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Abstract

This paper studies automatic segmentation of multiple

motions from tracked feature points through spectral em-

bedding and clustering of linear subspaces. We show that

the dimension of the ambient space is crucial for separabil-

ity, and that low dimensions chosen in prior work are not

optimal. We suggest lower and upper bounds together with

a data-driven procedure for choosing the optimal ambient

dimension. Application of our approach to the Hopkins155

video benchmark database uniformly outperforms a range

of state-of-the-art methods both in terms of segmentation

accuracy and computational speed.

1. Introduction

Motion segmentation is an important initial step in the

analysis of video sequences involving multiple objects. The

basic idea, illustrated in Fig. 1, is to segment a set of tracked

feature points into different groups corresponding to differ-

ent objects on the basis of their motions. Note that other

formulations, aiming at the segmentation of entire images

rather than feature points, can be found for instance in [4].

Figure 1. Sample frame from a video sequence of the Hopkins

database [12] involving three motions (2 objects plus background).

Left: the proposed algorithm correctly segment the feature points

in 3 groups (different colors) on the basis of their trajectory. Right:

in a similar setting, spectral curvature clustering [2] confuses the

two moving objects.

Under the affine camera model, motion segmentation

from tracked feature points amounts to a subspace sepa-

ration problem [7], where each subspace corresponds to a

different motion. The subspace separation problem itself

can be thought of as extending standard clustering, which

assumes a distribution of the data centered around multi-

ple prototypes, to data distributed along planes. The in-

crease in difficulty comes in part from the fact that multi-

ple subspaces can intersect, so that distributions of points

belonging to different groups are more likely to overlap, of-

ten leading to indistinguishability. Unlike earlier attempts

at subspace separation from high-dimensional data, the pa-

per proposes to keep a rather high dimension of the ambient

space, where the probability of facing this indistinguisha-

bility is minimized. Based on this idea, the paper proposes

a spectral clustering approach, in which the ambient space

dimension is carefully selected to allow for the best segmen-

tation.

Related work. Early attempts at motion segmentation in-

clude factorization-based methods [3, 6, 7, 18]. But except

for [18], these methods are only suitable for fully indepen-

dent motions and thus cannot deal with moving cameras,

which imply a partial dependence between the motions.

The Generalized Principal Component Analysis (GPCA)

[14] is an algebraic method for subspace separation wich

can deal with dependent motions, but which is not scalable

in terms of the ambient space dimension and the number

of motions. More recently, [11] presented an Agglomera-

tive Lossy Compression (ALC) algorithm, which can addi-

tionally deal with outlying and corrupted trajectories. This

method led to the best segmentation accuracy reported on

the Hopkins155 benchmark database [12] so far.

Our approach is based on spectral clustering [9, 15],

where the main idea is to find an embedding of the N data

points, through a few eigenvectors of an N -by-N affin-

ity matrix between all pairs of points, in which standard

clustering algorithms, such as k-means, can be applied.

In the context of motion segmentation, [10, 16] combine



factorization methods with spectral clustering by building

the affinity matrix from the shape interaction matrix. For

subspace separation, the Local Subspace Affinity (LSA)

method [17] first estimates local subspaces in the neighbor-

hood of the points and then uses spectral clustering with an

affinity based on the principal angles between the local sub-

spaces to segment the data. In Spectral Curvature Cluster-

ing (SCC) [1], the affinity is defined through the curvature

of the spaces generated by all combinations of d + 1 points

for d-dimensional subspaces. Though a random sampling

of the resulting affinity tensor is possible [2], the complex-

ity of this procedure is still rather high for a large d.

Contributions. The contribution of the paper is twofold.

First, we investigate the effect of the dimension of the am-

bient space on subspace separation. In particular, we show

that low dimensions chosen in prior work do not offer suffi-

cient separability between the subspaces and suggest lower

and upper bounds on this dimension. Then, we show how

spectral clustering can be adapted to the separation of sub-

spaces of unknown dimensions by using an affinity matrix

built from angular information between the points. In com-

parison to LSA [17], which also uses some angular informa-

tion, the proposed method does not require to estimate local

subspaces and principal angles, but instead merely amounts

to computing dot products between the points. Thus, the

complexity of the resulting algorithm remains low and does

not depend on the dimension d of the subspaces as in SCC

[2] (which additionally requires knowledge of d). Thanks to

the speed of the algorithm, we devise an automated scheme

to combine dimension reduction with spectral clustering,

where the reduced dimension is specifically tuned for the

clustering task. When applied to motion segmentation data

from the Hopkins155 benchmark [12], the proposed method

outperforms previously reported results both in terms of

segmentation accuracy and computational speed.

Paper organization. The paper starts with the formula-

tion of motion segmentation as a subspace separation prob-

lem in Sect. 2, including a discussion on the choice of the

ambient space dimension. Spectral clustering is introduced

in Sect. 3, while the proposed affinity measure is described

in Sect. 3.2 and 3.3. The experiments on synthetic as well

as real data are detailed in Sect. 5, before giving the conclu-

sions in Sect. 6.

2. Motion segmentation with feature points

In this paper, we only consider the problem of mo-

tion segmentation from tracked feature points. The

data take the form of N feature point trajectories

{(xif , yif )}i=1,...,N,f=1,...,F over F frames, where xif and

yif are the coordinates of point i in frame f . The aim is to

estimate the labels ci for every point i, which classify the

points into groups of different motions, and hence objects.

2.1. Motions as linear subspaces

Recently, many works on motion segmentation [8, 11,

12, 14] considered the affine camera model. Under this as-

sumption, it can be shown that the trajectories of feature

points belonging to the same rigid object (and same motion)

lie in a linear subspace of dimension at most four. Indeed,

the affine camera model, allows the matrix W ∈ R
2F×P ,

containing the coordinates of all P points of a single object,

to be written as
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where Xif , Yif and Zif are the 3-D coordinates of point

i and Af ∈ R
2×4 is the affine motion matrix at frame f .

As the rank of the right hand side of (1) is bounded by 4,

all columns of the matrix on the left hand side must lie in

a 4-dimensional subspace of R
2F . In this framework, seg-

menting multiple motions amounts to a linear subspace sep-

aration problem, where each subspace corresponds to a par-

ticular motion. In the remaining of the paper, the trajectory

matrix W ∈ R
2F×N is built as in (1) but with N feature

points from multiple objects.

2.2. Dimension of the ambient space

Methods such as GPCA [14] require to work in a low di-

mensional space. As the dimension D of this ambient space

has an impact on the speed and accuracy of other algorithms

as well, data, originally in R
2F , are often preprocessed by

a dimension reduction step. In [13], the authors suggest to

use a 5-dimensional ambient space, which is the minimal di-

mension in which multiple 4-dimensional (4-D) subspaces

can be embedded. Motivated by general work on compres-

sive sensing [5], [11] suggests to use Dsp = minD, subject

to D ≥ 2d log(2F/D), for d-dimensional subspaces (with

d = 4 for motion segmentation). However, the ambient

space dimension should be chosen to facilitate the separa-

tion of the subspaces. With respect to this aim, the choice

D = d + 1 to separate d-dimensional subspaces is not opti-

mal, as shown below.

Lower and upper bounds. Consider two linear sub-

spaces S1 and S2 of dimensions d1 and d2, embedded in

R
D. Then the dimension of the intersection of S1 and S2 is

bounded by

d1 + d2 −D ≤ dim(S1 ∩ S2) ≤ min(d1, d2), (2)



which, for assumed similar subspace dimensions d1 =
d2 = d as in motion segmentation, leads to

2d−D ≤ dim(S1 ∩ S2) ≤ d. (3)

By using D = d + 1, the dimension of the intersection is

given by d − 1 ≤ dim(S1 ∩ S2) ≤ d (where the upper

bound is only obtained when S1 = S2), leading to the max-

imal dimension for the intersection. Due to the difficulty

of correctly classifying points close to S1 ∩ S2, minimizing

dim(S1 ∩ S2) should be considered.

We propose to use an ambient space dimension D ≥
2d + 1, which makes the lower bound vanish and thus al-

lows the intersection S1 ∩ S2 to have minimal dimension.

Note that D has no influence on the upper bound in (2). By

choosing D, we do not impose any restriction on the dimen-

sion of the intersection, but merely increase the probability

of having a low dimension dim(S1 ∩ S2).

Noisy data. For noisy data, the larger D is, the larger the

effect of noise is. Thus, in practice, the minimal dimension

should be chosen, i.e. D = 2d + 1.

Multiple subspaces. In practice, when dealing with n
subspaces, we propose to use D = 1 +

∑n
j=1 dj to ensure

enough separability between all the subspaces. This heuris-

tics will be evaluated in the experiments of Sect. 5.1 for sub-

spaces of similar dimension d, in which case D = nd + 1.

Degenerate subspaces. When separating degenerate sub-

spaces with unknown dimensions, d and thus D are overes-

timated. In order to avoid giving to much weight to the

noise in this case, in Sect. 4 we propose an automated se-

lection of D within the bounds ndmin+1≤D≤ndmax+1
for d ∈ [dmin, dmax].

3. Spectral clustering of subspaces

In this section, the data are assumed to take the form of

N points xi ∈ R
D, i = 1, . . . , N . The aim is to partition

these points into n groups, where n is known. Three sce-

narios are considered: the points form tight clusters around

n centers, the points are distributed along lines (1-D sub-

spaces), or the points are sampled from subspaces of any

dimension.

3.1. Spectral clustering of points

Spectral clustering can be seen as applying standard

clustering to the data embedded in a particular space given

by the first eigenvectors of an N -by-N affinity matrix A,

itself built from distances between pairs of points such that

Aij ≈

{

1, if ci = cj

0, otherwise,
(4)

where ci ∈ {1, . . . , n} is the true label of point xi. Fol-

lowing [9], the spectral clustering algorithm below can be

defined.

1. Build the affinity matrix A defined by Aij =
exp(−||xi − xj‖

2
2/2σ2), if i 6= j, i = 1, . . . , N, j =

1, . . . , N , and Aii = 0.

2. Define D as a diagonal matrix, where Dii =
∑N

j=1 Aij , and the matrix L = D−1/2AD−1/2.

3. Find the leading n eigenvectors uk, k = 1, . . . , n, of

L to build the matrix U ∈ R
N×n.

4. Normalize the rows of U by Uij ← Uij/
√

∑n
j=1 U2

ij .

5. Apply k-means or another algorithm to cluster the

rows of U and then assign the samples xi to groups

accordingly.

3.2. Spectral clustering of lines

Consider now clustering points sampled from 1-D sub-

spaces, i.e. lines. In this case, an affinity defined via a radial

distance, Aij = g(||xi − xj‖), is not suitable, since points

belonging to different groups can be close to each other and

have a large affinity. To deal with this issue, we propose to

use an affinity based on angular information, e.g. defined by

Aij =

(

xT
i xj

‖xi‖2‖xj‖2

)2

, i 6= j. (5)

Figure 2 shows an example of line clustering in R
2. Using

the radial distance as in the algorithm of Sect. 3.1 yields a

wrong partition of the data, whereas the affinity (5) allows

the algorithm to recover the correct segmentation.
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Figure 2. Spectral clustering of lines with a distance-based affinity

confuses points from different subspaces (left), whereas the pro-

posed angle-based affinity (5) enables to sharply discriminate them

(right).

In the presence of noise, the values Aij cannot be all 0

or 1. In this case, a better segmentation is obtained when

the values Aij for points of the same group are well sepa-

rated from the values Aij for points of different groups. To

increase this separation, we propose to use

Aij =

(

xT
i xj

‖xi‖2‖xj‖2

)2α

, i 6= j, (6)



where α ∈ N
∗ is the parameter that tunes the sharpness of

the affinity between two points. Figure 3 shows the affinity

matrix corresponding to the data in Fig. 2 for different val-

ues of α. The values α > 1 lead to a better separation of the

groups, but when α is too large (α = 8), affinities between

points of the same group also vanish due to noise. In the

experiments of Sect. 5, we use α = 4. In practice, α should

be tuned according to the noise level.
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Figure 3. Affinity matrix of the data in Fig. 2 computed by (6) for

α = 1 (top left), α = 2 (top right), α = 4 (bottom left) or α = 8
(bottom right). The darker, the larger the value of Aij . Increas-

ing α improves the intercluster separability, but can degrade the

intracluster cohesiveness.

3.3. Subspaces of any dimension

Examples such as the ones in [9] show that spectral

clustering has no difficulty in segmenting highly connected

groups of points, i.e. groups for which there is a path be-

tween any pair of points in the corresponding similarity

graph. The following studies under which conditions, the

affinity (6) applied to samples drawn from subspaces ful-

fills this requirement.

Points of different groups. Assuming noiseless data and

considering the subspace Sci
that contains all the points of

the same group as xi, we can express the affinity between

xi and any point not in Sci
by

∀xj /∈ Sci
,

(

xT
i xj

‖xi‖2‖xj‖2

)2α

= cos2α θcicj
, (7)

where θcicj
is the first principal angle between the sub-

spaces Sci
and Scj

, i.e. the one defined by cos θcicj
=

maxu∈Sci
maxv∈Scj

uT v/‖u‖‖v‖.

Points of the same group. Let Ic = {i | xi ∈ Sc} be

the set of indexes of the points sampled from Sc. Then the

angular density of the data for subspace Sc can be defined

as

cos2 δc = min
i∈Ic

{

max
j∈Ic,j>i

(Aij)
1
α

}

, (8)

where the range j > i in the maximum operation removes

the symmetry and ensures that the affinities are taken into

account only once. This is required to detect angularly dis-

connected sets of points, which would yield a large value

for maxj∈Ic
Aij , where i ∈ Ic, but do not lead to a dense

set when considered together.

The definition of the angular density (8) implies that for

all xi, xj ∈ Sci
, there is a sequence of points of indexes

jk ∈ Ici
, k = 0, . . . ,K, such that j0 = j, jK = i, and

(

xT
jk

xjk+1

‖xjk
‖2‖xjk+1

‖2

)2α

≥ cos2α δci
, k = 0, . . . ,K−1.

(9)

In other words, there is a path from xj to xi along the con-

nected graph, that corresponds to the adjacency matrix A

with all components below cos2α δci
set to zero.

Density vs. subspace angle condition. The affinity (6)

cannot guarantee that a point of a subspace Sc has a higher

affinity with other points of the same group than with points

of other groups as in (4) (consider the extreme case, where

each subspace is only sampled at two orthogonal points).

However, it ensures that for i = 1, . . . , N , there is a j ∈ Ici
,

such that Aij > Aik for all k /∈ Ici
, under the following

condition

∀l ∈ {1, . . . , n} \ ci, cos2 δci
> cos2 θcil, (10)

or, as the single inequality,

cos2 δci
> max

l∈{1,...,n}\ci

cos2 θcil, (11)

which links the angular density of the data of Sci
with the

subspace angles. The condition (11) guarantees that each

point xi has a higher connection with its own group than

with the others. As will be seen in Sect. 5, in practice, this

condition is easily satisfied for most motion segmentation

data.

Example. Figure 4 shows the separation of two 2-D sub-

spaces (planes) in R
D for D = 3 and 4. When D = 3,

47 points lying at the intersection of the two subspaces are

misclassified, whereas only 6 points are misclassified when

D = 4. In both cases, spectral clustering is applied by using

the affinity (6) with α = 4.

Comparison with Spectral Curvature Clustering (SCC).

The main difference with SCC [2] is that we do not aim
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Figure 4. Clustering of planes in R
3 leads to 47 errors around the

intersection (left), whereas the separation in R
4 misclassifies only

6 points (right, only the first 3 components are plotted).

at defining an optimal affinity measure between points be-

longing to subspaces. To do so, SCC has to consider d + 1
points simultaneously in order to determine if they belong

to a d-dimensional linear subspace (there always exists a

d-dimensional subspace containing an arbitrary set of d or

less than d points). In the theoretical SCC, an affinity ma-

trix A ∈ R
N×Nd

is first computed from the polar curva-

ture of the simplexes generated by all the combinations of

d + 1 points as vertices. Spectral clustering is then applied

to the N -by-N product matrix AAT . To make this scheme

practicable, one has to rely on a random sampling of A as

proposed in [2].

At the contrary, the present paper proposes a suboptimal

approach, in which only pairs of points are considered si-

multaneously, as in standard spectral clustering. This yields

a low complexity of the affinity matrix computation, which

only requires N2 dot product operations between points.

The price to pay for this gain in complexity is the require-

ment that each subspace must be sampled with a certain

level of angular density in the data set. If this condition

is met, the proposed affinity measure (6) is suitable for sub-

spaces of any dimension, which makes the issue of estimat-

ing the correct dimension of the subspaces irrelevant.

4. Complete procedure

Dimension reduction. We consider the singular value de-

composition (SVD) as our method of dimension reduction

from W ∈ R
2F×N to X = [x1 . . . xN ]T ∈ R

N×D,

which also appears as the standard procedure for motion

segmentation in the literature [12, 13, 16, 17]. Note that

this choice is also related to the factorization-based methods

[3, 7], which use the SVD, W = UΣV T , to obtain a shape

interaction matrix Q = V V T , that has a block-diagonal

structure for independent motions and noiseless data. To

deal with noise and dependencies, [18] uses the truncated

SVD, W ≈ UDΣDV T
D, and an interaction matrix defined

through Qij =
∑D

k=1 exp((vk
i − vk

j )2), where vk
i is the kth

component of the ith column of V D. More closely related

to spectral clustering, [16] builds an affinity matrix from

QD = V DV T
D as Aij = exp(−1/|QDij

|2σ2) with an ad-

ditional parameter σ. In this framework, our approach with

the affinity (6) can be seen as using the truncated SVD, but

keeping the dot product structure of the shape interaction

matrix as Q = (Ṽ DṼ
T

D)2α, where Ṽ D is V D with nor-

malized rows. This normalization ensures that only angular

information is taken into account.

Best ambient space dimension. According to Sect. 2.2,

to ensure sufficient separability between n d-dimensional

subspaces while maintaining the influence of noise as low

as possible, we should choose the ambient space dimension

D=nd+1. However, in the presence of degenerate motions,

d may vary from a subspace to another and is unknown.

Considering dmin and dmax as the minimal and maximal

subspace dimensions (for motion segmentation, dmin = 1
and dmax =4), we propose to tune D in the interval ndmin+
1 ≤ D ≤ ndmax+1 by the following procedure.

Final algorithm.

1. Compute the SVD of the trajectory matrix, W =
UΣV T , and set D = ndmin + 1.

2. Compute the affinity matrix A as in (6) from the N -

by-D-data matrix X = [v1, . . . ,vD], built from the

first columns vi of V .

3. Compute the matrix L as in the algorithm of Sect. 3.1

and extract its n + 1 leading eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn+1.

4. Evaluate the relative gap rD = λn−λn+1

λn−1−λn
.

5. If D = ndmax + 1, go to step 6, otherwise D=D+1
and go to step 2.

6. Choose D = arg maxk rk and apply spectral cluster-

ing to X = [v1, . . . ,vD].

The intuition behind this procedure is that the best choice of

D is the one that leads to the best estimation of the number

of groups via rD. Here, rD acts as a model selection crite-

rion, that determines the number of clusters n on the basis

of the eigengap |λn − λn+1| (this is justified in the ideal

case, where Aij ∈ {0, 1}, for which λ1 = · · · = λn = 1
and λn+1 < 1 [9]). As n is known, rD is used to track

the values of D, that lead to the correct number of groups.

As we use SVD, another approach would be to select D di-

rectly from the effective rank of W as in [17]. However,

the criterion used in [17] to estimate the effective rank of

W involves a parameter that depends on the noise level and

seems to be difficult to tune in practice [12]. Instead, the

proposed procedure does not involve additional parameters

and specifically tunes D for a particular affinity measure in

order to improve the subsequent clustering.



5. Experiments

In this section, some synthetic experiments are first pro-

vided to support some of the proposed heuristics. Then, the

proposed algorithm is applied to real data to test its accuracy

in motion segmentation tasks. In particular, we consider a

benchmark, described in Sect. 5.2, for which results of vari-

ous methods have been previously reported in the literature.

5.1. Synthetic experiments

To test the heuristics D=nd+1, we generate 100 random

data sets of N = 100n noiseless points uniformly sampled

from d-dimensional subspaces of a D-dimensional ambi-

ent space (within the unit ball). In all these experiments,

the random subspaces are generated with a minimum angle

of π/12 between two subspaces and the data are mapped

through SVD into R
D. Table 1 shows the average error

rates obtained by the proposed spectral clustering algorithm

with α = 4 and for d = 3 and different choices of n and

D. These results support the ideas that: i) the separability

of the subspaces depends on the ambient space dimension

D, and ii) the number of subspaces also influences the opti-

mal ambient space dimension (the dimension D = nd + 1
always yields a better separability than D = 2d + 1).

n = 2
D d+1 2d 2d+1 nd nd+1
Average 17.27 – – 0.00 0.02

Median 17.75 – – 0.00 0.00

n = 3
D d+1 2d 2d+1 nd nd+1
Average 44.78 2.69 0.29 1.33 0.00

Median 45.67 1.33 0.00 0.00 0.00

n = 4
D d+1 2d 2d+1 nd nd+1
Average 59.60 15.05 2.77 2.83 0.01

Median 60.00 13.38 1.63 0.00 0.00

Table 1. The ambient space dimension D influences the average

and median error rates (in %) over 100 random trials, while its

optimal value depends on the numbers of subspaces n.

5.2. Real data: the Hopkins155 database

The Hopkins database [12] includes 155 video se-

quences, each one involving either 2 or 3 motions (consid-

ering the background as a moving object), and is divided

in three categories: checkerboard, traffic and articulated, of

which representative samples appear in Fig. 5. Note that

in the articulated sequences, some objects may be partially

non-rigid, such as people walking. For each sequence, a set

of N feature points were tracked using an automatic tracker,

and errors in tracking were manually corrected. Thus, the

data correspond to the pixel coordinates of the N tracked

feature points along F frames without outliers. Dimension

reduction of these trajectories from R
2F to R

D is obtained

by SVD as in [12].

Figure 5. Sample frames from the Hopkins database with ground

truth segmentation (colors) for the 3 categories: checkerboard

(left), traffic (middle) and articulated (right).

Reference model. The reference model included in the

experiments is built from the full knowledge of the true seg-

mentation. This model provides an approximate measure of

the separability of the data under the affine camera model

and for a given ambient space dimension. As in [12], the

reference model fits a subspace to the data points in each

group by using the SVD, resulting in least-squares estimates

of the subspaces. Then, the data are re-segmented by as-

signing each point to the nearest subspace.

On the Hopkins database, similar experiments in [12]

showed that, only for half of the sequences, a perfect seg-

mentation could be obtained by separating linear subspaces

in an ambient space of dimension D = 5. In this case, the

reference model led to an average error rate of 2.35% on all

sequences and of 1.66% and 4.73% on sequences of 2 and 3

motions, respectively. The following experiments will show

that, by increasing the dimension of the ambient space, error

rates twice as less can be obtained by the reference model

and that, by estimating the best ambient space dimension

for each data set, the proposed method can further improve

the results without knowledge of the true segmentation.

Results. Tables 2 and 3 show the results obtained by the

proposed spectral clustering (SC) approach for α = 4 on

sequences of 2 and 3 motions, respectively, whereas Ta-

ble 4 provides the overall error rates on all sequences of the

database. The columns of the Tables correspond to different

choices of the ambient space dimension: D = 5 as in [12],

D = nd + 1 (considering that all motions correspond to

non-degenerate 4-D subspaces) and D tuned from the data

by the procedure of Sect. 4 in the interval [n+1, nd+1]. The

resulting error rates compare well with previously reported

results from the literature, shown in Table 5. In particular,

the proposed method with automatic tuning of the dimen-

sion D offers an overall error rate with 66% improvement

over the best error rate obtained by Agglomerative Lossy

Compression (ALC) in [11]. Moreover, Table 6 shows that



Checkerboard

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 1.11 3.10 1.98 0.85

Median 0.23 0.00 0.24 0.00

Traffic

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 0.15 1.05 10.42 0.90

Median 0.00 0.00 1.33 0.00

Articulated

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 1.84 1.92 3.48 1.71

Median 0.00 0.00 0.88 0.00

All sequences

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 0.93 2.46 4.30 0.94

Median 0.00 0.00 0.47 0.00

Table 2. Average and median error rates (in %) for sequences of

2 motions. Subscripts indicate the ambient space dimension D.

Checkerboard

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 2.79 10.29 1.92 2.15

Median 1.40 5.43 0.58 0.47

Traffic

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 0.48 5.35 24.02 1.35

Median 0.34 0.00 26.60 0.19

Articulated

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 4.26 4.06 4.06 4.26

Median 4.26 4.06 4.06 4.26

All sequences

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 2.41 8.94 6.46 2.11

Median 0.99 4.93 1.06 0.37

Table 3. Average and median error rates (in %) for sequences of

3 motions. Subscripts indicate the ambient space dimension D.

the corresponding average computing time (obtained on a

2.4GHz Core 2 Duo laptop with Matlab) is less than 1 sec-

ond, whereas ALC needed 21 minutes (as reported in [11]

on an unknown computer). In comparison to SCC [2] and

LSA [17], the method is also faster, since it requires only

N2 dot product operations to build the affinity matrix.

Influence of α. Table 7 reports the error rates obtained

for different values of α. Though this parameter appears to

influence the segmentation accuracy, the overall error rate

is still much less than the one obtained with ALC [11] for

all α > 1 in the set of tested values {1, 2, 4, 8}. Note that

Checkerboard

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 1.53 4.90 1.96 1.17

Median 0.47 0.24 0.29 0.00

Traffic

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 0.21 1.84 12.92 0.98

Median 0.00 0.00 1.53 0.00

Articulated

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 2.21 2.25 3.57 2.10

Median 0.00 0.00 0.88 0.00

All sequences

Refnd+1 SC5 SCnd+1 SC[n+1,nd+1]

Average 1.26 3.93 4.78 1.20

Median 0.18 0.00 0.56 0.00

Table 4. Average and median error rates (in %) for all sequences

of 2 and 3 motions. The proposed method with D tuned in [n+
1, nd+1] outperforms others from the literature (see Table 5).

Overall error rate (in %)

LSCC SCC LSA ALC5 ALCsp

D nd + 1 nd + 1 nd 5 Dsp

Average 10.39 8.66 4.87 3.83 3.56

Median 3.26 2.56 0.90 0.27 0.50

Computing time

LSCC SCC LSA ALC5 ALCsp

Average 2.24s 1.56s 9.47s 10min 21min

Table 5. Results of methods from the literature for all se-

quences of the Hopkins database. SCC [2] uses 3-D affine

subspaces, while Linear SCC (LSCC) uses 4-D linear sub-

spaces (results obtained with the Matlab code available at

http://math.umn.edu/∼glchen/scc). The results of LSA [17] are

taken from [12] and those of ALC are taken from [11]. The small-

est error, obtained by ALC in 21mn, is three times the one obtained

by the proposed method in 0.74 seconds (see Tables 4 and 6).

Sequences of 2 motions

D = 5 D = nd +1 D ∈ [n+1, nd+1]
Average 0.25 0.30 0.56

Sequences of 3 motions

D = 5 D = nd +1 D ∈ [n+1, nd+1]
Average 0.51 0.59 1.35

All sequences

D = 5 D = nd +1 D ∈ [n+1, nd+1]
Average 0.31 0.36 0.74

Table 6. Computing time (in seconds) of the proposed method.

α also slightly influences the average computing time that

ranges from 0.5 to 1.5 sec., respectively for α=1 and α=8.



Sequences of 2 motions

α = 1 α = 2 α = 4 α = 8
Average 1.99 0.98 0.94 1.87

Median 0.00 0.00 0.00 0.00

Sequences of 3 motions

α = 1 α = 2 α = 4 α = 8
Average 9.77 4.49 2.11 2.67

Median 1.80 1.02 0.37 0.20

All sequences

α = 1 α = 2 α = 4 α = 8
Average 3.75 1.77 1.20 2.05

Median 0.24 0.00 0.00 0.00

Table 7. The average and median error rates (in %) with D auto-

matically tuned in [n+1, nd+1] remain low for a large range of

the affinity parameter α.

6. Conclusions

This paper proposed a spectral clustering approach to the

problem of separating subspaces of unknown dimensions

(within approximate bounds). Beside first class results ob-

tained on the Hopkins155 database for motion segmenta-

tion, the main contributions of the paper were to highlight

the influence of the ambient space dimension in subspace

separation applications and propose a heuristics to choose

this dimension appropriately. However, when dealing with

real data, involving possibly degenerate motions and sub-

spaces of unknown dimensions, this heuristics may lead to

an increased influence of the noise. Thanks to the speed of

the proposed spectral clustering algorithm, a well-defined

scheme has been proposed to select the best ambient space

dimension for a particular data set. The final algorithm has

been shown to be robust to different types of scenes and mo-

tions present in the Hopkins155 database, while remaining

very efficient in terms of computing time.

Future work will study in a more formal way the rela-

tionships, empirically emphasized here, between the dimen-

sions of the subspaces, the ambient space dimension and the

density of the data. In addition, though good results were

obtained for a large range of the affinity measure parameter

α, we can expect further improvement by fine tuning α on

each data set in a model selection framework.
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