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Assessment and monitoring of soil quality using near infrared reflectance spectroscopy (NIRS)

Soil degradation processes have dramatically increased in their extent and intensity over the last decades. Progressively, actions have been taken in order to evaluate and reduce the major threats that have already wreaked havoc on soil conditions. Efficient and standardized monitoring of soil conditions is thus required but soil quality research is facing an important technological challenge because of the number of properties involved in soil quality. The objective of the present review is to examine critically the suitability of near infrared reflectance spectroscopy (NIRS) as a tool for soil quality assessment. We first detail the soil quality-related parameters (chemical, physical and biological) that can be predicted with NIRS through laboratory measurements. The ability of imaging NIRS (airborne or satellite) for mapping a minimum data set of soil quality is also discussed. Then we review the most recent research using soil reflectance spectra as an integrated measure of soil quality, from global site classification to the prediction of specific soil quality indices. We conclude that imaging NIRS enables the direct mapping of some soil properties and soil threats, but that further developments to solve several technological limitations identified are needed before it can be used for soil quality assessment. The robustness of laboratory NIRS for soil quality assessment allows its implementation in soil monitoring networks. However, its routine use requires the development of international soil spectral libraries that should become a priority for soil quality research.

Introduction

In a technology-governed and energy-intensive world, degradation of soil conditions has become a widespread problem with negative consequences for both agricultural, natural ecosystems and urban areas [START_REF] Wander | Fostering soil stewardship through soil quality assessment[END_REF][START_REF] Biasioli | The influence of a large city on some soil properties and metals content[END_REF]. Scientific and political awareness of soil has emerged progressively during the second part of the 20th century [START_REF] Breure | Ecological soil monitoring and soil quality assessment[END_REF], with concerns over the sustainability of agriculture and the increasing number of contamination incidents [START_REF] Eijsackers | Leading concepts towards vital soil[END_REF]. Soil scientists started attempting to define soil quality [START_REF] Larson | Conservation and enhancement of soil quality[END_REF] and the first soil protection policy appeared in the 1970s [START_REF] Eijsackers | Leading concepts towards vital soil[END_REF], although the concept of soil quality is still debated (Sojka & Upchurch, 1999). Nowadays, quality or vitality of soils is considered to be their long-term ability to maintain their functions, which can be summarized by a combination of different elements: Robustness, Resilience, Recovery, and structural and functional Richness [START_REF] Eijsackers | Leading concepts towards vital soil[END_REF]. Another important feature in the definition of soil quality is its positive interaction with the external environment [START_REF] Larson | Conservation and enhancement of soil quality[END_REF], which is often described as the many ecosystem services provided by soils to human life [START_REF] Lavelle | Soil invertebrates and ecosystem services[END_REF].

Practical assessment of soil quality remains a challenging task since it requires the integrated consideration of key soil properties involved in soil functioning and their variation in space and time [START_REF] Doran | Defining and assessing soil quality[END_REF][START_REF] Doelman | Vital Soil: Function, Value, and Properties[END_REF]. Soil monitoring is thus essential for the early detection of changes in soil quality [START_REF] Morvan | Soil monitoring in Europe: A review of existing systems and requirements for harmonisation[END_REF]. However, selecting monitoring variables remains difficult [START_REF] Zornoza | Evaluation of soil quality using multiple linear regression based on physical, chemical and biochemical properties[END_REF] as the establishment of any a priori criterion and threshold for soil quality can be considered subjective since it relies on expert opinions (Sojka & Upchurch, 1999;[START_REF] Andrews | The soil management assessment framework: a quantitative soil quality evaluation method[END_REF][START_REF] Velasquez | GISQ, a multifunctional indicator of soil quality[END_REF].

Recent studies have proposed several conceptual frameworks for monitoring soil quality [START_REF] Andrews | The soil management assessment framework: a quantitative soil quality evaluation method[END_REF][START_REF] Velasquez | GISQ, a multifunctional indicator of soil quality[END_REF]. They usually share a common first step with the choice of a minimum data set (MDS, Table 1) made of chemical, physical, and biological properties essential in terms of soil functioning [START_REF] Doran | Defining and assessing soil health and sustainable productivity[END_REF]. Then soil attributes are selected from 5 the MDS for their suitability to assess a particular soil function [START_REF] Andrews | The soil management assessment framework: a quantitative soil quality evaluation method[END_REF], a specific soil ecosystem service [START_REF] Velasquez | GISQ, a multifunctional indicator of soil quality[END_REF], or a key threat to soils [START_REF] Morvan | Soil monitoring in Europe: A review of existing systems and requirements for harmonisation[END_REF]. Each indicator measure is further normalized to a unitless score, and finally integrated into a global soil quality index value [START_REF] Andrews | The soil management assessment framework: a quantitative soil quality evaluation method[END_REF][START_REF] Velasquez | GISQ, a multifunctional indicator of soil quality[END_REF], fulfilling Haberern's wish (1992).

However, since many soil analyses are involved, monitoring such soil quality indices at the regional or global scale remains too expensive and time consuming when using standard procedures for the measurement of soil properties. This statement is particularly true when considering the five-to ten-year sampling interval required by soil monitoring networks (SMN; [START_REF] Jolivet | Manuel du Réseau de Mesures de la Qualité des Sols[END_REF] for an early detection of changes in soil quality, in order to implement policy measures to protect soils and maintain their sustainable use [START_REF] Morvan | Soil monitoring in Europe: A review of existing systems and requirements for harmonisation[END_REF].

By contrast, near infrared reflectance spectroscopy (NIRS) is a rapid, non-destructive, reproducible and cost-effective analytical method involving diffuse reflectance measurement in the near infrared region (NIR;780-2500 nm;Sheppard et al., 1985). Reflectance signals result from vibrations in C-H, O-H, N-H chemical bonds, and provide information about the proportion of each element in the analysed sample [START_REF] Ciurczack | Principles of near infrared spectroscopy[END_REF]. Absorbances in the NIR are weak since they concern overtones or combinations of fundamentals (Figure 1; [START_REF] Wetzel | Near-infrared reflectance analysis. Sleeper among spectroscopic techniques[END_REF]. Although a qualitative interpretation of NIR spectra through visual analysis can be achieved (Stoner & Baumgardner, 1981), direct quantitative prediction of soil characteristics is almost impossible because soil constituents interact in a complex way to produce a given spectrum. The quantification of the property of interest is therefore usually done with statistical models and is the subject of the discipline called Chemometrics. An overview of the use of chemometrics in spectroscopy, its history and main concepts has been published by [START_REF] Geladi | Chemometrics in spectroscopy. Part 1. Classical chemometrics[END_REF]. The quantitative analysis of NIRS data may be conducted in two ways, both requiring the implementation of multivariate statistics [START_REF] Burns | Handbook of Near-Infrared Analysis[END_REF]. Firstly, clustering techniques can be used to discriminate samples or to detect changes in sample properties [START_REF] Albrecht | Efficiency of nearinfrared reflectance spectroscopy to assess and predict the stage of transformation of organic matter in the composting process[END_REF]. Secondly, a set of regression methods allows the prediction of many properties of unknown samples using calibration equations that relate spectral information to sample properties measured by conventional methods, within a calibration subset [START_REF] Martens | Validation and verification of regression in small data sets[END_REF][START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF]. 
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Near infrared analysis is a well-known tool that has been utilized in many disciplines such as food science and pharmacology. Although its potential has been recognized by soil scientists for a few decades [START_REF] Bowers | Reflection of radiant energy from soils[END_REF]Stoner & Baumgardner, 1981;[START_REF] Dalal | Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[END_REF], the use of NIRS for soil applications remains poorly developed (Ben-Dor et al., 2008a). Nevertheless, the appearance of portable and flexible NIR devices could provide the large amount of spatial data required for monitoring soil conditions or modelling soil processes.

One can basically distinguish three types of NIRS measurements for soils (although other classifications are possible): (i) laboratory measurements, (ii) proximal sensing measurements and

(iii) remote sensing measurements. The two latter techniques are able to collect spectral data insitu and are therefore usually exploited to map soil properties [START_REF] Barnes | Remote-and ground-based sensor techniques to map soil properties[END_REF]. Many authors report the development of spectral sensors mounted on tractors (Shonk et al., 1991;Sudduth & Hummel, 1993;[START_REF] Mouazen | On-line measurement of some selected soil properties using a VIS-NIR sensor[END_REF]. These systems are generally used in precision agriculture to manage the quantity of nutrient inputs into soils [START_REF] Adamchuk | On-the-go soil sensors for precision agriculture[END_REF]. Proximal sensing may also include hand-held measurement, which is used as a fast tool to monitor soil properties in-situ [START_REF] Kooistra | Possibilities of visible-nearinfrared spectroscopy for the assessment of soil contamination in river floodplains[END_REF]Udelhoven et al., 2003;[START_REF] Bartholomeus | Spectral reflectance based indices for soil organic carbon quantification[END_REF]. Ben-Dor et al. (2008b) recently presented a NIR sensing device able to collect in-situ 3D spectral data through an entire soil profile, allowing a rapid and objective soil classification. Remote sensing of soil properties has been attempted using aerial photographs (e.g. [START_REF] Chen | Field-scale mapping of surface soil organic carbon using remotely sensed imagery[END_REF], multispectral (e.g. [START_REF] Galvão | Variations in reflectance of tropical soils: spectral-chemical composition relationships from AVIRIS data[END_REF] or hyperspectral images (also called imaging spectroscopy; e.g. [START_REF] Ben-Dor | Mapping of several soil properties using DAIS-7915 hyperspectral scanner data -a case study over clayey soils in Israel[END_REF].

Imaging spectroscopy differs from multispectral imaging in its greater number of wavebands, enabling precise recording of the spectrum and a detailed analysis of spectral properties of the soil surface.

The aim of this paper is to review the most recent applications of NIRS for soil quality assessment in order to examine critically the suitability of its implementation as a tool in soil monitoring plans and networks. First, we present laboratory and imaging NIR spectrometry as tools for the quantification and mapping of many MDS variables for soil quality assessment. Then we give a brief review of studies using NIRS as an integrated measure of soil quality. These range from global site classification to the prediction of specific soil quality indices designed to assess particular soil ecosystem services or functions. Finally we review the main research needs that could allow the implementation of laboratory NIRS for the routine assessment of soil conditions in SMN, and develop the use of imaging NIRS for the regional monitoring of soil quality.

Monitoring MDS of soil quality with NIRS

MDS information within NIR spectra of soils: insights from laboratory spectrometry

An increasing number of studies emphasise the ability of NIR analysis for the prediction of many soil attributes, including chemical, physical, and biological properties [START_REF] Reeves | Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils[END_REF][START_REF] Malley | Application in analysis of soils[END_REF]Viscarra-Rossel et al., 2006). Some of these variables are key properties which were included in the first MDS for soil quality assessment published at the beginning of the 1990s [START_REF] Larson | Conservation and enhancement of soil quality[END_REF][START_REF] Doran | Defining and assessing soil quality[END_REF]. Since a consensus is still to be found on a MDS for soil quality, we give a list of soil chemical (Table 1a), physical (Table 1b), and biological (Table 1c)

properties included in published MDS along with the predictive efficiency of NIR analysis for these properties. Most NIR regression models presented in Table 1 are based on laboratory measurements under controlled conditions, which avoid disturbing factors characterizing field measurements like soil moisture content, soil roughness and vegetation cover [START_REF] Bartholomeus | Spectral reflectance based indices for soil organic carbon quantification[END_REF]. When available, we also provide the NIR wavelengths or spectral intervals closely associated to these MDS variables of soil quality.

Regarding soil chemical properties (Table 1a), numerous authors have reported accurate NIRS predictions of soil total C and N [START_REF] Al-Abbas | Relating organic matter and clay content to the multispectral radiance of soils[END_REF][START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF][START_REF] Brunet | Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: Effects of sample grinding and set heterogeneity[END_REF] and pH [START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF][START_REF] Reeves | Quantitative analysis of agricultural soils using near infrared reflectance spectroscopy and a fibre-optic probe[END_REF][START_REF] Shepherd | Development of reflectance spectral libraries for characterization of soil properties[END_REF]. This is consistent, considering that numerous bonds between C and O, N or H absorb light in the NIR region, while pH prediction has been attributed to O-H groups [START_REF] Malley | Application in analysis of soils[END_REF]. Good predictions for K have also been achieved using NIRS [START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF][START_REF] Confalonieri | The potential of near infrared reflectance spectroscopy as a tool for the chemical characterisation of agricultural soils[END_REF][START_REF] Shepherd | Development of reflectance spectral libraries for characterization of soil properties[END_REF] though [START_REF] Malley | Application in analysis of soils[END_REF] considered it was generally not amenable to NIRS analysis. Good NIRS predictions are less frequent for soil P and mineral N as underlined by [START_REF] Malley | Application in analysis of soils[END_REF]: calibrations for P and mineral N rarely perform well in soil (R² = 0.4-0.5 in general; Malley et al., 2002, for P and mineral N;[START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF]Shepherd &Walsh, 2002, for P), though good results have sometimes been obtained [START_REF] Confalonieri | The potential of near infrared reflectance spectroscopy as a tool for the chemical characterisation of agricultural soils[END_REF][START_REF] Bogrekci | Improving phosphorus sensing by eliminating soil particle size effect in spectral measurement[END_REF]Lee, 2005, for P;Cho et al., 1998, for mineral N). Contradictory NIRS predictions have been reported for salt content in soil (R² = 0.1-0.6 for [START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF][START_REF] Malley | Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy[END_REF]; R² = 0.1-0.8 for [START_REF] Farifteh | Spectral characteristics of salt-affected soils: A laboratory experiment[END_REF]; but R² = 0.7-0.8 for [START_REF] Dunn | The potential of near-infrared reflectance spectroscopy for soil analysis -a case study from the Riverine Plain of southeastern Australia[END_REF] and for electrical conductivity (R² = 0.4-0.6 for [START_REF] Dunn | The potential of near-infrared reflectance spectroscopy for soil analysis -a case study from the Riverine Plain of southeastern Australia[END_REF] but R² = 0.7 for [START_REF] Malley | Application in analysis of soils[END_REF]. Very contradictory results have been reported regarding NIRS prediction of soil heavy metal content depending on the element, and apparently, on the site and on the reference method too. For instance, some authors reported good predictions of Cd, Co and Zn [START_REF] Kooistra | Possibilities of visible-nearinfrared spectroscopy for the assessment of soil contamination in river floodplains[END_REF][START_REF] Wu | A mechanism study of reflectance spectroscopy for investigating heavy metals in soils[END_REF], and Kooistra et al., 2001, respectively) while others reported poor predictions [START_REF] Wu | A mechanism study of reflectance spectroscopy for investigating heavy metals in soils[END_REF][START_REF] Malley | Application in analysis of soils[END_REF], and Chang et al., 2001, respectively). Contradictory results have also been achieved for Cr, Cu, Ni and Pb [START_REF] Malley | Application in analysis of soils[END_REF][START_REF] Wu | A mechanism study of reflectance spectroscopy for investigating heavy metals in soils[END_REF]. Similarly, the fate of organic pollutants in soil is an important and widespread concern, although these are not currently included in MDS of soil quality. [START_REF] Bengtsson | Near infrared reflectance spectroscopy as a tool to predict pesticide sorption in soil[END_REF] reported promising results regarding NIRS prediction of pesticide sorption to soils. Contradictory results for K, P, mineral N, salt or heavy metals may have several causes, either relating to the reference methods (e.g. prediction of extractable cations varies with the extraction method; [START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF], the nature of the studied element (e.g. spectrally distinct P-containing compounds may variably contribute to soil P content; [START_REF] Malley | Application in analysis of soils[END_REF], its concentration (e.g. below detection limits), or possible interactions with other components (e.g. water, organic matter or iron oxides; [START_REF] Malley | Application in analysis of soils[END_REF]. To a larger extent, poor predictions may also result from low-quality reference data, subsampling errors (reference and spectral analyses being performed on dissimilar subsamples), heterogeneity of sample sets (optimal calibration requires limited but sufficient set heterogeneity), or inappropriate calibration (e.g. fail to improve the signal-to-noise ratio or overfitting).

There have also been attempts to predict soil physical properties using NIRS (Table 1b), which have yielded good results for soil particle size distribution (especially for clay content; [START_REF] Al-Abbas | Relating organic matter and clay content to the multispectral radiance of soils[END_REF]Ben-Dor & Banin, 1995a;[START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF][START_REF] Morón | Exploring the use of near infrared reflectance spectroscopy to study physical properties and microelements in soils[END_REF], soil moisture [START_REF] Bowers | Reflection of radiant energy from soils[END_REF][START_REF] Dalal | Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[END_REF]Ben-Dor & Banin, 1995a;[START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF], water holding capacity (Sudduth & Hummel, 1993;[START_REF] Zornoza | Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils[END_REF], infiltration of crusted soils [START_REF] Goldshleger | Spectral properties and hydraulic conductance of soil crusts formed by raindrop impact[END_REF], and maximum temperatures reached by burned soils [START_REF] Guerrero | Near-infrared spectroscopy to estimate the maximum temperatures reached on burned soils[END_REF], but not for the size distribution of water-stable aggregates [START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF]. Particle size effects on light transmission and reflection, and strong absorption features exhibited by water, explain the accurate predictions for texture and moisture, while poor performance regarding aggregate distribution has been attributed to inappropriate procedures [START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF].

NIRS prediction of soil biological properties has often yielded good results (Table 1c), as reported for microbial biomass [START_REF] Reeves | Near infrared reflectance spectroscopy for the analysis of agricultural soils[END_REF][START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF][START_REF] Ludwig | Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability[END_REF], soil respiration [START_REF] Palmborg | Modelling microbial activity and biomass in forest soil with substrate quality measured using near infrared reflectance spectroscopy[END_REF][START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF][START_REF] Ludwig | Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability[END_REF], potentially mineralizable N [START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF][START_REF] Fystro | The prediction of C and N content and their potential mineralisation in heterogeneous soil samples using Vis-NIR spectroscopy and comparative methods[END_REF][START_REF] Ludwig | Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability[END_REF][START_REF] Shepherd | Development of reflectance spectral libraries for characterization of soil properties[END_REF], and even for the ratio of microbial to total organic C [START_REF] Ludwig | Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability[END_REF][START_REF] Cécillon | Variable selection in near infrared spectra for the biological characterization of soil and earthworm casts[END_REF] and for the density of soil microorganisms [START_REF] Zornoza | Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils[END_REF]. Good predictions have been attributed to the similarity between spectral responses of most biological properties and that of soil organic C [START_REF] Chang | Near-infrared reflectance spectroscopy -Principal components regression analyses of soil properties[END_REF].

Upscaling NIR assessment of soil quality: imaging spectrometry

Imaging spectrometry might yield a new dimension to the field of NIRS for the prediction of soil properties by enlarging the envelope of laboratory spectrometry spatially (Ben-Dor et al., 2008a).

This wider spatial dimension can be obtained using visible-NIR (Vis-NIR) spectrometers onboard either airborne or satellite. Remotely-sensed hyperspectral satellite data offer a synoptic view and a repetitive coverage which are two important advantages compared to ground observations and hyperspectral airborne data. While the contribution of multispectral satellite data in the analysis of 10 soil properties has been already investigated (e.g. Ben-Dor & Banin, 1995b;Nanni & Demattê, 2006), the use of hyperspectral satellite data for soil property prediction remains poorly studied.

Using airborne hyperspectral sensors, fairly good to good NIRS predictions have been achieved for soil organic C (R 2 = 0.74-0.9, [START_REF] Ben-Dor | Mapping of several soil properties using DAIS-7915 hyperspectral scanner data -a case study over clayey soils in Israel[END_REF][START_REF] Selige | High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modelling procedures[END_REF][START_REF] Bartholomeus | Spectral reflectance based indices for soil organic carbon quantification[END_REF][START_REF] De Tar | Detection of soil properties with airborne hyperspectral measurements of bare fields[END_REF][START_REF] Patzold | Soil heterogeneity at the field scale: a challenge for precision crop protection[END_REF], total N (R 2 = 0.92, [START_REF] Selige | High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modelling procedures[END_REF], clay content (R 2 = 0.61-071, [START_REF] Selige | High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modelling procedures[END_REF][START_REF] De Tar | Detection of soil properties with airborne hyperspectral measurements of bare fields[END_REF][START_REF] Lagacherie | Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements[END_REF], sand or silt content (R 2 = 0.75-0.95, [START_REF] Selige | High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modelling procedures[END_REF][START_REF] De Tar | Detection of soil properties with airborne hyperspectral measurements of bare fields[END_REF], soil moisture (R 2 = 0.64, [START_REF] Ben-Dor | Mapping of several soil properties using DAIS-7915 hyperspectral scanner data -a case study over clayey soils in Israel[END_REF], Cation Exchange Capacity (R 2 = 0.66-0.67, [START_REF] Ben-Dor | Mapping of several soil properties using DAIS-7915 hyperspectral scanner data -a case study over clayey soils in Israel[END_REF][START_REF] De Tar | Detection of soil properties with airborne hyperspectral measurements of bare fields[END_REF], pH (R 2 = 0.52-0.61, [START_REF] Ben-Dor | Mapping of several soil properties using DAIS-7915 hyperspectral scanner data -a case study over clayey soils in Israel[END_REF][START_REF] De Tar | Detection of soil properties with airborne hyperspectral measurements of bare fields[END_REF] and Ca, Mg, Na, Cl, K, P (R 2 = 0.58-0.7, De [START_REF] De Tar | Detection of soil properties with airborne hyperspectral measurements of bare fields[END_REF]. [START_REF] Weng | Soil salt content estimation in the Yellow River delta with satellite hyperspectral data[END_REF], obtained good predictive models for soil salt content in the Yellow river delta using the Hyperion satellite hyperspectral sensor (R 2 = 0.78). By contrast, relatively low prediction accuracy was reported for soil organic C with the same sensor (R 2 = 0.51, [START_REF] Gomez | Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study[END_REF]. This lower accuracy was assumed to be the result of several factors: (i) the low signal-tonoise ratio of Hyperion spectra, (ii) the low spatial resolution (30 m) which induces mixing problems, and (iii) the relatively low level of carbon in the soils.

Despite the potential of imaging spectrometry for mapping soil properties within the MDS, there are still several limitations, which may preclude the use of such technique to address real problems. These limitations can be related to: (i) the measure itself (sensing device and measuring environment), and (ii) differences in sample preparation and conditions which cannot be controlled in the field.

The first category of limitations is caused by the distance between the sensor and the soil surface. Appropriate correction techniques are required to handle the effects of varying light and atmospheric conditions on the signal. A precise georeferencing of the image is also needed to attribute correctly each soil sample to a pixel. A good introduction to the processing and geometric/atmospheric correction of hyperspectral data can be found in [START_REF] Aspinall | Considerations in collecting, processing and analysing high spatial resolution hyperspectral data for environmental investigations[END_REF]. Ben- 
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reflectance values from imaging spectroscopy data. They found a difference of up to 40% between modelled and true reflectance information at specific wavelengths, depending on the correction method used and variability in atmospheric conditions. When using a 'top-down' approach (i.e.

detection of a given soil property based on field sampling) and when the spatial extent of hyperspectral images is small, atmospheric effects may be constant over the study area and a particular object will appear similar across the image [START_REF] Aspinall | Considerations in collecting, processing and analysing high spatial resolution hyperspectral data for environmental investigations[END_REF]. However, when the analysis is conducted over larger images or when a 'bottom-up' approach is used (i. The second category of limitations is related to the spatial and temporal variability of soil surface conditions. This variability often reduces the accuracy of the prediction of soil properties by chemometric techniques in areas having different surface conditions than the ones in the calibration set [START_REF] Bartholomeus | Spectral reflectance based indices for soil organic carbon quantification[END_REF]. Some of the properties that are subject to variation in time and space are: moisture content, degree of soil crusting, particle-size, soil roughness, vegetation or crop residue cover. In the study of [START_REF] Kooistra | The potential of field spectroscopy for the assessment of sediment properties in river floodplains[END_REF], soil moisture and vegetation cover were identified as the main causes of the loss of accuracy between field and laboratory spectra. 12

The effects of soil roughness on bidirectional reflectance behaviour have been studied in detail (see e.g. Cierniewski & Courault, 1993). Usually, rough soils present highest reflectance values when measured from the direction of the illumination source and lower reflectance values in positions away from this peak. Since remote sensors record the soil surface under varying illumination and viewing angles, this phenomenon induces a spectral variability not specifically related to the studied property. Another constraint of importance is the vegetation/residue cover, partly masking the soil signal. [START_REF] Bartholomeus | Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy[END_REF] showed that even a small vegetation cover (5%) leads to large variations in the estimations of soil parameters. Imaging spectrometry campaigns must therefore be organized only in arid/semi-arid regions or when the soil has been recently tilled. Finally, imaging spectroscopy is only able to measure the reflectance within the first few millimetres of the surface and can therefore not predict a given property for the entire soil profile. As a consequence, such a method of data acquisition may be of little interest when strong vertical gradients in soil properties occur.

An alternative solution: the rough quantification of MDS variables

As presented above, NIR spectra of soil samples contain much information relevant to soil quality, and multivariate regressions of NIR spectra from laboratory and imaging spectrometry can accurately predict several properties of MDS. However, soil quality does not always need to be precisely quantified. Many industrial or agricultural applications only require a classification of soil condition with respect to a critical test value for key properties. [START_REF] Shepherd | Development of reflectance spectral libraries for characterization of soil properties[END_REF] were the first to propose the use of laboratory NIR analysis for the discrimination of soils falling above or below specific cut-off values for most properties related to soil fertility. They showed that soil samples could be roughly discriminated using classification trees even for properties like exchangeable K and extractable P which are poorly predicted by regression models. These promising findings were further confirmed by Cohen et al. (2005a) on an extensive data set of quality parameters for wetland soils, including soil microbiological attributes.

Integrated assessment of soil quality with NIR analysis

NIRS as a fingerprint of global soil conditions

Since NIR spectra of soils reflects a set of soil quality attributes like organic matter content and some chemical and biological properties, some researchers have hypothesized that laboratory concluded that site classification with soil reflectance data was more efficient than with biogeochemical data, especially for the discrimination of severely degraded sites. Soil NIR spectra thus provide an effective tool for rapid condition diagnosis of soils and ecosystems [START_REF] Cohen | Evaluating ecological condition using soil biogeochemical parameters and near infrared reflectance spectra[END_REF].

NIR-based diagnostics of specific soil quality

Global assessment of soil conditions with NIRS, as presented above, enables a rapid tracking of states of soil quality or of its changes after a disturbance. In addition, successful classifications of sites have been built regarding land-use type or global soil condition classes. However, soil quality policies usually address specific management goals such as productivity, waste recycling or environmental protection [START_REF] Andrews | The soil management assessment framework: a quantitative soil quality evaluation method[END_REF]. Thus, methodologies for soil quality assessment should be able to measure specific soil functions or soil ecosystem services associated with these management goals. Recently, the European Commission ( 2006) identified several key threats to European soils, including soil erosion, soil contamination and loss of organic matter. An important objective of soil quality research is thus to provide economically realistic tools for the monitoring of these threats [START_REF] Morvan | Soil monitoring in Europe: A review of existing systems and requirements for harmonisation[END_REF].

Following the widespread use of remote sensing in environmental management, the suitability of imaging spectrometry for specific soil quality assessment has been tested since the 1990s and 16 severe erosion). This rough assessment of a soil threat could be a useful tool for characterizing site conditions prior to irreversible degradation (Cohen et al., 2005b).

However, an important goal for soil monitoring is the detection of small changes in specific key threats, functions or services over space and time. Thus, most recent soil quality indicators have been designed to achieve these ends [START_REF] Andrews | The soil management assessment framework: a quantitative soil quality evaluation method[END_REF][START_REF] Velasquez | GISQ, a multifunctional indicator of soil quality[END_REF], but their implementation in soil monitoring networks remains too expensive and time consuming to be economically realistic using conventional soil analyses.

Recent research has focussed on the quantitative prediction of specific and targeted soil quality indices with laboratory NIRS. Shepherd & Walsh (2007) of soil quality, reflecting the provision of these soil ecosystem services, were then computed using the GISQ approach [START_REF] Velasquez | GISQ, a multifunctional indicator of soil quality[END_REF]. Higher SI values indicate more ecosystem services produced, thereby an improved soil quality [START_REF] Velasquez | GISQ, a multifunctional indicator of soil quality[END_REF]. The predictive ability of NIR analysis for the three SI was assessed with partial least squares regression (PLSR;Tenenhaus, 1998). PLSR models for the three SI reached "reasonable" statistics [START_REF] Williams | What does the raw material have to say?[END_REF], with crossvalidated coefficients of determination (Q 2 ) above 0.90 and ratio of performance to deviation (RPD) above 2.8 (Figure 2; Cécillon et al., 2009). These results are the first attempt to predict specific soil quality indices with laboratory NIRS. They open a new pathway for soil quality research, as a simple scan of a soil sample with a NIR spectrometer can provide quantitative information on the provision of a given soil ecosystem service. The same strategy could probably be applied for the assessment of a soil function or a soil threat critical for management goals.

Implementing this cost-effective strategy could have wide implications for the spatial coverage and the sampling frequency of soil monitoring networks (SMN). Existing SMN sites and data could be used for the regional calibration of soil quality indices. Then a quantitative assessment of soil quality could be performed at the field scale depending on the end-user or land manager's needs.

The sampling frequency of SMN could also be increased enabling a seasonal assessment of soil quality, which is crucial for the early detection of changes in soil conditions.

Research needs towards NIR monitoring of soil conditions

Soil spectral libraries: enabling the implementation of laboratory spectrometry in SMN

Hitherto, NIRS has mainly been applied to soils at the field or the landscape scale, and no generalization can be inferred from regression models obtained with such local studies. One of the main gaps in effective monitoring of soil quality with NIRS is the building of NIRS-based regression models capable of assessing soil conditions at the regional scale across various soil types. [START_REF] Shepherd | Development of reflectance spectral libraries for characterization of soil properties[END_REF] presented a new approach allowing the regional quantification of many soil properties with laboratory spectrometry. They proposed the use of soil spectral libraries as a tool for building risk-based approaches to soil evaluation. In the spectral library approach, soil properties are measured conventionally for a selection of soils representative of the diversity of the studied region, and then calibrated to soil reflectance spectra. Usually, the size of the calibration sample set is increased until calibrations are found to be sufficiently accurate for user requirements. It is then possible to predict the soil properties for new samples that belong to the same population as the library soils. Soils that are poorly described in the library can be further characterized (conventionally) and added to the calibration library [START_REF] Shepherd | Development of reflectance spectral libraries for characterization of soil properties[END_REF]. [START_REF] Brown | Global soil characterization with VNIR diffuse reflectance spectroscopy[END_REF] applied the soil spectral library strategy using more than 4 x 10 3 soil samples selected from all 50 US states, two tropical territories and 36 different countries in Africa, Asia, the Americas and Europe. They obtained satisfactory predictive efficiency for various soil physical and chemical properties and concluded that calibrations sufficient for many applications might be obtained with large but obtainable soil spectral libraries (10 4 -10 5 samples). [START_REF] Genot | Etude de la performance de la spectroscopie proche infrarouge pour la mesure de caractéristiques du sol nécessaires au conseil de fumure[END_REF] worked with a spectral library of ca. 10 3 soil samples representative of the Walloon region (Belgium) and obtained accurate predictions for the soil properties studied (organic C, total N, clay content and CEC). Their work now allows the routine application of laboratory NIRS by the five laboratories providing fertility advice in this region. All applications of soil spectral libraries used advanced multivariate regression techniques to infer soil properties from NIR spectra. [START_REF] Shepherd | Development of reflectance spectral libraries for characterization of soil properties[END_REF] and [START_REF] Brown | Global soil characterization with VNIR diffuse reflectance spectroscopy[END_REF] worked respectively with multivariate adaptive regression splines (MARS), and boosted regression trees (BRT), two non-linear multivariate techniques. [START_REF] Genot | Etude de la performance de la spectroscopie proche infrarouge pour la mesure de caractéristiques du sol nécessaires au conseil de fumure[END_REF] used an improvement of the PLSR algorithm (PLS-Local; [START_REF] Shenk | Investigation of a LOCAL calibration procedure for near infrared instruments[END_REF] which matches the sample to be predicted using a small homogeneous group of spectrally similar samples selected from a calibration library. These advanced regression techniques clearly outperformed the classical PLSR approach which is often not on its own an optimal solution for processing soil spectra, especially with large datasets and a wide range of values [START_REF] Cécillon | Variable selection in near infrared spectra for the biological characterization of soil and earthworm casts[END_REF][START_REF] Fernández Pierna | Soil parameter quantification by NIRS as a Chemometric challenge at 'Chimiométrie 2006[END_REF].

All these promising results underline the urgent need to build a universal and standardized soil spectral library. Viscarra Rossel ( 2008) and colleagues from the International Soil Spectroscopy Group (http://groups.google.com/group/soil-spectroscopy?hl=en) are currently trying to implement such a spectral library for basic soil properties (e.g. organic C, clay content). This huge task sounds feasible for soil chemical properties using existing samples from SMN. When built, it should be possible to compute and monitor some of the specific soil quality indices presented above (e.g. organic matter storage, nutrient supply). However, the current lack of data for many MDS variables of soil quality (especially physical and biological properties) could compromise the rapid construction of a universal soil spectral library for the global assessment of soil quality or the specific assessment of soil threats like soil erosion, contamination, or decline in soil biological activity and diversity. The soil spectral library approach for the quantification of soil quality might thus not be successful until the calibration of all MDS variables to soil reflectance spectra has been achieved, which will be difficult.

Furthermore, building NIR spectral libraries for soils raises several problems. The first problem relates to the fact that NIR spectra show subtle variations even when obtained on supposedly identical instruments. This is even more of a problem with spectra from different makes and models of instruments, or those from instruments based on different principles (diode arrays versus Fourier transform or gratings, etc.). The systematic differences between spectra from different instruments can make combining spectra useless for developing calibrations. To overcome these problems, chemometric procedures known as calibration transfer (e.g. [START_REF] Shenk | Calibration transfer between near infrared reflectance spectrophotometers[END_REF] are used to make spectra from different instruments appear the same. Much research still needs to be done so as to achieve comparability between instruments used for soil spectral measurements. The second related problem is the question of whether the measures of soil attributes included in the spectral libraries, particularly biological measures, obtained at different laboratories, are the same or not. When the two problems are combined, spectral libraries lose much of their value. These problems, while known and discussed greatly in other areas of NIRS (see e.g. [START_REF] Cen | Theory and application of near infrared reflectance spectroscopy in determination of food quality[END_REF], do not seem to have received much press for soils. et al. (2006) proposed an alternative approach that links soil diffuse reflectance spectroscopy with an inference system to predict soil functional properties which are difficult and expensive to measure directly. They measured soil spectra to estimate various basic soil properties which were then used to infer the desired soil functional property via pedotransfer functions. This approach could be promising for the assessment of soil conditions, but reliable pedotransfer functions for global or specific soil quality are not sufficiently developed. However, some progress can be rapidly achieved by applying more efficient analysis tools.

McBratney

The simplest solution to the problem of spatial variability in soil surface conditions is to record the surface conditions of the soil samples used in the calibration set and restrict the prediction to similar pixels (e.g. based on the Mahalanobis distance). Including a covariant such as soil moisture or roughness in the multivariate regressions is another solution, which requires the measurement of the disturbing factor over the entire study area. The recent convergence of several new measuring technologies aiming to map soil properties (e.g. synthetic aperture radar imagery) enables the investigation of such strategies in the mid-term. As presented above regarding laboratory spectrometry, the stability of the calibrations may also be improved by using more efficient chemometric approaches. For instance, the implementation of the PLS-Local algorithm with hyperspectral data would improve the accuracy, by using samples in the calibration set with surface conditions corresponding to the ones of the pixel to be predicted, providing that the spectral library would represent perfectly all surface conditions in the study area. [START_REF] Marx | Multivariate calibration stability: a comparison of methods[END_REF] have developed a multivariate technique -called penalized signal regressions -that forces the regression coefficients to vary smoothly across wavelengths. It allows the effects of noisy features in the spectral data to be removed from calibrations and yields more robust calibrations in general. [START_REF] Bartholomeus | Spectral reflectance based indices for soil organic carbon quantification[END_REF] 
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Conclusions

This review has demonstrated that near infrared reflectance spectra contain much information related to soil quality. Using laboratory NIRS, good predictions can be achieved for many chemical and some physical and biological properties involved in soil conditions. Imaging NIRS can predict some soil chemical properties related to soil quality. Its ability to cover large surfaces in a single flight campaign and thus produce a complete picture of surface soil properties of bare soils represents a clear opportunity for monitoring. However, several technological limitations will delay its routine use for quantifying a MDS of soil quality.

Soil NIR spectra can be used as an integrated measure of soil quality, so as to classify sites according to their global degradation status or for monitoring the effect of an ecological factor on soil quality. NIRS also opens a new way for soil quality assessment, as reliable quantification of particular soil functions, ecosystem services, or threats can be evaluated from a flight campaign or a simple NIR scanning of a soil sample. Implementing this specific approach to soil quality with laboratory and imaging NIRS will provide powerful tools to address the specific management goals of soil quality policies. Laboratory NIRS offers a low-cost solution for soil quality monitoring networks which could allow an increase in their spatial coverage and an increase in their sampling frequency. Imaging NIRS provides an interesting solution for the spatial assessment of some specific soil threats in environmentally sensitive areas.

An urgent research need is the development of international soil spectral libraries that will improve the predictive ability of NIRS for soil quality attributes whatever the soil type. Coupling NIR spectral libraries with other diffuse reflectance measurements of soils, such as mid-infrared reflectance spectra, will probably be the next step towards spectral sensing of soil quality worldwide.

Figure 1 Weak absorption peaks in NIR spectra of topsoils (0-5 cm) and earthworm casts collected in French Mediterranean areas affected by wildfire (Cécillon et al., 2009). Each spectrum is an average of samples originating from five to ten plots.

Wavelengths (nm) can be computed from wavenumbers (cm -1 ) with the following formula:

Wavelength = [ 1 / Wavenumber ] x 10 7

Abbreviation: TSLF = time since last fire [START_REF] Dalal | Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[END_REF]1955[START_REF] Bowers | Reflection of radiant energy from soils[END_REF], 2215, 2265, 2285-2295, 2315-2495nm (Henderson et al., 1992)); 2218, 2350 nm [START_REF] Salgó | Characterisation of soils by the near infrared technique[END_REF]; 2200 nm [START_REF] Confalonieri | The potential of near infrared reflectance spectroscopy as a tool for the chemical characterisation of agricultural soils[END_REF]1109, 1232, 1414, 1522nm (Mouazen et al., 2007););1420, 1900-1950, 2040-2260, 2440-2460 [START_REF] Bowers | Reflection of radiant energy from soils[END_REF]Ben-Dor & Banin, 1995a;[START_REF] Demattê | Determining soil water status and other soil characteristics by spectral proximal sensing[END_REF]1926, 1954, 2150nm (Dalal & Henry, 1986);1450, 1920nm (Salgó et al., 1998););1450, 1950, 2500nm (Viscarra Rossel & McBratney, 1998);1420, 1920 Doran & Parkin, 1994; 2 after Andrews et al., 2004; 3 after Lavelle et al., 2006; 4 after Morvan et al., 2008; 5 based on validation statistics (R², standard error of prediction); 6 water stable aggregates; 7 climate regulation; 8 soil organic matter; 9 biodiversity and habitat; 10 detoxification; 11 water holding capacity; 12 nutrient cycling. 

  e. detection of a given soil property based on laboratory-based spectral libraries), accurate atmospheric correction is crucial. Another limitation is the relatively low signal-to-noise ratio of hyperspectral data compared with laboratory data due to a low integration-time over the target area.[START_REF] Chabrillat | Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution[END_REF] demonstrated for instance that the detection of expanding clays may be degraded because the spectral feature used to identify the type of clay may be of the same amplitude as the noise in the data. By comparing airborne hyperspectral HyMap and AVIRIS data over the same area,[START_REF] Chabrillat | Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution[END_REF] also showed the influence of the spectral and spatial configuration of the sensor. The coarser spectral resolution of HyMap compared to AVIRIS in the 2000-2500 nm spectral region masked partly the doublet spectral feature at ~2150 nm related to clay type and reduced the effectiveness of the classification. Conversely, the higher spatial resolution of HyMap allowed obtaining purer spectral end-members (i.e. spectra not influenced by other soil constituents or by soil surface characteristics) in more heterogeneous sites. Spatial resolution is thus a matter of importance when the studied soil property occurs in a patchy way or is affected by a strong spatial variability (e.g. soil crusting).

  NIRS could probably be used to discriminate clusters of soil samples differing in their "global" quality.[START_REF] Velasquez | Evaluating soil quality in tropical agroecosystems of Colombia using NIRS[END_REF] first tested the use of principal component analysis (PCA) and discriminant analysis to separate soils from different land uses. This strategy successfully discriminated clusters of sites depending on land-use type, and co-inertia analyses revealed significant relationships between NIR spectra and various physico-chemical properties of soil samples. The authors also identified NIR wavelength intervals characteristic of the soil-use systems. This PCA strategy was further applied byCécillon et al. (2009) on a NIR spectral data set of Mediterranean topsoils and earthworm casts collected in areas affected by wildfire (Figure1). Soil samples and biogenic structures were well separated by PCA on NIR spectra, depicting the influence of earthworms on soil quality, as previously demonstrated by[START_REF] Hedde | Specific functional signature in soil macro-invertebrates biostructures[END_REF].Furthermore, a strong effect of wildfire on NIR spectra could also be identified in this PCA. This striking result was the first illustration of the use of laboratory NIRS to estimate the effect of an ecological factor (wildfire) on soil conditions.[START_REF] Odlare | Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field[END_REF] coupled PCA of NIR soil spectra and geostatistics to map spatial variation of soil properties. Since principal components of PCA synthesize information on global soil condition, such an approach is interesting for mapping soil quality in precision farming, or for the quantitative spatial assessment of polluted areas in environmental remediation procedures.Other studies have focussed on the use of laboratory NIR analysis as an integrated tool for the assessment of global soil quality. Using a holistic definition of soil quality,[START_REF] Vågen | Sensing landscape level change in soil quality following deforestation and conversion in the highlands of Madagascar using Vis-NIR spectroscopy[END_REF] aggregated ten commonly used agronomic indicators of soil quality (pH, organic C, total N, P, Ca, Mg, K, CEC, clay, silt) and developed ordinal soil condition classes (poor, average, good), which were used to identify spectral wavebands that could diagnose soil condition. They found that five wavelengths were related to their soil quality index: relative reflectance at 570, 1410, 2040 and 2390 nm were negatively correlated with soil condition class whereas relative reflectance at 1940 nm (which is almost certainly due to O-H bond of water) was positively correlated with soil condition class. The authors computed a soil fertility index (SFI), calibrating the membership of the three soil condition classes to reflectance spectra of soils using a proportional odds ordinal logistic regression model. Finally, the SFI was successfully applied to the spatial representation of global soil quality based on remote sensing satellite imagery.[START_REF] Awiti | Soil condition classification using infrared spectroscopy: A proposition for assessment of soil condition along a tropical forestcropland chronosequence[END_REF] applied the same proportional odds ordinal logistic regression modelling technique to chronosequence classes of forest-cropland plots and the 10 first principal components calculated from PCA of soil NIR spectra.Using this strategy, the authors could determine three global soil condition classes (good, average and poor) which were then used for the successful classification of soils from unknown sites.[START_REF] Cohen | Evaluating ecological condition using soil biogeochemical parameters and near infrared reflectance spectra[END_REF] used another NIR-based approach of global soil quality. They combined ordinal logistic regression and classification trees of soil NIR spectra to discriminate between ecological condition categories. Using classification trees, they identified key spectral regions for ecological condition classification: 2200-2300 nm, 1100-1200 nm, and 500-600 nm. They

  was recently reviewed byBen-Dor et al. (2008a, see references therein). The authors listed promising results of imaging NIRS regarding the quantification and mapping of some specific soil threats. Salinisation of soils has been fairly extensively studied using airborne reflectance data(HyMap,. Qualitative indicators of soil erosion have also been mapped using airborne AVIRIS imaging spectrometry, with an accuracy of about 80%, which was superior to that achieved using Landsat-TM imagery. HyMap airborne data have been used to estimate the distribution of sludge containing large concentrations of heavy metals, demonstrating the potential of NIRS imaging to map soil contamination and monitor environmental remediation procedures. Finally, airborne reflectance data (AVIRIS, HyMap) in the presence of significant vegetation cover and NIRS satellite imaging (ASTER, wavebands between 2145 and 2430 mm) have been shown reliable for mapping soil swelling. These results could be useful to engineers for construction planning, decision makers for better management of the environment, and farmers in allocating hazardous areas like floods and erosion sites(Ben-Dor et al., 2008a).The application of laboratory spectrometry for the specific assessment of soil quality started in the 2000s.Cohen et al. (2005b) presented the first application for the rough assessment of a specific soil threat. They showed that NIRS clearly outperformed a frequently used empirical model for classifying sites according to soil erosion status. They used classification trees to provide an objective definition of degraded and intact soil conditions and developed NIRS-based screening models calibrated with reliable visual observations of degraded sites. These NIRS classification models were found efficient in discriminating three degradation classes (intact, moderate and http://dx.doi.org/10.1111/j.1365-2389.2009.01178.x // "The definitive version is available at www.blackwell-synergy.com"

  presented some preliminary tests of indices designed to assess particular soil functions or threats such as soil fertility, soil erosion rate, soil erodibility, soil infiltration capacity, and plant growth potential. Their specific spectral indicators were based on the Mahalanobis distance in the principal component space built using a library of soil reflectance spectra.Cécillon et al. (2009) recently proposed a tentative approach based on the direct prediction of specific soil quality indices related to soil ecosystem services using laboratory NIRS. The accuracy of three soil quality indicators derived from the general indicator of soil quality (GISQ;[START_REF] Velasquez | GISQ, a multifunctional indicator of soil quality[END_REF]) was tested on the impact of wildfire disturbance (time since last fire) and soil engineering activity of earthworms (topsoil versus casts samples). For each sample, conventional analyses related to three soil ecosystem services were performed. Organic matter storage was assessed through organic C and total and mineral N contents, nutrient supply through pH and exchangeable cations (Ca, Mg, K, Na, CEC), and biological activity through a set of microbiological parameters (microbial C, two extracellular enzymes, potential denitrification and microbial C to organic C ratio). Three specific indicators (SI)

Figure 2

 2 Figure 2 Predictive efficiency of laboratory NIRS for specific indices (SI) of soil quality related to three soil ecosystem services in French Mediterranean areas (modified from Cécillon et al., 2009). Squares correspond to topsoil samples and circles to earthworm casts. Black, grey and white symbols correspond to sites where time since last fire was 3, 16 and > 50 years, respectively. The dashed lines represent the 1:1 lines.

Table 1a

 1a Predictive efficiency of NIRS for MDS regarding soil chemical variables and associated soil functions, ecosystem services or threats.

	MDS variable 1	Soil functions 2	Soil services 3 ecosystem	studied in SMN 4 Soil threats	efficiency 5 predictive NIRS	Associated NIR wavelengths and references
	Organic C	Nutr. Cycling 6 ;	Nutr. Cycling 6 ;	SOM 10 decline	Good	1744, 1870, 2052 nm
		filter-buffer;	climate regul 8 ;			
		biodiv-habitat 7	detox 9			

Abbreviations: Q² = cross-validated R²; RMSECV = root mean squared error of cross-validation RPD = ratio of performance-to-deviation (calculated as RPD = SD RMSECV -1 ); SD = standard deviation of calculated SIs European Journal of Soil Science 60: 770-784 (2009) http://dx.doi.org/10.1111/j.1365-2389.2009.01178.x // "The definitive version is available at www.blackwell-synergy.com" 37 TABLES

Table 1b

 1b SO 4 : 1825 nm; for MgCl 2 : 1925 nm[START_REF] Farifteh | Spectral characteristics of salt-affected soils: A laboratory experiment[END_REF] 1 modified fromDoran & Parkin, 1994; 2 after Andrews et al., 2004; 3 after Lavelle et al., 2006; 4 afterMorvan et al., 2008; 5 based on validation statistics (R², standard error of prediction); 6 nutrient cycling; 7 biodiversity and habitat; 8 climate regulation; 9 detoxification; 10 soil organic matter. Predictive efficiency of NIRS for MDS regarding soil physical properties and associated soil functions, ecosystem services or threats.

	MDS		Soil	Soil	Soil threats	NIRS	Associated NIR wavelengths and references
	variable 1		functions 2	ecosystem	studied in	predictive
				services 3	SMN 4	efficiency 5
	Soil loss Physical support;	Erosion control Soil erosion	Poor	For infiltration of crusted soils: ca. 1400, 1450, 1900, 2200 nm
		water relations				(Goldshleger et al., 2001, 2002)
	WSA 6	Physical support;	Erosion control;	Soil erosion;	Mid
		water relations	climate regul 7	SOM 8 decline	
	Soil	Physical support;	Erosion control;	Compaction;	Mid	For clay: 2200 nm (Ben-Dor & Banin, 1995a); 1700 nm (Viscarra
	texture	biodiv-habitat 9 ;	detox 10	soil formation		Rossel & McBratney, 1998); 1901, 1912 nm (Islam et al., 2003);
		filter-buffer				2206 nm (Lagacherie et al., 2008); for particle size: 1323, 2021,
							2081 nm (Bogrekci & Lee, 2005)
	Soil	Physical support;	Erosion control;	Compaction;	Poor	For aggregate fractions: 1940, 2250 nm (Mutuo et al., 2006)
	structure	biodiv-habitat 9 ;	climate regul 7 ;	soil formation		nm (Rinnan & Rinnan,
	Total and	filter-buffer Nutr. Cycling 6 ;	water supply; Nutr. Cycling 6 ; detox 10	SOM 10 decline	Good	2007); 1130, 2410 nm (Terhoeven-Urselmans et al., 2008) For total N: 1702, 1870, 2052 nm (Dalal & Henry, 1986); 1726,
	organic N Depth of	filter-buffer; Physical support;	climate regul 8 ; Erosion control;	Soil formation Poor	1826, 2038 nm (Morra et al., 1991)
	soil and PH rooting	biodiv-habitat 7 water relations; Nutr. Cycling 6 ; biodiv-habitat 9	soil formation; detox 9 Nutr. Cycling 6 Contamination detox 10	Mid
	density Bulk	biodiv-habitat 7 water relations filter-buffer; Physical support;	soil formation Water supply;	SOM 8 decline; Compaction;	Poor
	Electrical conductivity WHC 11 Physical support; Nutr. Cycling 6 Nutr. Cycling 6 Desertification; salinisation soil formation Water supply	Mid Mid
	Mineral N, P, water relations Nutr. Cycling 6 Nutr. Cycling 6 Contamination	Mid	For NH 4 : 1510-1650 nm (Murray & Williams, 1990); for total P:
	K Water	Physical support;	Water supply		Good	2021-2025, 2081-2084 nm (Bogrekci & Lee, 2005); 2240-1400, 1900, 2200 nm
	content	water relations				2400 nm (Velasquez et al., 2005)
	Heavy metal	Nutr. Cycling 6 ;	Nutr. Cycling 6 ;	Contamination	Mid	For Cu: ca. 900, 1300, 1500 nm (Gaffey & Reed, 1987); for Cd
	content		resilience;	detox 9			and Zn: 1050, 1400, 1850, 2150, 2280, 2400, 2470 nm (Kooistra
			filter-buffer				et al., 2001)
	Salt content Nutr. Cycling 6		Desertification;	Mid	For NaCl: 1930 nm; for KCl: 1430 nm; for MgSO 4 : 1480 nm; for
	salinisation Na 2 European Journal of Soil Science 60: 770-784 (2009)
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Table 1c

 1c European Journal of Soil Science 60: 770-784 (2009) http://dx.doi.org/10.1111/j.1365-2389.2009.01178.x // "The definitive version is available at www.blackwell-synergy.com" 39 Predictive efficiency of NIRS for MDS regarding soil biological properties and associated soil functions, ecosystem services or threats. Parkin, 1994; 2 after Andrews et al., 2004; 3 after Lavelle et al., 2006; 4 after Morvan et al., 2008; 5 based on validation statistics (R², standard error of prediction); 6 nutrient cycling; 7 biodiversity and habitat; 8 climate regulation; ND: not determined.

	MDS variable 1	Soil functions 2	Soil ecosystem services 3	Soil threats studied in SMN 4	efficiency 5 NIRS predictive	Associated NIR wavelengths and references
	Microbial	Nutr. Cycling 6 ;	Nutr. Cycling 6 ;	Biodiversity	Good	1408, 1842, 2414 nm (Terhoeven-Urselmans et al.,
	biomass	resilience; filter-	climate regul 8 ;	decline		2008); wavelength interval 1750-2500 nm (Cécillon
		buffer; biodiv-	soil formation;			et al., 2008)
		habitat 7	plant production			
			and protection			
	Soil respiration Nutr. Cycling 6 ;	Nutr. Cycling 6 ;	Biodiversity	Good	800 (Fe oxide effect), 2030, 2180, 2200 (clay
		resilience; filter-	climate regul 8	decline		mineralogy effect), 2250, 2440, 2460 nm (Mutuo et
		buffer; biodiv-				al., 2006); for basal respiration: 1836, 2274 nm (alkyl
		habitat 7				groups), 1510 nm (amino groups) (Terhoeven-
						Urselmans et al., 2008)
	Potentially	Nutr. Cycling 6 ;	Climate regul 8		Mid	
	mineralizable N	resilience; filter-				
		buffer				
	Cmic / Corg	Nutr. Cycling 6 ;			Good	Wavelength interval 1750-2500 nm (Cécillon et al.,
	ratio	resilience; filter-				2008)
		buffer; biodiv-				
		habitat 7				
	Respiration/	Nutr. Cycling 6 ;			ND	
	biomass ratio	resilience; filter-				
		buffer; biodiv-				
		habitat 7				
	Biodiversity	Resilience; biodiv-	Soil formation;	Biodiversity	Poor	
		habitat 7	plant production	decline		
			and protection			
	1 modified from Doran &				
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