
HAL Id: hal-00396436
https://hal.science/hal-00396436

Submitted on 22 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Boolean Constraint Propagation for Sub-clause
Deduction

Sylvain Darras, Gilles Dequen, Laure Brisoux Devendeville, Bertrand Mazure,
Richard Ostrowski, Lakhdar Saïs

To cite this version:
Sylvain Darras, Gilles Dequen, Laure Brisoux Devendeville, Bertrand Mazure, Richard Ostrowski, et
al.. Using Boolean Constraint Propagation for Sub-clause Deduction. 11th International Conference
on Principles and Practice of Constraint Programming (CP’05), Oct 2005, Sitges, Spain. pp.757-761.
�hal-00396436�

https://hal.science/hal-00396436
https://hal.archives-ouvertes.fr

Using Boolean Constraint Propagation for
Sub-clauses Deduction

(full paper)

Sylvain Darras, Gilles Dequen, Laure Devendeville
Laria – Universit de Picardie Jules Vernes

{darras,dequen,devendeville}@laria.univ-picardie.fr

Bertrand Mazure, Richard Ostrowski, Lakhdar Saı̈s
CRIL CNRS – Universit d’Artois

rue Jean Souvraz SP-18
F-62307 Lens Cedex France

{ostrowski,mazure,sais}@cril.univ-artois.fr

Abstract

Boolean Constraint Propagation (BCP) is recognized as one of the mostuse-
ful technique for efficient satisfiability checking. In this paper a new extension of
the scope of boolean constraint propagation is proposed. It makes anoriginal use
of BCP to achieve further reduction of boolean formulas. Considering the impli-
cation graph generated by the constraint propagation process as a resolution tree,
sub-clauses from the original formula can be deduced. Then, we show how such
extension can be grafted to modern SAT solvers where BCP is maintained at each
step of the search tree. Preliminary results of “Zchaff” - the state of the art SAT
solver - augmented with extended BCP, show the great potential of our approach
with respect to certain classes of SAT instances.

Keywords: SAT, Boolean Constraint Propagation, reasoning and search, learning,
subsumption.

1 Introduction

Recent impressive progress in the practical resolution of hard and large SAT instances
allows real-world problems that are encoded in propositional clausal normal form
(CNF) to be addressed (e.g. [7, 8, 11, 2]). Many benchmarks have been proposed and
regular competitions (e.g. Dimacs’93, Beijing’96, SAT’01-04) are organized around

1

these specific SAT instances, which are expected to encode structural knowledge at
least to some extent. The huge size of the real-world SAT instances currently in the
scope of modern SAT solvers such as Zchaff [12], allows to consider practical appli-
cations. Such a progress shows us that instances with worst case complexity behavior
appears rarely in practice. Indeed, instances from practical applications contain some
structures that can benefit to SAT solvers. One of them is thatclauses share more com-
mon variables comparatively to random instances. For example, the clauses encoding
the boolean formulax1 ∧ x2 → y1 ∧ y2 ∧ · · · ∧ yn share the two boolean variables
x1 andx2. In other words, many common sub-clauses results from the elimination of
boolean connectives (e.g.∨,∧,↔). One can see that after assigning the valuefalse to
yi the other clauses become redundant and can be eliminated by subsumption using the
clause¬x1 ∨ ¬x2.

Our intuition is that when considering large SAT instances at each step of the search
process, many clauses become redundant and some sub-clauses might be deduced and
then decrease the size of the formula.

Considering large SAT instances at each step of DPL search process, our intution is
that some sub clauses can be deduced with the resolution ruleand then useless accord-
ing to the subsumption rule. This idea can be maintened at each node of search tree of
the formula and then produce some formulas where the number of clauses cannot be
greater than the initial one and where for a given clause

become redondant and then useless according to the subsumption rule. On the other
hand, some subclauses can be deduced according to the resolution rule

The main objective of this paper is to show how such structural knowledge can be
exploited during search. We focus on sub-clauses deductions that might help reducing
the formula to its “real” size and give rise to a constant space complexity approach.

Boolean constraint propagation (or unit propagation), applying in all efficient DPLL
implentations [9, 4, 12] can be considered as a restricted form of resolution and as a
special case of subsumption rule.

It is recognized as one of the most important paradigm for efficient satisfiability
checking. Indeed, most of modern SAT solver are based on the well known Davis-
Putnam-Logemann-Loveland (DPLL) procedure [3] where BCP is maintained at each
step of the search process. On many SAT instances, a major part of the search space
(about 90%) is achieved using BCP. This important role has motivated many works
on efficient implementation of BCP (e.g. Zchaff) and on extending its practical use.
Among others, many simplification techniques (e.g. [5, 1]),variable ordering heuristics
(e.g. [9, 4]), conflict analysis scheme (e.g. [10, 12]), functional dependencies deduction
(e.g. [6]) are based on BCP.

In this paper, a new extension of the scope of boolean constraint propagation is
proposed. It makes an original use of BCP to achieve further reduction of boolean for-
mulas. More precisely, the constraint graph generated by the boolean constraint propa-
gation process can be mapped to a resolution tree which encodes clauses of the original
formula and new resolvent. The set of such possible resolvent can have an exponential
size in the worst case w.r.t. the set of clauses encoded in theconstraint graph. To avoid
such a drawback, the approach proposed in this paper considers only a relevant set of
resolvent leading to a polynomial time and constant space complexity approach. Then,
we show how such an extension can be grafted to modern SAT solvers.

2

The paper is organized as follows. After some preliminary definitions, relations
between resolution and boolean constraint propagation arediscussed. Then a constant
space complexity BCP-based approach for sub-clauses deduction is proposed, allowing
the formula to be reduced. Its dynamic integration in SAT solvers is presented and some
preliminary experimental results

showing the interest of the proposed approach are provided.Finally, promising
paths for future research are discussed in the conclusion.

2 Definitions and preliminaries

A CNF formulaΣ is a set (interpreted as a conjunction) ofclauses, where a clause is
a set (interpreted as a disjunction) ofliterals. A literal is a positive or negative propo-
sitional variable. We notevar(Σ) (resp.lit(Σ)) the set of variables (resp. literals) oc-
curring inΣ. A unit clauseis a clause containing a single literal calledunit literal. A
binary clause contains two literals associated with two distinct variables. A clause con-
taining literals of distinct variables is called fundamental. It is called tautological when
it contains two opposite literals. The size of the formulaΣ is given by|Σ| =

∑

c∈Σ |c|,
where|c| is the number of literals inc.

In the following, we use formula (resp. variable) instead ofCNF formula (resp.
propositional variable). In addition to the set-based notations, we define the negation
of a setA of literals as the set̄A of the corresponding opposite literals. We noteA∨

(respectivelyA∧) the disjunction (resp. conjunction) of all literals ofA.
An interpretationof a formulaΣ is an assignment of truth values{true, false} to

its variables. It is called partial interpretation if only asubset of variables ofvar(Σ)
are assigned. Amodelof a formula is an interpretation that satisfies the formula.Ac-
cordingly, SAT consists in finding a model of a formula when such a model exists or in
proving that such a model does not exist.

A formulaψ is a logical consequence ofφ (notedφ ² ψ) iff any model ofφ is also
a model ofψ.

Let c1 andc2 be two clauses ofΣ. i) resolution rule: If there exists a literall (called
a pivot of the resolvent) s.t.l ∈ c1 and¬l ∈ c2, then aresolventon l of c1 andc2 can be
defined asres(l, c1, c2) = c1\{l} ∪ c2\{¬l}. ii) subsumption rule: Whenc1 ⊆ c2 (i.e.
c1 is a sub-clause ofc2), thenc1 subsumesc2. Resolution (resp. subsumption) rules
leads to a new formulaΣ ∪ res(l, c1, c2) (resp.Σ\c2) equivalent toΣ with respect to
SAT. A resolventr = res(l, c1, c2) is called a subsuming resolvent iff∃c ∈ Σ s.t. r
subsumesc. Repeatedly applying resolution rule leads to resolution proof system that
can prove unsatisfiability of a formula.

For a formulaΣ and a literall ∈ lit(Σ), we defineΣ(l) = {c|c ∈ Σ, {l,¬l} ∩ c =
∅} ∪ {c\{¬l}|c ∈ Σ,¬l ∈ c} as the result of settingl to the valuetrue. For simplicity,
we noteΣ(l1)(l2) . . . (ln) asΣ(l1, l2, . . . , ln).

Boolean Constraint Propagation refers to the iterative process of setting all unit
literals the valuetrue until encountering an empty clause or no unit clause remainsin
the formula.Σbcp(l) is the formula obtained by BCP onΣ(l). The set of unit literals
propagated by the application of BCP onΣ(l) is notedUPL(Σ, l). This notation can
be extented to a set of literalsL: UPL(Σ, L) =

⋃

l∈L UPL(Σ, l).

3

BCP can be seen as a restricted form of resolution. At each step a subsuming re-
solventres(l, {l}, c2) = c2\{¬l} is produced. Last but not least, BCP is an important
component of the well known DPLL procedure.

DPLL procedure performs a backtrack depth-first search through a binary tree. Af-
ter a simplification step using BCP and setting pure literal (those whose negation does
not appear in the formula) to true, adecision variableis chosen and recursively set to
true respectively to false the two associateddecision literals.

3 Exploiting BCP for sub-clause deduction

In this section, we show how BCP can be further extended, allowing sub-clause of the
formula to be deduced. We first introduce the implication graph generated by BCP and
its two possible translations to a resolution tree.

3.1 Boolean constraint propagation and Implication graph

An Implication Graph(IG) is a directed acyclic graph that captures the boolean prop-
agation process. A constraint graph defined below is generated according to a given
formula and a set of decision literals.

Definition 1 (Implication graph) Let Σ be a formula andI a set of decision liter-
als. An implication graph associated toΣ and I is a labelled directed acyclic graph
Gig(Σ, I) = (V, E) where :

1. V = {v|η(v) ∈ I ∪ UPL(Σ, I)} a set of vertices ; whereη(v) is the literal
labelling the vertexv. Literals labelling a set of vertices is denotedη(V) =
{η(v)|v ∈ V}.

2. E = {〈vj , vi〉|η(vi) = li, η(vj) = lj ,∃c = {¬l1, . . . ,¬li−1, li,¬li+1, . . . ,¬ln} ∈

Σ, c ∩ η(V) = {li}, c ∩ η(V) = {¬l1, . . . ,¬li−1,¬li+1, . . . ,¬ln} and j ∈
{1, . . . , i−1, i+1, . . . , n}}. Each directed edge〈vi, vj〉 is labelled with a clause
c, i.e. label(〈vi, vj〉)= c.

In the definition of IG each node corresponds to a variable assignment. The set of
literals associated to the predecessors of a vertexv (pred(v)) corresponds to its an-
tecedent assignments). Directed edges from allv′ ∈ pred(v) to v are all labelled with
the same clausec (notedcl(v)). The clausec andη(pred(v)) give us the reason of its
implication. Let us note that in general a literall can be implied thanks to different
clauses and literals (i.e. reasons). When all the reasons arerecorded,IG is called com-
plete; otherwise it is called incomplete. In case of complete IG, pred(v) is a superset
where each element corresponds to a particular reason. For clarity of the presentation,
in this paper we only consider incomplete implication graph.

For
an implication graphGig(Σ, I), vertices corresponding to decision literalsI have no

incoming edge and are called source vertices (sources(Gig)). Vertices with no outgoing

4

a

b c

d

c1 c2

c3

(a) IG ofΣ

d

¬c ∨ d

c3

b

c1

a

c

a

c2

(b) Translation 1

¬a ∨ d

¬a ∨ ¬c ∨ d

c1

c3

c2

¬a ∨ d

¬a ∨ ¬b ∨ d

c3

c2

c1

(c) Translation 2

Figure 1: From the implication graph to resolution tree

edge are called sink vertices (sink(Gig)). When a conflict occurs,Gig contains two sink
vertices labelled with two opposite literals.

Let us mention that implication graphs have been widely exploited by modern SAT
solvers to learn from conflicts [12], to achieve nogood recording or to operate non
chronological backtracking [10]. In such context, each decision literall is labelled with
adecision levelα corresponding to the level wherel is assigned.

α is an integer corresponding to the number of decision variables assigned from the
root to the current node.

At each step, literals propagated by BCP at a given level receive the same labelling.
We give in the following a new translation of IG to a special form of resolution tree.

3.2 Implication graph and resolution tree

In this section we show that an implication graph can be translated in two different
ways to a resolution tree (RT).

The definition below gives a general description of a resolution tree.

Definition 2 (Resolution Tree) A resolution tree associated to a formulaΣ is a di-
rected acyclic graphGrt = (N , E) such that :

• each noden is labelled by a clausec (i.e.η(n) = c).

5

• clauses labelling internal nodes are obtained by resolution from clauses la-
belling its two child nodes. Arcs between an internal node and its two child nodes
represent such resolution operation.

• leaf nodes are labelled with clauses ofΣ

As mentioned in section 2, BCP can be seen as restricted form of resolution. At
each step subsuming resolvent is produced between a unit clause and an other clause
of the formula. This first obvious translation (not described in this paper) gives rise to
resolution tree that describes precisely such a restrictedform of resolution.

Algorithm 1, describes the second translation of an implication graph to a resolution
tree where internal nodes are labelled with new resolvent. This new translation gives
us a new picture on BCP, in that it leads to powerful resolution-based technique.

Algorithm 1 IG2RT 2(in Gig = (V,A) : IG, out Grt = (N , E) : RT)
1: let N = ∅, E = ∅
2: for eachv ∈ sink(Gig) do
3: let pred(v) = {v1, v2, . . . , vk} s.t.η(vi) = li,η(v) = l
4: let r = (

S

1≤i≤k{¬li}) ∪ {l}

5: N = N ∪ {w} s.t.η(w) = r
6: s = pred(v)
7: Grt = translate 2(v, w, s, r,Gig)

Algorithm 2 translate2(in v, w: vertex,s: set of vertices,r : resolvent,Gig = (V,A)
: IG, out Grt = (N , E) : RT)
1: If pred(v) 6= ∅ then
2: let s = {v1, v2, . . . , vk} s.t.η(vi) = li, η(v) = l
3: for i = k downto1 do
4: let pi ∈ pred(vi) andci = η(〈pi, vi〉)
5: N = N ∪ {fi} s.t.η(fi) = ci

6: let temps = s ands = (s\{vi}) ∪ pred(vi)
7: let p = {p|p = η(pi) s.t.pi ∈ pred(vi)}
8: let tempr = r andr = (r\{¬li}) ∪ p̄
9: N = N ∪ {ri} s.t.η(ri) = r
10: E = E ∪ {〈fi, ri〉, 〈w, ri〉}
11: Grt = translate 2(pi, ri, s, r,Gig)
12: s = temps, r = tempr

Example 1 LetΣ = (¬a∨ b)∧ (¬a∨ c)∧ (¬b∨¬c∨d). We noteci, with1 ≤ i ≤ 3 a
clause number i ofΣ. Figure 1(b) and Figure 1(c) show the first (respectively second)
translation of the implication graph (see figure 1(a)) to a resolution tree.

Remark 1 We note that, in the resolution tree shown in Figure 1(b) (resp. Figure 1(c))
the internal nodes are labelled with sub-clauses (resp. newclauses). As the traversal
of the implication graph starts on the sink vertex with labeld, we can note that all the
new clauses (Figure 1(c)) contain such a literal. In algorithm 1, if we consider all the
vertices of the implication graph (line 2), then we obtain a set of different resolution
trees (i.e. forest).

6

In algorithm 1, the translation starts on sink vertexv of IG (line 2), a new node
w labelled with the clauser made ofη(v) andη(pred(v)) the negation of the literals
labelling its predecessors is added to RT. Then, algorithm 2is call.

At each step, we consider the current vertexv (resp.w) of IG (resp. RT), a set of
verticess that contains the current predecessor to process next, and the current resol-
ventr. Note that at each step,η(s) = r\{l} wherel = η(v) (algorithm 1, line 3). For
each vertexvi of the current sets, two new nodesfi (resp.ri) labelled withcl(vi) (resp.
r = res(li, cl(vi), η(w))) and two new directed edges{〈fi, ri〉, 〈w, ri〉} are added to
RT (lines 4-10), then the process is repeated recursively.

In line 12 (algorithm 2), it is important to note that the current sets and the current
resolventr are updated to their original contents. Then, at each iteration (line 3) we
consider the same sets and resolventr. For a given vertexv, such updating is done
in order to consider all the combination of its possible ancestors (i.e. a vertexa is an
ancestor ofv iff there exists a path froma to v). Consequently, algorithm 1 has an
exponential worst case complexity behavior and can lead to an exponential number
of new clauses. To avoid such a drawback, we introduce in the sequel a new constant
space complexity approach that considers only a subset of such resolvent.

3.3 A constant space & polynomial time complexity approach

In this section, a polynomial time and constant space complexity approach is presented.
First we consider only a subset of pertinent implications ofthe resolution tree (second
translation). More precisely, an implication is considered if it subsumes - either directly
or by resolution - clauses of the original formulaΣ. Such a restriction leads to a con-
stant space complexity approach (i.e. the size of the formula decreases). Second, the
resolution tree is not explicitly built.

Let us first introduce the following definitions and properties.

Definition 3 Let Σ be a formula,l ∈ lit(Σ) andGrt = (N , E) a RT obtained from
Gig(Σ, l). A clausec is l-sub-inferred fromΣ (notedΣl ²

∗ c) if ∃c′ ∈ Σ such that one
of the following condition is satisfied,

1. c ∈ η(N) andc ⊂ c′

2. ∃c′′ ∈ η(N) s.t.c = res(p, c′, c′′) ⊂ c′ wherep ∈ c′ and¬p ∈ c′′

Proposition 1 LetΣ be a formula andl ∈ lit(Σ). If Σl ²
∗ c thenΣ ² c

Proof 1 By construction ofGrt = (N , E) from Gig(Σ, l) all nodes ofN are labelled
with resolvent obtained from clauses ofΣ. Consequently,∀d ∈ η(N), we haveΣ ² d.
Moreover, in the definition ofΣl ²

∗ c, we distinguish two cases. In the first case,
c ∈ η(N), thenΣ ² c. In the second case,c = res(p, c′, c′′) wherec′ ∈ Σ and
c′′ ∈ η(N), thenΣ ² c.

Proposition 2 LetΣ be a formula andl ∈ lit(Σ). Σl ²
∗ c can be computed inO(|Σ|×

|var(Σ)|).

7

Proof 2 Let us give a proof sketch on the complexity of such computation (for more
details see algorithm 3). To computeΣl ²

∗ c, first BCP is processed onΣ ∧ l and
Gig = (V, E) is computed. Such computation is achieved in linear time. Inthe second
step, we try to find a clausec′ ∈ Σ such thatc ⊂ c′. To achieve that, only clauses
containing literals fromUPL(Σ, l) are considered; otherwise such a clause can not
be l-sub-inferred. Now letc′ be such a clause. To achieve l-sub-inference, for each
literal p ∈ c′ ∩ η(V) a traversal ofGig is realized starting on the vertexv ∈ V labelled
by p. A first clauser made ofp and η(pred(v)) is computed. At this stepr ∈ Σ.
The next step is to process iteratively the vertexw ∈ pred(v) by generating a new
resolventr = res(η(w), r, cl(w)). According to the definition 3,r andc′ are checked,
then three cases are distinguished. Ifr ⊂ c′ (direct subsumption) or there exists a
subsuming resolvent betweenr and c′ thenc′ is reduced and search continues on the
deduced sub-clause to get smaller one. If the two first cases do not apply, the search
process is continued on the predecessor of one literal ofr which does not appear in
c′. Consequently, only one traversal ofGig is needed which can be done inO(n + m)
wheren = |V| andm = |E|. As each clause ofΣ is considered, and for each clause
the number of traversal ofGig is bounded by the length of the clauses, the worst case
complexity of the global computation process is|Σ|×O(n+m) = O(|Σ|× |var(Σ)|).

Based on the proposition 2, we propose a polynomial time approach able to infer
sub-clauses during the search.

4 Inferring sub clauses during search

In this section, we present a practical approach to deduce sub-clauses from a given
formulaΣ and an implication graph. As the well-known look-ahead [5] local treatment,
the sub-clauses deduction can be very helpful for branchingselection heuristic of any
DPLL-like techniques, for detecting local inconsistencies and for reducing the size of
the search tree. Let us describe the following algorithmGetSubclause (Algorithm 3)
that can be used to simplify a given formulaΣ thanks to the implication graphGig.
We assume thaty is one of the literals from the set of literals assigned at thecurrent
decision levelα (this set is notedη(Vα)). Let A be a subset of literals fromη(V) such
thatA∧ → y.

Algorithm 3 GetSubclause(in G, A, y, c, α))
1: If ∃xr ∈ Ā ∪ {y}|¬xr ∈ c and∀x ∈ (Ā ∪ {y}) − {xr}, x ∈ c then
2: Σ ← Σ − {c} ∪ {c − {xr}}
3: If pred(xr) 6= ∅ then
4: GetSubclause(G, A − {xr} ∪ pred(xr), y, c, α)
5:
6: If∀x ∈ Ā ∪ {y}, x ∈ c then
7: Σ ← Σ − {c} ∪ {Ā∨ ∨ y}
8: x ← choice(A)
9: If pred(x) 6= ∅ then
10: GetSubclause(G, A − {x} ∪ pred(x), y, c, α)
11: else
12: Choosex ∈ A|x 6∈ c and¬x 6∈ c
13: If pred(x) 6= ∅ then
14: GetSubclause(G, A − {x} ∪ pred(x), y, c, α)

8

d

x1

x2

x3

x4

x5

c1

c2

c3

c4

c5

(a) Gig(Σ1, {d})

d

x1

x2

x3

x4

x5

z

c1

c2

c3

c4

c5

(b) Gig(Σ2, {z, d})

Figure 2: IG of formulasΣ1 (example 2) andΣ2 modified in section 4.1. The source is
the literald

Considering a clausec of Σ, the functionGetSubclause finds, if it exists, sub-
clauses subsumingc (see line7 of the algorithm 3) and new clauses whose generating
resolvent clause withc subsumesc (see line1 of the algorithm 3). When a direct sub-
sumption is found, a clausec is subsumed directly by the implicationA∧ → y, soc

containsy and all literals fromĀ. Note that in this case, we cannot produce any sub-
suming resolvent ofc. However, we can expect finding a subsetB = {x1, ..., xk} ⊂ A

such thatx1 ∧ ... ∧ xk → y. Thus, if it existsx1 ∧ ... ∧ xk → y, then∀z|(z ∈ A, z 6∈
{x1, ..., xk}),∃xi1 , ..., xil

⊂ B|xi1 ∧ ... ∧ xil
→ z. That’s to say if one finds a shorter

subsumptionB∧ → y thanA∧ → y then all literals appearing inA but not inB are
implied by a subset of literals appearing inA ∩ B. To find a shorter setB, we have
to look into specific predecessors of literals ofA. Since the literals appearing inA\B
have precedessors inB, they have been assigned after some literals ofB. To increase
the probability to find at this step such an implication, thechoice function returns the
variable ofA that has been assigned last. Otherwise, the clausec will be subsumed in
the same way when processing of literals ofA\B. Indeed, letz be a variable in this
subset. When, during the computation ofz, Bz = {z1, ..., zp} will be found such that
(Bz)∧ → z, the clausecz = ¬z1∨...∨¬zp∨z will be deduced. Whilez1, ..., zp, z ∈ A,
the clause deduced fromA∧ → y contains literals¬z1, ...,¬zp,¬z. The resolvent be-
tweencz and the clause equivalent to(A∧ → z) allows to delete literal¬z from clause
c. So is for all literals ofA\B. That’s whyc will be subsumed by the clause equivalent
to (B∧ → y) whatever predecessor is chosen during the computation ofy.

Finally, searching for all the subsumptions from the graphGig consists in:∀y ∈
η(Vα), ∀c ∈ Σ|y ∈ c, GetSubclause(G, pred(y), y, c, α).

Example 2 To illustrate further, let us consider the Implication Graph of the Figure
2(a) obtained fromΣ1 by assigningd to true on the formula

Σ1 =















c1 : ¬d ∨ x1 c4 : ¬x1 ∨ ¬x2 ∨ x4

c2 : ¬d ∨ x2 c5 : ¬x3 ∨ ¬x4 ∨ x5

c3 : ¬x1 ∨ x3 c6 : ¬d ∨ ¬x3 ∨ x5 ∨ x6

c7 : ¬x1 ∨ x2 ∨ x5















Trying to deduce a sub-clause ofc6 and considering implication ofx5 through the
Implication Graph of the Figure 2(a), we will first considerx3 ∧ x4 → x5 which is

9

equivalent to the clause¬x3∨¬x4∨x5. One can see that the variablex3 belongs to the
current implication and to the clausec6. As x4 does not belong toc6, any implication
containing this literal does not subsumec6.

Then, we have to find other literals belonging to this subsumption from the pre-
decessors ofx4: x1 andx2. Following our principle,x1 andx2 are not literals ofc6

andd is predecessor of both of them. Then, we can deduced ∧ x3 → x5 and the
corresponding clausec′6 : ¬d ∨ ¬x3 ∨ x5 subsumesc6. Following the process onc′6
upon the current setA = {x3, d}, the functionchoice chooses fromA the last as-
signed variable:x3. ThroughGig(Σ1, {d}), x1 andd are sucessively visited and the
implicationd → x5 is deduced. The corresponding sub-clausec′′6 : ¬d ∨ x5 directly
subsumesc6. These two subsumptions fromc6 to c′6 and then fromc′6 to c′′6 has been
possible thanks to the functionchoice which chosex5. Indeed, if this function chose
the variabled, the computation would have stopped without other deduction sinced

has no antecedent. Subsumption fromc′6 to c′′6 would have been found later, when call-
ing GetSubclause(Gig, pred(x3), x3, c, α). It will (trivialy) show x1 → x3, and then
d → x3, equivalent to the clause¬d ∨ x3, whose resolvent withc′6 is c′′6 : ¬d ∨ x5.

Applying this technique on the clausec7 and from the sameGig(Σ1, {d}), we can
deduce the implicationx1 ∧x2 → x5. The resolvent between the corresponding clause
of this implication andc7 is cr : ¬x1 ∨ x5, which subsumesc7. Finally, this impli-
cation graph allows to reducec6 by two literals and the clausec7 by one literal. Such
reductions can lead to further unit propagation that improve the search process.

Indeed, starting from original formulaΣ1, assigningx5 to false will not produce
unit clause. However, withc6 : ¬d∨x5 andc7 : ¬x1∨x5, assigningx5 to false implies
d = false andx1 = false.

4.1 Local subsumption

Considering dynamic use of sub-clauses inference DPLL-like technique, the algorithm
3 previously described finds sub-clauses available only in the whole solving tree. As
the number of such sub-clauses is restricted, the algorithm3 can be improved to find
subsumptions available only in part of the solving tree delimited by a decision level.
Let β be this decision level. These subsumptions will be deleted when a backtrack
occurs at or before decision-levelβ.

As previous version, considering a clausec of Σ and the set of literalsη(Vα) as-
signed at current decision levelα, the functionGetSubClauseLevel tries to deduce
subsumptions fromc (see line1 and7 of the algorithm 4) available as long as all liter-
als fromĀ, not belonging toc and whose decision level is different fromα, keep their
truth value. When a literall from A has been assigned at a lower decision level thanα

and does not belong toc it can be ignored fromA while it is assigned (i.e. backtrack on
l is not yet occurred).A\{l} can be used to produce sub-clause ofc. To illustrate this
new method, let us consider the Implication Graph in the Figure 2(b), obtained from
the formulaΣ2 when assigningd to true at decision-levelα and assigningz to true at
decision-levelβ < α. Σ2 is obtained fromΣ1, provided in example 2, by substituting
the clausec4 for the clausec′4 : ¬x1 ∨¬x2 ∨¬z ∨x4. From this graph, the implication
x1∧x2∧z → x5, can be deduced. The corresponding clause isc′ : ¬x1∨¬x2∨¬z∨x5.
The resolvent betweenc′ andc7 is cr : ¬x1 ∨ ¬z ∨ x5 which does not subsumec7 be-

10

Algorithm 4 GetSubClauseLevel(in G, A, y, c, α))

1: if ∃xr ∈ Ā ∪ {y}|¬xr ∈ c and ∀x ∈ ((Ā ∪ {y}) − {xr}) ∩ η(Vα), x ∈ c then
2: Σ ← (Σ − {c} ∪ {c − {xr}})dl>maxx6∈c,x∈A∩(η(V−Vα))(dlx)

3: if pred(xr) 6= ∅ then
4: GetSubClauseLevel(G, A − {xr} ∪ pred(xr), y, c, α)
5: end if
6: else
7: if ∀x ∈ (Ā ∪ {y}) ∩ η(Vα), x ∈ c then
8: Σ ← (Σ − {c} ∪ {(Ā ∩ c)∨ ∨ y})dl>maxx6∈c,x∈A∩η(V−Vα)(dlx)

9: x ← choice(A)
10: if pred(x) 6= ∅ then
11: GetSubClauseLevel(G, A − {x} ∪ pred(x), y, c, α)
12: end if
13: else
14: Choosex ∈ A|x 6∈ c and¬x 6∈ c
15: if pred(x) 6= ∅ then
16: GetSubClauseLevel(G, A − {x} ∪ pred(x), y, c, α)
17: end if
18: end if
19: end if

causez does not appear in this clause. However, sincez has been assigned at a lower
decision-level,c′4 can be considered as only composed of¬x1∨¬x2∨x4 while z keeps
its current value. Thus, the resolventcr : ¬x1∨x5 subsumesc7 until a backtrack occurs
at decision level lower or equal toβ. The implicationd ∧ z → x5 can also be deduced
and corresponds to the clausec′′ : ¬d ∨ ¬z ∨ x5. In the same way,c′′ will subsumec6

only if we consider thatz will keep its current value, so thatc′′ is equivalent to¬d∨x5

(for decision-level greater thanβ). Soc6 is directly subsumed. This implication graph
allows to reducec6 by two literals and the clausec7 by one literal, for decision-levels
greater thanβ.

5 Preliminary comparative experimental results

Our sub-clause detection approach can be used as soon as BCP exists and then can
be applied at each node of the DPLL search-tree. Let us recallthis technique can be
applied either if BCP leads to a conflict or not. In this section, we provide some pre-
liminary comparative experimental results showing the impact which such an approach
can have on a panel of formulae resulting from either industrial and structured prob-
lems. The goal of this preliminary experimentation is to measure the influence of our
technique on the number of nodes developped in the DPLL search-tree when one ex-
haustively deduces the sub-clauses of a given formula. The exhaustive application of
the sub-clause deduction at each node of the search-tree hasa no inconsiderable in-
crease of time consuming as a result. Within a practical framework, our sub-clause
deduction approach should be both empirically and heuristically limited. For these ex-
perimentations, we only provide the size of the search-treein terms of number of nodes
and that independently of the computation time of our treatment. During the pretreat-
ment, we apply our sub-clause detection approach trying to produce all the subsuming
sub-clauses so that there is no possibility to deduce shortened clause from the initial for-
mula. A dynamic implementation of this technique, like mentioned in previous section,
applying at each node of the search-tree is our future work. Table 1 shows comparative

11

Zchaff Pretreatment+Zchaff
Instance S/U nodes nodes subs var fixed
barrel6 U 31 866 24 766 1207 342
barrel7 U 66 789 62 054 1 600 455

SAT.dat.k90 S N/A 3 684 949 5 680 6 373
logistics.b S 3 810 422 859 405
logistics.c S 9 577 1 282 1 434 557

abp4-1-k31-unsat.
shuffled-as.sat03-403 U N/A 0 106 2 712

abp1-1-k31-unsat.
shuffled-as.sat03-402 U N/A 0 178 2 878

2bitadd10 U 60 605 60 605 0 0
2bitadd11 S 7 870 7870 0 0
longmult6 U 5 833 5 949 442 690
longmult7 U 26 942 19 457 496 730
longmult9 U 273 182 273 836 631 798
longmult10 U 711 397 562 517 689 826
longmult12 U 1 164 158 906 626 824 870
longmult13 U 1 567 022 997 981 956 892
longmult15 U 625 534 286 858 1 269 1 057
bf0432-007 U 864 295 427 363
bf2670-001 U 64 0 212 290
flat200-10 S 14 202 14 202 0 0
flat200-100 S 1 157 1 157 0 0

Table 1: Preliminary comparative results

results on selected benchmarks in terms of number of decisions between standalone
state-of-the-art solver Zchaff1 and our sub-clause deduction approach helping Zchaff
as a pretreatment. All the results have been computed on AMD Athlon 2000+ with
512Mo RAM under Linux/OS. Table 1 provides also the number ofdeduced subsump-
tions and the number of fixed variables. Note that in column ”S/U”, ”S” means ”Satis-
fiable” and ”U” means ”Unsatisfiable”. Finally, Zchaff has a timeout of 7200 seconds.
For the class of unsatisfiable instances longmult, we can note for Zchaff applied on
pretreated benchmarks by the sub-clauses deduction approach a gain greater than50%
in comparison with Zchaff without the sub-clause deductionpretreatement. For some
of them like abp*, our pretreatment proves the unsatisfiability before Zchaff runs. Note
that for these formulas, Zchaff was not able to response in less than 7200 seconds, and
comparatively, the pretreatment is less than one minute time computing. However, no
subsumption are found while processing families flat* and 2bitadd* although any BCP
exists.

1Zchaff version 2004.11.15

12

6 Conclusion and future work

In this paper a new extension of the scope of boolean constraint propagation is pre-
sented. We have described two possible ways to translate theBCP implication graph to
a resolution tree. The second translation, gives us a new picture on BCP, usually con-
sidered as limited form of resolution. Indeed, many interesting and new resolvent can
be generated using the BCP implication graph leading to a powerful resolution-based
technique. To make such extension practicable, we have shown that when a subset of
such resolvent (those that achieve a sub-clause deduction)are considered, we obtain
a polynomial time approach that can be grafted to DPLL-like techniques. Clearly, our
preliminary experimental are encouraging. On some classesof instances, a substantial
reduction on the number of nodes has been obtained. To substantiate our claim on the
usefulness of the proposed approach, further experimentalvalidation are needed. Us-
ing different criteria, we also plan to investigate in a systematic way the pertinence of
a given resolvent with respect to its practical potential.

References
[1] F. Bacchus. Enhancing davis putnam with extended binaryclause reasoning. InAAAI, 2002.

[2] A. Biere, E. Clarke, R. Raimi, and Y Zhu. Verifying safety properties of a PowerPC microprocessor
using symbolic model checking without BDDs.Lecture Notes in Computer Science, 1633:60–72, 1999.

[3] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Journal of the
Association for Computing Machinery, 5:394–397, 1962.

[4] G. Dequen and O. Dubois. kcnfs: An efficient solver for random k-SAT formulae. InInternational
Conference on Theory and Applications of Satisfiability Testing (SAT), Selected Revised Papers, LNCS,
volume 6, pages pp 486–501, may 2003.

[5] O. Dubois, P. Andŕe, Y. Boufkhad, and J. Carlier. Sat versus unsat. InSecond DIMACS Challenge,
pages 415–436, 1996.

[6] E. Grégoire, B. Mazure, R. Ostrowski, and L. Sais. Automatic extraction of functional dependencies.
In SAT’04, May 2004.

[7] H. Kautz and B. Selman. Planning as satisfiability. InECAI’92, pages 359–363, Vienna, Austria, 1992.

[8] T. Larrabee. Efficient generation of test patterns unsing boolean satisfiability.IEEE Transaction on
CAD, 11:4–15, 1992.

[9] C. M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems. InIJCAI’97,
pages 366–371, Nagoya (Japan), August 1997.

[10] J.P.M. Silva and K.A. Sakallah. Grasp - a new search algorithm for satisfiability. InCAD’96, 1996.

[11] J.P.M. Silva and K.A. Sakallah. Boolean satisfiabilityin electronic design automation. InDAC’00,
June 2000.

[12] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning in a boolean
satisfiability solver. InICCAD’01, pages 279–285, San Jose, CA (USA), November 2001.

13

