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Abstract. We present a hardware mechanism which dynamically de-
tects uniform and affine vectors used in SPMD architecture such as
Graphics Processing Units, to minimize pressure on the register file and
reduce power consumption with minimal architectural modifications. A
preliminary experimental analysis conducted with the Barra simulator
shows that this optimization can benefit up to 34 % of register file reads
and 22 % of the computations in common GPGPU applications.

1 Introduction

GPUs are now powerful and programmable processors that have been used to
accelerate general-purpose tasks other than graphics applications. These pro-
cessors rely on a Single Program Multiple Data (SPMD) programming model.
This model is implemented by many vector units working in a Single-Instruction
Multiple-Data (SIMD) fashion, and vector register files. Register usage is a crit-
ical issue as the number of instance of the same program that can be executed
simultaneously depend on the number of hardware registers and the register
usage per instance. Making this bad situation worse, vectorizing scalar opera-
tions in an application makes inefficient use of registers and functional units. To
efficiently handle scalar data, Cray-like vector machines incorporate scalar func-
tional units as well as scalar registers. Modern GPUs lack such scalar support,
leaving it to vector units. These vector units execute the same instruction on the
same data leading to as many unnecessary operations as the length of the vector
when uniform data are encountered. These unnecessary operations involve data
transfers and activity in functional units that consume power, which is a critical
concern in architectural and microarchitectural designs of GPUs.

We observed through our experiments that standard GPGPU applications
manipulate a significant number of degenerated vectors containing replicated
scalar data, that we name uniform vectors. A closer look shows that this number
is even higher when additionally considering affine vectors, which contain a
sequence of regularly-stepped values (e.g. (2,4,6...,2n + 2)) Motivated by this
observation, we propose and evaluate by simulation a technique that tags a
vector register file according to the type of registers: uniform, affine or generic
(non-degenerate) vector.



The rest of the paper begins with a brief description of the NVIDIA ar-
chitecture upon which our model is based. Section 3 presents our performance
evaluation methodology, based on a functional simulator named Barra. We use
it to both evidence the presence of redundancy in calculations in Section 4 and
evaluate the proposed technique described in Section 5. We discuss technical is-
sues in Section 6. Section 7 presents quantitative results and figures, and Section
8 concludes the paper.

2 Architecture Model

The base architecture we consider in our simulations consists of a vector pro-
cessor, a set of vector register files, a set of vector units, and an instruction set
architecture that mimics the behavior of the NVIDIA GPUs used in the Com-
pute Unified Device Architecture (CUDA) environment [1]. This environment
relies on a stack composed of an architecture, a language, a compiler, a driver
and various tools and libraries.

Hardware: Tesla

Software: CUDA
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Fig. 1. Processing flow of a CUDA program.

A CUDA program runs on an architecture composed of a host processor CPU,
a host memory and a graphics card with an NVIDIA GPU with CUDA support.
All current CUDA-enabled GPUs are based on the Tesla architecture, which is
made of an array of multiprocessors. Tesla GPUs execute thousands of threads in
parallel thanks to the combined use of multiple multiprocessors, SIMD processing
and hardware multithreading [2]. Figure 1 describes the hardware organization
of such a processor. Each multiprocessor contains the logic to fetch, decode
and execute SIMD instructions which operate on vectors of 32 elements. There
are 256 or 512 vector registers, each register being a 32-wide vector of 32-bit
values. In addition to the register file, each multiprocessor contains a scratchpad
memory (or shared memory, using NVIDIA’s terminology) and separate caches
for constant data and instructions.

The hardware organization is tightly coupled with the parallel programming
model of CUDA. The programming language used in CUDA is based on C with
extensions to indicate if a function is executed on the CPU or the GPU. Functions
executed on the GPU are called kernels. CUDA lets the programmer define if a
variable resides in the GPU address space and specify the kernel execution across
different granularities of parallelism: grids, blocks and threads. As the underlying



hardware is a SIMD processor, threads are grouped together in so-called warps
which operate on 32-wide vector registers. Each instruction is executed on a
warp by a multiprocessor. Warps execute instructions at their own pace, and
multiple warps can run concurrently on a multiprocessor to hide latencies of
memory and arithmetic instructions. This technique helps hide the latency of
streaming transfers, and improve the effective memory bandwidth. The register
file of a multiprocessor is logically split between the warps it executes. As a
GPU includes several multiprocessors, warps are grouped into blocks. Blocks
are scheduled on the available multiprocessors. A multiprocessor can process
several blocks simultaneously if enough hardware resources (registers and shared
memory) are available.

The compilation flow of a normal CUDA program is a three-step process di-
rected by the CUDA compiler nvce. First, according to specific CUDA directives
from the CUDA Runtime API, the program is split into a host program and
a device program. The host program is then compiled using a host C or C++
compiler and the device program is compiled through a specific back-end for the
GPU. The resulting device code is binary instruction code (in cubin format) to
be executed on a specific GPU. The host program and the device program are
linked together using the CUDA libraries, which includes the necessary functions
to load a cubin either from inside the executable or from a stand-alone file and
send it to the GPU for execution.

3 Barra, a Functional Simulator of NVIDIA GPUs

Several options exist to model the dynamic behavior of CUDA programs. CUDA
offers a built-in emulation mode that run POSIX threads on the CPU on behalf
of GPU threads, thanks to a specific compiler back-end. However, this mode
differs in many ways with the execution on a GPU: the behavior of floating-point
and integer computations, the scheduling policies and memory organization are
different.

GPU simulators running CUDA’s intermediate language PTX such as GPGPU-
Sim [3] or Ocelot [4] can offer a greater accuracy, but still run an unoptimized
intermediate code instead of the instructions actually executed by a GPU.

Recent versions of CUDA include a debugger that allows watching the values
of GPU registers between each line of source code. Though this mode offers
perfect functional accuracy, it cannot be modified for instrumentation or feature
evaluation purposes.

Barra [5] simulates the actual instruction set of the NVIDIA Tesla architec-
ture at the functional level. The behavior of all instructions is reproduced with
bit-accuracy, with the exception of transcendentals (exp, log, sin, cos, rep, rsq).
To our knowledge, Barra is the only publicly-available tool that both executes
the same instructions as Tesla GPUs and allows viewing the exact contents of
registers during the execution.

This simulator consists of two parts: a driver, and a simulator. The driver is a
shared library with the same name and exporting the same symbols as NVIDIA’s



libcuda.so so that CUDA Driver API calls can be dynamically redirected to the
simulator. It includes major API functions to load, and execute a CUDA program
and manage data transfers. The simulator takes the binary code compiled by
NVIDIA’s nvce compiler as input simulates the execution of the kernel, and
produces statistics for the each instruction.

3.1 Logical execution pipeline
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Fig. 2. Overview of the functional execution pipeline during the execution of a
MAD instruction.

The instruction-set simulator executes each assembly instruction according
to the model described in Figure 2. First, a scheduler selects the warp ready
for execution according to a round-robin policy and reads its current program
counter (PC). Then the instruction is fetched and decoded. Then operands are
read from the register file or from on-chip memories (scratchpad) or caches (con-
stants). The instruction is executed and its results are written back to the register
file.

3.2 Vector register file

General Purpose Registers (GPRs) are dynamically split between threads during
kernel launch, allowing a trade-off between the number of registers per threads
and the latency hiding capability. Barra maintains a separate state for each active
warp in the multiprocessor. These states include a program counter, address and
predicate registers, mask and address stacks, a window to the assigned register
set, and a window to the shared memory.



4 Uniform and affine data in SPMD code

NVIDIA’s so-called “scalar” architecture is actually a pure vector (SIMD) archi-
tecture. At the hardware level, all instructions, including memory and control-
flow operations, operate on vectors, and all architecturally-visible registers are
vectors. It can alternatively be seen from the programer’s perspective as a
SPMD machine executing independent “scalar” threads. Though this provides a
developer-friendly programming model and allows scalable implementations by
abstracting away the vector length, it can become a source of inefficiency when
performing inherently scalar operations.

We define an uniform vector V as having every component contain the same
value V; = x. Two main causes lead to uniform vector patterns. First, constant
values and data read from memory with a uniform address vector (broadcast)
generate uniform vectors. Second, uniform control flow is governed by uniform
conditions. For example, a for loop with uniform bounds will also have a uni-
form counter. Modern GPUs also allow non-uniform conditions in conditional
statements by allowing sub-vector control-flow. However, best performance is
achieved when the control condition is uniform across a warp [1]. This means
that in optimized algorithms, all lanes of registers that are used as conditions
will hold the same value.

Similarly, to maximize memory bandwidth, memory accesses should follow
specific patterns, such as the coalescing rules or conflict-free shared-memory
access rules. Programs following NVIDIA’s guidelines to access memory will
operate mostly on consecutive addresses. This specific pattern is often referred as
unit-stride access in the vector-computing literature. The vector register storing
the addresses of such access will contain consecutive addresses.

This leads us to define an affine vector as a vector V having each of its
component (interpreted as an unsigned integer) such that V; = « + iy, for z and
y non-negative integers. One can notice that the uniform pattern is a specific
case of the affine pattern when y = 0.

To quantify how often both of these patterns occur, we use Barra to dynam-
ically check for each input and output operand in registers if they are uniform
or affine vectors. We perform this analysis on two kinds of applications.

First, we used the examples from the CUDA SDK. Even though these ex-
amples are not initially meant to be used as benchmarks, they are currently
the most standardized test suite of CUDA applications. As code examples, they
reflect the best practices in CUDA programming.

The second benchmark is a bioinformatics application. RNAFold_GPU is a
CUDA program which performs RNA folding. Based on dynamic programming,
it achieves a 17-time speedup compared to a multicore implementation [6].

The proportion of uniform and affine inputs/outputs from and to registers
is depicted in figure 3. Uniform or affine input data represent the percentage of
uniform (affine) vectors among the data transferred between the register file and
functional units.

Similarly, uniform or affine output data is the proportion of uniform (affine)
data written back to the register file. It can be observed that whenever the



output is uniform (affine), the operation itself is executed on uniform (affine)
data only.

We observe that a respective average of 27 % (44 %) of data read from
the vector register file are uniform (affine) and 15 % (28 %) of data written
back are uniform (affine). This proportion of uniform or affine inputs/outputs is
significant enough to justify specific optimizations.
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Fig. 3. Proportion of uniform and affine operands in registers. Averages are
27 % uniform inputs, 15 % uniform outputs, 44 % affine inputs and 28 % affine
outputs.

5 Proposed technique

In this section we describe a technique which can detect if registers contain uni-
form or affine data as defined in Section 4. The first objective is to minimize
memory and bus activity between the register file and the functional units for
the proportion of input data captured by the proposed technique. The second
objective extends the first one and goes further, by detecting uniform or affine
data that are provided at the input of functional units and that remains uniform
or affine at the output. In that case, the result can be computed by dedicated
scalar hardware like in Cray processors or by relying on the existing vector hard-
ware. As we target power reduction, the scalar solution would provide automatic
reduction. However, this solution would cause data duplication in the register
file and make the operand datapath more complex. The second solution can
benefit from techniques that were not available at the time Cray machines were
designed, such as clock-gating. This second solution can reuse the same vector
hardware, with one or two scalar units enabled to compute the result, the other
units being shut down using fine-grained stage-based clock gating as in the case
of the IBM Cell SPU FPU [7]. The large vector length (32) used in the Tesla ar-
chitecture promises larger power reductions than observed for more conventional
SIMD extensions (typical length 4).

Instructions executed by GPUs show that most of uniform and scalar data
come from a broadcast of some data or a copy of the register that contains
the thread identifier. For these cases, uniform and scalar detection can be done
statically for once at compile time or dynamically in hardware.



A static detection involves architectural as well as microarchitectural mod-
ifications. First, each instruction and register detected as uniform or scalar by
the compiler has to be tagged in the instruction word. Then at runtime during
the decode stage, the hardware can automatically schedule instructions accord-
ing to the tag data. A dynamic detection keeps the instruction set unchanged.
However, the burden of detecting uniform and scalar data is transfered from the
compiler to the hardware. This solutions requires for example a tagged vector
register file.

We tested the dynamic solution based on a tagged vector register file where
each tag contains the type of data stored in the associated register (uniform,
affine or generic vector) using the Barra simulator. At kernel launch time, the
tag of the register that contains the thread identifier is set to the affine state.
Instructions that broadcast values from a location in constant or shared memory
set the tag of the result to the uniform state. Tags are then propagated across
arithmetic instructions according to a simple set of rules, as shown in table 1. We
arbitrarily restrict the allowed strides to powers of two to allow efficient hardware
implementations, and conservatively make multiplications between affine and
uniform data return vectors. Additionally, the information stored in this tag
may be used by memory access units as it gives information about memory
access patterns.

Table 1. Examples of rules of uniform and affine tag propagation. For each
operation, the first row and first column indicate the tag of the first and second
operand, respectively (Uniform, Affine or Vector). The central part contains the
computed tag of the result.

+UA V|| xX|UAV||<<|[UAV
UUAV||UUVV||U|UAV
AIAVVI|AIVVV||A VVV
VIVVV||VIVVV|VI|VVYV

Cost. A tag array contains two bits per vector register. Each multiprocessor of
a NVIDIA GT200 GPU features five hundred and twelve 1024-bit registers, for
a total register-file size of 512 kb (not accounting for the size of error-correction
codes, if any). In a basic implementation, the associated tags would require 1 kb
of extra storage, making it comparatively almost negligible.

In terms of latency, reading the tags adds one level of indirection before read-
ing registers. In NVIDIA GPUs, registers are read in sequence for a given instruc-
tion to minimize bank conflicts [8]. Therefore, operand reads can be pipelined
with tag reads. Additionally, GPUs can tolerate large instruction latencies us-
ing fast context switching between threads. The tag of the output can then be
computed using a few boolean operations from the tags of the input, so the
required hardware modifications are minimal. Support for broadcasting a word
across all SIMD units is already available to handle operands in Constant and
Shared memory.



Benefits. When an input or output operand is known to be uniform, only one
lane needs to be accessed. Likewise, affine vectors v such that v; = x 4 ¢y can
be encoded using the base z and the stride y. Thus, their storage requirements
are only two vector lanes. This reduces the used width of the register file ports
and internal buses, thus saving power.

Computing a uniform or affine result function of uniform and affine inputs
can be performed using only one or two Scalar Processing (SP) units with a
throughput of one cycle instead of the full SIMD width during two cycles. Indeed,
most arithmetic operations on affine vectors can be reduced to operations on the
base and stride.

6 Technical issues

Some issues may limit the efficiency of the proposed method and need to be
taken into account in an implementation.

Partial writes. GPUs handle branch divergence using predication. A predicated
instruction does not write in every lane of its output register, keeping some of
them in their previous state. In this case, even if the output value is uniform (or
affine), the uniform (affine) property cannot be guaranteed for the destination
register.

Half registers. The Tesla architecture allows access to lower/higher 16-bit sub-
registers inside regular 32-bit registers. To handle this correctly, separate tags
are needed for the lower, higher and whole parts to correctly track uniform/affine
information.

Overflows. An arithmetic overflow may occur in a lane of an affine register,
even if the base and stride are both representable. Overflows have no direct
consequences when using two’s-complement arithmetic, but casts between signed
and unsigned formats of various sizes can occur, resulting for instance in an
overflowing 16-bit affine value being extended into a non-affine 32-bit value.

This problem can be worked around by checking for overflows when per-
forming affine computations, and re-issue the offending instruction as a vector
operation when one is detected. Support for re-issuing instructions is already
present to handle bank conflicts in the constant cache and scratchpad memory.
As overflows should not occur in address calculations of correct programs, we
expect it to be a rare occurrence. Indeed, we did not encounter this case in any
of the benchmarks we ran.

Conversions from affine to generic vector. Instructions such as an addition in-
volving both an affine and a generic vector may require first converting the affine
input to a generic vector. As long as stride values are restricted to small powers
of two, this can be implemented efficiently in hardware. However, if this situation
does not appear frequently, it may be advantageous to reuse the conventional
SIMD ALUs to perform the conversion, then re-issue the instruction .



7 Results and validation

Figures 4 and 5 represent the respective proportions of uniform and affine operand
captured with the proposed technique. We observe that on average, 19 % of in-
puts and 11 % of outputs can be identified as uniform data. These ratio go up
to 34 % and 22 % respectively when considering affine data.

This means that the proposed methods reduce the bus activity between the
register file and functional units for 34 % of the reads transfers. Likewise, the
activity within the functional units can be reduced during 22 % of the opera-
tions executed in GPGPU computations. The power reduction brought by this
technique, proportional to the activity reduction, is known to be of a critical
issue for GPU [9]. Future works have to precisely quantify it.
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Fig. 4. Proportion of uniform operands in registers captured using our technique.

100% T T T T T T T T T

T T T
Affine inputs =
80% |- Affine inputs captured zssssme
Affine outputs —
Affine outputs captured mw——

60%

40%

20%

0% N —— ] ‘ B
o sCanL blholn/ B/a as[Wa Istogr maffl)(MMe’Se Mon[eo asig edUCt/ fransp nafo /qA"e’a
964, a/Op, /Io/e Shr a e, ar Nl 9e
L% fo e”era,
or
Fig. 5. Proportion of affine operands in registers captured using our technique.

It can be noted that the tag technique is not optimal, as it fails to detect
some uniform and affine vectors. This is mostly due to the partial write effect
as described in Section 6, and complex address calculations involving multipli-
cation, division or modulo operations. Further work may improve the accuracy
of the detection.

8 Conclusion

In this paper, we presented a technique to exploit two forms of value locality
specific to vector computations encountered in GPUs. The first one corresponds
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to the uniform pattern present when computing conditions which avoid diver-
gence in sub-vectors. The second one corresponds to the affine pattern used to
access memory efficiently. An analysis conducted on common programs used in
the field of GPGPU showed that both of them are common. The novel idea of
using both forms of value locality with the proposed modifications significantly
reduces the power required for data transfers between the register file and the
functional units as well as the power drawn by the SIMD arithmetic units. Fu-
ture work will focus on improving the accuracy of the hardware-based dynamic
technique presented in this article, as well as considering software-based static
implementations.
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