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Enumeration of alternating sign matrices of
even size (quasi)-invariant under a
quarter-turn rotation

Jean-Christophe Aval, Philippe Duckon

LaBRI, Université Bordeaux 1, CNRS
351 cours de la Libération, 33405 Talence cedex, FRANCE

Abstract. The aim of this work is to enumerate alternating sign masri@gegSM) that are quasi-invariant under a
quarter-turn. The enumeration formula (conjectured byHang involves, as a product of three terms, the number of
unrestricted ASM’s and the number of half-turn symmetrid S

Résun®. L'objet de ce travail est d’énumérer les matrices a sigaéernants (ASM) quasi-invariantes par rotation
d’'un quart-de-tour. La formule d’énumération, conjeémipar Duchon, fait apparaitre trois facteurs, comprelea
nombre d’ASM quelconques et le nombre d’ASM invariantesdgami-tour.

1 Introduction

An alternating sign matrixs a square matrix with entries 1,0, 1} and such that in any row and

column: the non-zero entries alternate in sign, and thefristequal tal. Their enumeration formula was

conjectured by Mills, Robbins and Rumsey (5), and proved &ijb2rger (9), and almost simultaneously
by Kuperberg (3). Kuperberg used a bijection between the A%d the states of a statistical square-
ice model, for which he studied and computed the partitiorcfion. He also used this method in (4) to
obtain many enumeration or equinumeration results foouarsymmetry classes of ASM’s, most of them
having been conjectured by Robbins (7). Among these resaritbe found the following remarkable one.

Theorem 1 (Kuperberg).The numbemQT(4N) of ASM's of sizel N invariant under a quarter-turn

(QTASM's) is related to the numbdy( V) of (unrestricted) ASM’s of siz& and to the numbed 1 (2NV)
of ASM's of siz& N invariant under a half-turn (HTASM's) by the formula:

AQT(UN) = ART(2N)A(N)?. 1)

More recently, Razumov and Stroganov (6) applied Kuperbaigategy to settle the following result
relative to QTASM'’s of odd size, also conjectured by Roblfif)s

tBoth authors are supported by the ANR project MARS (BLANQ6183)
1365-80500©) 2009 Discrete Mathematics and Theoretical Computer Seié@MTCS), Nancy, France
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Theorem 2 (Razumov, Stroganov)The numbers of QTASM's of odd size are given by the following
formulas, wheredy1(2V + 1) is the number of HTASM's of si2éV + 1:

AQTUN —1) = AyT(2N - 1)A(N)* )

AQT(4N +1) = AHT(2N + 1)A(N)2. 3)

Itis easy to observe (and will be proved in Section 2) thastiteof QTASM's of sizel N + 2 is empty.
But, by slightly relaxing the symmetry condition at the aamdf the matrix, Duchon introduced in (2)
the notion of ASM’s quasi-invariant under a quarter turre(ttefinition will be given in Section 2) whose

class is non-empty in siz&V + 2. Moreover, he conjectured for these gQTASM’s an enumardtiomula

that perfectly completes the three previous enumeratisuteon QTASM. It is the aim of this paper to
establish this formula.

Theorem 3 The numbemQT(4N + 2) of qQTASM of sizéN + 2 is given by:
AQT(4N +2) = AHT(2N + DHA(N)A(N +1). (4)

This paper is organized as follows: in Section 2, we define A&M's; in Section 3, we recall the
definitions of square ice models, precise the parametershenplartition functions that we shall study,
and give the formula corresponding to equation (4) at thel lef/partition functions; Section 4 is devoted
to the proofs.

2 ASM'’s quasi-invariant under a quarter-turn

The class of ASM'’s invariant under a rotation by a quarten-{®TASM) is non-empty in sizé N — 1,
4N, and4N + 1. But this is not the case in sizeV + 2.

Lemma 4 There is no QTASM of siz&V + 2.

Proof: Let us suppose thdtl is a QTASM of even siz@ L. Now we use the fact that the size of an ASM
is given by the sum of its entries, and the symmetrybfo write:

2L= Y Mi;=4x Y M (5)
1<d,j<2L 1<i,j<L
which implies that the size a¥/ has to be a multiple of. a

Duchon introduced in (2) a notion of ASM’s quasi-invariander a quarter-turn, by slightly relaxing
the symmetry condition at the center of the matrix. The dediniis more simple when considering the
height matrix associated to the ASM, but can also be givesctir.

Definition 5 An ASMM of size4 N + 2 is said to beguasi-invariant under a quarter-tqQTASM) if its
entries satisfy the quarter-turn symmetry

Manyo—jt1,an+2-i41 = Myj ©

except for the four central entri€3/s 5 o, Man an+1, Man+1,28v, Man+1,2nv+1) that have to be either
(0,—1,-1,0)or (1,0,0,1).
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We give below two examples of qQTASM’s of sigewith the two possible patterns at the center.

0 0 O 1 00 0 0 1 0 0 0
0 0 1 0 0 O 0 1 -1 0 1 0
10 0 -1 10 0 0 1 0 -1 1
01 -1 0 01 1 -1 0 1 0 0
00 O 1 00 0 1 0 -1 1 O
0 0 1 0 0 O 0 0 O 1 0 0

In the next section, we associate square ice models to ASKfsuwarious types of symmetry.

3 Square ice models and partition functions

3.1 Notations

Using Kuperberg’s method we introduce square ice modetg@ed to ASM’s, HTASM'’s and (q)QTASM’s.
We recall here the main definitions and refer to (4) for dstaild many examples.

Leta € C be a global parameter. For any complex numbdifferent from zero, we denote = 1/x,
and we define:

olz) =z —T. @)

If G is a tetravalent graph, d@oe stateof G is an orientation of the edges such that every tetravalent
vertex has exactly two incoming and two outgoing edges.

A parameter: # 0 is assigned to any tetravalent vertex of the gr&piThen this vertex gets a weight,
which depends on its orientations, as shown on Figure 1.

+:++f+++
. A

o(a®) o(a®) o(ar) o(axr) o(aZT) o(aT)
1 -1 0 0 0 0

Fig. 1: The 6 possible orientations, their associated weights laaddrresponding entries in ASM’s

Itis sometimes easier to assign parameters, not to eaaxadithe graph, but to the lines that compose
the graph. In this case, the weight of a vertex is defined as:

I

When this convention is used, a paramyeter explicitly writté¢ a vertex replaces the quotient of the
parameters of the lines.

We will put a dotted line to mean that the parameter of a lirdifferent on the two sides of the dotted

line. We will also use divalent vertices, and in this casettteeedges have to be both in, or both out, and
the corresponding weight iis

T
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The partition function of a given ice model is then definedressdum over all its states of the product
of the weights of the vertices.

To simplify notations, we will denote b y the vector of variableée, . ..,z n). We use the notation
X \z to denote the vectak without the variabler.

3.2 Partition functions for classes of ASM'’s

We give in Figures 2, 3, and 4 the ice models correspondinggaiasses of ASM's that we shall study,
and their partition functions. The bijection between (wtrieted) ASM’s and states of the square ice
model with “domain wall boundary” is now well-knownf( (4)), and the bijections for the other symmetry
classes may be easily checked in the same way. The correspmbetween orientations of the ice model
and entries of ASM’s is given in Figure 1.

TN

Z(N;x1,. o yEN, EN41, -+, TaN) =

To

Ty

TN+1 T2N

Fig. 2: Partition function for ASM'’s of sizeV
With these notations, Theorem 3 will be a consequence of dlewiing one which addresses the
concerned partition functions.

Theorem 6 Whena = ws = exp(in/3), one has fotV > 1:
ZQT(4N;X2N_1,;E,y) = a(a)leHT(QN;XgN_l,;U,y)Z(N;XgN_l,x)Z(N;XgN_l,y) (8)
and
ZQT(4N+ 2; Xon,x,y) = o(a)_lZHT(2N+ 1; Xon, @, y)Z(N; Xon)Z(N + 1; Xon, @, y). (9)

Equation (9) is new; equation (8) is due to Kuperberg (4) far taser = y. To see that Theorem
6 implies Theorem 3 (and Theorem 1), we just have to obseatethena = wg and all the variables
are set tol, then the weight at each vertexd$a) = o(a?) thus the partition function reduces (up to
multiplication byo (q)rumber of vertices) to the number of states.

4 Proofs

In this extended abstract, we shall only give the main idé#segproofs. Most of them are greatly inspired

from (4). To prove Theorem 6, the method is to identify botesi of equations (8) and (9) as Laurent
polynomials, and to produce as many specializations of #in@bles that verify the equalities, as needed
to imply these equations in full generality.
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ZHT@2Nj21, . IN-1, TN, - TaN-1,T,Y) = i
TN-1
I
N 2N -1
X \\> = ZHT(2N+]-;3717"'7wN,$N+17"-7w2N7w7y)
TN -
.’LR
Ty

IN+1  T2NY

Fig. 3: Partition functions for HTASM'’s

4.1 Laurent polynomials

Since the weight of any vertex is a Laurent polynomial in thaablesz;, = andy, the partition functions
are Laurent polynomials in these variables. Moreover theycantered Laurent polynomialsg. their
lowest degree is the negative of their highest degree (ttle half-width of the polynomial). In order
to divide by two the number of non-zero coefficients (heneerthmber of required specializationsyin
we shall deal with Laurent polynomials of given parity inghliariable. To do so, we group together the
states with a given orientation (indicated as subscripthénfollowing notations) at the edge where the
parameters andy meet.

So let us consider the partition functioﬁ%T(ALN; Xon-1,2,Y) andZST(ALN; Xon_1,2,y), respec-
tively odd and even parts cZQT(4N;X2N,1,:n,y) in z; ZST(4N + 2; Xon,z,y) and ZST(4N +
2; Xon, x,y), respectively odd and even parts%T(LLN +2; Xon, z,y)inz; ZaT(2N; Xon—1,Z,Y)
andZaT(2N; Xon—1,7,y), respectively parts with the parity of and of N -1 of Zy1(2NV; Xon—1,2,y)
in z; andZﬂT@N + 1; Xon, z,9) andZﬁT@N + 1; Xon, z,y), respectively parts with the parity of
N —1landofN of Zy1(2N + 1; Xon, z,y) in .

With these notations, the equations (8) and (9) are equittdethe following:

U(G)ZST(4N;X2N—1,%‘,ZI) = ZaT(QN;X2N—1,$>Z/)Z(N;X2N—1,$)Z(N;X2N—1,y)> (10)
U(G)ZST(‘lN;XzN—l,CU,y) = ZaT@N;XzN—h33;Z/)Z(N;Xszl,CU)Z(N;XszbZ/); (11)
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ZQT(4N;SU1,---,CU2N71,$,:U) =

_ ZQT(4N+2;331,...,CU2N;33;Z/)

Yy

Fig. 4: Partition functions for (q)QTASM of even size
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U(a)ZST(ALN +2Xon,2,y) = Zy1(2N + 1 Xon, 2,9) Z(N + 1; Xon, 2,y) Z(N; Xan), (12)
a(a)ZaT(4N +2; Xon,x,y) = ZﬂT(2N+ 1; Xon, @, y)Z(N + 1; Xon, x,y) Z(N; Xon). (13)

Lemma 7 Both left-hand side and right-hand side of equations (1Dal& centered Laurent polynomials

in the variablex, odd or even, of respective half-widtt® — 1, 2N — 2, 2N, and2N — 1. Thus to prove

each of these identities we have to exhibit specializatdmgor which the equality is true, and in number
strictly exceeding the half-width.

Proof: To compute the half-width of these partition functionsjosunt the number of vertices in the
ice models, and take note that non-zero entries of the AiSM the first two orientations of Figure 1)
give constant weight(a?). Also, a line whose orientation changes between endpoings have an odd

(hence non-zero) number of thesé entries. a

4.2 Symmetries

To produce many specializations from one, we shall use symrpeoperties of the partition functions.
The crucial tool to prove this is the Yang-Baxter equaticat thie recall below.

Lemma 8 [Yang-Baxter equationf xyz = @, then

X zZ
y = y (14)

z X
The following lemma gives a (now classical) example of usthefyang-Baxter equation.

Lemma 9

Y e R LT (15)
T Y

Proof: We multiply the left-hand side by(az), with z = axzy. We get

o(az) ¢ = 7

T Yy

I e N i
= X

N EE) 3
= 7 o(az)
)
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|
The same method, together with the easy transformation
2>O = (o(az) + o(a?)) (_)_ + _(_) (16)
gives the following lemma.
Lemma 10
Yy ... = o(a@®) +o(zy) (17)
z i "_> o(a?yT) y e
. o(a?yT) y o(@®yT) y
y _ ol s L o) o 19)
; (a%yE) 4 (a%yE) 4

We use Lemmas 9 and 10 to obtain symmetry properties of thigigaufunctions, that we summarize
below, wheren denotes eithe2 NV or 2V + 1.

Lemma 11 The functionsZ(N; Xon) and Zy(2N + 1; Xon, z,y) are symmetric separately in the
two sets of variable$z;, i < N} and{x;, i > N + 1}, the functionZy(2N; Xon_1,z,y) is sym-
metric separately in the two sets of variablgs;, i < N — 1} and{z;, ¢ > N}, and the functions
ZQT(2m; Xn_1,z,y) are symmetric in their variables;.

Moreover,ZQT(4N + 2;...) is symmetric in its variables andy, and we have a pseudo-symmetry
for ZQT(4N; ...)andZyT(2N;...):

o(a?) + o(zy

ZQT(4N;X2N_1,JI,y) = ( Uzazyf() y) ZQT(4N;X2N—1>Z—/7$)7 (20)
o(a?) + o(z7

ZT(2N; Xon 1, 2,y) = WZHT@N;XMDZ/,:U)- (21)

Proof: For Z(N;...) andZyt(m;...), the symmetry in two “consecutive” variables andz;; is a
direct consequence of Lemma 9. I%QT(Qm; ...), we again apply Lemma 9 together with the easy
observations:

| - 4. and = (22)

| +

which allow us to bring the Yang-Baxter triangle through dinalent vertices of Figure 4.
For the (pseudo-)symmetries(in, y), let us deal withZ1(4N;. . .), the other cases being similar or
simpler. We use equation (22) to put together the lines cdipater: andy:
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ZQT(4N;X2N—1,$>ZJ) =7

and then apply Lemma 10. a

It should be clear that we have analogous properties foniie &1d odd parts of the partition functions.
The next (and last) symmetry property, proved by StrogaBp\efppears when the parametarquals the
special valuess = exp(im/3). An elementary proof of this result has recently been give(i).

Lemma 12 Whena = wg, the partition functionZ (N; X,y ) is symmetric irall its variables.

4.3 Specializations, recurrences

The aim of this section is to give the value of the partitiondtions in some specializations of the variable
x ory. The first result is due to Kuperberg, the others are verylaimi

Lemma 13 [specialization ofZ; Kuperberg]f we denote

Ay, Xon\{ovann}) = [ olam@ne) [ ol@®znam),
2<K<N N+1<k<2N

Ay, Xon\fen,ovn}) =[] olaenam) [ ol@zznn),
2<k<N N41<k<2N

then we have:

Z(N;axn+1, Xon\z1) = A(@ni1, Xon\{z1, 281 ) Z(N — 1; Xon\{z1,2n11}), (23)
Z(N;axnt1, Xonv\z1) = Alevt, Xov\{z, v+ ) Z(N = L; Xon\{z1,28+1}).  (24)
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Proof: We recall the method to prove equation (23). We observe thetw, = azy1, the parameter
of the vertex at the crossing of the two lines of parameteandz v, is a. Thus the weight of this vertex
is o(aa) = o(1) = 0 unless the orientation of this vertex is the second on Figufut this orientation
implies the orientation of all vertices in the rawy and in the columm: 41, as shown on Figure 5. The
non-fixed part gives the partition functiof in size N — 1, without parameters; andz .41, and the
weights of the fixed part gives the factdc. . .).

TN 1 = ary
N
J/‘.
L1 = QrN41 €T
TN+1 T2N TN+1 T2N

Fig. 5: Fixed edges for (23) on the left and (24) on the right

The case of (24) is similar, after using Lemma 11 to put thedig, at the top of the grid.
|

We will need the following application of the Yang-Baxtemgdjon, which allows, under certain con-
dition, a line with a change of parameter to go through a grid.

Lemma 14
a

= (25)

_ X x
ax :

Proof: We iteratively apply Lemma 8 on the rows, and row by row:

- @ -
ll drxd o
ax :

B qr\C .
-
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—

|
Lemma 15 [specialization oZ 1] If we denote
Ay (e, Xop\er) =[] o@®nz) ][] olazm),
1<k<N N+1<k<2N
—1 < _ —
Ay (1, Xon\@1) = H o(a’zTy) H o(ax1Ty),
1<k<N N+1<k<2N
A%(CUN,XzN,l\ZL”N) = H U(aazka) H U(GQZL"NEIC),
1<k<N-1 N<k<2N-1
-0 _ . _
Ag(zn, Xon_1\zN) = H o(axNTy) H o(a’TyTN),
1<k<N-1 N<k<2N-1
then forx = 3, 9, 5,0 andd = D, 5, %, ' respectively, we have
ZHT(2N+ 1; XZN,ZL" axi (w17XZN\$1)ZHT(2N XZN\ZL"l,ZL”l, ), (26)
ZHT(2N+ 1; Xon, @, 8x1) = Ay (1, Xon'\a1) b1 2N; Xon\21, 2, 21), (27)

o(ax®n) Ay (zn, Xon 1\en) 27 (2N — 1; Xon 1\&n, 2, 7x), (28)
o(azng) Ay (en, Xon-1\zn) HTCN = L Xon-1\2N,y,2n). (29)

) =
) =
HT@2N; Xon—1,7,axN) =
) =

ZHT(2N; Xon-1,aXN, ¥

Proof:

The proof is similar to the previous one, with the differetitat before looking at fixed edges, we need
to multiply the partition function by a given factor; we inpeet this operation by a modification of the
graph of the ice model, and apply Lemma 14. It turns out thaach case, the additional factors are
exactly cancelled by the weights of fixed vertices.

To prove (26), we multiply the left-hand side by

H o(a*ry),

N+1<k<2N

which is equivalent to adding to the line of paramajea new lineay just below the grid; Lemma 14
transforms the graph of Figure 6(a) into the graph of Figi®.6When we puy = az;, we get the
indicated fixed edges, which gives as patrtition function

H o?(axyTy) H o(@®a1Tk) ZyT (2N; Xon \z1, 21, T).
N+41<k<2N 1<k<N

Sincea’z,y = axyT1, the equation S|mpl|f|es To conclude, we observe that if tagt svith an edge
going out from the crossing/z2n (function Z T) we get at the end the same orientation (function

Z57)- O
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\))) o =2

ay

j.y 1
T2N Y TN+1 ToN

(@) (b)
Fig. 6: Proof of (26)

Lemma 16 [specialization onQT] If we denote

ZQ(wl,mel\wl) =

AQ(wl;mel\wl) =

o(a’zy Ty )o(az,Ty,),

A
e
— '§’:1

U(a2w1fk)a(amkfl),
1<k<m-—1

then forx = ™, <, 3, andd = M, 3, ™ yrespectively, we have:

ZoT(2m; X1, axa,y) = U(axly)ZQ(l'l:Xm—l)Z(%T(2m = 2; Xm—1\21,y,21), (30)
Z(%T@m;Xm,l,a:, ax;) = U(aazfl)AQ(ml;Xm,l\wl)Z*QT(Qm -2, X a\z1, 21, 2). (31)
Proof: Similar to the proof of Lemma 15. a

Remark 17 By using the (pseudo-)symmetry(in y), we may transform any specialization of the vari-
abley into a specialization of the variable. Moreover, by using Lemma 11 and (whee- wg) Lemma
12, we obtain forz, ZyT and ZQT’ 2N specializations. Now we have to compare them.

4.4 Special value of the parameter a; conclusion

Whena = wg = exp(in/3), two new ingredients may be used. The first one is Lemma 12 easiomed
in Remark 17. The second one is that with this special value of

o(a) =o(a®) o(a’z) = —o(az) = o(az). (32)
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which implies that the products appearing in Lemmas 13, Ibl#hmay be written in a more compact

way:

A(xnt1, Xon\{z1,2Nn+1}) =

Ay, Xon\{z1,oN11}) =

Al (zy, Xon\z1) =

Ay (1, Xon\z1) =

AY(zn, Xon1\zN) =

A (en, Xono1\on) =

Ag(zy, X 1\71) =

AQ(331; mel\wl) =

Thus we get by comparing:

Az, Xon \mi, ©) Ay (25, Xon \z:)

s, Xon \as, @) Ay (24, Xon \a:)

o(a) H o(aTkTN+1),

kA1, N+1
o(a) H o(axN11T),

kA1, N+1

H olaxyT1),
1<k<2N

H olaz1Ty),
1<k<2N

H U(al’ka),
1<k<2N-1

H o(axNTy),
1<k<2N-1

H o?(ar,Ty),
1<k<m—1

H o?(azyT).
1<k<m—1

= o(az®;)Ag(zi, Xon\x;)
= o(az;T)Ag(zi, Xon\T:),

whence (10) and (11) imply that (12) and (13) are true (in dide+ 2) for the 2NV specializations
xr = a™lz; (1 <i < N). Itis enough to prove (13) (Laurent polynomials of hal@i2 N — 1), but we

still need one specialization to get (12) (half-wi@N).

For (10) and (11), we observe the same kind of simplification

A(CUZ', X2N71\$i)0(awfi)A0H($i, XQNfl\wi) = U(al’fi)AQ(iEi, X2N71\mi)7

whence (13) and (12) for the sizgV — 2 imply that (10) and (11) are true for th¥ specializations
x = azx;, N < i < 2N — 1. We obtain in the same way the coincidence for Mespecializations
x =ax;, N <i<2N — 1. Thus we havN specialiations of: it is enough both for (10) (half-width

2N — 1), and for (11) (half-widtl2 N — 2).
At this point, we havelmostproved

((10) and (11), in sizd N) = ((12) and (13), in sizd N + 2) = ((10) and (11), in sizd N + 4);

almost because we still neazhespecialization for (12).
We get this missing specialization, not directly E%T, ZST’ ZRT and Zpﬂ-, but for the original

seriesZoT(4N + 2; Xon,x,y) andZy1(2N + 1; Xon, x, y): indeed if we setr = ay we may apply

Lemma 14.
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ay T2N ()
T2N =
T
T N ay

Yy

ZQT(4N+ 2; Xon,ay,y) = o(a) H U(awky)a(a2y5k)ZQT(4N;X2N\$2N,JC2N,$2N)

o \))) ] D
T A

TN+1 TaN

ay

Zy1(2N + 1; Xon, ay,y) = H o(azrty) H o(a*yTk) | Zy7(2N; Xon\zN, TN, 2N)
1<k<N N+1<k<2N

This way, we get another point where (9) is true, and thusalse we already have (13), by difference
we obtain that (12) holds fay = az.
This completes the proof of Theorem 6.
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