour laws, initial conditions, and wear
and contact laws. For the sake of simplicity, an hyperelastic behaviour is assumed for the
constitutive materials of the solids S1 and S2. That is :

Πi = ρi
0

∂W i(Fi)

∂Fi
(6)

where W i is a local internal elastic energy per mass unit and F
i is the deformation gradient

tensor. The solids are assumed to be initially free of residual stresses. As initial condition, we
take :

ui(·, 0) = ui0 = 0,∈ Ω0,0 (7)

The contact interface model taking wear into account constitutes the subject of the next
section.
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3. CONTACT LAWS TAKING WEAR INTO ACCOUNT

3.1. Archard’s wear model

In a fretting process, wear removes volume. To simulate this material loss mechanism, Archard
[16] suggested a model which is written in terms of wear volume loss. Mc Coll [38] adapted
this global model by introducing a wear depth variable, denoted wn, the mean rate of
which characterizing the evolution of the contacting surfaces in the normal direction. In our
considered framework, we assume that the evolution of wear pulled-back to the reference
configuration is given by the following generalized Archard’s-like evolution law :

∣∣∣∣∣
dwi

n(p,t)
dt

= Ciλ(p, t) ‖[[vτ (p, t)]]‖
wi

n(p, 0) = 0 ∀p ∈ Γi
c,t

(8)

where [[vτ ]] refers to the relative sliding velocity, λ is the nominal contact pressure and Ci are
wear coefficients providing agreement between theory and experiment [34, 32].
Observe that the evolution of reference wear depth is on Γc,t. Let’s define the current
infinitesimal variation of wear as following :

δxwt = Cλx ‖[[vτ ]]‖ (9)

Let’s denote δxSt and δpS the infinitesimal surfaces in the current and reference configurations,
respectively. Since the Archard’s model invloves only wear evolution in the normal direction,
the infinitesimal worn volume is defined by δxV w = δxSt × δxwt. A basic hypothesis lying
behind a wear model is to stipulate that the worn volume is conserved. Then, the reference

infinitesimal wear variation is defined by δpw = δxwt (δpS = δxSt) and δxSt

δpS
δxwt for small and

large perturbations, respectively. From equation 9, from the definition of the nominal contact

pressure λp = λx
δxSt

δpS
and from the objectivity of the relative tangential velocity [[vτ ]], it comes

that :
δpw = Cλp ‖[[vτ ]]‖ (10)

These relations ensure the well-posedness of the suggested wear model.
Equation 8 is written in the following incremental form :

∣∣∣∣∣
∆wi

n(p,t)
∆t

= Ciλ(p, t)
∥∥∥[[uτ (p,t)

∆t
]]
∥∥∥

wi
n(p, 0) = 0 ∀p ∈ Γi

c,t

(11)

3.2. The Characteristic-Set based Signorini unilateral wear model

Contact fields are defined by means of Signorini and Coulomb interface models. One of our
formulation key points is the equivalent setting of the latter in terms of equations via the use
of unknown Sign-like fields, defined on the assumed to be known potential contact surfaces
[6, 10].
Let’s define the current worn positions xw

1 and xw
2 of a point p ∈ Γc,t and the corresponding

paired point p as follows :

xw
1 = ϕ1

t (p, t) (12)

xw
2 = ϕ2

t (p, t) (13)
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where nt = −n2
t (xw

2 ) is the unit inward normal to the solid S2 at xw
2 .

The classical Signorini contact laws modified to account for wear phenomena read :

(xw
1 (p, t) − xw

2 (p, t)) · nt ≤ 0 for (p, t) ∈ Γc,t × I (14)

λ(p, t) ≤ 0 for (p, t) ∈ Γc,t × I (15)

λ(p, t) (xw
1 (p, t) − xw

2 (p, t)) · nt = 0 for (p, t) ∈ Γc,t × I (16)

Using the definitions (12-13) in (14-16) gives :

dw
n (p, t) ≤ 0 for (p, t) ∈ Γc,t × I (17)

λ(p, t) ≤ 0 for (p, t) ∈ Γc,t × I (18)

dw
n (p, t)λ(p, t) = 0 for (p, t) ∈ Γc,t × I (19)

By using a Sign-like function, what can be called the Signorini contact laws taking into account
wear, (17-19), are transformed into the following multi-valued equalities :

λ = Sw
u (λ − ρndw

n ) (20)

Sw
u = 1R− (λ − ρndw

n ) (21)

with 1K denotes the characteristic function of the set K and ρn is a strictly positive real
parameter.

3.3. The Characteristic-Set based Coulomb frictional wear model

As mentioned in [10], Coulomb friction laws can be equivalently written by introducing the
Characteristic-Set field Sf as follows :

(1 − Sw
u )Λ = 0 (22)

Rτ = µSw
u λΛ (23)

Λ = SfΛ + (1 − Sf )(
Λ + ρτ [[vτ ]]

||Λ + ρτ [[vτ ]]||
) (24)

Sf = 1B(0,1)

(
Λ + ρτ [[vτ ]]

)
(25)

where Sw
u is defined by (21), µ is the friction coefficient, ρτ is a strictly positive real parameter

and B(0, 1) is the unit ball of R
d (d = 2, 3).

4. MIXED CONTINUOUS FORMULATION OF THE WEAR PROBLEM

By using (2-4), (20-21) and (22-25), a weak-strong hybrid formulation of the problem described
above can be derived by following in essence the lines given in [10] and [6]. It reads :

Find
(
u, λ,Λ, wi

n, Sw
u , Sf

)
∈ CAu × Hc × Hf × Hw × L∞ (Γc,0; {0, 1})2 / ∀

(
wi, λ∗,Λ∗

)
,

• Virtual Work Principle

2∑

i=1

Gi
int

(
ui,wi

)
−

∫

Γc,t

Sw
u λ[[wn]]dΓ

−

∫

Γc,t

µSw
u λ

[
SfΛ + (1 − Sf )

Λ + ρτ [[vτ ]]

‖Λ + ρτ [[vτ ]]‖

]
[[wτ ]]dΓ = 0

(26)
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• Signorini-Archard weak law

−
1

ρn

∫

Γc,t

[λ − Sw
u (λ − ρndw

n )]λ∗dΓ = 0 (27)

• Coulomb weak law

1

ρτ

∫

Γc,t

µSw
u λ

{
Λ −

[
Sf (Λ + ρτ [[vτ ]]) + (1 − Sf )

Λ + ρτ [[vτ ]]

‖Λ + ρτ [[vτ ]]‖

]}
Λ∗dΓ

+

∫

Γc,t

(1 − Sw
u ) ΛΛ∗dΓ = 0

(28)

• Sign-like fields

Sw
u = 1R− (λ − ρndw

n ) (29)

Sf = 1B(0,1)

(
Λ + ρτ [[vτ ]]

)
(30)

• Archard’s type local wear law

dwi
n

dt
(., t) = Ciλ (., t) ‖[[vτ (., t)]]‖ , i ∈ 1, 2 (31)

• Initial conditions

ui (., 0) = 0 in Ωi
0,0 (32)

wi
n (., 0) = 0 in Γc,0 (33)

where :

- Gi
int is defined by (3),

- CAu,t, Hc, Hf and Hw are the space of kinematically admissible displacement field, the
space of contact Lagrange multipliers, the space of friction (semi-) Lagrange multipliers
and the space of the wear field, respectively.

To derive an incremental form of (26-33), we consider the interval of study I = [0, T ] to be
a collection of non-overlapping sub-intervals [tk, tk+1], i.e., I =

⋃nT

k=0[tk, tk+1]. We denote
by ∆tk = tk+1 − tk = ∆t the time step (chosen here to be constant for simplicity) and
by uk =

(
u1

k,u2
k

)
the discrete approximation of the field u(tk) at time t = tk and by

wnk =
(
w1

nk, w2
nk

)
the approximation of wn(tk).

Assuming that the fields
(
uk−1, λk−1,Λk−1, wn(k−1), S

w
u(k−1), Sf(k−1)

)
are known, we solve

the following problem:
Find (uk, λk,Λk, wnk, Sw

uk, Sfk) ∈ CAu × Hc,t × Hf,t × Hw,t × L∞ (Γc,t; {0, 1})2;

Gint (uk,w) + Gcont (λk,uk,w) + Gfric (Λk, λk,uk,w) = 0, ∀w ∈ CAu (34)

G
weak
cont (λk,uk, λ∗) = 0, ∀λ∗ ∈ Hc,t (35)

G
weak
fric (Λk, λk,uk,Λ∗) = 0, ∀Λ∗ ∈ Hf,t (36)
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with :

Gint (uk,w) =

2∑

i=1

∫

Ωi
0,t

Tr
[
Πi

k

(
∇wi

)T
]
dΩi

0,0 (37)

Gcont (λk,uk,w) = −

∫

Γc,t

Sw
ukgw

nk[[wn]]dΓ (38)

Gfric (Λk, λk,uk,w) = −

∫

Γc,t

µSw
ukλk

{
SfkΛk + (1 − Sfk)

gτk

‖gτk‖

}
· [[wτ ]]dΓ (39)

G
weak
cont (λk,uk, λ∗) =

∫

Γc,t

−
1

ρn

{λk − Sw
ukgw

nk}λ∗dΓ (40)

G
weak
fric (Λk, λk,uk,Λ∗) =

∫

Γc,t

−µSw
ukλk

ρ
τ

{Λk − (SfkΛk + (1 − Sfk)
gτk

‖gτk‖
)}Λ∗dΓ+

∫

Γc,t

(Sw
uk − 1)ΛkΛ

∗dΓ = 0

(41)

where :

Πi
k = Πi

(
ui

k

)

gw
nk = λk − ρndw

nk

dw
nk = [[xk]] · nk −

2∑
i=1

wi
nk

[[∆uτk]] = ∆uτk − ∆uτ(k−1)

wi
nk = wi

n(k−1) + Ciλk ‖[[∆uτk]]‖

Sw
uk = 1R− (gw

nk)
gτk = Λk + ρ

τ
[[∆uτk]]

Sfk = 1B(0,1) (gτk)
ρ

τ
> 0

Using the FEM, a straightforward hybrid discrete formulation of the continuous incremental
problem (34-41) can be obtained.

4.1. An incremental numerical simulation staregy

The numerical approximation of the mechanical problem (34-41) supposes that the potential
worn contact surface Γc,t must be adapted continuously within the solution strategy. Moreove,
baring the computational constraints in mind, it will not be efficient to simulate individually
and explicitly all the fretting cycles.
To address these two numerical challenges, we suggest a (seemingly) new incremental wear
formulation, based on a technique which is similar to the ”cycle jumping technique”, described
by Ding and Col. in [39] :

1. If wear is not so high over a fixed number of cycles ki (depending on the wear kinetics),
one can carry out the corresponding ”wear geometry step” ∆τ i = ki × ∆t, ki ≥ 1 on a
frozen contact geometry Γc,ki . For a point p of the fixed contact surface Γc,ki :

∣∣∣∣
xw

1 = ϕ1 (p, t) − w1
n (p, t)nki

xw
2 = ϕ2 (p, t) + w2

n (p, t)nki

(42)
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Then, equations (14-16), pulled-back to the reference contact surface Γc,ki , read :

(xw
1 (p, t) − xw

2 (p, t)) · nki ≤ 0 for (p, t) ∈ Γc,ki × I (43)

λ(p, t) ≤ 0 for (p, t) ∈ Γc,ki × I (44)

λ(p, t) (xw
1 (p, t) − xw

2 (p, t)) · nki = 0 for (p, t) ∈ Γc,ki × I (45)

Before changing the contact geometry Γc,ki , the contact gap, modified to take into
account the wear kinematics, is defined as follows :

dw
n = (xw

1 − xw
2 ) =

(
dn − (w1

n + w2
n)

)
nki (46)

2. The contact geometry is updated only at the end of each ”wear geometry step” and not
before. For a given contact geometry and wear kinetics, an optimum choice could be
found, for example, by carrying out parametric investigations. The same operations as
in 1 are achieved on the contact surface Γc,ki+1 .

The procedure is the following :

i . achieve the numerical simulation on the initial given contact geometry Γc,0 = Γc,k0 ;
ii . calculate the corresponding nodal wear depths for the first ”wear geometry step”, ie for

a number of cyles N0, corresponding to the simulation time ∆τ0 = k0 × ∆t;
iii . update the contact geometry by the wear profile corresponding to the previous ”wear

geometry step” (the spatial position of each node on both contact surfaces is adjusted
in the normal direction by the calculated incremental bilateral wear amounts);

iv . for the ith ”wear geometry step”, treat the wear loads on the new contact geometry Γc,ki

for a number of cyles N i, corresponding to the simulation time ∆τ i = ki × ∆t;
v . repeat this procedure incrementally until the desired total number of fretting cycles Nt

is reached.

This approach is shown schematically in figure 2. All of these aspects have been integrated via

a specific Python user subroutine coupled to the FE software Code Aster ∗.

Remark 1

The present implementation of the wear geometry update is more accurate and efficient than
that of [50], [40] and [41]. Whereas the methodology of [41] uses a discrete Lagrange multiplier
frictional contact algorithm to strictly enforce the stick-slip conditions, the present one lies on
an accurate continuous mixed frictional contact formulation. Wear scars used to update the
contact geometry are then expected to be more accurate.

For a flexible finite element analysis of structures submitted to wear that may occur in any
place of the structure, it is of primary importance from a cost point of view to be able to
change the global numerical model representing a coarse approximation of the whole structure
in the vicinity of the worn zone.
The Arlequin method offers high mutiscale modelling potentialities in terms of flexibility and of
practical capabilities to locally integrate alterations in global numerical models of engineering

∗thermo-mechanical FE free software of Électricité de France, downloadable at www.code-aster.org
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Figure 2. Flow chart of the wear geometry update procedure.

structures.
Application of the Arlequin framework within the suggested incremental wear simulation all
with further details on the multiresolution wear strategy constitutes the subject of the following
section.

5. THE MULTIMODEL/MULTISCALE STRATEGY

5.1. The Arelquin framework for contact and wear problems

As underlined in [7], [8] and [9], the Arlequin method is a global-local type partition of model
framework which allows concurrent multiscale and multimodel analyses.
In the Arlequin framework, a local numerical model is super-imposed to the global one. The
former takes into account wear phenomena and is weakly interfaced with the latter. The
coexistence of the two different models allows to use :

i . different mesh parameters (multiscale analysis),
ii . different FE models (multimodel analysis),
ii . different mechanical/physical behaviours (multiphysic analysis).

To illustrate this, we consider the linearized elasticity model problem of a solid B, occupying
the closure of the domain Ω of R

d, coming into contact with an obstacle O (see figure 3 (a)).
The potential contact surface of the solid B is denoted Γc,t.
In order to enlighten a zone of interest S ⊂ Ω in the vicinity of the contact surface, we
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(a) (b)

Figure 3. (a) model problem (b) Arlequin coupling.

superpose a local model to the global one in S. The local model or patch is chosen in such a
manner that Γc,t ⊂ ∂S (see figure 3 (b)). To do this, we follow basically the different Arelquin
steps :

1. super-impose, in the local zone S, a local model to the global one;
2. let the mechanical energies be splitted in the superposed models, using weight positive

parameter functions verifying a partition of unity principle;
3. glue partially, in a subzone Sg of S, the local model to the global one by using a convenient

coupling operator;
4. treat the contact in a way compatible with the gluing.

The resulting mixed Arlequin problem to solve reads :
Find (ug,ul, λ,Λ,Υ;wn, Sw

u , Sf ) ∈ CA(Ω) × CA(S) × Hc × Hf × M × Hw ×

(L∞(Γc,t; {0, 1}))2 /∀ (wg,wl, λ∗,Λ∗,Υ∗)

Gint(u
g,ul,wg,wl;α) + Gcont(λ,wl) + Gfric(Λ,wl) + Garle(Υ,wg,wl) = Gext(w

g,wl;β)

(47)

G
weak
cont (ul, λ, λ∗) = 0 (48)

G
weak
fric (ul,Λ,Λ∗) = 0 (49)

Garle(Υ
∗,ug,ul) = 0 (50)
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with

Gint(u
g,ul,wg,wl;α) =

∫

Ω

αTr[σg(ug)ǫg(wg)]dΩ +

∫

S

(1 − α)Tr[σl(ul)ǫl(wl)]dS (51)

Gcont(λ,w) = −

∫

Γc,t

Sw
u λ[[wn]]dΓ (52)

Sw
u = 1R−

(
λ − ρndw,l

n

)
(53)

Gfric(Λ,w) = −

∫

Γc,t

µSw
u λ

[
SfΛ + (1 − Sf )

Λ + ρτ [[vl
τ ]]

‖Λ + ρτ [[vl
τ ]]‖

]
[[wτ ]]dΓ (54)

Sf = 1B(0,1)

(
Λ + ρτ [[vl

τ ]]
)

(55)

Garle(Υ
∗,wg,wl) = (Υ∗,wg − wl)Sg

((., .)Sg
equivalentH1(Sg) scalar product) (56)

Gext(w
g,wl;β) =

∫

Ω

βf .wgdΩ +

∫

S

(1 − β)f .wldS (57)

G
weak
cont (u, λ, λ∗) = −

1

ρn

∫

Γc,t

[
λ − Sw

u

(
λ − ρndw,l

n

)]
λ∗dΓ (58)

G
weak
fric (u,Λ,Λ∗) =

1

ρτ

∫

Γc,t

µSw
u λ

[
Λ − [Sf

(
Λ + ρτ [[vl

τ ]]
)

+ (1 − Sf )
Λ + ρτ [[vl

τ ]]

‖Λ + ρτ [[vl
τ ]]‖

]

]
Λ

∗dΓ

+

∫

Γc,t

(1 − Sw
u )ΛΛ

∗dΓ = 0

(59)

where the g and l superscripts refer to the global and local quantities, respectively and where
α et β are energy weight parameter functions verifying the following properties :

α = β = 1 in Ω \ S (60)

0 ≤ α, β ≤ 1 in S (61)

In the new (bi)model simulation, the contact and wear phenomena are totally attributed to
the local model which is coupled to the global one by means of the energy coupling operator
Garl.

The functional space M is defined by :

M = (H1(Sg))
2

This definition corresponds to a treatment of the Arlequin constraints by H1 Lagrange
multipliers (see [9] and [?] for further insights and theoretical details related to this important
coupling aspect).

When using the Arlequin method, the local model (which encompasses the frictional wear
contact phenomena) is put forward by choosing α ”nearly” equal to zero in the free zone Sf .
The two models ”living” in the superposition zone can be approximated quite differently. This
implies that one can keep a global ”coarse” numerical approximation of an engineering product
while introducing with great flexibility the refinements required by the analyses of localized
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phenomena.
The relevance of the Arlequin approach in dealing with contact problems involving wear is
exemplified in this section through three important issues, namely :

1. the delocalization of the wear law to address the singularity of wear profiles and their
mesh-dependency near the contact edges;

2. the local unilateral/bilateral geometry update (without any change of the global sound
mesh) to account for material removal due to wear;

3. the multimodel analysis of contacting thin structures submitted to wear phenomena that
may occur in any place of the structure.

5.2. Nonlocality of Archard’s model at the contact edges

It is well known that, due to the use of local Archard’s model, the numerical wear fields which
can be calculated by discretizing it by means of the classical FEM show mesh-dependency near
the contact edges. To address the singularity of wear profiles, the wear law is here delocalized
close to the contact edges.
For the sake of efficiency, it is of primary importance to be able to achieve the zoom operation
(inducing mesh-dependency) without remeshing the underlying global numerical model. Then
the delocalizing wear law is introduced in the neighborhood of the local zone by means of a
narrowly refined Arlequin patch.

Figure 4. Nonlocality of Archard’s type wear law in the Arlequin framework.

As represented in figure 4, the proposed methodology consists in :

• splitting the contact zone Γc,t into two parts denoted Γlocal
c,t and Γnonlocal

c,t and verifying :

- Γ
local

c,t ∪ Γ
nonlocal

c,t = Γc,t;

- Γlocal
c,t

⋂
Γnonlocal

c,t = ∅.
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(a) (b) (c)

Figure 5. (a) Unworn solid (b) Worn solid (c) Arlequin model superposition.

• using local Archard’s model for Γlocal
c,t (corresponding to the coarse underlying mesh away

from the contact edges), ie. :

dwn(p, t)

dt
= Cλ ‖[[vτ ]]‖ for p ∈ Γlocal

c,t (62)

• using an ”averaged” nonlocal wear law of Archard’s type for Γnonlocal
c,t (corresponding to

the narrowly refined Arlequin patch in the vicinity of contact edges), ie. :

dwn(p, t)

dt
= Cλ̃ ‖[[vτ ]]‖ for p ∈ Γnonlocal

c,t (63)

In (63), λ̃ is a contact pressure distribution resulting from a rather classical averaging technique
of the local pressure distribution λ in a fixed local zone whose length is l near contact edges.
For a 2D case, and for all x ∈ Γnonlocal

c,t , the ”averaging” procedure is achieved in the zone
B(x, δ) ∩ Γc,t where B(x, δ) is the ball whose center is x and radius is δ. The δ parameter
should be calibrated to meet experimentally measured wear profiles. The principle that lies
behind this phenomenological remedy is the following : when a specific point (the contact edge
in this case) displays high wear evolution, we decide to slow down this wear evolution so that
it drops to a mean evolution equivalent to that of neighboring contact points.
A numerical test is given in subsection 6-2 to exemplify this wear delocalizing procedure.

5.3. Wear material removal in the Arlequin framework

When the material removal from solid surfaces due to wear actions is relatively small, the only
correction of the contact gap field might be sufficient to simulate the wear evolution front.
Nevertheless, when the wear amounts are not negligible, this primary analysis may suffer
precision. A remeshing (eventually adaptive meshing) framework is often used to account for
physical material loss. For a flexible simulation of the surface wear evolution, we use the
Arlequin approach.

To illustrate this, let’s consider the sound solid represented by figure 5 (a). The formulation
of this model problem reads :

Find u ∈ CA(Ω0) such that for all w ∈ CA(Ω0)

Gint(u,w) = Gext(w) (64)

where CA(Ω0) is the space of kinematically admissible displacements and where Gint and Gext

are the virtual works of internal and external forces, respectively.
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Let’s suppose that the solid B experiences the removal of a part Bvoid of its material, occupying
the closure of a sub-domain Ωvoid (figure 5 (b)). The worn solid occupies the closure of the
domain Ω0,t of R

2. In order to model Ω0,t, we super-impose to the sound model Ω0 a local
model L which geometry reflects the material loss (cf. figure 5 (c)). Then, following the different
steps of the Arlequin approach, we :

• duplicate the mechanical fields in S,
• let the mechanical energies be shared in S by the superposed models.
• couple the two states in a sub-zone Sg of S (figure 5 (c)).

Since the superposition zone S is chosen in such a manner that it lies in the sound solid B, then
the weight affected to Ωvoid will be α ≈ 0 and the internal work

∫
Ωvoid αTr[σg(ug)ǫg(wg)]dΩ

corresponding to the lost material is almost zero.

While keeping a global FE model with the unchanged initial geometry (and, consequently,
a fixed global coarse mesh), insert a local geometrically-adapted Arlequin patch, i.e. a local
model whose geometry is updated according to the wear scar. Whereas the methodology of [40]
uses a single global mechanical field-based formulation and Multi-Point constraints to glue the
super-imposed ”wear patch”, the present methodology uses one local and one global coupled
mechanical fields and ad-hoc coupling operators in the Arlequin framework.

An illustration of the Arlequin-based wear geometry update procedure is given in subsection
6-2.

5.4. Wear of thin structures

Thin structures subjected to wear may experience contact loads that are so localized that
their analysis by means of a thin structure FE model would be irrelevant. In the Arlequin
framework, one can use a fine 3D FE approximation with a fretting wear law for the local
model while keeping a coarse plate-based FE approximation for the global model. For purpose
of clear illustration, let’s consider a plate clamped at its ends and occupying the closure of the
domain S = ωplq×] − e

2 , e
2 [ (see figure 6). The formulation of the fretting wear problem of a

Figure 6. Fretting wear with a mixed plate/3D Arlequin (bi)model.

mixed Arlequin 3d/plate (bi)model by a rigid indenter reads :
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Find
(
uΩ,uS , λ,Λ,Υ;wn, Sw

u , Sf

)
∈ CA (Ω) × CA (S) × Hc × Hf × M × Hw ×

(L∞(Γc,t; {0, 1}))2 / ∀
(
wΩ,wS , λ∗,Λ∗,Υ∗

)
∈ CA (Ω) × CA (S) × Hc × Hf × M ;

Gint

(
uΩ,wΩ,uS ,wS , α

)
+ Gcont

(
λ,wS

)
+ Gfric

(
Λ,wS

)
+ Garle

(
Υ,wΩ,wS

)
=

Gext

(
wΩ,wS , β

) (65)

Garle

(
Υ∗,uΩ,uS

)
= 0 (66)

Gweak
cont

(
λ, λ∗,uS

)
= 0 (67)

Gweak
fric

(
Λ,Λ∗,uS

)
= 0 (68)

with :

Gint

(
uΩ,wΩ,uS ,wS , α

)
=

∫

Ω

(1 − α)σΩ
αβ∂βwΩ

αdΩ +

∫

S

ασS
ij∂jw

S
i dS (69)

Gext

(
wΩ,wS , β

)
=

∫

Ω

(1 − β)fΩwΩdΩ +

∫

S

βfSwSdS (70)

Garle

(
Υ∗,wΩ,wS

)
= 〈Υ∗,wS − wΩ〉Sg

(71)

Gcont

(
λ,wS

)
= −

∫

Γc,t

Sw
u λ[[wS

n ]]dΓ (72)

Gfric

(
Λ,wS

)
= −

∫

Γc,t

µSw
u λ

[
SfΛ + (1 − Sf )

Λ + ρτ [[vS
τ ]]

‖Λ + ρτ [[vS
τ ]]‖

]
[[wτ ]]dΓ (73)

Gweak
cont

(
λ, λ∗,uS

)
= −

1

ρn

∫

Γc,t

{
λ − Sw

u

(
λ − ρndw,S

n

)}
λ∗dΓ (74)

(75)

Gweak
fric

(
Λ,Λ∗,uS

)
=

1

ρτ

∫

Γc,t

µSw
u λ

[
Λ − [Sf

(
Λ + ρτ [[vS

τ ]]
)

+ (1 − Sf )
Λ + ρτ [[vS

τ ]]

‖Λ + ρτ [[vS
τ ]]‖

]

]
Λ∗dΓ

+

∫

Γc,t

(1 − Sw
u ) ΛΛ∗dΓ = 0

(76)
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and where :

Sw
u = 1R−

(
λ − ρndw,S

n

)
(77)

Sf = 1B(0,1)

(
Λ + ρτ [[vS

τ ]]
)

(78)

σS
ij =

E

1 + ν

{
γij

(
uS

)
+

ν

1 − 2ν
γkk

(
uS

)
δij

}
(1 ≤ i, j ≤ 3) (79)

σΩ
αβ =

E

1 + ν

{
γαβ

(
uΩ

)
+

ν

1 − ν
γµµ

(
uΩ

)
δαβ

}
(1 ≤ α, β ≤ 2) (80)

σΩ
λ3 = σΩ

3λ =
κE

1 + ν
γλ3

(
uΩ

)
(κ being a correction factor and 1 ≤ λ ≤ 2) (81)

CA (S) =
{

vS ∈ H1(S); vS
|Γu

= 0
}

(82)

CA (Ω) =

{
v = v0 + zv1;v0 ∈

(
H1(ω)

)3
;v1 ∈

(
H1(ω)

)2
, |z| <

e

2
;

∣∣∣∣
v0({0;L}, y) = 0
v1({0;L}, y) = 0

}

(83)

M = CA (Ω)|S (84)

The space of gluing forces is taken as the restriction to the gluing zone of the space of admissible
plate fields.

To show the potential of our multiresolution strategy, some numerical experimentations are
carried out and results are shown in the next section.

6. NUMERICAL RESULTS

A two-dimensional elastic block problem is chosen to demonstrate the feasibility and the
relavance of the multiscale/multimodel finite element analysis of the two-dimensional fretting
wear problem. The numerical example, depicted in figure 7 and already treated in [24, 36],
consists in wearing contact interaction of a 5× 0.5 cm2 elastic block. The block is fixed at the
left end and unilaterally constrained by a rigid support at the bottom. It is also subjected to
the surface loads f and F . f is a given normal pressure acting at the top of the block and F is
a shearing cyclic load acting on the right edge of the block, with an amplitude of 10 daN/mm
according to the right part of figure 7. This type of boundary conditions in wear problems is
called fretting condition. The block and the support are approximated by 16× 10 and 32× 10
four-nodes bilinear finite elements, respectively. The potential contact surface at the bottom
of the block is approximated by 16 1D linear finite elements using the trapezoidal quadrature
rule in such a manner that the integration points coincide with the nodal displacement points
of the contact surface. This particular choice of the nodes located on the boundary Γch allows
the recovering of the well-known node-on-facet strategy. Each shear cycle is discretized by
nincr = 4 ”time steps” or increments. Classical linearized elasticity is assumed. We have taken
a Young’s modulus, a Poisson ratio and friction and wear coefficients equal to 210 GPa, 0.3,
0.3 and 1.0 × 10−11 Pa−1, respectively.
In the sequel, several variants of this numerical test are achieved :

i . The first stresses the mesh-dependency of the wear profile induced by the locality of
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Figure 7. A 2D elastic block subjected to given normal and shear cyclic loads.

Archard’s model in the vicinity of the contact edge and assesses the effectiveness of the
wear delocalization in the Arlequin framework.

ii . The point of focus of the second is the illustration, in the Arlequin framework, of
the (unilateral) wear geometry update of the ”slave” contacting surface by means of
a geometrically-adapted local patch reproducing the worn interface.

iii . The third explores the differences between unilateral and bilateral wear, combined with
the wear-related geometry update.

iv . The fourth considers the fretting wear for a mixed 3d/plate (bi)model.

6.1. Nonlocality of Archard’s model

The academic fretting test depicted in figure 7 is used here to show the potential of the wear
delocalizing strategy. The contact surface Γc,t corresponds to x ∈ [0, 5] cm. Since a steep stress
distribution gradient was expected around the contact edge, the size of the FE mesh thereby
was dealt with separately from the global contact region. Two different meshes are considered
:

• a coarse mesh (32 × 10 QUAD4 bilinear finite elements for the upper solid and 64 × 10
bilinear finite elements for the support),

• a fine Arlequin patch towards the contact edge (the refinement is done over the distance
[3.6875, 5.3125] cm and the resulting mesh contains 32 × 10 bilinear finite elements for
the upper block and 64 × 10 and 24 × 6 bilinear finite elements for the support).

Local and delocalized Archard’s type wear laws are used for both models. The length of the
nonlocal wear zone is l = 1 cm (i.e. Γlocal

c,t = [0, 4] cm and Γnonlocal
c,t = [4, 5] cm). The parameter

δ is equal to 0.3125 cm. For this particular choice, the averaging is achieved in a crown of two
elements around each point of Γnonlocal

c,t .

The results plotted in figure 8 show that the solution of local Archard’s law ”explodes” with
the refinement level while the one corresponding to nonlocal Archard’s type law seems to
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stabilize.
In order to confirm the effectiveness of the suggested wear delocalizing methodology, the
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Figure 8. Nonlocality of Archard’s wear law.

wear profiles must converge with respect to the local mesh size. Four different locally-refined
FE models corresponding to 4 different mesh parameters are used, while conserving the same
nonlocal length zone l = [4, 5] cm and the same averaging radius δ = 0.3125 cm.
Figure 9 depicts the wear scars corresponding to the 4 FE models encompassing either of the
wear laws. We notice that the wear profiles corresponding to local Archard’s model are mesh-
dependent whereas those corresponding to the nonlocal wear law are nolonger mesh-dependent
and stabilize (helpfully) despite the narrower refinement in the neighborhood of the contact
edges. Owing to the wear delocalizing methodology, the concentration of wear depths near
to the contact edges (due to the use of local Archard’s model within a linearized elasticity
framework) is alleviated, thus recovering more physically realistic stresses. Consequently, more
stabilized wear front progression is expected. This result confirms the hypothesis put forward
by various authors [51] that a mean contact pressure distribution can be convenient to recover
a homogenous evolution of the wear damage.

6.2. Application of the Arlequin framework to the wear material removal

In this section, we exemplify the feasibility and the relevance of the wear geometry update
in the Arlequin framework. Here, the wear-related geometry update procedure is unilaterally
applied to the ”slave” block contacting surface of the numerical test represented by figure 7.
For this test, the developed finite element method has been applied up to Nt = 100 fretting
cycles with an acceleration factor ∆N i = ∆N = 10. Each ”representative” fretting cycle is
discretized into ni

incr = nincr = 4 increments.
Resulting wear depth and normal contact pressure distributions with and without unilateral
wear-related geometry update are plotted in figure 10. It is worth mentioning that the Arlequin-
based contact geometry update leads to sharper stress gradients and deeper wear depths at
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Figure 9. Stabilized wear scars with the mesh for the delocalized wear law.

the leading contact edge. The stress singularity seems to sharpen at the physical boundaries
when the effective worn contact geometries are taken into account. This can be explained by
the material removal. The fretting wear loading conditions being unchanged, the ”burden”
that was supported by the lost material is attributed to the remaining material.
Amongst other reasons explaining the local sharp stress variations mentioned above, one can
point out the fact that the rigid support is not wearing out and that its geometry is not
updated. In the next subsection, we consider bilateral wear and bilateral related geometry
update.

6.3. Unilateral vs bilateral wear and geometry update

We consider the same model problem of figure 7 and we assume that the support is wearing out
even if the amount of material lost form the rigid support is relatively small when compared to
the elastic block. The wear coefficients used in Archard’s wear laws are C1 = 1.0×10−11 Pa−1

and C2 = 1.0 × 10−12 Pa−1. 2D wear computations that are identical with one exception are
compared. In the first one, wear is calculated only on the slave elastic block (unilateral wear)
whereas, in the second one, wear is calculated on both slave elastic block and master rigid
support (bilateral wear). Results in figure 11 (b) show that, under bilateral wear assumption,
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the rigid support is actually worn out. As for the elastic block, wear patterns are donut-
shaped with large values at the contact edges. Contact pressures corresponding to unilateral
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Figure 11. Tool wear hypothesis and geometry update : (a) Contact pressure distribution of the elastic
block (b) Wear depth profiles of the elastic block and the rigid support.
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and bilateral wear are depicted in figure 11 (a). At the leading contact edge, one can notice that
bilateral wear hypothesis gives rise to contact stress gradients that are weaker than unilateral
wear does. The appreciable flattening effect observed on the wear profiles can be directly
related to the rounded edges of the local geometrically-adapted patchs and to the inherent
increase of the surface conformity yielding to the wear processes.

6.4. Wear of thin structures

The Arlequin framework is used in the following example to exemplify the coupling potentiality
of a 3D model to a plate one in the vicinity of the wearing contact zone. The mechanical test
depicted in figure 6 consists in considering independent global plate and local 3D FE models
for the clamped wearing out structure, and in superimposing them through the Arlequin
framework. The meshes of the superimposed models are independent. The mean surface ωplq

of the global plate model is meshed using 50 QUAD4 bilinear elements. The Arlequin 3D patch
and the rigid indenter are meshed with 18×7×8 and 12×4×4 eight-node quadrilateral brick
elements, respectively.
Figure 12 depicts the restriction of the wear profiles to the (free part of the) superposition
zone of the mixed plate/3D (bi)model. It is worth noticing that the (x, 0, z) plane corresponds
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Figure 12. Contact pressure and wear depth distributions on the contacting surface after 10, 20 and
30 fretting cycles.
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to the one where the localization is the most critical.
Figure 13 represents the restriction to the (x, 0, z) plane of the wear profiles obtained with an
equivalent complete 3D (mono)model and the mixed Arlequin (bi)model. Here, for instance,
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Figure 13. Comparison of wear depth patterns between the fine 3D (mono)model and the Arlequin
mixed plate/3D (bi)model.

it is important to underline similarity between the two obtained wear patterns.
Moreover, figure 14 shows that the resulting mixed plate/3D Arlequin (bi)model can display
significant through-the-thickness stresses.

7. CONCLUDING REMARKS

In this paper, classical Archard’s model is shown to be nonlocal in the vicinity of the contact
edges. Delocalized Archard’s type wear law leads to more realistic wear profiles. In addition,
some multimodel/multiscale numerical wear simulations have been explored in the Arlequin
framework :

- Fretting simulations taking into account the contact geometry change due to material
removal by wear via geometrically-adapted Arlequin patchs have been performed.

- The recalled wear simulation tool, well-established for 2D/3D solids, is extended in the
Arlequin framework to analyze fretting wear phenomena of thin structures.

This implies that one can potentially keep a global numerical thin structure-based approxi-
mation of a global wearing out engineering product far from the critical contact zones while
introducing and piloting, dynamically and with great flexibility, the multiscale/multimodel
refinements required by the localized contact phenomena involving wear.

The repeating sharp stresses in oscillatory sliding contact can give rise to localized contact
plastic deformations and local fatigue failure. Linearized elasticity assumed in our primary
analysis is not sufficiently relevant to provide a precise description of these severe local
weakness mechanisms that might cause crack initiation and nucleation (see e.g. [20, 21]).
These limiting assumptions suggest that future works need to focus on a better intergration of
more enriched physical behaviours to provide a more pertinent prediction of wear depth and
damage evolution.
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(a) (b)

(c) (d)

Figure 14. (a) σxx (b) σyy (c) σxy (d) σzz.
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