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Condensation of polyhedri strutures ontosoap �lmsVinent FeuvrierSeptember 29, 2009

AbstratWe study the existene of solutions to general measure-minimizationproblems over topologial lasses that are stable under loalized Lip-shitz homotopy, inluding the standard Plateau problem without theneed for restritive assumptions suh as orientability or even reti�abil-ity of surfaes. In ase of problems over an open and bounded domainwe establish the existene of a �minimal andidate�, obtained as the limitfor the loal Hausdor� onvergene of a minimizing sequene for whihthe measure is lower-semiontinuous. Although we do not give a wayto ontrol the topologial onstraint when taking limit yet � exeptfor some examples of topologial lasses preserving loal separation orfor periodi two-dimensional sets � we prove that this andidate is anAlmgren-minimal set. Thus, using regularity results suh as Jean Tay-lor's theorem, this ould be a way to �nd solutions to the above min-imization problems under a generi setup in arbitrary dimension andodimension.
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IntrodutionWe onsider a lass F of relatively losed subsets of a given domain U in R
n� that will be our ompetitors, and we also suppose that F is stable undersome lass of admissible deformations (see de�nition 6).We then onsider the following problem: �nd E ∈ F suh that

µ(E) = inf
F∈F

µ(F ), (1)where µ stands for a given d-dimensional measure funtional with 0 ≤ d < n� for instane the d-dimensional Hausdor� measure Hd, but more generalases are also possible. The Plateau problem an be rewritten in these terms,by taking a lass F stable under Lipshitz deformations that only move arelatively ompat subset of points of U . In that ase, the boundary of U atsas a topologial onstraint.In ase of a problem over an open bounded domain U of R
n and in arbitrarydimension and odimension we prove the following theorem of existene of aminimal andidate (see theorem 4 for a more preise statement):There is a relatively losed subset E of U , Almgren almost-minimal and with no greater measure than any element of F, thatis obtained as a loal Hausdor� limit over all ompat subsets of Uof a measure-minimizing sequene of elements of F.Notie that we do not prove that E ∈ F � in fat it an be false, seesetion 3.3 where we also give two examples of usage of this result. How-ever, we hope that in some ases at least for 2-dimensional sets, by usingregularity-related results about E suh as Jean Taylor theorem (see [Tay76,Dav09, Dav08℄) we may be able to build a Lipshitz retration sending a neigh-borhood of E onto E, whih would be enough to ontrol the topologial on-straint in F when taking limit in our minimizing sequene.One of the tehnial di�ulties that arise in this approah is that theHausdor� measure is generally not lower semiontinuous � although the aseof one-dimensional sets an be handled using Goª¡b's theorem� whih usuallyprevents diretly taking limit in arbitrary minimizing sequenes to study theexistene of solutions to this kind of general, measure-related minimizationproblems.In fat, we give a way to onvert any measure-minimizing sequene intoanother minimizing sequene of �regularized� sets (i.e. quasiminimal with uni-form onstants) that verify an uniform onentration property initially intro-dued by Dal Maso, Morel and Solemini in [DMMS92℄, and for whih theHausdor� measure is lower semiontinuous (see theorem 2, whih is borrowedfrom [Dav03℄).The �rst step of this proess is to �nd a way to build generalized Eu-lidean dyadi grids with several imposed orientation and uniform bounds on3



Figure 1: On the left, a ompetitor in F and an almost-overing by disjointballs entered on its reti�able part. On the right, we projet it onto some ofits tangent planes inside a one and a ball, while keeping the measure of thepathes that onnet the �at part to the remaining one arbitrary small.the �atness of their polyhedrons. Their onstrution is explained in [Feu08℄(see theorem 1): provided that they are far enough from eah others, it ispossible to glue several dyadi grids (with di�erent orientations) together intoa larger grid of onvex polyhedrons that �onnet well� (see de�nition 4 for atopologial de�nition) and suh that every polyhedron of the new grid (inlud-ing its faes in all lower dimensions) is not too �at. In fat, we give an impliituniform lower bound that depends only on dimension n on the minimal angleof two faes of any dimension that meet at a given vertex (see our de�nition 3of �rotondity�).The seond step is to arefully design polyhedri grids to approximate agiven ompat d-dimensional set while keeping ontrol on the measure inreaseintrodued by the approximation (see theorem 3). For this purpose, we use analmost overing of the reti�able part of the set by dyadi grids that roughlyfollow the diretion of its tangent planes and then use the above method tomerge these grids together (see �gure 1). The uniform lower bound obtainedon the �atness of the polyhedrons is useful when approximating our sets usingsuessive Lipshitz Federer-Fleming-like projetions (see [FF60℄) onto dereas-ing dimensional polyhedrons of the grid till dimension d, to obtain additionalmeasure-related regularity onstants (in fat, quasiminimality onstants, asintrodued earlier by Almgren) that depend only on dimensions d and n (see�gure 2).This polyhedral approximation theorem is the key result of this paper.One an see it as a version for non-orientable surfaes of the lassi polyhedralapproximation theorem for integral urrents. It may also be used to generalizeto higher dimension and odimension a result of T. De Pauw in [DP07℄ for4



Figure 2: On the left, we use Federer-Fleming radial projetions inside a poly-hedri grid designed to keep the measure inrease as small as needed withrespet to the initial ompetitor on �gure 1. Notie that the measure did notinrease in the ubes that are parallel to the tangent planes. On the right,we do a �nite measure-minimization amongst the polyhedri ompetitors in F.The set we obtain is quasiminimal with onstants depending on the �atness ofthe polyhedrons of the grid, and is even better than the polyhedri ompetitoron the left.two-dimensional surfaes in R
3.The plan of the paper is as follows.Setion 1 is devoted to summarize the basi de�nitions and notations wewill be using through the next setions. We start with Eulidean polyhedrons,omplexes and dyadi ubes. We also give an Almgren-like formalism (see[Alm76, Dav03℄) for quasiminimal, almost-minimal and minimal sets.In setion 2 we give some tehnial lemmas that are to be used later inthe polyhedral approximation proess. First we give some Lipshitz extensionlemmas before studying basi measure-related properties of orthogonal andradial projetion extensions.In setion 3 we give an optimization lemma whih allows onverting anyompetitor into another one that is quasiminimal with onstants dependingonly on the dimension, without inreasing its measure too muh. Then, weproeed in proving the main theorem, before giving some examples of setupunder whih the topologial onstraint behaves well when taking limit.The proposed researh of solutions is atually quite lose in spirit to that ofReifenberg (see [Rei60℄), although based on Almgren's initial formalism. It isnot as �elementary� and �exible as any of the lassi distributional approahes,but �ts problems that annot be handled by urrents and �nite perimeter sets.Compared to Reifenberg theory, it might end up to be simpler and more �exiblebeause it heavily relies on tehnial geometri tools whih involve long proofsand ompliated onstrutions but hopefully will be turned into ready-to-use5



results.The author would like to express his thanks to Guy David for his manyadvies and suggestions. He also gratefully aknowledges partial support fromthe Centre de Reera Matemàtia at the Universitat Autònoma de Barelona.1 PreliminariesWe begin with some notations and basi de�nitions.1.1 Eulidean polyhedronsWe plae ourself in R
n with its usual Eulidean struture. We say that a set Ais an a�ne half-spae if one an �nd an a�ne hyperplane H and a non-parallelvetor u suh that
A = {x+ ru : x ∈ H and r ≥ 0} . (2)We will say that a non-empty intersetion of a�ne half-spaes is a polyhedronaording to the following de�nition.De�nition 1 (Polyhedrons). A polyhedron δ of dimension n is a ompat withnon-empty interior intersetion of �nitely many a�ne half-spaes.By keeping only a�ne half-spaes whose boundary intersets δ over a setof n − 1 Hausdor� dimension it is easy to hek that amongst all half-spaesfamilies that are suitable for this de�nition one an �nd one that is minimalfor inlusion. We will denote it by A(δ).By allowing non-empty ompat sets with empty interior we generalize thisde�nition to k-dimensional polyhedrons (with k ≤ n) by plaing ourselves inthe smallest a�ne subspae Affine(δ) of dimension k that ontains them. Inthat ase, the usual topologial operators (losure, interior and boundary) willbe taken relatively to Affine(δ), as well as the a�ne half-subspaes in A(δ).By onvention we onsider singletons as polyhedrons of dimension zero, equalto their interior and with empty boundary.Polyhedrons as we de�ned them are onvex. With a simple onvexity ar-gument it is easy to hek that the a�ne dimension of Affine(δ) is the same asthe Hausdor� dimension of δ. We will denote both by dim(δ).In fat, it is possible to show (but we will not do it here) that our de�nitionis equivalent to the one of usual onvex polytopes, as the onvex hull of a �nitefamily of points � typially the �verties�, that we will introdue shortly.Indeed, the previous notations allow for an easy writing of the de�nition ofpolyhedri faes. For onveniene we will all them �subfaes� in the generalase and keep the word �fae� to spei�ally designate a subfae of dimensionone less than the relative polyhedron. 6



De�nition 2 (Subfaes). Let δ be a n-dimensional polyhedron suh that A(δ) =
{A1, . . . , Ap} and {A′

1, . . . , A
′
p

} a family of subsets of R
n suh that A′

i = Ai or
A′
i = ∂Ai for 1 ≤ i ≤ p. By putting α =

⋂
iA

′
i, if α 6= ∅ we say that α is asubfae of δ and more preisely:� if dimα < dim δ then α is a strit subfae;� if dimα = dim δ − 1 then α is a fae;� if dimα = 0 (i.e. if α is a singleton) then α is a vertex and we willmistake it for the point it ontains for onveniene.We will denote by F(δ) the set of all subfaes of δ, and for 0 ≤ k ≤ dim δ:

Fk(δ) = {α ∈ F(δ) : dimα = k} . (3)Again, we naturally generalize this de�nition to k-dimensional polyhedronswith k ≤ n. It is not di�ult to hek that subfaes are also polyhedrons, thatthe faes are of disjoint interior and that their union is the boundary of thepolyhedron. For any polyhedron δ we an even write that
δ =

⊔

α∈F(δ)

◦
α (4)where ⊔ stands for a disjoint union and the interior ◦

α of all subfaes is takenrelatively to the orresponding generated a�ne subspae Affine(α).We now give ourselves some way to ontrol the �atness of polyhedrons,whih will be used later to ontrol the measure inrease when approximatingreti�able sets using radial projetions onto them.De�nition 3 (Shape ontrol). For any non-empty ompat set A we de�nethe following quantities:� the outer radius, by taking the in�mum of radii of balls ontaining A(with the onvention inf ∅ = 0)
R(A) = inf {r > 0: ∃x ∈ R

n, A ⊂ B(x, r)} ; (5)� the inner radius, by taking the supremum of radii of inluded balls (withthe onvention sup ∅ = 0)
R(A) = sup {r > 0: ∃x ∈ R

n, B(x, r) ∩ Affine(A) ⊂ A} ; (6)� the rotondity, by taking the ratio of the two (with the onvention R(A) =
1 when R(A) = 0)

R(A) =
R(A)

R(A)
∈ [0, 1]. (7)Of ourse, the more R(A) is lose to 1, the more A look like a ball and theless it is �at. By a ompaity argument, it is easy to show that the supremumin the alulus of R(A) is reahed for some ball B suh that B ∩AffineA ⊂ A.We will all it an insribed ball inside A.7



1.2 Polyhedri omplexes and dyadi ubesWe now onsider a �nite set S of k-dimensional polyhedrons. We introduethe following notations:� the union of the polyhedrons
U(S) =

⋃

δ∈S
δ; (8)� the set of the subfaes

F(S) =
⋃

δ∈S
F(δ). (9)Additionally, when all the polyhedrons in S have the same dimension k we willalso use:� the set of k′-dimensional subfaes (for 0 ≤ k′ ≤ k)

Fk′(S) =
⋃

δ∈S
Fk′(δ); (10)� the set of boundary faes

F∂(S) =
{
α ∈ Fk−1(S) : ∀(β, γ) ∈ S2, α 6= β ∩ γ

}
. (11)To formalize the idea of polyhedri meshes made of polyhedrons that on-net well we give the following de�nition.De�nition 4 (Complexes). We say that a set S of k-dimensional polyhedronsis a k-dimensional omplex if all its subfaes have disjoint interiors (again,relative to the generated a�ne subspae):

∀(α, β) ∈ F(S)2 : α 6= β ⇒ ◦
α ∩

◦
β = ∅. (12)For instane, it is easy to hek that for any polyhedron δ and 0 ≤ k ≤

dim δ, the set Fk(δ) is a omplex. So is Fk′(S) for 0 ≤ k′ ≤ k when S is a
k-dimensional omplex. Furthermore, when k = n we also have ∂(U(S)) =
U(F∂(S)). When S is a omplex, we all any subset of F(S) made of subfaesof dimension at most k a �k-dimensional skeleton� of S.To ontrol the shape of all polyhedrons � inluding their subfaes � withina omplex we also generalize our notations for inner or outer radii and rotondityto omplexes as well:

R(S) = max
δ∈F(S)

R(δ) R(S) = min
δ∈F(S)

R(δ) R(S) = min
δ∈F(S)

R(δ). (13)Generi and easy-to-use examples of omplexes are those made of dyadiubes. For r > 0 a dyadi ube is a polyhedron that an be written as [0, r]nin some orthonormal basis of R
n, and an unit dyadi ube when r = 1. Suhubes an be naturally plaed on a grid to form a omplex.8



De�nition 5 (Dyadi omplexes). We all dyadi omplex of stride r any setof dyadi ubes that an be written as
S = {rz + [0, r]n : z ∈ Z} (14)in an orthonormal basis, where Z is a �nite subset of Z

n.Dyadi ubes are very onvenient to loally approximate reti�able sets ofarbitrary dimension using their subfaes, beause we an always hoose theirorientations to loally math those of the set's tangent planes while taking themas small as needed. To losely math an arbitrary set we would end up withmany disjoint dyadi omplexes with di�erent orientations. Then, to ompletethe polyhedral approximation proess these omplexes should be merged intoa larger one that overs the entire set to be approximated. However, althoughanyone would believe that suh polyhedrons an be built it is not obvious thatthe non-dyadi polyhedrons needed to �ll the gaps between all the dyadi gridsan always be designed so they are never too �at.In [Feu08℄ we proved the following result that an be used to merge twodyadi omplexes together while keeping uniform bounds on the rotondity ofall added polyhedrons and their subfaes (see �gure 3).Theorem 1 (Merging of dyadi omplexes with uniform rotondity). One an�nd three positive onstants ρ, c1 and c2 depending only on n suh that for allompat set K, for all open set O ⊂ K and for all unit dyadi omplexes S1and S2 suh that
U(S1) = K \O U(S2) ⊂ O min

(x,y)∈U(S1)×U(S2)
‖x− y‖ ≥ ρ (15)then one an build S3 suh that S ′ = S1 ⊔ S2 ⊔ S3 is a n-dimensional omplexverifying

U(S ′) = K R(S ′) ≤ c1R(S1 ∪ S2) R(S ′) ≥ c2R(S1 ∪ S2). (16)Later, we will use this theorem to merge a large number of disjoint dyadigrids of arbitrary orientations together � assuming their stride is small enoughto build it � by onsidering a global dyadi grid with �holes� separately en-losing eah one.1.3 Quasiminimal and (almost-)minimal setsLet U be a nonempty domain of R
n. For a map f : U → U we denote by ξfthe set of points that are atually moved by f :

ξf = {x ∈ U : x 6= f(x)} . (17)We also all support of f the set of these points and their images:
Spt f = ξf ∪ f(ξf). (18)9



Figure 3: Merging of two dyadi omplexes with di�erent orientations, and theassoiated shape onstants.Suppose that M ≥ 1. In what follows, we assume that we are given ameasurable funtion h over U , with values in [1,M ]. For 0 ≤ d < n we willonsider the following d-dimensional set funtional, for any measurable set
E ⊂ U :

Jdh(E) =

∫

x∈E
h(x)dHd(x) (19)where Hd stands for the d-dimensional Hausdor� measure (see for instaneMattila's book [Mat95℄).The following de�nition will be useful to desribe our so-alled �topologiallasses stable under loal Lipshitz homotopy�.De�nition 6 (Admissible deformations). For δ > 0 we say that a one-parameterfamily (φt)t∈[0,1] of maps from U into itself is a δ-deformation over U if thefollowing requirements are met:� φ0 = IdU and φ1 is Lipshitz;� (t, x) 7→ φt(x) is ontinuous over [0, 1] × U ;� by putting

Sptφ =
⋃

t∈[0,1]

Sptφt (20)10



then Sptφ is ompat relatively in ◦
U (i.e. Sptφ is ompat and inludedin U , whih we will denote by Sptφ ⊂⊂

◦
U) and Diam(Sptφ) ≤ δ.When (φt) is a deformation over U and E ⊂ U we say that φ1(E) is anAlmgren ompetitor of E.For X ⊂ R

n and ρ > 0 we denote by Xρ the ρ-neighborhood of X:
Xρ =

⋃

x∈X
B(x, ρ) = {x ∈ R

n : d(x,X) < ρ} . (21)For onveniene we give the following statement whih will be used later toeasily build a deformation from a Lipshitz map whose support is small enough.Proposal 1 (Automati building of deformation). Suppose that U ⊂ R
n, that

f is a Lipshitz map over U and that (φt) is a Diam(U)-deformation over U .If there is ρ > 0 suh that
‖φ1 − f‖∞ < ρ and (ξφ1

∪ ξf)ρ ⊂⊂ U (22)then the one-parameter family (ψt) of maps on U de�ned for 0 ≤ t ≤ 1 by
ψt(x) =

{
φ2t(x) if t ≤ 1

2

(2 − 2t)φ1(x) + (2t− 1)f(x) if t > 1
2

(23)is also a Diam(U)-deformation over U suh that ψ1 = f .The proof is really easy, and onsists only in proving that Sptψ is relativelyompat in ◦
U .Proof. Suppose that x ∈ U and onsider the three possible ases:� if x /∈ ξφ1

∪ ξf then
{ψt(x) : t ∈ [0, 1]} = {φt(x) : t ∈ [0, 1]} ; (24)� if x ∈ ξφ1

then for all t ∈ [0, 1/2]:
ψt(x) = φ2t(x) ∈ Spt(φ). (25)For t ≥ 1/2, ψt(x) is on the line segment [φ1(x), f(x)] whih is inludedin the losed ball B (φ1(x), ‖φ1(x) − f(x)‖). Sine ‖φ1(x) − f(x)‖ < ρwe get

ψt(x) ∈ B(φ1(x), ρ) ⊂ (ξφ1
)ρ; (26)� if x ∈ ξf \ ξφ1

then ψt(x) = x for t ≤ 1/2. Using the same argument asabove, for t ≥ 1/2 we have
ψt(x) ∈ B(f(x), ρ) ⊂ (ξf)ρ; (27)11



Notie that ⋃

t∈[0,1]

{x : ψt(x) 6= x} ⊂ Spt(φ) ∪ ξf . (28)By (24), (25), (26) and (27) we also get
⋃

t∈[0,1]

ψt (ξψt) ⊂ Spt(φ) ∪ (ξf ∪ ξφ1
)ρ , (29)whih in turn gives

Spt(ψ) ⊂ Sptφ ∪ (ξf ∪ ξφ1
)ρ ⊂⊂ U. (30)Let us now de�ne quasiminimal sets, whih were introdued by Almgrenin [Alm76℄. These sets are suh that their measure an derease when de-formed, but only in a ontrolled manner in regards of the size of the pointsbeing a�eted.De�nition 7 (Quasiminimal sets). Let M ≥ 1 and δ > 0. We say that E isa (M, δ)-quasiminimal set over U if E is a relatively losed subset of U withloally �nite measure (i.e. Hd(E ∩K) < ∞ for all ompat set K) suh thatfor all δ′-deformation (φt) over U (with 0 < δ′ ≤ δ) we have

Hd(E ∩ ξφ1
) ≤MHd(φ1(E ∩ ξφ1

)). (31)In the speial ase when M = 1 and δ = DiamU we say that E is mini-mal. Now suppose that we are given a funtion h : ]0, δ] → [0,+∞] suh that
limt→0 h(t) = 0 and for all δ′ ≤ δ, E is (1 + h(δ′), δ′)-quasiminimal. We willall suh sets � that look more and more like minimal sets when looked atlosely � almost-minimal sets with gauge funtion h.To make future statements easier to write, we will also all �d-set� any
Hd-measurable set with loally �nite measure, and �null d-set� any set withnull measure.Sine our proofs will involve deliate hair-utting and measure ontrol toolsin varying dimensions, we de�ne the d-dimensional ore of a set E (whih isusually denoted as E∗) as follows:

kerd(E) =
{
x ∈ E : ∀r > 0,Hd(E ∩B(x, r)) > 0

}
. (32)We will also use the following notations, for 0 ≤ l ≤ d:





kerdd(E) = kerd(E)

kerld(E) = kerl

(
E \

⋃

d≥l′>l
kerl

′

d (E)

)
,

(33)12



and it is easy to hek that the kerld(E) (for 0 ≤ l ≤ d) are pairwise disjointand form a partition of E. Also, E \ kerd(E) is a null d-set and kerl(E) is arelatively losed subset of E. Furthermore, if E is (M, δ)-quasiminimal, so is
kerd(E), and if E = kerd(E) we say that E is redued.We denote by dH the Hausdor� distane, whih is de�ned as follows fortwo non-empty sets A and B:

dH(A,B) = max

(
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

)
, (34)with the onventions dH(∅, B) = dH(A, ∅) = ∞ and dH(∅, ∅) = 0. For anyompat set K ⊂ R

n we de�ne the loal Hausdor� distane dK over K by:
dK(A,B) = dH(K ∩ A,K ∩ B). (35)We say that a sequene (Ek)k∈N of sets onverges towards E loally onevery ompat of U if E is a relatively losed subset of U and for all ompatsubset K ⊂ U :

lim
k→∞

dK(Ek, E) = 0. (36)We will denote it by Ek U−⇁ E. One an hek that this de�nes an uniquelimit, and that any domain U ⊂ R
n is ompat for this onvergene in thesense that every sequene has a onvergent subsequene.Finally, in order to prove our main result we need the following theorem,whih an be found in [Dav03℄.Theorem 2. Suppose that U ⊂ R

n, 0 ≤ d < n, δ > 0, M ≥ 1 and (Ek)k≥0is a sequene of (M, δ)-quasiminimal sets over U suh that kerd(Ek)
U−⇁ E.Then the following holds:� E is redued and (M, δ)-quasiminimal over U ;� for all open subset W ⊂ U ,

Hd(E ∩W ) ≤ lim inf
k→∞

Hd(Ek ∩W ); (37)� there is C > 0 suh that for all open subset W ⊂⊂ U ,
Hd(E ∩W ) ≥ C−1 lim sup

k→∞
Hd(Ek ∩W ); (38)� for all δ-deformation (ft)0≤t≤1 over U and ǫ > 0, one an build a Lips-hitz map g over U suh that

‖f1 − g‖∞ < ǫ and ξg ⊂⊂ ξf1 , (39)and for k large enough:
Hd(g(Ek ∩ ξg)) ≤ Hd(f1(Ek ∩ ξf1)) + ǫ

Hd(E ∩ ξf1) ≤ Hd(Ek ∩ ξg) + ǫ.
(40)13



In fat, although the �rst three points gathered in theorem 2 are given asindependent statements in [Dav03℄, the last point is adapted from the proof ofthe seond one (whih is alled �Theorem 4.1� in [Dav03℄). More preisely, weborrowed equations [4.93℄, [4.108℄ and [4.109℄ from [Dav03℄. Starting with f1,a new map g is built suh that ξg ⊂ ξf1 and to whih we apply the measureinequalities for E ′
k. As emphasized by the author, the reason for this proessis that we annot atually use the argument with f1, sine it ould be injetiveon Ek and at the same time glue large piees of E together onto the sameimage. For this reason we use a small variation of f1 that mimis its behaviorand send distint piees of E ′

k onto the same image when f1 do the same with
E. Combined with proposal 1, g an also be turned into a δ-deformation over
U in order to stay in our topologial lass F, and will be used in the proof oftheorem 4.2 Orthogonal and radial projetions onto poly-hedronsOur �rst step is to establish some properties of deformations that will be usedlater to approximate any given set with polyhedrons. Basially, we will usetwo kind of deformations: �magneti projetions� (see proposal 2) that areused to loally �atten a given reti�able set onto a tangent plane, and radialprojetions (see de�nition 8) that send the inside of a polyhedron onto its faes.2.1 Fine-tuned Lipshitz extensionsBefore we start building our projetions onto polyhedrons, we give some Lips-hitz extension lemmas. Although Kirszbraun's theorem (originally in [Kir34℄)would be su�ient to get the expeted Lipshitz onstants, in some ases wealso need additional ontrol on the size of the support of the extensions. Forthis reason we prefer building them expliitly �by hand�.Lemma 1 (Ring-like Lipshitz extensions around a ompat). Let K be anonempty ompat set of R

n and f a k-Lipshitz map over K with k ≥ 1.Suppose that there exists a map Π: R
n → K suh that f ◦Π is also k-Lipshitzand Π|K = IdK and put

Kρ = {x ∈ R
n : d(x,K) ≤ ρ}. (41)Then, for all ρ > 0 one an �nd a Lipshitz map g : Kρ → Kρ with onstantat most k + 1 + d(f(K),K)

ρ
suh that g|K = f , g|∂(Kρ) = Id∂(Kρ).For instane, if K is onvex one an take the onvex projetor onto K as

Π. Later, we will use this lemma in proposal 2 when K is the intersetion ofa one with a ball to build �magneti projetions� that oinide with an a�neprojetor inside K and the identity map outside Kρ.14



Proof. Take ρ > 0 and suppose that f and Π are as above. We de�ne thefollowing map g on Kρ:
g(x) =

(
1 − d(x,K)

ρ

)
f ◦ Π(x) +

d(x,K)

ρ
x. (42)It is easy to hek that g is ontinuous, that g|K = f and g|∂(Kρ) = Id∂(Kρ).Now all we have to do is to get the required Lipshitz onstants for g. For thatpurpose, take (x, y) ∈ Kρ and onsider the three possible ases:� when (x, y) ∈ K2, sine f is k-Lipshitz we easily get

‖g(x) − g(y)‖ = ‖f(x) − f(y)‖ ≤ k‖x− y‖; (43)� when (x, y) ∈ (Kρ \K)2, put x′ = Π(x) and y′ = Π(y). We now get:
‖g(x) − g(y)‖ = ‖ρf(x′)−ρf(y′)+d(x,K)(x−f(x′))−d(y,K)(y−f(y′))‖

ρ

≤ ‖ρf(x′)−ρf(y′)+d(x,K)((x−f(x′))−(y−f(y′)))‖
ρ

+
‖(d(x,K) − d(y,K))(y − f(y′))‖

ρ

≤ ρ− d(x,K)

ρ
‖f(x′) − f(y′)‖ +

d(x,K)

ρ
‖x− y‖

+

∣∣∣∣
d(x,K) − d(y,K)

ρ

∣∣∣∣ ‖y − f(y′)‖.

(44)
Sine we also know that k ≥ 1, d(x,K) ≤ ρ, ‖f(x′)− f(y′)‖ ≤ k‖x− y‖and ‖y − f(y′)‖ ≤ ρ+ dH(f(K), K) we �nally get:
‖g(x) − g(y)‖ ≤

(
kρ− (k − 1)d(x,K)

ρ
+
ρ+ dH(f(K), K)

ρ

)
‖x− y‖

≤
(
k + 1 +

dH(f(K), K)

ρ

)
‖x− y‖; (45)� when x ∈ K and y ∈ Kρ \K, we put as above y′ = Π(y) and get:

‖g(x) − g(y)‖ =
‖ρf(x) − d(y,K)y − (ρ− d(y,K))f(y′)‖

ρ

=
‖d(y,K)(f(x) − y) − (ρ− d(y,K))(f(x) − f(y′))‖

ρ

≤ d(y,K)

ρ
‖f(x) − y‖ +

ρ− d(y,K)

ρ
‖f ◦ Π(x) − f ◦ Π(y)‖

≤ ‖x− y‖
ρ

(ρ+ dH(f(K), K)) + k‖x− y‖

≤
(
k + 1 +

dH(f(K), K)

ρ

)
‖x− y‖. (46)15



In all ases, we have shown that g is k′-Lipshitz with k′ = 1+k+dH(f(K),K)
ρ

.Conversely, the following lemma is used to build a Lipshitz extension insidea ball that have been subtrated from a ompat.Lemma 2 (Lipshitz extension inside a ball). Suppose that K is a star ompatwith respet to x that ontains an open ball B entered at x with radius r andput K ′ = K \B. For ρ > 0 we denote by ρB the ball entered at x with radius
ρr. For all k-Lipshitz map f : K ′ → K ′ and ρ ∈]0, 1[ one an build a k′-Lipshitz map g : K → K suh that g|K ′ = f |K ′, g|ρB = IdρB and k′ dependsonly on ρ, Diam(K) and r.Proof. For all y ∈ B \ ρB there is only one point in [x, y) ∩ ∂B whih we all
Π(y). We an notie already that Π is 1

ρ
-Lipshitz. When y ∈ B \ ρB we put

u(y) =
‖Π(y) − y‖
r(1 − ρ)

∈ [0, 1[ (47)and we de�ne h : K \ ρB → K \ ρB as
g(y) =

{
f(y) if x ∈ K \B
u(y)y + (1 − u(y))f ◦ Π(y) if y ∈ B \ ρB. (48)It is easy to hek that h is ontinuous, and that h|∂ρB = Id∂ρB. Now supposethat (y, z) ∈ (K \ ρB)2 and onsider the three following ases:� if (y, z) ∈ (K \B)2 then

‖h(y) − h(z)‖ = ‖f(y) − f(z)‖ ≤ k‖y − z‖; (49)� if (y, z) ∈ B2 we get
‖h(y) − h(z)‖ = ‖f ◦ Π(y) − f(z) + u(y)(y − f ◦ Π(y)) − u(z)(z − f ◦ Π(z))‖

≤ ‖f ◦ Π(y) − f ◦ Π(z)‖ + ‖u(y)(y − f ◦ Π(y) − z + f ◦ Π(z))‖
+ ‖(u(y)− u(z))(z − f ◦ Π(z))‖

≤ 2k

ρ
‖y − z‖ + ‖y − z‖ +

k

ρ
‖y − z‖ + Diam(K)|u(y) − u(z)|

=

(
2
k

ρ
+ 1

)
‖y − z‖ + Diam(K)

∣∣∣∣
‖y − Π(y)‖ − ‖z − Π(z)‖

r(1 − ρ)

∣∣∣∣

≤
(

2k

ρ
+ 1

)
‖y − z‖ + Diam(K)

‖y − z − Π(y) + Π(z)‖
r(1 − ρ)

≤
(

2k

ρ
+ 1

)
‖y − z‖ + Diam(K)

‖y − z‖ + ‖Π(y) − Π(z)‖
r(1 − ρ)

≤
(

2k

ρ
+ 1

)
‖y − z‖ + Diam(K)

‖y − z‖ + ρ−1‖y − z‖
r(1 − ρ)

=

(
1 +

2k

ρ
+

2 Diam(K)

ρ(1 − ρ)r

)
‖y − z‖; (50)16



� �nally, if y ∈ K \B and z ∈ B we have
‖h(y) − h(z)‖ = ‖f(y) − u(z)z − (1 − u(z))f ◦ Π(z)‖

≤ u(z)‖y − zΠ(z)‖ + (1 − u(z))‖f(y) − f ◦ Π(z)‖
≤ ‖y − z‖ + k‖y − Π(z)‖

≤
(

1 +
k

ρ

)
‖y − z‖.

(51)
We have just shown that h is Lipshitz. Now all we have to do is to applylemma 1 to extend h inside ρB and lemma 2 will be proven.The last extension theorem we provide is used to extend a Lipshitz mapde�ned on the subfaes of a omplex to the whole Eulidean spae, whilekeeping its support as small as presribed.Lemma 3 (Lipshitz extension around a omplex). Let k ∈ {0, . . . , n}, S a k-dimensional omplex and U an open bounded set suh that U(S) ⊂ U . Supposethat for eah δ ∈ S we are being given a Lipshitz map φδ : δ → δ suh that

φ|∂δ = Id∂δ.Then we an �nd a Lipshitz map φ : R
n → R

n suh that:
∀δ ∈ S : φ|δ = φδ and φ|Rn\U = IdRn\U . (52)Notie that we do not really are about the Lipshitz onstant of the �nalmap, although we ould give an estimate based upon the largest one of thoseof the φδ and the rotondity of S.Proof. All we really have to do is to prove that the map ψS de�ned on thelosed set F = U(S) ∪ (Rn \ U) as

ψS(x) =

{
x if x /∈ U

φδ(x) if x ∈ δ ∈ S
(53)is Lipshitz and to apply Kirszbraun theorem to it.To begin with, one an hek that the de�nition of ψS is onsistent. Firstly,notie that any polyhedron inside S is disjoint of R

n \ U . Additionally, if onean �nd x ∈ δ1 ∩ δ2 suh that (δ1, δ2) ∈ S2 and δ1 6= δ2 then � by de�nition 4of a omplex � δ1 ∩ δ2 ⊂ ∂δ1 ∪ ∂δ2 and we have φδ1(x) = φδ2(x) = x.We will now prove that ψS is Lipshitz by indution over the number ofpolyhedrons in S. In what follows, for eah δ ∈ S we suppose that φδ is
kδ-Lipshitz.If S is made of only one polyhedron δ, put

a = min
x∈δ

(d(x,Rn \ U)) > 0 and b = max
x∈δ

(d(x,Rn \ U)) <∞. (54)17



We already know that ψS is 1-Lipshitz over R
n \ U and kδ-Lipshitz over δ.If x ∈ R

n \ U and y ∈ δ we have ψS(y) = φδ(y) ∈ δ and we get
‖ψS(x) − ψS(y)‖ = ‖x− ψS(y)‖ ≤ b ≤ b

a
‖x− y‖. (55)Now suppose that S = S ′ ⊔ {δ} (with S 6= ∅) and that ψS′ is k-lipshitz.Let x ∈ U(S ′) and y ∈ δ and onsider the line segment [ψS′(x), φδ(y)]; sine

φδ(y) ∈ δ and ψS′(x) /∈ ∂δ we know that this line segment meets ∂δ at at leastone point y′.Let us verify that one an always �nd a subfae F ∈ F(δ) suh that y′ ∈ F .First, sine U(Fk−1(δ)) = ∂δ then one an �nd a fae F1 suh that y′ ∈ F1.If y′ ∈
◦
F1 we have �nished. Otherwise y′ ∈ ∂F1 and again, one an �nd

F2 ∈ Fk−2(F1) suh that y′ ∈ F2. By iterating this argument while y′ /∈ ◦
Fi−1one an �nd a subfae Fi ∈ Fk−i(δ) suh that y′ ∈ ◦

Fi or y′ ∈ ∂Fi. Sinesubfaes of dimension zero are singletons � equal to their interior, followingour onventions � this building proess will stop eventually with at most i = k(in suh ase y′ is a vertex of δ) and in all ases we an �nd F ∈ F(δ) suhthat y′ ∈ ◦
F .Denote by S ′′ the subset of S made of the polyhedrons that do not interset

F and by δ′ a polyhedron in S ′ suh that ψS′(x) ∈ δ′. There are three possibleases:� if F is a ommon subfae of both δ and at least one polyhedron of S ′ wehave ψS(y′) = ψS′(y′) = φδ(y
′) = y′ and we get

‖ψS(x) − ψS(y)‖ = ‖ψS′(x) − φδ(y)‖
= ‖ψS′(x) − ψS′(y′)‖ + ‖φδ(y′) − φδ(y)‖
≤ (k + kδ)(‖x− y′‖ + ‖y′ − y‖)
= (k + kδ)‖x− y‖;

(56)� if δ′ ∈ S ′′ we put
a(F ) = min

x∈U(S′′)
d(x, F ) > 0 and b(F ) = max

x∈U(S′′)
d(x, F ) ∈]0, 1](57)and we get

‖ψS(x) − ψS(y)‖ = ‖ψS′(x) − φδ(y)‖
= ‖ψS′(x) − y′‖ + ‖φδ(y′) − φδ(y)‖
≤ b(F ) + kδ‖y′ − y‖

≤
(
b(F )

a(F )
+ kδ

)
‖x− y‖;

(58)
18



� lastly, if δ′ /∈ S ′′ we put H = Affine(F ) and G = F0(F )∩F0(δ
′) (i.e. G isthe set of verties ommon to both F and δ′). We onsider the minimalratio of the distane to H by the distane to G of verties of δ′ that arenot in G:

a(F ) = min

{
d(c,H)

d(c, G)
: c ∈ F0(δ

′) et c /∈ G

}
> 0. (59)By a onvexity argument it is easy to hek that for all t ∈ δ′ � and inpartiular for t = ψS′(x) � we have

d(t, H) ≥ a(F )d(t, G). (60)By denoting by c a vertex ommon to both F and δ′ whose distane to
ψS′(x) is minimal we also get:

‖ψS(x) − ψS(y)‖ = ‖ψS′(x) − φδ(y)‖
= ‖ψS′(x) − ψS′(c)‖ + ‖φδ(c) − φδ(y)‖
≤ (k + kδ) (‖x− c‖ + ‖c− y‖) .

(61)Consider triangle xcy and denote by x̂, ĉ and ŷ the non-oriented anglesrespetively at verties x, c and y. A simple planar geometry identitygives us that
‖x− y‖

sin ĉ
=

‖x− c‖
sin ŷ

=
‖c− y‖
sin x̂

. (62)To onlude, notie that the sinus of the non-oriented angle between thelines (x, c) and (y, c) is between a(F ) and 1. It follows that
‖x− c‖ + ‖c− y‖ =

sin ŷ

sin ĉ
‖x− y‖ +

sin x̂

sin ĉ
‖x− y‖

≤ 2

a(F )
‖x− y‖

(63)and by inequality (61) we �nally get
‖ψS(x) − ψS(y)‖ ≤ 2(k + kδ)

a(F )
‖x− y‖. (64)In all three ases we ould give a onstant c(F, δ′) suh that ‖ψS(x)−ψS(y)‖ ≤

c(F, δ′)‖x− y‖. By taking the maximum of c(F, δ′) for all possible subfaes Fof δ and polyhedrons δ′ ∈ S ′ � whih are in �nite number � we get a globalonstant c.This ahieve proving that ψS|U(S) is c-Lipshitz. To prove that it is alsoLipshitz over U(S) ∪ (Rn \ U) one an easily adapt the argument at thebeginning of the proof by indution when S ontains only one polyhedron.By indution over the number of polyhedrons in S, this ahieves provingthat ψS is Lipshitz over U(S) ∪ (Rn \ U). By using Kirszbraun's theorem itis also possible to build a Lipshitz extension of ψS over the whole spae R
nthat meets the announed requirements.19



2.2 Measure-optimal projetionsWe now introdue the two basi tools that will allow us later to build a defor-mation of a given reti�able set onto a polyhedri mesh without inreasing itsmeasure too muh. We begin with Lipshitz maps with ompat support usedto loally ��atten� the set onto its approximate tangent planes.Proposal 2 (Magneti projetion). Let K be a nonempty ompat set of R
nand H an a�ne subspae. Let p be the orthogonal projetor on H, ~H the linearsubspae H − p(0) and suppose that p(K) ⊂ K, H ∩K is onvex and for all

x ∈ H ∩K, the ompat set K(x) = K ∩ (x+ ~H⊥) is onvex.Then for all ρ > 0, one an �nd a so-alled �ρ-magneti projetion onto Hinside K� map ΠH,ρ,K : R
n → H verifying the following properties:� ΠH,ρ,K(Kρ) ⊂ Kρ, where Kρ = {x ∈ R

n : d(x,K) ≤ ρ};� ΠH,ρ,K |K = p|K and ΠH,ρ,K |Rn\Kρ
= IdRn\Kρ

;� ΠH,ρ,K is Lipshitz with onstant at most 2 + dH(H∩K,K)
ρ

.Proof. Suppose that A is a nonempty onvex ompat set of R
n. By ompaity,for all x ∈ R

n one an �nd y ∈ A suh that ‖x − y‖ = d(x,A) and byonvexity, y is unique; we all it the projetion of x onto the onvex set Aand denote it by πA(x). Let us rapidly verify that πA is 1-Lipshitz. When
A is a singleton or a line segment it is very easy to hek. Otherwise, take
(x, y) ∈ R

n and put u = πA(x) and v = πA(y). Sine [u, v] ⊂ A we have
‖πA(x) − πA(y)‖ ≤ ‖π[u,v](x) − π[u,v](y)‖ and the Lipshitz onstant of πAfollows immediately from the one of π[u,v].Now, �x ρ > 0 and for x ∈ R

n onsider its projetion πH∩K(x) onto thenonempty onvex set H ∩K. Sine πH∩K(x) ∈ H ∩K then the ompat set
K(πH∩K(x)) = K ∩ (πH∩K(x) + ~H⊥) is nonempty and by hypothesis, onvex.We will denote by Π(x) the projetion of x onto this new onvex:

∀x ∈ R
n : Π(x) = πK(πH∩K(x))(x). (65)By onstrution x ∈ K(πH∩K(x))(x), therefore

p ◦ Π(x) ∈ p(K(πH∩K(x))) ⊂ H ∩ (πH∩K(x) + ~H⊥) = {πH∩K(x)}. (66)It follows that p ◦ Π = πH∩K is 1-Lipshitz, and it is easy to hek that
Π|K = IdK .In what follows we suppose that 0 ≤ d < n and onsider a d-set E. For
x ∈ R

n, we de�ne the lower and upper radial d-dimensional densities of E at
x respetively by putting
νdE(x) = lim inf

r→0

Hd(E ∩ B(x, r))

cdrd
νdE(x) = lim sup

r→0

Hd(E ∩ B(x, r))

cdrd
(67)20



where cd stands for the measure of the d-dimensional unit ball.Also, we say that H is an approximate tangent plane for E at x if H is a
d-plane ontaining x, νdE(x) > 0 and

∀u > 0: lim sup
r→0

Hd(E \ C(x, r, u))

rd
= 0 (68)where C(x, r, u) stands for the following intersetion between a one that �fol-lows� H and a losed ball entered at x:

C(x, r, u) =
{
y ∈ B(x, r) : d(y,H) ≤ u‖x− y‖

}
. (69)If E has suh an approximate tangent plane at Hd almost every point wesay that E is d-reti�able. Conversely, if E has no approximate tangent planeat almost every point we say that it is d-irregular, whih is the same as sayingthat any reti�able set intersets E only on a null set. It is well-known (again,see for instane Mattila's book [Mat95℄) that E is reti�able if and only if νdEand νdE are equal to the harateristi set funtion of E, Hd almost everywhere.Conversely, E is irregular if and only if νdE is less than 1 almost everywhere.As a onsequene, any d-set E an be written as

E = ER ⊔EI (70)with ER reti�able and EI irregular. We will refer to ER and EI respetivelyas the reti�able and irregular parts of E � whih are de�ned up to a null set.The next lemma makes use of the previous proposal introduing magnetiprojetions in the following ontext. At almost every point of E where thereis an approximate tangent plane, one an �nd a ball suh that the magnetiprojetion onto the tangent plane inside a small neighborhood of the ball doesnot inrease the measure of the set too muh.Lemma 4 (Magneti projetion inside a high density one). Let E be a d-set.For all ǫ > 0 and at Hd almost every point x of the reti�able part of E onean �nd rmax > 0, ρ ∈]0, 1[, u > 0 and an approximate tangent plane H at xsuh that for all r ∈]0, rmax[:
Hd(ΠH,ρr,C(x,r,u)(E ∩B(x, r + rρ) \ C(x, r, u))) ≤ ǫHd(E ∩B(x, r + rρ)). (71)Proof. First, notie that the above C(x, r, u) is suitable to be used as �K� inproposal 2. Fix ǫ′ > 0, u > 0 and ρ ∈]0, 1[.Suppose that the lower and upper radial densities of E at x are equal to 1.We an �nd r1 > 0 suh that for all t ≤ r1:

cd(2t)
d(1 + ǫ′)−1 ≤ Hd(E ∩ B(x, t)) ≤ cd(2t)

d(1 + ǫ′). (72)21



By taking t = r and t = r + rρ in (72) it follows that for all r < r1
2
:

Hd(E ∩ B(x, r + rρ) \B(x, r))

≤ 2dcd(1 + ǫ′)(r + rρ)d − 2dcd(1 + ǫ′)−1rd

≤ 2dcd(r + rρ)d(1 + ǫ′)−1

(
(1 + ǫ′)2 − rd

(r + rρ)d

)

≤
(

(1 + ǫ′)2 − 1

(1 + ρ)d

)
Hd(E ∩B(x, r + rρ))

(73)Suppose that ρ is small enough so (1 + ρ)d < 1
(1−ǫ′)2 . By replaing in (73) weobtain

Hd(E ∩ B(x, r + rρ) \B(x, r))

≤ ((1 + ǫ′)2 − (1 − ǫ′)2)Hd(E ∩B(x, r + rρ))

= 2ǫ′Hd(E ∩B(x, r + rρ)).
(74)Also, suppose that H is an approximate tangent plane at x. By (68) wean �nd r2 > 0 suh that for all r < r2:

Hd(E ∩ B(x, r) \ C(x, r, u)) ≤ ǫ′rdcd

≤ ǫ′(1 + ǫ′)Hd(E ∩ B(x, r))

≤ ǫ′(1 + ǫ′)Hd(E ∩ B(x, r + rρ)).

(75)On the other hand, we an write that
E ∩B(x, r + rρ) \ C(x, r, u)

= (E ∩ B(x, r + rρ) \B(x, r)) ⊔ (E ∩ B(x, r) \ C(x, r, u)) (76)and sine ΠH,ρr,C(x,r,u) is 2 + u
ρ
-Lipshitz by proposal 2 we get

Hd(ΠH,ρr,C(x,r,u)(E ∩ B(x, r + rρ) \ C(x, r, u)))

≤
(

2 +
u

ρ

)d
(2ǫ′ + ǫ′(1 + ǫ′))Hd(E ∩B(x, r + rρ)). (77)To onlude, all we have to do is taking u > 0 small enough suh that(

2 + u
ρ

)d
< 2d + ǫ′ and we get

Hd(ΠH,ρr,C(x,r,u)(E ∩ B(x, r + rρ) \ C(x, r, u))) ≤
ǫ′(2d + ǫ′)(3 + ǫ′)Hd(E ∩B(x, r + rρ)). (78)Put rmax = min

(
r1
2
, r2
) and reall that at Hd almost every point of the re-ti�able part of E, the radial densities are equal to 1 and E has an approx-imate tangent plane. Being given ǫ > 0, by taking ǫ′ small enough to get

ǫ′(2d + ǫ′)(3 + ǫ′) < ǫ this ahieves proving the lemma.22



Following de�nition 1, our polyhedrons are nonempty, onvex and ompat.Inside the generated a�ne subspae, any half-line starting in the interior of apolyhedron will interset its boundary at one unique point, whih legitimatesthe following de�nition.De�nition 8 (Radial projetion). Suppose that δ is a k-dimensional polyhe-dron (with 1 ≤ k ≤ n) and that x ∈
◦
δ. We de�ne the radial projetion Πδ,xonto the faes of δ by

Πδ,x :

{
δ \ {x} → ∂δ

y 7→ z ∈ [x, y) ∩ ∂δ. (79)It is easy to hek that Πδ,x|∂δ = Id∂δ and that Πδ,x|δ\U is Lipshitz forall open set U ontaining x. The following lemma will allow us to ontrolthe measure inrease of the radial projetion of a given d-set with onstantsdepending on the polyhedron's rotondity.Lemma 5 (Optimal radial projetion). Suppose that 0 ≤ d < k ≤ n. Thereexists a onstant K > 0 depending only on d, k and n suh that for all k-dimensional polyhedron δ and losed d-set E ontained in δ, one an �nd X ⊂
◦
δwith positive Hk-measure suh that:

∀x ∈ X : Hd(Πδ,x(E)) ≤ KR(δ)−2dHd(E). (80)The proof will use a mean value argument and Fubini's theorem. Althoughit would have been more onvenient to use the Jaobian determinant of φδ,xand a hange of variables when omputing the mean value of Hd(Πδ,x(E)),this approah would have required additional assumptions on the regularityof E. For this reason we will slie δ in thin piees parallel to its faes andapproximate the integral by summing the measure in eah piee.Proof. Suppose that B is an insribed ball inside δ, put B′ = 1
2
B and H =

Affine(δ). For z ∈ ∂δ we denote by n(z) an unit vetor parallel to H whih is
Hk−1 almost everywhere normal to ∂δ at z, and by ∂∗δ the subset of ∂δ where
n(z) is a�etively normal to ∂δ. We also de�ne

τx(z) =
‖z − x‖

| 〈n(z), z − x〉 | and A = sup
x∈B′,z∈∂∗δ

τx(z), (81)where 〈·, ·〉 stands for the usual Eulidean dot produt in R
n.For all z ∈ ∂∗δ one an �nd a fae F ∈ Fk−1(δ) ontaining z. Put H ′ =

Affine(F ): by onstrution, n(z) is normal to H ′ and
τx(z) =

‖z − x‖
d(x,H ′)

. (82)23



Sine we supposed that x ∈ B′ and sine δ is ontained in a ball with the sameenter as B′ with radius 2R(δ) we also get:
d(x,H) ≥ R(δ)

2
and d(x, z) ≤ 2R(δ). (83)Using (82) and (83) we dedue that

A ≤ 4
R(δ)

R(δ)
=

4

R(δ)
. (84)Fix an integer p > 0 and a point x ∈ B′. Consider the set {F1, . . . , Fm} =

Fk−1(δ) of faes of δ and put Hi = Affine(Fi) for 1 ≤ i ≤ m (eah Hi isan a�ne hyperplane of H of dimension k − 1). For r > 0, denote by hr thehomothey entered at x with dilatation fator r and onsider the followingsets:
Cil (x) =

⋃

l
p
<r≤ l+1

p

hr(Fi), (85)
Ci(x) =

⋃

0≤r≤1

hr(Fi) =
⋃

0≤l<p
Cil (x), (86)

δl =
⋃

l
p
<r≤ l+1

p

hr(δ) =
⋃

1≤i≤m
Cil (x). (87)Sine x ∈ B′ ⊂

◦
δ and by onvexity we have the following identities:
δ \ {x} =

⋃

i,l

Cil (x) =
⋃

i

Ci(x) =
⋃

l

δl(x). (88)Furthermore, the sets δl(x) are disjoint for 0 ≤ l < p.Suppose that l > 0 and notie that the restrition of Πδ,x to Ci(x) is theradial projetion entered at x on Hi. Then it is Lipshitz with onstant atmost
p

l
sup

z∈Fi∩∂∗δ
τx(z) ≤

pA

l
. (89)Following (88), the measure of the radial projetion of E an be rewrittenas

Hd(Πδ,x(E)) =
∑

0≤l<p
Hd(Πδ,x(E ∩ δl))

= Hd(Πδ,x(E ∩ δ0)) +
∑

1<l<p

Hd(Πδ,x(E ∩ δl)).
(90)Sine x ∈ B′ \E and we supposed that E is losed then for p large enough wehave E ∩ δ0 = ∅ and using (89) we get:

Hd(Πδ,x(E)) =
∑

1<l<p

Hd(Πδ,x(E ∩ δl)) ≤ Ad
∑

1<l<p

(p
l

)d
Hd(E ∩ δl). (91)24



When y ∈ δl we have ‖y − x‖ < l+1
p
R(δ) < 2l

p
R(δ). It follows that

Hd(E ∩ δl) =

∫

y∈E∩δl
dHd(y) ≤

(
2l

p
R(δ)

)d ∫

y∈E∩δl

dHd(y)

‖y − x‖d (92)and by replaing in (91):
Hd(Πδ,x(E)) ≤ (2AR(δ))d

∑

1<l<p

∫

y∈E∩δl

dHd(y)

‖y − x‖d

= (2AR(δ))d
∫

y∈E

dHd(y)

‖y − x‖d . (93)Let us now ompute the mean value of Hd(Πδ,x(E)) when x ∈ B′ \ E.Using (93) we already have
∫

x∈B′\E
Hd(Πδ,x(E))dHk(x) ≤ (2AR(δ))d

∫

x∈B′\E

∫

y∈E

dHd(y)dHk(x)

‖y − x‖d (94)and sine B′ is a k-dimensional ball with radius R(δ)
2

and 1 ≤ d ≤ k we alsoget: ∫

x∈B′\E

dHk(x)

‖y − x‖d =

∫

x∈B′

dHk(x)

‖y − x‖d = CR(δ)k−d <∞, (95)where C is a positive onstant depending only on d and k. Also, we supposedthat E is a d-set inluded in δ and sine δ is ompat we an write that
∫

y∈E
CR(δ)k−ddHd(y) = CR(δ)k−dHd(E) <∞ (96)whih allows using Fubini's theorem in (94):

∫

x∈B′\E
Hd(Πδ,x(E))dHk(x) ≤ (2A)dCR(δ)k−dR(δ)dHd(E). (97)On the other hand, one an �nd D > 0 depending only on k suh that

Hk(B′ \ E) = Hk(B′) = DR(δ)k. (98)Along with (97) this proves that it is possible to �nd a subset X ⊂ B′ \ E ofpositive measure suh that, for instane:
∀x ∈ X : Hd(Πδ,x(E)) ≤ 2

∫

x∈B′

Hd(Πδ,x(E))dHk(x)

Hk(B′)

≤ 2(2A)dCR(δ)k−dR(δ)d

DR(δ)k
Hd(E)

≤ 8d+1C

DR(δ)2d
Hd(E).

(99)
Sine C and D depend only on d and k, this ahieves proving lemma 5.25



In the speial ase when E is irregular we also provide the following state-ment. It will be useful later to make the irregular part's measure vanish whenapproximating a given d-set with polyhedrons � and thus allow us to give themain statement without restriting ourself to reti�able sets only.Lemma 6 (Radial projetion and irregular sets). Suppose that 0 ≤ d < k ≤ n,that δ is a k-dimensional polyhedron and that E is a losed irregular d-setontained in δ. Then, for Hk almost all x ∈
◦
δ, Πδ,x(E) is also irregular.Reall that an irregular set intersets a regular one only on a null set andthat Πδ,x(E) is ontained in ∂δ � whih is k−1-reti�able. As a onsequene,

Hd(Πδ,x(E)) = 0 for Hk almost every x as soon as d = k − 1.Proof. The �rst step of the proof is to show that for Hn almost any enter,the radial projetion of a given d-irregular set onto a given a�ne hyperplane isalso d-irregular. Although this may not be the most natural way to prove it,we will rely on the well-known result about orthogonal projetions of irregularsets onto linear subspaes � again, see for instane Mattila's book [Mat95℄:for almost every linear d-plane H , the orthogonal projetion of E onto H is anull d-set � and onversely, any set verifying this property is d-irregular.To de�ne what we mean by �almost every linear d-plane� we will denoteby G(n, d) the Grassmannian manifold of all d-dimensional linear subspaes of
R
n and onsider the following Radon measure γn,d on G(n, d):
∀X ⊂ G(n, d) : γn,d(X) = Hn × . . .×Hn

︸ ︷︷ ︸
d times ({

(v1, . . . , vd) ∈ (Rn)d :

‖vi‖ ≤ 1 and Vect(v1, . . . , vd) ∈ X}) . (100)By �for almost every linear d-plane� we are referring to a subset Y ⊂ G(n, d)suh that γn,d(G(n, d) \ Y ) = 0.Suppose that x ∈ R and y = (y2, . . . , yn) ∈ R
n−1. For onveniene, in whatfollows we will denote by (x, y) the element (x, y2, . . . , yn) ∈ R

n. We will alsouse the following notations and variables:� a ∈ R
n−1, 0 < α < 1 and β > 0;� P is the a�ne hyperplane {1}×R

n−1 (identi�ed with R
n−1) and p is theorthogonal projetor onto P ;� Πa is the radial projetion onto P entered at (0, a) ∈ R
n;� F is an irregular d-set (with d ≥ 2) ontained in

D = [α, 1] × [−β, β]n−1. (101)26



Firstly, we want to show that forHn−1 almost every a, Πa(F ) is d-irregular.For that purpose, de�ne
φa :

{
D −→ R

n

(x, y) 7−→
(

1
x
, a+ y−a

x

)
,

(102)and notie that Πa = p ◦ φa. By putting (x′, y′) = φ0(x, y) =
(

1
x
, y
x

) we get
φa(x, y) =

(
1

x
, a+

y

x
− a

x

)
= (x′, a+ y′ − x′a). (103)Besides, put b = (1, a) and onsider the three following a�ne maps onto R

n:
pa : z = (x, y) 7−→ z − 〈z, b〉

‖b‖2
b =

(
x− x+ 〈y, a〉

1 + ‖a‖2
, y − x+ 〈y, a〉

1 + ‖a‖2
a

)
, (104)

fa : z = (x, y) 7−→ (x, y − xa) (105)and
τa : z = (x, y) 7−→ z + b = (x+ 1, y + a) . (106)Notie that

fa ◦ pa(x′, y′) =

(
x′ − x′ + 〈y′, a〉

1 + ‖a‖2
, y′ − x′a

) (107)whih in turn gives
p ◦ τa ◦ fa ◦ pa ◦ φ0 = p ◦ φa = Πa. (108)For onveniene, let us identify P with R

n−1 and for H ∈ G(n− 1, d), supposethat H (in fat, {1} × H) is a d-dimensional linear subspae of P . Also, put
H ′ = R×H and denote by pH and pH′ respetively the orthogonal projetionsonto H and H ′. Sine pH ◦ p = p ◦ pH′ and pH′ ◦ fa = fpH(a) ◦ pH′ we deduefrom (108) that

pH ◦ Πa = p ◦ τa ◦ fpH(a) ◦ pH′ ◦ pa ◦ φ0. (109)Sine fpH(a) is 1 + ‖pH(a)‖-Lipshitz we get
Hd(pH ◦ Πa(F )) = Hd(p ◦ τa ◦ fpH(a) ◦ pH′ ◦ pa ◦ φ0(F ))

≤ Hd(fpH(a) ◦ pH′ ◦ pa ◦ φ0(F ))

≤ (1 + ‖a‖)dHd(pH′ ◦ pa ◦ φ0(F )).

(110)Also, reall that pa is de�ned in (104) as the orthogonal projetor onto thelinear hyperplane Ha perpendiular to b = (1, a). By putting V (a,H) =
Ha ∩ H ′, pH′ ◦ pa is the linear projetion onto the linear d-plane V (a,H).27



Suppose that (v1, . . . , vd) ∈ (Rn−1)d are suh that R × Vect(u1, . . . , ud) = H ′and ‖ui‖ ≤ 1. Then
V (a,H) = Vect ((−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud)) , (111)with ‖(−〈u1, a〉 , u1)‖ ≤ 1 + ‖a‖.Take r > 0, suppose that X ⊂ (Rn−1 ∩B(0, r)) ×G(n− 1, d) and put

Y = {V (a,H) : (a,H) ∈ X} ⊂ G(n, d). (112)In what follows, for onveniene we will denote by (Ha)b the produt measure
Ha × . . . × Ha. Using inequalities of Hausdor� measure of Lipshitz images,we get the following, where C and C ′ depend only on d and n:

(Hn−1 × γn−1,d)(X)

=(Hn−1)d+1 ({(a, u1, . . . , ud) : ‖ui‖ ≤ 1 and (a,Vect(u1, . . . , ud)) ∈ X})
≤
∑

j≥1

2j(n−1)Hn−d−1 × (Hn)d ({((〈ud+1, a〉 , . . . , 〈un−1, a〉),

(−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud))) : a ∈ X, 2−j < ‖ui‖ ≤ 2−j+1,

Vect(u1, . . . , un) = {0} × R
n−1 and (a,Vect(u1, . . . , ud)) ∈ X

})

≤
∑

j≥1

2−jd(n−1)Hn−d−1 × (Hn)d ({((〈ud+1, a〉 , . . . , 〈un−1, a〉),

(−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud))) : a ∈ X, 1/2 < ‖ui‖ ≤ 1,

Vect(u1, . . . , un) = {0} × R
n−1 and (a,Vect(u1, . . . , ud)) ∈ X

})

≤CHn−d−1 × (Hn)d ({((〈ud+1, a〉 , . . . , 〈un−1, a〉),
(−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud))) : ‖ui‖ ≤ 1,

Vect(u1, . . . , un) = {0} × R
n−1 and (a,Vect(u1, . . . , ud)) ∈ X

})

≤CHn−d−1 × (Hn)d ({((〈ud+1, a〉 , . . . , 〈un−1, a〉),
(−〈u1, a〉 , u1), . . . , (−〈ud, a〉 , ud))) : ‖ui‖ ≤ 1,

Vect(u1, . . . , un) = {0} × R
n−1 and (a,Vect(u1, . . . , ud)) ∈ X

})

≤C(1 + r)ndHn−d−1 × (Hn)d
({

(b, v1, . . . , vd) : b ∈ R
n−d−1, ‖b‖ ≤ r,

vi ∈ R
n, ‖vi‖ ≤ 1 and Vect(v1, . . . , vd) ∈ Y })

≤CC ′rn−d−1(1 + r)nd(Hn)d
({

(v1, . . . , vd) ∈ (Rn)d : ‖vi‖ ≤ 1 and
Vect(v1, . . . , vd) ∈ Y })

≤CC ′(1 + r)(n−1)(d−1)γn,d(Y ). (113)Sine φ0 is biLipshitz on D and F ⊂ D is d-irregular, F ′ = φ0(F ) is also
d-irregular, whih an be expressed as

γn,d
({
H ∈ G(n, d) : Hd(pH(F ′)) > 0

})
= 0. (114)28



We are now ready to show that for Hn−1 almost all a ∈ B(0, r), the radialprojetion Πa(F ) is d-irregular. For that purpose, suppose that
X =

{
(a,H) ∈ R

n−1 ×G(n− 1, d) : ‖a‖ ≤ r and Hd (pH(F ′)) > 0
}
, (115)and let us ompute the following quantity M(r), using (110) and (113):

M(r) =

∫

‖a‖≤r




∫

H∈G(n−1,d)

Hd(pH ◦ Πa(F ))dγ(n− 1, d)(H)


dHn−1(a)

=

∫

‖a‖≤r
H∈G(n−1,d)

Hd(pH ◦ Πa(F ))d(Hn−1 × γ(n− 1, d))(a,H)

≤ (1 + r)d
∫

(a,H)∈X

Hd(pH′ ◦ pa(F ′))d
(
Hn−1 × γ(n− 1, d)

)
(a,H)

≤ (1 + r)dHd(F ′)
(
Hn−1 × γ(n− 1, d)

)
(X)

≤ CC ′(1 + r)(n−1)(d−1)Hd(F ′)γn,d(Y )

≤ CC ′(1 + r)(n−1)(d−1)Hd(F ′)γn,d
({
H ∈ G(n, d) : Hd(pH(F ′)) > 0

})

= 0. (116)Equation (116) is valid for any r > 0, whih is enough to prove that Πa(F )is d-irregular for Hn−1 almost all a ∈ R
n−1. It is also lear that all the abovealulations ould have been done with any radial projetion entered at (x, a),with x < 0. As a onsequene, for Hn almost all enter (a, x) (with x ≤ 0),the radial projetion of F onto P is d-irregular.Let us resume proof of lemma 6. Without loss in generality, by working inthe a�ne subspae Affine(δ) we an assume that k = n. Fix x ∈

◦
δ \ E. Sine

E is losed, one an �nd a ball B(x) entered at x suh that B ⊂
◦
δ \E. If weonsider a fae Fi ∈ Fk−1(δ), inluded in the a�ne hyperplane Hi, by usingthe same notations as those in lemma's 5 proof we have

∀x ∈
◦
δ \ E : inf

y∈Ci(x)∩E
d(x,Hi) > 0. (117)Using the above part of the proof, one an �nd a ball Bi(x) ⊂ B(x) suh that

Πδ,y(E ∩ Ci(y)) is d-irregular for Hk almost all y ∈ Bi(x). By iterating thisargument over all faes of δ, one an �nd a ball B′(x) =
⋂
iBi(x), entered at

x, suh that for Hk almost all y ∈ B′(x):
Πδ,y(E) is d-irregular. (118)Sine E is a null k-set (reall that d < k), by repeating over all x ∈

◦
δ \E thisahieves proving the lemma. 29



3 Existene of a minimal andidateBefore we start with the main result, we give ourself two handy tools that willallow us either to build a polyhedri mesh and a Lipshitz map that send agiven d-set onto its d-dimensional subfaes, or to build a Lipshitz map thatsends a given d-set onto the subfaes of an existing grid, eah time with somekind of optimal ontrol over the potential d-dimensional measure inrease.3.1 Polyhedral approximationWe will now proeed into proving the following analogous for ompat d-setsof the lassial polyhedral approximation theorem for integral urrents. Notiethat the requirements on E are very minimalist: we do not even suppose that
E is reti�able.Theorem 3 (Polyhedral approximation). Suppose that 0 < d < n and that
h : R

n → [1,+∞[ is ontinuous.There is a positive onstant J > 0 suh that for all open bounded domain
U ⊂ R

n, for all losed d-set E ⊂ U and for all ǫ > 0, R > 0, one an builda n-dimensional omplex S and a Lipshitz map φ : R
n → R

n satisfying thefollowing properties:� φ|Rn\U = IdRn\U and ‖φ− IdRn ‖∞ ≤ ǫ;� R(S) ≥ M , R(S) ≤ J and the boundary faes F∂(S) of S are the sameas the ones of a dyadi omplex;� φ(E) ⊂ U(Fd(S)) and U(S) ⊂ U ;� Jdh(φ(E)) ≤ (1 + ǫ)Jdh(E).Proof. To begin with, suppose that E = ER ∪ EI , where ER is d-reti�able,
EI is d-irregular and ER ∩ EI = ∅. Let us �x ǫ > 0, ǫ′ > 0, R > 0 and applylemma 4 to E: atHd almost every point of ER, one an �nd rmax(x) > 0, ρ and
u suh that for all r < rmax(x), inequality (71) is true. Sine h is ontinuousover the ompat set U , one an �nd A > 0 suh that 1 ≤ h(x) ≤ A for all
x ∈ U , and for all x ∈ U one an �nd r′max(x) > 0 suh that

∀y ∈ B(x, r′max(x)) : (1 − ǫ′)h(x) ≤ h(y) ≤ (1 + ǫ′)h(x). (119)Denote by B the olletion of losed balls entered at a point x of ER where rmaxis de�ned, with radius at most min
(
rmax(x)

1+ρ
, r′max(x),

ǫ
2

). By a Vitali overinglemma, one an extrat a ountable subset B̂ = {Bi : i ∈ N} from B of pairwisedisjoint balls suh that
Hd

(
ER \

⋃

i

Bi

)
= 0. (120)30



For eah ball Bi ∈ B̂ entered at xi with radius r, denote by ρi and ui theonstants given by lemma 4 at xi, put ri = r
1+ρi

and onsider the ompat set
Ki = C(xi, ri, ui), (121)as de�ned in (69). Call Hi the approximate tangent d-plane at xi. Our upperbound on the radii of balls in B implies that

Hd(ΠHi,riρi,Ki
(E ∩ B(xi, ri + riρi) \Ki)) ≤ ǫ′Hd(E ∩ B(xi, ri + riρi)). (122)Consider a �nite subset B from B̂ suh that

Hd


ER \

⋃

B∈B

B


 ≤ ǫ′Hd(E) (123)and de�ne the magneti projetions produt (see proposal 2)

ψ0 =
∏

Bi∈B

ΠHi,riρ,Ki
. (124)Notie that Spt ΠHi,riρ,Ki

⊂ (Ki)riρ ⊂ Bi � whih are pairwise disjoint ballsof radii at most ǫ
2
� and ΠHi,riρ,Ki

is (2 + ui

ρi

)-Lipshitz, so ψ0 is γ-Lipshitzwith
γ = 2 + max

Bi∈B

ui
ρi
, (125)

‖ψ0 − IdU ‖∞ ≤ ǫ

2
, (126)and the de�nition of ψ0 does not depend upon the hoie of the order ofmultipliation in (127).Suppose that α > 0. If α is small enough, one an build in eah Ki a dyadiomplex Si of stride α (see de�nition 5) in an orthonormal basis entered at xiwith d vetors parallel to Hi. There is also a onstant αi depending on ui and

ri suh that, if α < αi and by taking in Si every possible dyadi ube inludedin Ki:
Hd(ψ0(E) ∩Ki \ U(Si)) ≤ ǫ′Hd(ψ0(E) ∩Ki) ≤ ǫ′Hd(E ∩ Bi). (127)By putting αmax = mini αi and by taking α < αmax, one an build all thesedyadi omplexes Si of stride α suh that Σ2 =

⋃
i Si is a n-dimensional om-plex obtained as a �nite union of dyadi omplexes verifying (127). Let us31



de�ne:
E1 = E \

⋃

Bi∈B

Bi,

E2 = E ∩
⋃

Bi∈B

Bi \Ki,

E3 = {x ∈ E ∩
⋃

Bi∈B

Ki : ψ0(x) /∈ U(Si)},

E4 = {x ∈ E ∩
⋃

Bi∈B

Ki : ψ0(x) ∈ U(Si)}.

(128)
Notie that E = E1 ⊔ E2 ⊔ E3 ⊔ E4, that ψ0|E1

= IdE1
and by (123), (122)and (127) we also have the following inequalities:

Hd(ψ0(E1 ∩ER)) = Hd(E1 ∩ ER) ≤ ǫ′Hd(E),

Hd(ψ0(E2)) ≤ ǫ′Hd(E2) ≤ ǫ′Hd(E),

Hd(ψ0(E3)) ≤ Hd(E3) ≤ ǫ′Hd(E).

(129)By summing and putting ǫ′′ = 3ǫ′A we obtain
Jdh (ψ0((E1 ∩ER) ⊔ E2 ⊔E3)) ≤ 3ǫ′AJdh(E) = ǫ′′Jdh(E). (130)On the other hand, ψ0|U(Si) is the orthogonal projetor onto Hi with U(Si) ⊂

Bi. Sine eah Bi has radius at most r′max(xi), by (122) we have
Jdh(ψ0(E4)) ≤ (1 + ǫ′)Hd(ψ0(E4)) ≤ (1 + ǫ′)Hd(E4) ≤ (1 + ǫ′)2Jdh(E), (131)and we an notie already that ψ0(E4) ⊂ U(Fd(S)), sine we hose the orien-tation of Si parallel to Hi.By hypothesis, E and ∂U are ompat, and sine E ∩ ∂U = ∅ we have

a = inf
(x,y)∈E×∂U

d(x, y) > 0. (132)Consider theorem 1 (in what follows, ρ is the minimal distane required tomerge dyadi grids together, and c1 the onstant used to ontrol the upperradii) and suppose that we took
α < min

(
αmax,

a

4
√
n
,
mini ρi
16
√
n
,
mini ρi

2ρ
,

R

2c1
√
n
,

ǫ

2c1
√
n

) (133)when building our dyadi grids Si. Fix an arbitrary orthonormal basis in R
n.By taking all possible ubes of stride α in this basis that are inluded in U anddisjoint with all the (Ki)riρi/2, one an build a dyadi omplex Σ1 suh that:

U(Σ1) ⊂ U \
⋃

i

(Ki)riρi/2,

U(Σ1) ⊃ E1,

U(Σ1) ⊃
⋃

i

(
(Ki)riρi

\ (Ki)7riρi/8

)
.

(134)32



By using theorem 1 separately in eah (Ki)riρi
(whih are pairwise disjoint)we an build a omplex S suh that Σ1 ⊔ Σ2 ⊂ S, E ⊂ U(S) ⊂ U , R(S) ≥M(with M depending only on n) and

R(S) ≤ c1R(Σ1 ⊔ Σ2) ≤ min
(
R,

ǫ

2

)
. (135)Put F0 = ψ0(E) and let us reason by indution. Suppose that at rank

k ∈ {1, . . . , n − d} we have found a Lipshitz map ψk−1 whih veri�es, byputting Fk−1 = ψk−1(E):� ψk−1|E4
= ψ0|E4

;� ψk−1(E1 ∩ EI) is d-irregular and there is a onstant C > 0 dependingonly on d and n suh that Jdh(ψk−1((E1∩ER)⊔E2⊔E3)) ≤ Ck−1ǫ′′Jdh(E);� Fk−1 ⊂ U(Fn−k+1(S)).Notie that by onstrution and (130), ψ0 veri�es all three properties at rank
k = 1.For all δ ∈ Fn−k+1(S) we an apply lemma 6 and lemma 5 to respetively
ψk−1(E1∩EI)∩δ and ψk−1((E1∩ER)⊔E2⊔E3)∩δ, and �nd a enter xδ ∈ ◦

δ\Fk−1suh that Πδ,xδ
◦ (ψk−1(E1 ∩EI) ∩ δ) is also d-irregular and

Hd(Πδ,xδ
◦ ψk−1(((E1 ∩ER) ⊔ E2 ⊔E3) ∩ δ)) ≤

Kd,kR(S)−2dHd(ψk−1(((E1 ∩ ER) ⊔E2 ⊔ E3) ∩ δ)) (136)where Kd,k depends only on d and k. Notie that ψ0|E4
is de�ned as theorthogonal projetor onto Hi inside Ki, and sine we supposed that ψk−1|E4

=
ψ0|E4

we have
ψk−1(E4) ⊂ U(Fd(S)) ⊂ U(Fn−k(S)). (137)As a onsequene, for all subfae δ ∈ Fn−k+1(Σ2) we have ψk−1(E4) ∩ δ ⊂ ∂δ,and sine E4 ⊂ U(Σ2):

∀δ ∈ Fn−k+1(S) : Πδ,xδ
|ψ0(E4)∩δ = Idψ0(E4)∩δ . (138)Sine E is losed, for all δ ∈ Fn−k+1(S) we an �nd some n−k-dimensionalball Bδ ⊂ δ suh that Bδ ∩Fk−1 = ∅. Sine Πδ,xδ

|δ\Bδ
is Lipshitz, by applyinglemma 2 we an extend it on δ as a Lipshitz map ψδ. And sine ψδ|∂δ = Id∂δ,by applying lemma (3) to the n − k + 1-dimensional omplex Fn−k+1(S), wean build a Lipshitz extension ψ on U .Put ψk = ψ ◦ ψk−1 and let us hek that ψk veri�es all three indutionhypothesis:� ψk|E4

= ψ ◦ ψk−1|E4
= ψ ◦ ψ0|E4

= ψ0|E4
by (138);33



� we already know that ψk(E1 ∩ EI) is d-irregular. Sine R(S) ≥ M ,by (136) and by putting C = AM−2d maxkKd,k we also obtain
Jdh(ψk((EI ∩ E1) ⊔E2 ⊔ E3)) ≤ CJdh(ψk−1((EI ∩E1) ⊔ E2 ⊔ E3))

≤ Ckǫ′′Jdh(E);
(139)� by onstrution, for all δ ∈ Fn−k+1(S) we have ψk(δ) ⊂ ∂δ ∈ Fn−k(S).Sine we supposed that Fk−1 ⊂ U(Fn−k+1(S)), we also have Fk = ψk(E) ⊂

U(Fn−k(S)), whih ahieves proving the indution.Take k = n − d, put φ = ψn−d and reall that we built φ as the produt
φ = f ◦ ψ0 where f is suh that f(δ) ⊂ δ for all δ ∈ F(S). Using (135) we get
‖f − IdRn ‖∞ ≤ ǫ

2
and by (126):

‖φ− IdRn ‖∞ ≤ ‖ψ0 − IdRn ‖∞ + ‖f − IdRn ‖∞ ≤ ǫ. (140)Notie that sine φ(E1 ∩EI) is d-irregular and inluded in U(Fd(S)) (whih is
d-reti�able) then Hd(φ(E1 ∩EI)) = 0. Using (131) we �nally get:

Jdh(φ(E)) ≤ Jdh(φ(E1 ∩ EI)) + Jdh(φ((E1 ∩ER) ⊔ E2 ⊔E3 ⊔ E4))

≤ Jdh(φ((E1 ∩ ER) ⊔E2 ⊔ E3)) + Jdh(E4)

≤ Cn−dǫ′′Jdh(E) + Jdh(ψ0(E))

≤ (Cn−dǫ′′ + (1 + ǫ′)2)Jdh(E).

(141)By taking ǫ′ small enough suh that Cn−dǫ′′ + (1 + ǫ′)2 ≤ 1 + ǫ, this ahievesproving theorem 3.The following lemma is very similar, exept that the polyhedri mesh is�xed. The ontrol over the potential measure inrease is given by a multiplia-tive onstant depending on the shape of the polyhedrons and subfaes of themesh.Lemma 7 (Polyhedral deformation). Suppose that 0 ≤ d < n, that U ⊂ R
nis an open bounded domain and that S is a n-dimensional omplex suh that

U(S) ⊂ U .There exists a onstant K > 0 depending only on d and n suh that for alllosed d-set E ⊂ U(S), one an build a Lipshitz map φ : R
n → R

n satisfyingthe following properties:� φ|Rn\U = IdRn\U and for all subfae α ∈ F(S): φ(α) = α and φ|α = Idαif dimα ≤ d;� φ(E) ⊂ U(Fd(S));� Hd(φ(E)) ≤ KR(S)−2d(n−d)Hd(E) and for all subfae α ∈ F(S): Hd(φ(E∩
◦
α)) ≤ KR(S)−2d(n−d)Hd(E ∩ ◦

α).34



The proof is pretty straightforward: we just have to use an indution rea-soning like the one in the above proof of theorem 3.Proof. By building optimal radial projetions in subfaes of dimension n, n−1,
. . . till dimension d+1 and extend them on R

n using lemma 3 we build a map
φ that veri�es all the required topologial onstraints, and suh that

∀α ∈ F(S) : Hd(φ(E ∩ ◦
α)) ≤ KR(S)−2d(n−d)Hd(E ∩ ◦

α) (142)where K depends only on d and n.Our two previous polyhedral approximation and deformation statements(theorem 3 and lemma 7) are not omplete, in the sense that the set we obtainin the end may not be made of omplete polyhedrons, but instead may ontain�holes�. In eah polyhedron that is not ompletely overed, it is possible toontinue our radial projetions in the previous dimension till all remainingsubfaes are ompletely overed. At the end, the set we obtain is a �nite unionof subfaes of dimension at most d (i.e. a d-dimensional skeleton, as introduedin setion 1).Lemma 8 (Polyhedral erosion). Suppose that 0 ≤ d < n, that U ⊂ R
n isan open bounded domain and that S is a n-dimensional omplex suh that

U(S) ⊂ U .For all losed set E ⊂ U(Fd(S)) one an build a Lipshitz map φ : R
n → R

nsatisfying the following properties:� φ|Rn\U = IdRn\U and for all subfae α ∈ F(S): φ(α) = α, and φ|α = Idαor φ(α ∩ E) ⊂ ∂α;� there is a d-dimensional skeleton S ′ of S suh that φ(E) = U(S ′);� Hd(φ(E)) ≤ Hd(E).Later, this lemma will be used in onjuntion with theorem 3 or lemma 7 torestrit ourselves to a �nite sublass of ompetitors for whih �nding a minimalset is trivial.Proof. For ≤ j ≤ d and F ⊂ R
n, put

Sj(F ) =
⋃

δ∈Fj(S)
F∩δ=δ

δ, S ′
j(F ) =

⋃

δ∈Fd(S)

F∩
◦

δ 6=
◦

δ

F ∩ δ. (143)Notie that when F ⊂ U(Fj(S)), Sj(F ) ∩ S ′
j(F ) ⊂ U(Fj−1(S)) and we an�nd F ′ ⊂ U(Fj−1(S)) suh that F = Sj(F ) ∪ S ′
j(F ) ∪ F ′.We will use again a similar argument as in lemma 3. Put ψ0 = IdRn ,

Ed = E and notie that sine S is a omplex, S ′
j(Ed) = ∅ for all j > d. Let usreason by dereasing indution over j, and suppose that at rank j ∈ {1, . . . , d}35



we have built a Lipshitz map ψj over R
n suh that, by putting Ej = ψj(E)we have:

Hd(Ej) ≤ Hd(E) and ∀k ∈ {j + 1, . . . , n} : S ′
k(Ej) = 0. (144)Put

T =
{
α ∈ Fj(S) : Ej ∩

◦
α 6= ∅ and Ej ∩ ◦

α 6= ◦
α
}
. (145)If T = ∅ we have �nished. If not, sine Ej is losed then for all α ∈ T we an�nd a d-dimensional open ball B ⊂ ◦

α \ Ej entered at xα. By using lemma 2we an extend Πα,xα|α\B over α and obtain a Lipshitz map ψα suh that
ψα(Ej ∩ α) ⊂ U(Fj−1(S))

Hd(ψα(Ej ∩ α)) = 0 ≤ Hd(Ej ∩ α).
(146)Suppose that α ∈ T , k > j and that β ∈ Fk(S) is suh that ◦

α ∩ β 6= ∅. Sine
S is a omplex, this implies that α ⊂ ∂β ⊂ β. By (144), either Ej ∩ β = β or
Ej∩

◦
β = ∅ and sine Ej∩ ◦

α 6= ◦
α the seond ase is true. As we have previouslydone in lemma 3, we an build Lipshitz extensions of all the ψα (for α ∈ T )over R

n with pairwise disjoint supports and suh that
Sptψα ∩

(
(Rn \ U) ∪ (Fj \ S ′

j(Fj))
)

= ∅. (147)Put
ψ =

∏

α∈T
ψα

ψj−1 = ψ ◦ ψj .
(148)Sine ψ|Fj\S′

j(Fj) = IdFj\S′
j(Fj) and ψ|S′

j(Fj) is a produt of extensions of radialprojetions in j-dimensional subfaes of S, then for all k > j − 1:
S ′
k(Sj(Ej−1)) = S ′

k(S
′
j(Ej−1)) = ∅. (149)Besides, sine Ej−1 = Sj(Ej−1) ∪ S ′

j(Ej−1) ∪ E ′ where E ′ ⊂ U(Fj−1(S)) then
S ′
k(E

′) = ∅ and we get:
S ′
k(Ej−1) = S ′

k(Sj(Ej−1)) ∪ S ′
k(S

′
j(Ej−1)) ∪ S ′

k(E
′) = ∅. (150)Also, it is lear that Hd(Ej−1) ≤ Hd(E) beause Ej−1 ⊂ E, whih ahievesproving the indution.If we iterate the above proess till rank j = 0 and put φ = ψ0, for all k > 0we have S ′

k(φ(E)) = ∅, whih is enough to onlude.36



3.2 Limits of uniformly onentrated minimizing sequenesIn what follows we give a way to onvert any minimizing sequene of ele-ments of E into another minimizing sequene of polyhedri and quasiminimalompetitors, with uniform onstants (depending only on dimensions d and n).Notie that the following lemma may prove to be more useful in �real problems�than theorem 4, beause it gives more ontrol over the topologial onstraintembedded in F, espeially when involving the boundary of U .Lemma 9 (Polyhedral optimization). Suppose that 0 < d < n and that U ⊂
R
n.There is a positive onstant M ′ > 0 (depending only on d and n) suh that� for all ontinuous funtion h : U → [1,M ],� for all relatively losed d-subset E ⊂ U ,� for all relatively ompat subset V ⊂⊂

◦
U and for all ǫ > 0,one an �nd a n-dimensional omplex S and a subset E ′′ ⊂ U satisfying thefollowing properties:� E ′′ is a Diam(U)-deformation of E over U and by putting W =

◦
U(S) wehave V ⊂⊂ W ⊂⊂ U and there is a d-dimensional skeleton S ′ of S suhthat E ′′ ∩W = U(S ′);� Jdh(E

′′) ≤ (1 + ǫ)Jdh(E);� there are d+1 omplexes S0, . . . , Sd with Sl ⊂ Fl(S) suh that, by putting
{
Ed = U(Sd) ∩W
El = U(Sl) ∩W l

{
W d = W

W l−1 = W l \ El,
(151)then E ′′ ∩ W = Ed ⊔ Ed−1 ⊔ . . . ⊔ E0 and for all l ∈ {0, . . . , d}, Elis (MM ′,Diam(W ))-quasiminimal over W l for Hl. Furthermore, El isoptimal in the sense that if all the El′ are �xed for l′ > l, any deformationof E overW l′ verifying the same above properties annot derease Jdh(El).Proof. To begin with, we an always suppose that U is bounded. Otherwise,take an open bounded neighborhood U ′ ⊂ U of V suh that V ⊂⊂ U ′ andreplae U by U ′. That way, we an assume that Hd(E) < ∞. Sine V ⊂⊂ Uwe have

A = inf
(x,y)∈∂U×∂V

d(x, y) > 0, (152)whih means that in any orthonormal basis and for R < A
8
√
N

one an build adyadi omplex T of stride R suh that V ⊂⊂ U(T ) ⊂⊂ U .37



Fix ǫ > 0, put
R =

A

8
√
n
, (153)and apply theorem 3 to the losed d-set E ∩ V in the open domain U , withthe above onstant R: we build a dyadi omplex S suh that R(S) < R,

R(S) > J and U(S) ⊂⊂ U , and a Lipshitz map ψ1 suh that ‖ψ1−IdRn ‖∞ < ǫ,
ψ1(E∩V ) ⊂ U(Fd(S)) and Jdh(ψ1(E∩V )) ≤ (1+ ǫ)Jdh(E∩V ). Using lemma 8with ψ1(E∩V ), we build a Lipshitz map ψ2 suh that ψ2 ◦ψ1(E∩V ) = U(S ′)where S ′ is a d-dimensional skeleton of S and

Jdh(ψ2 ◦ ψ1(E ∩ V )) ≤ (1 + ǫ)Jdh(E ∩ V ). (154)If we build an additional layer of ubes around S, and by stopping the radialprojetions of theorem 3 and lemma 8 at dimension n − 1 in the boundaryfaes of S we an even assume that
Jdh(ψ2 ◦ ψ1(E)) ≤ (1 + ǫ)Jdh(E) (155)and
ψ2 ◦ ψ1|

Rn\
◦

U(S)
= Id

Rn\
◦

U(S)
. (156)Later, we will impliitly make the same assumptions when using lemmas 7and 8.Sine F∂(S) is the same as a dyadi omplex, and sineR(S) < R, by (152)and (153) we an add dyadi ubes around S until

V ⊂⊂ U(S) ⊂⊂ U. (157)Put W =
◦

U(S) and E ′ = ψ2 ◦ ψ1(E), and reall that by lemma 8:
∀δ ∈ S : ψ2(δ) ⊂ δ. (158)This implies that ‖ψ2 − IdRn ‖∞ ≤ R(S) < R, and we get

‖ψ2 ◦ ψ1 − IdRn ‖∞ < 2R < A. (159)By (152) and using proposal 1 with ψ2 ◦ ψ1 and the identity deformation over
U we build a deformation (φt) over U suh that φ1 = ψ2 ◦ ψ1, and E ′ is anAlmgren ompetitor of E suh that E ′ \W = E \W .Consider the set S of subsets of U obtained as an union of E \W with a
d-dimensional skeleton of S:

S = {U(T ) ∪ (E \W ) : T ⊂ Fd(S) ∪ . . . ∪ F0(S)}, (160)and the set E of ompetitors of E obtained by a deformation with support in
W :

E = {φ1(E) : (φt) is a Diam(W )-deformation over U and Spt(φ) ⊂W}.(161)38



Notie that S∩E is �nite sine F(S) is �nite, and non-empty sine it ontains
E ′. Then we an �nd E ′′ ∈ S ∩ E suh that

Jdh(E
′′) = min{Jdh(F ) : F ∈ S ∩ C}, (162)and furthermore

Jdh(E
′′) ≤ Jdh(E

′) ≤ (1 + ǫ)Jdh(E). (163)Let us hek that E ′′ meets all the announed quasiminimality require-ments. Suppose that F is an Almgren ompetitor ofE ′′ obtained by aDiam(W )-deformation (φt) over W . Sine F is also an Almgren ompetitor of E we have
F ∈ E. By applying lemmas 7 and 8 to F and S, as we did previously with Ewe an build an Almgren ompetitor F ′ ∈ E∩S of F obtained by a deformation
(ψt) over W suh that for all subfae α ∈ F(S):

Hd(ψ1(F ∩ ◦
α)) ≤ KR(S)−2d(n−d)Hd(F ∩ ◦

α) ≤ K ′Hd(F ∩ ◦
α), (164)where K ′ = KJ−2d(n−d) depends only on d and n. Reall that E ′′ ∩W is anunion of subfaes of dimension at most d of S. Then, for all subfae α ofdimension at least d+ 1, F ∩ E ′′ ∩ ◦

α = ∅ and as a onsequene:
F \ E ′′ =




⊔

α∈F(S)
dim(α)>d

F ∩ ◦
α


 ⊔




⊔

α∈F(S)
dim(α)≤d

(F \ E ′′) ∩ ◦
α


 . (165)Notie that the Lipshitz maps given by lemmas 7 and 8 are suh that for allsubfae α of dimension at most d, ψ1|α = Idα or ψ1(α∩F ) ⊂ ∂α, whih gives:

Hd(ψ1(F \E ′′)) =




∑

α∈F(S)
dim(α)>d

Hd(ψ1(F ∩ ◦
α))




+d




∑

α∈F(S)
dim(α)≤d

Hd(ψ1((F \E ′′) ∩ ◦
α))




≤




∑

α∈F(S)
dim(α)>d

K ′Hd(F ∩ ◦
α)




+




∑

α∈F(S)
dim(α)≤d

Hd((F \ E ′′) ∩ ◦
α)




≤ max(K ′, 1)
∑

α∈F(S)

Hd((F \ E ′′) ∩ ◦
α)

= K ′Hd(F \ E ′′).

(166)
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Sine F ′ ∈ E ∩S we have Jdh(F ′) ≥ Jdh(E
′′), and more preisely, by removing

E ′′ ∩ F ′:
Jdh(E

′′ \ F ′) ≤ Jdh(F
′ \ E ′′). (167)Besides, F ′ \E ′′ = ψ1(F ) \E ′′ ⊂ ψ1(F \E ′′) beause ψ1(E

′′) = E ′′ (reall that
E ′′ ∩W is an union of subfaes of S, and that by lemma 7, for all α ∈ F(S),
ψ1(α) = α) and Jdh(E ′′\F ′) ≤ Jdh(ψ1(F \E ′′)). Using our bounds on h and (166)we get

Hd(E ′′ \ F ′) ≤MHd(ψ1(F \ E ′′)) ≤ KMHd(F \ E ′′). (168)Suppose that δ is a subfae of S of dimension at least d + 1. Notie that
ψ1(F ∩

◦
δ) is inluded in U(Fd(δ)), and that by lemma (7):

Hd(ψ1(F ∩
◦
δ)) ≤ K ′Hd(F ∩

◦
δ). (169)Conversely, if α ∈ Fd(S) then either α ∈ E ′′ ∩ F ′ or ◦

α ∩ E ′′ ∩ F ′ = ∅ sine
E ′′ ∩W and F ′ ∩W are both unions of subfaes of S. In the �rst ase, thetopologial properties of the Lipshitz map given by lemmas 7 and 8 implythat

α \ F ⊂ ψ1




⋃

δ∈S(α)

◦
δ



 , (170)where
S(α) = {β ∈ F(S) : β 6= α and α ∈ F(β)} . (171)Consequently, for all α ∈ Fd(S) suh that α ⊂ E ′′ ∩ F ′:
Hd(α \ F ) ≤ Hd


α ∩

⋃

δ∈S(α)

ψ1(F ∩
◦
δ)


 . (172)By summing over all d-dimensional faes of S that are inluded in E ′′∩F ′∩Wand by (168) we get:

Hd((E ′′ ∩ F ′) \ F ) =
∑

α⊂E′′∩F ′

Hd (α \ F )

≤
∑

α⊂E′′∩F ′

Hd



α ∩
⋃

δ∈S(α)

ψ1(F ∩
◦
δ)





= Hd




⋃

α⊂E′′∩F ′

⋃

δ∈S(α)

α ∩ ψ1(F ∩
◦
δ)




≤ Hd



⋃

α⊂F ′

⋃

δ∈F(S),dim(δ)>d

α ∩ ψ1(F ∩
◦
δ)
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≤ Hd



(
⋃

α⊂F ′

α

)
∩




⋃

δ∈F(S),dim(δ)>d

ψ1(F ∩
◦
δ)






= Hd


F ′ ∩

⋃

δ∈F(S),dim(δ)>d

ψ1(F ∩
◦
δ)




= Hd




⋃

δ∈F(S),dim(δ)>d

ψ1(F ∩
◦
δ)





≤
∑

δ∈F(S),dim(δ)>d

Hd

(
ψ1(F ∩

◦
δ)

)

≤
∑

δ∈F(S),dim(δ)>d

K ′Hd

(
F ∩

◦
δ

)

= K ′Hd




⋃

δ∈F(S),dim(δ)>d

F ∩
◦
δ




= K ′Hd(F \ U(Fd(S)))

≤ K ′Hd(F \ E ′′). (173)To ahieve proving that E ′′ is quasiminimal, let us split E ′′ \ F :
E ′′ \F = (E ′′ \ (F ′∪F ))⊔ ((E ′′∩F ′)\F ) ⊂ (E ′′ \F ′)∪ ((E ′′∩F ′)\F ). (174)Using (174), (168) and (173) we obtain

Hd(E ′′ \ F ) ≤ Hd(E ′′ \ F ′) + Hd((E ′′ ∩ F ′) \ F )

≤ K ′(M + 1)Hd(F \ E ′′)

≤MM ′Hd(F \ E ′′),

(175)where M ′ = 2K ′ depends only on d and n. Using the fat that E ′′ \ F ⊂ ξφ1and F \ E ′′ ⊂ φ1(ξφ1
) we also have the following set equalities:

E ′′ ∩ ξφ1
= ((E ′′ \ F ) ∩ ξφ1

) ⊔ (E ′′ ∩ F ∩ ξφ1
)

= (E ′′ \ F ) ⊔ (E ′′ ∩ F ∩ ξφ1
),

(176)and
φ1(E

′′ ∩ ξφ1
) = φ1(E

′′) ∩ ((φ1(ξφ1
) \ E ′′) ⊔ (ξφ1

∩E ′′))

= F ∩ ((φ1(ξφ1
) \ E ′′) ⊔ (E ′′ ∩ ξφ1

))

= ((F \E ′′) ∩ φ1(ξφ1
)) ⊔ (F ∩ E ′′ ∩ ξφ1

)

= (F \ E ′′) ⊔ (F ∩ E ′′ ∩ ξφ1
).

(177)41



Using (175), (176) and (177) we �nally get
Hd(E ′′ ∩ ξφ1

) = Hd(E ′′ \ F ) + Hd(E ′′ ∩ F ∩ ξφ1
)

≤MM ′Hd(F \ E ′′) + Hd(E ′′ ∩ F ∩ ξφ1
)

≤ max(MM ′, 1)
(
Hd(F \ E ′′) + Hd(F ∩ E ′′ ∩ ξφ1

)
)

= MM ′Hd(φ1(E
′′ ∩ ξφ1

)),

(178)whih ahieves proving that E ′′ is (MM ′,Diam(W ))-quasiminimal over W for
Hd.Let us now verify the last point of the lemma. Suppose that S ′ ⊂ F(S) is a
d-dimensional skeleton of S and onsider the following de�nition for 0 < l ≤ d:

{
F∗
d (S

′) = Fd(S) ∩ S ′

F∗
l−1(S

′) = {α ∈ Fl−1(S) ∩ S ′ : ∀l′ ≥ l, ∀β ∈ F∗
l′(S

′), α 6⊂ β} . (179)The omplexes F∗
l (S

′) are in fat the l-dimensional polyhedrons of S ′ that arenot a subfae of any polyhedron of S ′ with higher dimension. Let us also de�ne




Sd =

{
T ⊂ F(S) : (E \W ) ∪ U(T ) ∈ C and Jdh(U(T )) = min

G∈C∩S
Jdh(G ∩W )

}

S l−1 =

{
T ∈ S l : J l−1

h (U(F∗
l−1(T ))) = min

T ′∈Sl
J l−1
h (U(F∗

l−1(T
′)))

}
. (180)Notie that Sd is not empty sine the skeleton that we used to build E ′′ is in it,and by indution it is easy to hek that S0 is not empty. Without hangingthe above proof we an assume that we took E ′′ = (E \W ) ∪ (U(S ′′)) where

S ′′ ∈ S0. For 0 ≤ l ≤ d, put
Sl = F∗

l′(S
′′), (181)and use the same notations as in the last point of the lemma. We an use thesame argument as we used above to prove the quasiminimality of E ′′, to provethat eah El is quasiminimal for Hl over W l.Before stating and proving our main theorem we provide the followinglemma whih will allow us to onsider minimization problems with respet tothe integral funtional Jdh instead of Hd only, and onsider the ase of almost-minimal sets as well with a gauge funtion losely related to h.Lemma 10 (Lower semiontinuity of Jdh with respet to Hd). Suppose that

U is an open domain, that h : U → [1,M ] is lower semiontinuous and that
(Ek)k∈N is a sequene of measurable subsets of U .If there is a measurable set E ⊂ U suh that for all open subset V ⊂⊂ U :

Hd(E ∩ V ) ≤ lim inf
k→∞

Hd(Ek ∩ V ), (182)then the following holds:
Jdh(E) ≤ lim inf

k→∞
Jdh(Ek). (183)42



Proof. Fix an integer m > 0 and for l ≥ 0, put
Xl = {x ∈ U : h(x) > 2−ml} (184)Notie that Xl is open beause h is lower semiontinuous, and for x ∈ U set
hm(x) = 2−m

∑

l≥0

1Xl
(x), (185)where 1Xl

stands for the harateristi set funtion of Xl. Sine h is bounded,the sum in (185) is �nite and for all open subset V ⊂⊂ U :
Jdhm

(E ∩ V ) = 2−m
∑

l≥0

lHd(E ∩Xl ∩ V )

≤ 2−m
∑

l≥0

l lim sup
k→∞

Hd(Ek ∩Xl ∩ V )

= lim sup
k→∞

Jdhm
(Ek ∩ V ).

(186)Besides, notie that
h ≤ hm ≤ h+ 2−m, (187)whih gives

Jdh(E) ≤ Jdhm
(E) ≤ lim inf

k→∞
Jdhm

(Ek) ≤ lim inf
k→∞

Jdh(Ek) + 2−mH, (188)where H = supkHd(Ek). Consider the two possibles ases:1. if H <∞ then by taking limits in (188) we have �nished;2. if H = ∞, there are two more possible ases:� if lim infk→∞Hd(Ek ∩ V ) = ∞ we have �nished;� otherwise, we an extrat a subsequene (E ′
k)k∈N of (Ek) suh that

supkHd(E ′
k) <∞,

lim
k→∞

Hd(E ′
k ∩ V ) = lim inf

k→∞
Hd(Ek ∩ V ), (189)and go bak to the above ase 1 by replaing Ek with E ′

k.We now have all the required ingredients to proeed into proving the mainresult. A large part of the argument is based upon the proof of the seond pointof theorem 2 (see [Dav03℄). Our polyhedral optimization theorem 9 allows usto build a polyhedri minimizing sequene for whih we have to make surethat the subfaes of dimension less than d do not onverge towards a setof positive d-dimensional measure. This will be done using the optimalityof subdimensional ores we obtained before. Notie that we do not requireour minimizing sequene to be made of redued sets, whih might prove tobe onvenient when trying to ontrol the topologial onstraint when takinglimits, sine the subdimensional ores an play a topologial role.43



Theorem 4 (Main result). Let U be an open, bounded domain of R
n, 0 ≤

d < n, F a non-empty family of relatively losed subsets of U stable underthe Diam(U)-deformations over U suh that infF∈FHd(F ) < ∞ and h : U →
[1,M ] suh that

∀(x, y) ∈ U2 : h(y) ≤ (1 + h̃(‖x− y‖))h(x) (190)where h̃ : ]0,Diam(U)[→ [0,∞] veri�es
lim
r→0

h̃(r) = 0. (191)Then one an build a sequene (Ek)k∈N of elements of F satisfying thefollowing properties:� Ek
U−⇁ E ′;� Jdh(E
′) ≤ inf

F∈F
Jdh(F );� E ′ is almost-minimal with gauge funtion h̃ over U .More preisely, by putting

El = kerld(E) and U l = U \
⊔

d≥l′>l
El′ (192)for 0 ≤ l ≤ d, the following holds:� kerld(Ek)

U l

−⇁ El;� J lh(E
l) ≤ inf

F∈F

F\U l=E\U l

J lh(ker
l
d(F ));� El is almost-minimal with gauge funtion h̃ over U l.Notie that we did not require that all the elements of F have �nite measure.However, we an always onsider the sublass of d-sets of F (whih is not emptysine infF∈FHd(F ) <∞), whih is stable under deformations on U due to theLipshitz ondition in de�nition 6.Proof. Suppose that (Uk)k∈N is an inreasing sequene of open and relativelyompat subsets of U suh that
⋃

k∈N

Uk = U. (193)For instane, one an take
Uk =

{
x ∈

◦
B(0, 2k) : B(x, 2−k) ⊂ U

}
. (194)44



For k ≥ 0, set ǫk = 2−k and hoose Ek ∈ F suh that:
Jdh(Ek ∩ Uk) ≤ ǫk + inf

F∈F
Jdh(F ∩ Uk). (195)Set η > 0. By applying lemma 9 to Ek∩Uk inside Uk, one an build an open set

Wk suh that Uk ⊂⊂ Wk ⊂⊂ U , a n-dimensional omplex Sk and an Almgrenompetitor
E ′
k = (Ek \ Uk) ⊔

⊔

0≤l≤d
El
k ∈ F (196)suh that Jdh(E ′

k ∩ Uk) ≤ (1 + η)Jdh(Ek ∩ Uk), and El
k = U(Sl) (for 0 ≤ l ≤ d)where Sl ⊂ Fl(Sk), where eah El

k is (MM ′,Diam(Uk)-quasiminimal over U l
kfor Hl. Notie that Jdh(Ek∩Uk) ≤MHd(Ek∩Uk) < +∞, beause Ek is a d-setinluded in U , whih is bounded. By taking η = ǫk

Jd
h(Ek∩Uk)

> 0 and by (195),we get:
Jdh(E

′
k ∩ Uk) ≤ ǫk + Jdh(E ∩ Uk) ≤ 2ǫk + inf

F∈F
Jdh(F ∩ Uk). (197)We an extrat from (E ′

k) a onvergent subsequene that onverges towardsa relatively losed subset El of U loally on every ompat of U . By setting
U l = U \

⋃

d≥l′>l
El′ (198)and extrating multiple subsequenes, we an even assume that El

k ∩ U l on-verges towards El loally on every ompat of U l. To summarize, one we haveextrated all our onvergent subsequenes, we obtain:
∀l ≤ d : El

k
U l

−⇁ El , E ′
k =

⊔

0≤l≤d
El
k , E ′

k
U−⇁ E and E =

⊔

0≤l≤d
El.(199)Now �x l ≤ d, suppose that V ⊂⊂ U l and for ǫ > 0, put:

Wǫ =
⋃

x∈Ed∪Ed−1...∪El+1

B(x, ǫ). (200)Sine El′

k
U l′

−⇁ El′ when l′ > l, one an �nd k0 suh that
∀k ≥ k0 :

⋃

d≥l′>l
El′

k ⊂Wǫ. (201)Besides, V ⊂⊂ U l and U l ∩ El′ = ∅ when l′ > l, so we an take ǫ > 0 smallenough suh that V ∩Wǫ = ∅, whih in turn gives:
∀k ≥ k0, ∀l′ > l : El′

k ∩ V = ∅. (202)45



SineEl
k is (MM ′,Diam(Wk))-quasiminimal overW l

k, it is also (MM ′,Diam(U))-quasiminimal over V ∩W l
k when k ≥ k0. Furthermore, sine V is ompat andinluded in U , whih is overed by ⋃k Uk by (193), by taking a �nite overingwe an assume that k0 is large enough suh that

∀k ≥ k0 : V ⊂ Uk. (203)We an also assume that, for instane, R(Sk) ≤ ǫk � by taking R smallenough in lemma's 9 proof. That way, again by taking k0 large enough, wean assume that we an extrat a subset S ′
k from Sk verifying

V ⊂⊂ U(S ′
k) ⊂⊂ W l

k. (204)By extrating another subsequene, we an even suppose that for instane
R(Sk+1) ≥ 8

√
nR(Sk), and extrat our omplexes S ′

k suh that:
∀k ≥ k0 : U(S ′

k) ⊂ U(S ′
k+1). (205)Suppose that we have done all the above setup, put

D = Hl(U(Fl(Sk0))) and D′ = min
α∈Fl(S′

k0
)
Hl(α), (206)and suppose that k ≥ k0. Our next goal is to prove the two following state-ments:

Hl(El
k ∩ V ) ≤MM ′D, (207)

Hl(El
k ∩ V ) ∈ {0} ∪ [

D′

M ′ ,+∞[. (208)Firstly, put W ′
k =

◦
U(S ′

k). By applying lemma 7 to the losed l-set El
k inthe omplex S ′

k0
, we get a deformation (ψt) over W ′

k0
suh that, by putting

E ′l
k = ψ1(E

l
k) we have E ′l

k ∩W ′
l ⊂ U(Fl(S

′
k)),

Hl(E ′l
k ) ≤ D and Hl(E ′l

k ) ≤M ′Hl(El
k ∩W ′

k0
). (209)Using the quasiminimality of El

k over W l
k we get diretly

Hl(El
k ∩W ′

k0
) ≤MM ′Hl(E ′l

k ) ≤MM ′D, (210)and sine V ⊂ W ′
k0

by (204), we obtain (207).Now, if we suppose that Hl(El
k ∩W ′

k0
) < D′

M ′ then by (208) we have
Hl(E ′l

k ) < D′ = min
α∈Fl(S

′

k0
)
Hl(α) (211)and sine E ′l

k ⊂W ′
k0

⊂ U(Fl(S
′
k0

)) this means that for all α ∈ Fl(S
′
k0
, α∩E ′l

k 6=
α. By using lemma 8 we an build a deformation (ψ′

t) over W ′
k0

suh that:
E ′′l
k = ψ′

1(E
′l
k ) ⊂ U(Fl−1(S

′
k0)). (212)46



Using the quasiminimality of El
k again and by (212), we get

Hl(El
k ∩W ′

k0) ≤MM ′Hl(E ′′l
k ∩W ′

k0) = 0, (213)and sine V ⊂
◦

W ′
k0

by (204), we get (208).Applying theorem 2 to the sequene (El
k ∩ U)k≥k0 � whih onverges to-wards El ∩ V � gives us the following points:� El∩V is (MM ′,Diam(U))-quasiminimal over U and kerl(El∩V )El∩V ;�

Hl(El ∩ V ) ≤ lim inf
k→∞

Hl(El
k ∩ V ) ≤ MM ′D <∞ (214)so El ∩ V is a losed relative l-subset of V ;�

Hl(El ∩ V ) ≥ C lim sup
k→∞

Hl(El
k ∩ V ) ∈ {0} ∪ [

CD′

M ′ ,+∞[, (215)and onsequently two ases are possible:� if Hl(El ∩ V ) = 0 then kerl(El ∩ V ) = ∅ and
lim sup
k→∞

Hl(El
k ∩ V ) = 0, (216)whih means that for k large enough, El

k ∩V = ∅ and El ∩V = ∅ =

kerl(El ∩ V ) (sine El
k ∩ V

V−⇁ El ∩ V );� if Hl(El ∩ V ) > 0 then for k large enough we have Hl(El
k ∩ V ) ≥

D′

M ′ > 0, so El
k ∩ V 6= ∅.We get from the seond point that kerl

′

(El) = ∅ and Hd(El′) = 0 if l′ > l.If we take for V a ball entered on El and relatively ompat in U l witharbitrary small radius, the third point tells us that El
k

U l

−⇁ kerl(El) and that
kerl(El) = El, and as a onsequene:

kerld(E
′
k)

U l

−⇁ kerld(E). (217)The �rst point implies that El is (MM ′,Diam(U))-quasiminimal over U l. Andusing lemma 10 we also get:
Jdh(E) = Jdh(E

d)

≤ lim inf
k→∞

Jdh(E
d
k ∩ Uk)

= lim inf
k→∞

inf
F∈F

Jdh(F ∩ Uk)

≤ inf
F∈F

Jdh(F ).

(218)
47



Notie that we ould start again all the above proess with an initial sequene
(E ′

k) suh that, for instane:
J lh(E

′
k ∩ V l

ǫk
) ≤ 2ǫk + inf

F∈F,F\V l
ǫk

=E′

k
\V l

ǫk

J lh(F ∩ V l
ǫk

), (219)where
V l
ǫk

= Uk \




⋃

l+1≤l′≤d
x∈El′

B(x, ǫk)


 . (220)That way we would ensure that

J lh(ker
l
d(E)) ≤ inf

F∈F

F\U l=E\U l

J lh(ker
l
d(F )), (221)and by de�ning new limits El′ for l′ ≤ l and a new V l
ǫk
, by indution we ouldprove the last point of theorem 4.At this point, all that is left to prove is the almost-minimality of the El:suppose that δ > 0 and that (ft) is a δ-deformation over U . Let us applythe last point of theorem 2 to the sequene (E ′

k): we get a Lipshitz map gover U and using proposal 1 we an build a δ-deformation (gt) over U , with g1verifying equation (40).Suppose that M = 1. For k large enough we have ξf1 ∪ ξg1 = ξf1 ⊂ Uk andwe an even suppose that Spt(g) ⊂⊂ Uk. By (219) and sine g1(Ek) ∈ F weautomatially have
Hd(g1(E

′
k ∩ ξg1)) ≥ Hd(E ′

k ∩ ξg1) − 2ǫk. (222)By (40) and provided that k is large enough we also get
Hd(f1(E ∩ ξf1)) ≥ Hd(E ∩ ξf1) − 4ǫk, (223)and sine ǫk → 0:

Hd(f1(E ∩ ξf1)) ≥ Hd(E ∩ ξf1), (224)whih ahieves proving that E is minimal over U .When M > 1, we an �nd a ball B with radius δ suh that ξg1 ⊂ ξf1 ⊂ B.Again, by (219) we have
Jdh(g1(E

′
k ∩ ξg1)) ≥ Jdh(E

′
k ∩ ξg1) − 2ǫk, (225)and by (190):

Hd(g1(E
′
k ∩ ξg1)) ≥ (1 + h̃(δ))Hd(E ′

k ∩ ξg1) − 2ǫk. (226)Using (40) again, we obtain
Hd(f1(E ∩ ξf1)) ≥ (1 + h̃(δ))(Hd(E ∩ ξf1) − 2ǫk) − 2ǫk, (227)48



whih similarly gives in turn
Hd(f1(E ∩ ξf1)) ≥ (1 + h̃(δ))Hd(E ∩ ξf1). (228)The above argument we used to prove the almost-minimality of E ould bedone again in dereasing dimension for El inside U l, whih ahieves provingthe last point of theorem 4.3.3 Two examples of appliationAs we outlined before, we annot ensure that the minimal andidate givenby theorem 4 is still in our topologial lass F. More preisely, it is easy to�nd ases for whih there is not even a solution to our measure minimizationproblem in F � and even more sine we supposed that U is open. For instane,when n = 2 and d = 1, take U =] − 2, 2[2\[−1, 1]2 and onsider the lass F ofpaths joining x = (1,−2) to y = (1, 2) with open extremities, and inluded in

U . Clearly, F is stable under the Diam(U)-deformations over U and it is easyto hek that infF∈FH1(F ) = 4 but every element of F is of length greaterthan 4 sine the open line segment joining x to y is not in F. Notie that inthat ase, the minimal andidate given by theorem 4 is in fat the union of thetwo open line segments joining x to (1,−1) and y to (1, 1). The onvergenenotion �over all ompat set of U� we had to use beause U is open is ratherweak near the boundary of U and for this reason we an ause gap to appear in
E when taking limit in our minimizing sequene, as in the previous example.However, in the ontext of a more restritive notion of minimal sets thanAlmgren-minimal sets (see below) our approah an give omplete existeneresults. The de�nition of this other kind of minimal sets is borrowed fromGuy David in [Dav08℄, where the reader might �nd more details about howthey an be useful to study the regularity of minimal segmentations for theMumford-Shah funtional.Let E be a losed set in R

n. A Mumford-Shah ompetitor for E (a �MS-ompetitor� in short) is a losed set F suh that we an �nd a losed ball Bverifying
F \B = E \B (229)and for all x, y ∈ R

n \ (B ∪E), �F separates x from y whenever E does� (i.e.if x and y lie in di�erent onnex omponents of R
n \ E then they also lie indi�erent onnex omponents of R

n \ F ). We say that E is MS-minimal if
Hn−1(E \ F ) ≤ Hn−1(F \ E) (230)for all MS-ompetitor F of E.The following statement an be used to �nd MS-minimizers inside a loal-ized lass of MS-ompetitors. In fat, we have to give an upper bound on thesize of the ball in whih we allow our sets to be hanged. Also, we have to givesome way to ensure that our minimizing limit will not ome too lose to the49



boundary of the ball when taking limit in our minimizing sequene, to avoidgaps to appear as we explained above.Corollary 1 (MS-minimal ompetitor inside a ball). Suppose that n ≥ 1 andthat E is a losed set. For all ball B, E has a MS-minimal ompetitor E ′inside B (i.e. E ′ is minimal like in (230) amongst all MS-ompetitors F of Esuh that F \B = E \B).The statement still holds when B is any ompat onvex set, although wewill prove it only in the ase when B is a ball. However, the proof may beadapted easily for this ase.Proof. For onveniene, let us suppose that B is open and entered at theorigin, denote by π the radial projetion onto ∂B entered at the origin andset B′ = 2B. For F ⊂ R
n we also de�ne the two set funtions

H(F ) = (F ∩B) ∪ {tx : x ∈ F ∩ ∂B and 1 ≤ t ≤ 2} ∪ {2x : x ∈ F \B}
I(F ) = (F ∩B) ∪

{x
2

: x ∈ F \B′
}
. (231)These funtions will be used to turn E into a one inside B′ \B and to easilybuild deformations on B′ \H(E). Notie that I ◦H(F ) = F and that F is aMS-ompetitor of F ′ if and only if H(F ) is a MS-ompetitor of H(F ′).For R > 0 small enough, one an build a dyadi omplex S inside B′ suhthat B ⊂ U(S) ⊂ B′. In fat, by �xing an orthonormal basis with origin at

(R/2, . . . , R/2) and by taking all possible ubes inside B′ we an even assumethat for all x ∈ B′ \U(S), the line segment [0, x] intersets U(F∂(S)) = ∂U(S)at an unique point y. In that ase the map f : x 7→ y is Lipshitz, possiblywith a very large onstant depending on R.Fix A ≥ 1, set U = B′ \ (H(E) \B), and de�ne h : U → [1, A] by
h(x) =

{
1 if x ∈ U(S),
A otherwise. (232)We also onsider the lass E of relatively losed subsets F of B ∩ U suh that

F ∪ (H(E)\B) are MS-ompetitors of H(E). Notie that E is not empty sine
H(E) ∩ U ∈ E and that infF∈EHn−1(F ) < ∞ sine ∂B ∩ U ∈ E. We alsodenote by F the lass of deformations over U of the elements of E, whih arealso MS-ompetitors of H(E) (see [Dug66, Dav09℄).Our funtion h is only lower semiontinuous over U although theorem 4requires h to be ontinuous over U . However, if we onsider how we provedtheorem 9 bak then we an always suppose that we did a overing of E\∂U(S)by balls inluded in U \ ∂U(S), and assume that we built our global dyadigrid (the one we used to merge all the grids in the balls of our almost overingtogether) suh that its faes over ∂U(S)∩Wk � in fat, we have to onsider a50



dyadi omplex in the same basis as S whose stride divides the stride of S. Inthat ase, the upper semiontinuity of h is not needed anymore, sine it is onlyused when doing our magneti projetions to loally �atten E onto its tangentplanes, and E ∩ ∂U(S) is already �attened onto the faes of our polyhedrigrid.With that minor modi�ation we an therefore apply theorem 4 to F, hand U : we get a measure-minimizing sequene (Ek) of elements of F suh that
Ek ∩

◦
Wk = U(S ′

k) ∩
◦
Wk (where S ′

k is an optimal n− 1-dimensional skeleton ofa omplex Sk with Wk = U(Sk) and U(S) ⊂Wk),
Ek

U−⇁ E ′ and Jn−1
h (E ′) ≤ inf

F∈F
Jn−1
h (F ). (233)Fix k > 0. Sine Ek \ U(S) ⊂Wk ⊂⊂ U , by using Kirszbraun theorem with fand sine U \B is a one we an build a Diam(Wk)-deformation (φt) over Wksuh that φ1|Ek\U(S) = f |Ek\U(S) and φ1|U(S) = IdU(S). Sine Ek \ B ⊂⊂ U wean even suppose (by taking Sk large enough) that Ek\U(S) ⊂Wk. Therefore,if we denote by α the Lipshitz onstant of f we get:

Hn−1(φ1(Ek \ U(S))) ≤ αn−1Hn−1(Ek \ U(S)). (234)Using our polyedri deformation lemmas 7 and 8 with φ1(Ek) we an build adeformation (ψt) over U suh that
ψ1 ◦ φ1(Ek) ⊂ U(S) (235)and ψ1 ◦ φ1(Ek) is polyhedri inside U(S) (i.e. it is a �nite union of subfaesof dimension at most n− 1 of Sk). However, sine Ek was already polyhedriinside U(S) we also have
ψ1|Ek∩U(S) = IdEk∩U(S) (236)and

Hn−1(ψ1 ◦ φ1(Ek \ U(S))) ≤ CHn−1(φ1(Ek \ U(S)))

≤ Cαn−1Hn−1(Ek \ U(S)),
(237)with C depending only on n. Therefore, we get

Jn−1
h (ψ1 ◦ φ1(Ek)) ≤

Cαn−1

A
Jn−1
h (Ek \ U(S)) + Jn−1

h (Ek ∩ U(S)). (238)If we suppose that we took A > Cαn−1 then neessarily Hn−1(Ek \U(S)) =
0 sine Ek is optimal amongst all its polyhedri deformations. Notie that thisargument also applies for the n − 2-dimensional measure (sine kern−2

n−1(Ek) isalso optimal in theorem 9), and so on till dimension 0. Therefore, this provesthat Ek \U(S) = ∅, whih means that Ek never gets too lose to ∂B′ and that
E ′ ⊂ U(S). 51



We are now ready to show that E ′ is a MS-ompetitor of H(E). For thatpurpose, suppose that x, y ∈ R
n \ (B′ ∪H(E)) are separated by H(E), pik apath γ from x to y and let us show that γ intersets E ′ ∪ (H(E) \ U). Sine

Ek ∈ F, γ intersets Ek ∪ (H(E) \ U) at some point xk and by ompaity of γwe an �nd x ∈ γ and extrat a subsequene suh that limk→∞ xk = x. Also,notie that either xk ∈ H(E)\U or xk ∈ Ek ⊂ U(S) for all k and therefore x ∈
(H(E)\U)∪U(S). If x ∈ H(E)\U we have �nished. If x ∈ U(S)\(H(E)\U),then for k0 large enough and k ≥ k0 we have B(x, ‖x − xk‖) ⊂ U . Sine
Ek

U−⇁ E ′ we an �nd a sequene yk of points of E ′ ∩ B(x, ‖x − xk0‖) thatonverges towards x, and sine E ′ ∩B(x, ‖x− xk0‖) is losed this is enough toprove that x ∈ E ′.To onlude, let us denote by π the radial projetion onto ∂B entered atthe origin, and for x ∈ U(S) put
g(x) =

{
π(x) if x /∈ B,
x otherwise. (239)Again by applying Kirszbraun theorem we an build a Diam(U)-deformation

(φt) over B′ suh that φ1(H(E) ∩ B) = H(E) ∩ B and φ1|E′ = g|E′. Notiethat g is 1-Lipshitz and therefore g(E ′) ∈ F with Hn−1(g(E ′)) ≤ Hn−1(E ′).Put
E ′′ = I(g(E ′) ∪ (H(E) \ U)) (240)and notie that by (233), E ′′ is a MS-ompetitor of E that meets the followingrequirements:

E ′′ \B = E \B and Hn−1(E ′′ ∩ B) ≤ inf
F MS-ompetitor of E

F\B=E\B

Hn−1(F ∩B).(241)Let us give another simple example of problem for whih we do not needto ontrol the topology near the boundary of the domain. In what follows weplae ourself in the periodized ube (Tn,d) where
T
n = R

n/Zn, (242)
d is the natural indued distane

d(x, y) = min
z∈Zn

‖x̃− ỹ + z‖ (243)and x̃ and ỹ denote equivalent points of x and y in R
n. We say that a one-parameter family (φt)0≤t≤1 of maps from T

n onto itself is a periodi deformationif φ0 = IdTn , (t, x) 7→ φt(x) is ontinuous over [0, 1] × T
n and φ1 is Hölder-regular, that is

∀x, y ∈ T
n : d(φ1(x) − φ1(y)) < Cd(x− y)1−α (244)52



for some C > 0 and α ∈ [0, 1[. For onveniene, we will also denote by Hd theHausdor� measure on T
n and keep the same de�nition for Jdh as in (19).Corollary 2 (Periodi minimizer). Suppose that n > 2, M > 0, R > 0, that

h : T
n → [1,M ] is a ontinuous funtion suh that
∀x, y ∈ T

n : |h(x) − h(y)| ≤ h̄(d(x, y)) and ∫ R

0

h̄(r)

r
dr <∞ (245)and that F is a non-empty lass of losed sets in T stable under periodi de-formations. Then F ontains a set E suh that

J2
h(E) = inf

F∈F
J2
h(F ). (246)In fat, as we will see in the proof below, we ould give a slightly moregeneral result when n = 3 by assuming that F is stable by deformations (φt)over T

n suh that φ1 is Lipshitz.In what follows, for F ⊂ T
n we denote by F̃ its natural periodized equiva-lent set in R

n whih veri�es
∀z ∈ Z

n : F̃ = z + F̃ , (247)and by h̃ the periodized equivalent of h suh that
∀z ∈ T

n : h̃(z̃) = h(z) (248)for any equivalent point z̃ of z in R
n. It is easy to hek that

∀F ⊂ T
n, ∀z ∈ R

n : Jdh(F ) = Jd
h̃

(
F̃ ∩ (z + [0, 1[n)

)
. (249)Similarly, for a given periodi deformation (φt) over T

n we denote by (φ̃t) itsperiodized equivalent over R
n suh that

∀t ∈ [0, 1], ∀x ∈ R
n, ∀z ∈ Z

n : φ̃t(x+ z) = φ̃t(x) + z. (250)These notations will be used to show that the optimization proess desribedin theorems 9 and 4 an also be adapted to this periodi setup. However, thereader that is already onvined of that fat may skip the �rst part of the prooftill (262).Proof. Suppose that infF∈FH2(F ) <∞ (otherwise our problem does not makesense and we have �nished) and that (Ek)k≥0 is a minimizing sequene ofelements of F with �nite measure:
lim
k→∞

J2
h(Ek) = inf

F∈F
J2
h(F ) <∞. (251)Fix k ≥ 0. If we onsider a global dyadi omplex (used to merge theomplexes of the almost-overing together) suh that its n − 1-dimensional53



subfaes over ∂[0, 1]n, we an apply theorem 3 and lemma 8 to Ẽk∩[0, 1]n. Weget a deformation (φt) over [0, 1]n and a omplex Sk suh that U(Sk) = [0, 1]n,
φ1(Ẽk ∩ [0, 1]n) ⊂ U(F2(Sk)) and

J2
h̃
(φ1(Ẽk ∩ [0, 1[n)) ≤ (1 + 2−k)J2

h̃
(Ẽk ∩ [0, 1[n). (252)By using polyhedrons that are small enough, we an even suppose that

R(Sk) ≤
1

100
. (253)Sine

∀t ∈ [0, 1] : φt|∂[0,1]n = Id∂[0,1]n, (254)we an also extend (φt) as a periodized deformation (φ̃t) over R
n. Set

Ẽ ′
k = φ̃1(Ẽk) (255)and notie that the orresponding sequene (E ′

k) in T
n is a minimizing sequeneof elements of F for J2

h . As we did before to prove theorem 9, we an do a�nite minimization of J2
h̃
(ψ1(Ẽ

′
k) ∩ [0, 1[) amongst the deformations over R

nsuh that ψ1(Ẽ
′
k) is arried by a 2-dimensional skeleton of Sk, Sptψ ⊂ [0, 1]nand

∀t ∈ [0, 1], ∀k ∈ {1, . . . , n}, ∀(z1, . . . , zn−1) ∈ [0, 1]n−1 :

ψt(z1, . . . , zl, 0, zl+1, . . . , zn) = ψt(z1, . . . , zl, 1, zl+1, . . . , zn). (256)Let us all (ψ̃t) an optimal deformation after having periodized it over R
n andput

Ẽ ′′
k = ψ̃1(Ẽk). (257)Notie that again, the orresponding set E ′′

k ⊂ T
n is in F. We also onsiderthe in�nite periodized omplex S̃k de�ned by

S̃k = {z + δ : z ∈ Z and δ ∈ Sk}, (258)and for z ∈ R
n and r > 0, denote by ∆(z, r) the ube de�ned by

∆(z, r) = z +
[
−r

2
,
r

2

[n
. (259)By (253), for all z ∈ R

n one an �nd two �nite subsets T (z) and T ′(z) of S̃ksuh that
B

(
z,

1

7

)
⊂ U(T (z)) ⊂ B

(
z,

2

7

)
⊂ U(T ′(z)) ⊂ B

(
z,

3

7

)
⊂⊂ ∆(z, 1). (260)Notie that Ẽ ′′

k ∩ ∆(z, 1) is also optimal amongst all its polyedri Almgren-ompetitors (ie. amongst all its images by a deformation with support in54



∆(z, 1) that are arried by a 2-dimensional skeleton of S̃). Now suppose that
(ft)0≤t≤1 is a 1

15
-deformation over R

n and let z ∈ R
n suh that Spt f ⊂ B

(
z, 1

7

).By (260), the polyedral optimality of Ẽ ′′
k and a similar argument as in theorem 9we get that

H2(Ẽ ′′
k ∩ ξf1) ≤MM ′Hd(f1(Ẽ

′′
k ∩ ξf1)) (261)where M ′ depends only on n. Therefore, (Ẽ ′′

k) is a sequene of quasiminimalsets with uniform onstants and by (252) and (249), (E ′′
k) is a sequene ofelements of F minimizing J2

h for whih the Hausdor� measure is lower semi-ontinuous. If we extrat a onvergent subsequene for the loal Hausdor�onvergene on every ompat set of R
n � the limit will also be periodized �and by a similar argument as in theorem 4, we get that

Ẽ ′′
k

U−⇁ Ẽ and Jdh(E) ≤ lim inf
k→∞

Jdh(E
′′
k ) = inf

F∈F
J2
h(F ). (262)Furthermore,

Ẽ = Ẽ2 ⊔ Ẽ1 ⊔ Ẽ0 (263)where Ẽl = kerl2 Ẽ is a redued almost-minimal set over
Ũ l = R

n \
(
⋃

2≥k>l
Ẽk

) (264)with gauge funtion h̄.Let us now show that for l = 0, 1, 2 we an build a deformation (φlt) over
T
n that sends an open neighborhood W l of El onto El. For that purpose,we will use the biHölder equivalene of one- and two-dimensional reduedalmost-minimal sets with one- and two-dimensional redued minimal ones(see [Tay76℄ for a biLipshitz version when (l, n) = (2, 3) or [Mor94℄ when

l = 1 with a slightly di�erent requirement on h̄, and see [Dav09, Dav08℄ forthe biHölder regularity we will atually be using below). For l = 1, 2, denoteby Z l the set of redued l-dimensional minimal ones over R
n (we will give abetter desription of Z l later). Fix τ ∈]0, 1[. By (245), Proposition 12.6 andTheorem 15.5 in [Dav09℄, for all x ∈ Ẽl there is r ∈ ]0, 1

2
− τ
[, a one Z ∈ Z lentered at x and a biHölder map f : B(x, 2r) → R

n suh that:
∀y, z ∈ B(x, 2r) :

(1 − τ)‖z − y‖1+τ ≤ ‖f(z) − f(y)‖ ≤ (1 + τ)‖z − y‖1−τ , (265)
B(x, r(2 + 2τ)) ⊂ Ũ l, (266)

B(x, r(2 − τ)) ⊂ f(B(x, 2r)) and ‖f − IdB(x,2r) ‖∞ ≤ rτ (267)and
Ẽl ∩ B(x, r(2 − τ)) ⊂ f(Z ∩B(x, 2r)) ⊂ E. (268)55



Additionally, suppose that there is C > 0, an open set Ux and a map g : Ux →
B(x, 2r) suh that

B(x, 2r) ∩ Z ⊂ Ux ⊂ B(x, 2r), (269)
g(Ux) ⊂ Z ∩ B(x, 2r), (270)

∀z ∈ Z ∩ B(x, 2r) : g(z) = z (271)and
∀y, z ∈ Ux : ‖g(z) − g(y)‖ ≤ C‖z − y‖. (272)We will explain in the last part of the proof how we an obtain suh a Lipshitzmap. Put

Vx = f−1(Ux) (273)and for all z ∈ Vx, set
πx(z) = f ◦ g ◦ f−1(z). (274)Notie that this de�nition is onsistent beause of (267), and that Vx is anopen set ontaining Ẽl ∩B(x, 2(r − τ)). Also, notie that

∀z ∈ Ẽl ∩B(x, r(2 − τ)) : πx(z) = z (275)by (271), that
πx(Vx) ⊂ Z ∩B(x, r(2 + τ)) (276)by (267), (269) and (268), and that

∀y, z ∈ Vx :

‖πx(z) − πx(y)‖ ≤ C
1 + τ

(1 − τ)
1

1+τ

‖z − y‖ 1−τ
1+τ = C ′‖z − y‖1−τ ′ (277)by (265) and (272). Sine we supposed that r ∈ ]0, 1
2
− τ
[ then Vx ⊂⊂ ∆(x, 1)and by using Mikle's extension theorem [Mi49℄, we an extend πx over ∆(x, 1)suh that it stills veri�es (277) (possibly with a larger onstant C ′ and by takinga smaller set for Vx) and

πx|∆(x,1)\B(x,r(2−2τ)) = Id∆(x,1)\B(x,r(2−2τ)) . (278)Therefore, we an onsider the equivalent of πx inside T
n � whih we will alsodenote by πx for onveniene, as well as Vx.Sine E2 is ompat in T

n, and {Vx : x ∈ E2} is a overing of E2 we anextrat a �nite overing {Vx1
, . . . , Vxp}. Put
V 2 =

⋃

1≤i≤p
Vxi

(279)56



and
∀(t, z) ∈ [0, 1] × T

N : φ2
t (z) = (1 − t)z + tπx1

◦ πx2
... ◦ πxp(z). (280)Then, (φ2

t ) is a periodi deformation over T
n suh that

E2 ⊂ V 2 and φ2
1(V

2) = E2. (281)Similarly, the set E1 \ V 2 is ompat, overed by {Vx : x ∈ E1 \ V 2} andwe an build an open set V 1 and a periodi deformation (φ1
t ) suh that

E1 \ V 2 ⊂ V 1 and E1 \ V 2 ⊂ φ1
1(V

1) ⊂ E1. (282)Additionally, by (266) we have B(x, r(2 + 2τ)) ∩ E2 = ∅ and we an alsosuppose that
Sptφ1 ∩ E2 = ∅. (283)Sine H0(Ẽ0 ∩ [0, 1[n) <∞, E0 is �nite. Therefore, we an easily build anopen set V 0 and a periodi deformation (φ0

t ) suh that
φ0

1(V
0) = E0 and (Sptφ0) ∩ (E2 ∪ E1) = ∅. (284)To onlude, put

V = V 1 ∪ V 2 ∪ V 2 and φt(z) = φ2
t ◦ φ1

t ◦ φ0
t (z) (285)and notie that by onstrution, φ is a periodi deformation suh that

φ1(V ) = φ1(E) = E ′ and φ1(E
2) = E2. (286)Sine φ1 is Hölder, then ker2(E ′) = E2 and J2

h(E
′) = J2

h(E). Reall that
E ′′
k

T
n

−⇁ E ′ ⊂ V (287)so for k large enough we have E ′′
k ⊂ V and get that
φ1(E

′′
k ) ⊂ E ′. (288)To get the onverse inlusion, notie that J2

h(E
′′
k ) ≥ J2

h(E) = J2
h(E

′) and sineboth ker2(E ′′
k) and ker2(E ′) are ompat we get

ker2(E ′) ⊂ φ2
1(ker

2(E ′′
k)). (289)To be honest, the onverse inlusion for the 1-dimensional ores is a littlemore di�ult to obtain if we onsider E1 as given by theorem 4. However, wean suppose that we minimized the measure of the 1-dimensional ore on theomplementary of an open neighborhood of E2 ontaining V 1 amongst the sets

F ∈ F suh that ker2(F ) = E2, and use the same argument as above. Then57



again, sine E0 is �nite the ase of the 0-dimensional ore is easily treated,and we get as expeted
E ′ ⊂ φ1(E

′′
k ). (290)Together with (288) this ahieves proving that

E ′ ∈ F. (291)Notie that we did not prove that E ∈ F, beause it was not needed inorder to prove orollary 2. However, although the author feels quite inlinedto believe that it is possible, it seems di�ult to build a similar retrationthat does not hange anything to E using the mere biHölder regularity ofalmost-minimal sets. Nonetheless, it seems easier when n = 3 using Taylorand Morgan's versions whih give a biLipshitz equivalene and thus, moreontrol on the way E1 meets E2.Remember that we still have to prove that we an build a loal Hölderretration on any l-dimensional redued minimal one for l = 1, 2 that meetthe requirements (269), (271) and (272) as we announed before.Let us deal with the ase l = 1 �rst and suppose that Z is a 1-dimensionalredued minimal one. For onveniene, we also suppose that Z is entered atthe origin. Aording to [Mor94℄ or [Dav09℄, Z an ome in two �avors:� a line, in that ase we simply take the orthogonal projetion onto it;� three half lines ontained in a 2-plane P that meet at the origin andmake 2π
3
angles. In that ase, denote by p the orthogonal projetion onto

P . Notie that for all z ∈ P \ Z, the onneted omponent of P \ Zthat ontains z is bounded by two of the three half lines in Z. Denoteby L the remaining half line without the origin and notie that the linethrough z parallel to L meets Z \ L at an unique point (see �gure 3.3).Call it q(z) and set q(z) = z if z ∈ Z. It is easy to hek that q ◦ p isLipshitz, and meets all our requirements.Now suppose that Z is a 2-dimensional redued minimal one entered atthe origin. Then we know (again, see [Dav09℄) that Z is the one over a set
K = K1 ⊔K2 ⊂ ∂B(0, 1) suh that� K1 is a �nite union of disjoint great irles,� K2 is a �nite union of losed ars of great irles that only meet at theirendpoints with 2π

3
angles, and eah endpoint is ommon to exatly threears.Notie that aording to this desription, K1 and K2 are loally biLipshitzequivalent respetively to the two �avors of 1-dimensional minimal ones wedesribed previously. Sine they are also ompat and disjoint, we an build a58



Figure 4: A simple Lipshitz retration onto a Y -shaped minimal one ofdimension 1.Lipshitz map q : ∂B(0, 1) → ∂B(0, 1) that sends an open neighborhood of Konto K. We an also extend q to R
n by putting

q(z) =

{
‖z‖q

(
z

‖z‖

) if z 6= 0

0 otherwise. (292)Finally (by using Kirszbraun theorem for instane), onsider a Lipshitz map
p suh that

p(z) =

{
0 if ‖z‖ < r

2

z if ‖z‖ > r.
(293)Again, it is easy to hek that q ◦ p meets our requirements.
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