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Abstract

Boolean Constraint Propagation (BCP) is recognized as one of theus®st
ful technique for efficient satisfiability checking. In this paper a newresitan of
the scope of boolean constraint propagation is proposed. It makasgamal use
of BCP to achieve further reduction of boolean formulas. Consideriagntipli-
cation graph generated by the constraint propagation process asutiosstree,
sub-clauses from the original formula can be deduced. Then, we lsbe such
extension can be grafted to modern SAT solvers where BCP is maintdiradta
step of the search tree. Preliminary results of “Zchaff” - the state of thB8AT
solver - augmented with extended BCP, show the great potential of puoagh
with respect to certain classes of SAT instances.

Keywords: SAT, Boolean Constraint Propagation, reasoning and search, lgarnin
subsumption.

1 Introduction

Recent impressive progress in the practical resolutioracd And large SAT instances
allows real-world problems that are encoded in propositiatiausal normal form

(CNF) to be addressed (e.g. [7, 8, 11, 2]). Many benchmarks baen proposed and
regular competitions (e.g. Dimacs’93, Beijing’96, SAT:04) are organized around



these specific SAT instances, which are expected to encagetlgal knowledge at
least to some extent. The huge size of the real-world SATamtss currently in the
scope of modern SAT solvers such as Zchaff [12], allows tesihar practical appli-
cations. Such a progress shows us that instances with wasstaomplexity behavior
appears rarely in practice. Indeed, instances from peddaigplications contain some
structures that can benefit to SAT solvers. One of them iscthases share more com-
mon variables comparatively to random instances. For el@rtie clauses encoding
the boolean formula; A z2 — y1 A ya A -+ A gy, Share the two boolean variables
x1 andz,. In other words, many common sub-clauses results from thereltion of
boolean connectives (e.g, A, <»). One can see that after assigning the valukse to

y; the other clauses become redundant and can be eliminatedb&yraption using the
clause—x; V —xs.

Our intuition is that when considering large SAT instande=aagh step of the search
process, many clauses become redundant and some subsatsigbt be deduced and
then decrease the size of the formula.

Considering large SAT instances at each step of DPL seaodegs, our intution is
that some sub clauses can be deduced with the resolutioandithen useless accord-
ing to the subsumption rule. This idea can be maintened &tmade of search tree of
the formula and then produce some formulas where the nunilzawses cannot be
greater than the initial one and where for a given clause

become redondant and then useless according to the sulisnmpé. On the other
hand, some subclauses can be deduced according to thetimsalle

The main objective of this paper is to show how such struttumrawledge can be
exploited during search. We focus on sub-clauses deduscti@t might help reducing
the formula to its “real” size and give rise to a constant spaammplexity approach.

Boolean constraint propagation (or unit propagation)|\apg in all efficient DPLL
implentations [9, 4, 12] can be considered as a restricted fif resolution and as a
special case of subsumption rule.

It is recognized as one of the most important paradigm fociefit satisfiability
checking. Indeed, most of modern SAT solver are based on #iekwown Davis-
Putnam-Logemann-Loveland (DPLL) procedure [3] where BEmaintained at each
step of the search process. On many SAT instances, a majooftae search space
(about 90% ) is achieved using BCP. This important role hatvated many works
on efficient implementation of BCP (e.g. Zchaff) and on estag its practical use.
Among others, many simplification techniques (e.g. [5,dJiable ordering heuristics
(e.g.[9, 4]), conflict analysis scheme (e.g. [10, 12]), tisal dependencies deduction
(e.g. [6]) are based on BCP.

In this paper, a new extension of the scope of boolean camssfyeopagation is
proposed. It makes an original use of BCP to achieve furtguation of boolean for-
mulas. More precisely, the constraint graph generatedédpdolean constraint propa-
gation process can be mapped to a resolution tree which eactalises of the original
formula and new resolvent. The set of such possible resbbanhave an exponential
size in the worst case w.r.t. the set of clauses encoded rotingraint graph. To avoid
such a drawback, the approach proposed in this paper cossidly a relevant set of
resolvent leading to a polynomial time and constant spaggtxity approach. Then,
we show how such an extension can be grafted to modern SA&rsolv



The paper is organized as follows. After some preliminarfiniteons, relations
between resolution and boolean constraint propagatiodisceissed. Then a constant
space complexity BCP-based approach for sub-clausestiteiscproposed, allowing
the formula to be reduced. Its dynamic integration in SAVed is presented and some
preliminary experimental results

showing the interest of the proposed approach are providiedlly, promising
paths for future research are discussed in the conclusion.

2 Definitions and preliminaries

A CNF formulaX is a set (interpreted as a conjunction)atduses where a clause is
a set (interpreted as a disjunction)livérals. A literal is a positive or negative propo-
sitional variable. We notear(X) (resp.lit(X)) the set of variables (resp. literals) oc-
curring inX. A unit clauseis a clause containing a single literal calleuit literal. A
binary clause contains two literals associated with twtrtisvariables. A clause con-
taining literals of distinct variables is called fundansdnitt is called tautological when
it contains two opposite literals. The size of the formyiles given by|%| = > . |c|,
where|c| is the number of literals in.

In the following, we use formula (resp. variable) insteadCF formula (resp.
propositional variable). In addition to the set-based timta, we define the negation
of a setA of literals as the sefl of the corresponding opposite literals. We ndite
(respectivelyA ») the disjunction (resp. conjunction) of all literals af

An interpretationof a formulaX is an assignment of truth valu¢s-ue, false} to
its variables. It is called partial interpretation if onlysabset of variables afar(X)
are assigned. Aodelof a formula is an interpretation that satisfies the formAie.
cordingly, SAT consists in finding a model of a formula whentsa model exists or in
proving that such a model does not exist.

A formula is a logical consequence of(noted¢ E 1) iff any model of¢ is also
a model ofi.

Let ¢, andce, be two clauses of. i) resolution rule If there exists a literal (called
a pivot of the resolvent) sk.€ ¢; and—l € ¢, then aresolvenbn! of ¢; andcs can be
defined ases(l, c1,ca) = c¢1\{I} U ea\{—l}. ii) subsumption rulewWhenc; C ¢, (i.e.
c1 is a sub-clause of;), thenc; subsumes,. Resolution (resp. subsumption) rules
leads to a new formul®Z U res(l, ¢1, c2) (resp.X\cz) equivalent toX with respect to
SAT. A resolventr = res(l,c1,c) is called a subsuming resolvent #t: € ¥ s.t.r
subsumes. Repeatedly applying resolution rule leads to resolutimopsystem that
can prove unsatisfiability of a formula.

For a formulaX and a literal € lit(%), we defineX(l) = {c|c € &, {l,~l} Nec =
0} U {c\{~i}|c € X, I € c} as the result of settingto the valugrue. For simplicity,
we noteX(l1)(l2) ... (In) asX(ly,la, ..., ).

Boolean Constraint Propagation refers to the iterativeegse of setting all unit
literals the valuegrue until encountering an empty clause or no unit clause remiains
the formula.X;, (1) is the formula obtained by BCP an(l). The set of unit literals
propagated by the application of BCP &ifl) is notedU PL(X, ). This notation can
be extented to a set of literals UPL(X, L) = ;. UPL(%,1).



BCP can be seen as a restricted form of resolution. At eaghasseibsuming re-
solventres(l, {I}, ca) = c2\{—l} is produced. Last but not least, BCP is an important
component of the well known DPLL procedure.

DPLL procedure performs a backtrack depth-first searchutitr@ binary tree. Af-
ter a simplification step using BCP and setting pure litetad$e whose negation does
not appear in the formula) to true decision variablas chosen and recursively set to
true respectively to false the two associatiedision literals

3 Exploiting BCP for sub-clause deduction

In this section, we show how BCP can be further extendedwadpsub-clause of the
formula to be deduced. We first introduce the implicatiorprgenerated by BCP and
its two possible translations to a resolution tree.

3.1 Boolean constraint propagation and Implication graph

An Implication Graph(lG) is a directed acyclic graph that captures the booleap-pr
agation process. A constraint graph defined below is gesetcording to a given
formula and a set of decision literals.

Definition 1 (Implication graph) Let 3 be a formula andl a set of decision liter-
als. An implication graph associated ¥ and I is a labelled directed acyclic graph
Gig(X,1I) = (V, &) where :

1.V = {vln(v) € TUUPL(X,I)} a set of vertices ; wherg(v) is the literal
labelling the vertexv. Literals labelling a set of vertices is denoted)) =

{n(v)[v e V}.

2. 5 = {(vj,vi>|77(vl-) = li,n(’Uj) = lj,EC = {"ll, . -7_‘11'—1,[1', _\li+1, ey _\ln} €
¥, ecN ’I](V) = {lz}, cn U(V) = {_\ll, ey _‘li—la _‘li+1> ey _\ln} andj S
{1,...,i—1,i+1,...,n}}. Each directed edgé;, v,) is labelled with a clause
¢, i.e. label(v;, v;))= c.

In the definition of IG each node corresponds to a variablggasgent. The set of
literals associated to the predecessors of a vart@x-ed(v)) corresponds to its an-
tecedent assignments). Directed edges from’all pred(v) to v are all labelled with
the same clause(notedcl(v)). The clause andn(pred(v)) give us the reason of its
implication. Let us note that in general a litefatan be implied thanks to different
clauses and literals (i.e. reasons). When all the reasome@aded /G is called com-
plete; otherwise it is called incomplete. In case of conglét, pred(v) is a superset
where each element corresponds to a particular reasonldrity of the presentation,
in this paper we only consider incomplete implication graph

For

an implication grapld;, (X, I), vertices corresponding to decision literalsave no
incoming edge and are called source verticesf{ces(G;,)). Vertices with no outgoing



(c) Translation 2

Figure 1: From the implication graph to resolution tree

edge are called sink verticegtk(G;,)). When a conflict occurgj;, contains two sink
vertices labelled with two opposite literals.

Let us mention that implication graphs have been widelya@gd by modern SAT
solvers to learn from conflicts [12], to achieve nogood rdoay or to operate non
chronological backtracking [10]. In such context, eachislen literall is labelled with
adecision levek corresponding to the level whetés assigned.

«is an integer corresponding to the number of decision viasadssigned from the
root to the current node.

At each step, literals propagated by BCP at a given levelvetie same labelling.

We give in the following a new translation of IG to a speciahficof resolution tree.

3.2 Implication graph and resolution tree

In this section we show that an implication graph can be taéed in two different
ways to a resolution tree (RT).
The definition below gives a general description of a resmiutree.

Definition 2 (Resolution Tree) A resolution tree associated to a formuiais a di-
rected acyclic graplg,, = (N, £) such that :

e each node: is labelled by a clause (i.e.n(n) = ¢).



e clauses labelling internal nodes are obtained by resohlutilom clauses la-
belling its two child nodes. Arcs between an internal nodgitgsitwo child nodes
represent such resolution operation.

e leaf nodes are labelled with clausesXf

As mentioned in section 2, BCP can be seen as restricted foresolution. At
each step subsuming resolvent is produced between a uagtecknd an other clause
of the formula. This first obvious translation (not descdilxe this paper) gives rise to
resolution tree that describes precisely such a restrfored of resolution.

Algorithm 1, describes the second translation of an imgiticegraph to a resolution
tree where internal nodes are labelled with new resolvenis fiew translation gives
us a new picture on BCP, in that it leads to powerful resohsbased technique.

Algorithm 1 IG2RT_2(in G;, = (V, A) : IG, out G, = (N, €) : RT)

LletN=0,£=0

2: for eachv € sink(G;q4) do

31 letpred(v) = {v1,v2, ..., vp} stn(v;) = lLin(v) =1
4 letr = (U i< {-LH U {1}

5
6
7

DN =NU{wsty(w) =r
I s = pred(v)
1 Grt = translate2(v, w, s, r,Gig)

Algorithm 2 translate2(in v, w: vertex,s: set of verticesy : resolventg;, = (V, A)
(G, out G, = (N, E) 1 RT)
1: If pred(v) # 0 then

2: lets = {v1,v2, ..., v} Stn(v;) = l;,nv) =1
3. for i = k downto1 do

4:  letp; € pred(v;)ande; = n({pi,vi))

5 N=NU{fi}stn(fi) =c;

6. lettemps = sands = (s\{v;}) U pred(v;)
7 letp = {p|p = n(p:) s.t.p; € pred(vi)}

8. lettemp, = randr = (r\{=l;}) Up

9. N=NuU{r}stn(r)=r

10: €=EU{{(fi,ri),(w,mi)}

11: r¢ = translate2(p;, v, s,7,Gig)

12: s = temps,r = temp,

Example 1 LetYX = (maVb)A(—-aVe) A(=bV —cVd). We noter;, withl < i < 3a
clause number i of. Figure 1(b) and Figure 1(c) show the first (respectivelycsel)
translation of the implication graph (see figure 1(a)) to achution tree.

Remark 1 We note that, in the resolution tree shown in Figure 1(b)grésgure 1(c))
the internal nodes are labelled with sub-clauses (resp. dewses). As the traversal
of the implication graph starts on the sink vertex with lafdelve can note that all the
new clauses (Figure 1(c)) contain such a literal. In algbnit 1, if we consider all the
vertices of the implication graph (line 2), then we obtained of different resolution
trees (i.e. forest).



In algorithm 1, the translation starts on sink verienf IG (line 2), a new node
w labelled with the clause made ofy(v) andn(pred(v)) the negation of the literals
labelling its predecessors is added to RT. Then, algorithscall.

At each step, we consider the current vertefkesp.w ) of IG (resp. RT), a set of
verticess that contains the current predecessor to process nextharmitrent resol-
ventr. Note that at each step(s) = r\{I} wherel = n(v) (algorithm 1, line 3). For
each vertex; of the current set, two new nodeg; (resp.r;) labelled withcl (v;) (resp.

r = res(l;, cl(v;),n(w)) ) and two new directed edg€sf;, r;), (w,r;)} are added to
RT (lines 4-10), then the process is repeated recursively.

In line 12 (algorithm 2), it is important to note that the @nt sets and the current
resolventr are updated to their original contents. Then, at each itardtine 3) we
consider the same setand resolvent. For a given vertex, such updating is done
in order to consider all the combination of its possible atmes (i.e. a vertex is an
ancestor ofv iff there exists a path from to v). Consequently, algorithm 1 has an
exponential worst case complexity behavior and can lead texponential number
of new clauses. To avoid such a drawback, we introduce ingtjged a new constant
space complexity approach that considers only a subsethbfresolvent.

3.3 A constant space & polynomial time complexity approach

In this section, a polynomial time and constant space caxitplapproach is presented.
First we consider only a subset of pertinent implicationthefresolution tree (second
translation). More precisely, an implication is considkifét subsumes - either directly
or by resolution - clauses of the original formia Such a restriction leads to a con-
stant space complexity approach (i.e. the size of the fardetreases). Second, the
resolution tree is not explicitly built.

Let us first introduce the following definitions and propesti

Definition 3 Let ¥ be a formula] € lit(X) and G, = (N, &) a RT obtained from
Gig(X,1). A clause is [-sub-inferred from® (noted; =* ¢) if 3¢’ € ¥ such that one
of the following condition is satisfied,

1. cenWN)andcC ¢
2. 3" e n(N) s.t.c = res(p, c/, ") C ¢ wherep € ¢ and—p € ¢
Proposition 1 Let3 be a formula and € lit(X). If X, F* cthenX F ¢

Proof 1 By construction ofj,, = (N, €) from G;,(%, 1) all nodes of\ are labelled
with resolvent obtained from clausesXfConsequentlyyd € n(N), we havel & d.
Moreover, in the definition oE; F* ¢, we distinguish two cases. In the first case,
c € n(N), thenX E c. In the second case, = res(p,c,c’) wherec € ¥ and

d" e n(N), theny E c.

Proposition 2 LetX be aformulaand € lit(X). 3; E* ¢ can be computed i@ (|| x
lvar(X)]).



Proof 2 Let us give a proof sketch on the complexity of such computgtor more
details see algorithm 3). To compuig E* ¢, first BCP is processed on A [ and

Gig = (V, &) is computed. Such computation is achieved in linear timéénsecond
step, we try to find a clausé € ¥ such thatc C ¢’. To achieve that, only clauses
containing literals fromU PL(%,1) are considered; otherwise such a clause can not
be I-sub-inferred. Now let’ be such a clause. To achieve I-sub-inference, for each
literal p € ¢ Nn(V) atraversal ofg,, is realized starting on the vertexc V labelled

by p. A first clauser made ofp and n(pred(v)) is computed. At this step € X.

The next step is to process iteratively the veriexc pred(v) by generating a new
resolventr = res(n(w),r, cl(w)). According to the definition 3, and¢’ are checked,
then three cases are distinguishedrIfc ¢ (direct subsumption) or there exists a
subsuming resolvent betweemnd ¢’ thenc’ is reduced and search continues on the
deduced sub-clause to get smaller one. If the two first cagemtapply, the search
process is continued on the predecessor of one literal which does not appear in

¢’. Consequently, only one traversal@f, is needed which can be donedi(n + m)
wheren = |V| andm = |£]|. As each clause d is considered, and for each clause
the number of traversal @, is bounded by the length of the clauses, the worst case
complexity of the global computation procesgisx O(n+m) = O(|X| x |var(Z)]).

Based on the proposition 2, we propose a polynomial timecgmbr able to infer
sub-clauses during the search.

4 Inferring sub clauses during search

In this section, we present a practical approach to deduselsuses from a given
formulaX: and an implication graph. As the well-known look-ahead §&HI treatment,
the sub-clauses deduction can be very helpful for branchithection heuristic of any
DPLL-like techniques, for detecting local inconsistesciad for reducing the size of
the search tree. Let us describe the following algorithenSubclause (Algorithm 3)
that can be used to simplify a given formathanks to the implication grap; .
We assume thaj is one of the literals from the set of literals assigned atdineent
decision levelx (this set is noted)(V,,)). Let A be a subset of literals from()’) such
thatA/\ — Y.

Algorithm 3 GetSubclause(in G, A, y, ¢, a))

1: If 3z, € AU {y}|—-=, € candVz € (AU {y}) — {z.},z € cthen
2: Y —32—{ctu{c—{z,}}

3: If pred(xz,) # 0 then

4: GetSubclause(G, A — {z,} Upred(z,),y, c, @)
5:

6: IfVe € AU {y},z € cthen

7 T — X —{c}U{A, Vy}

8: z « choice(A)

9: If pred(z) # 0 then

10: GetSubclause(G, A — {z} Upred(z),y, c, )
11: else

12: Chooser € Alz ¢ cand -z ¢ ¢

13: Ifpred(z) # 0 then

14: GetSubclause(G, A — {z} U pred(z),y, c, @)




@) Gig(¥1,{d}) (0) Gig(X2,{z,d})

Figure 2: IG of formulass; (example 2) and:, modified in section 4.1. The source is
the literald

Considering a clause of 3, the functionGetSubclause finds, if it exists, sub-
clauses subsuming(see line7 of the algorithm 3) and new clauses whose generating
resolvent clause with subsumes (see linel of the algorithm 3). When a direct sub-
sumption is found, a clauseis subsumed directly by the implicatiofi, — vy, soc
containsy and all literals fromA. Note that in this case, we cannot produce any sub-
suming resolvent of. However, we can expect finding a subset {z1,...,zx} C A
such thate; A ... Az — y. Thus, if it existse; A ... Az — y, thenvz|(z € A,z &
{z1,..,xk}), 3xiy, ooy 2y, C Blwy, A ... Ay, — 2. That's to say if one finds a shorter
subsumptionB, — y thanA, — y then all literals appearing id but not in B are
implied by a subset of literals appearing4nn B. To find a shorter seB, we have
to look into specific predecessors of literalsAfSince the literals appearing i\ B
have precedessors i, they have been assigned after some literal®.ofo increase
the probability to find at this step such an implication, theice function returns the
variable ofA that has been assigned last. Otherwise, the clausk be subsumed in
the same way when processing of literals4f{B. Indeed, letz be a variable in this
subset. When, during the computationz0B, = {21, ..., 2, } Will be found such that
(B:)a — z,theclause, = -z, V...V-z,Vz will be deduced. Whiley, ..., z,, z € A4,
the clause deduced fror, — y contains literals-z1, ..., ~z,, 2. The resolvent be-
tweenc, and the clause equivalenttd, — z) allows to delete literatz from clause
c. So is for all literals ofd\ B. That's whyc will be subsumed by the clause equivalent
to (B, — y) whatever predecessor is chosen during the computatign of

Finally, searching for all the subsumptions from the grgphconsists invy €
N(Va), Ve € Xy € ¢, GetSubclause(G, pred(y),y, ¢, &).

Example 2 To illustrate further, let us consider the Implication Gtrapf the Figure
2(a) obtained fronk; by assigningl to true on the formula

c1:dVxy cq:xVoxa VT

Co:—dV Ty c5:—x3V sV s

c3:—x1Vrs cg:dV —x3VrsV T
cy:x1 Vaa Vs

¥ =

Trying to deduce a sub-clause @fand considering implication af5 through the
Implication Graph of the Figure 2(a), we will first considey A x4 — x5 which is



equivalent to the clausexs vV —x4 V x5. One can see that the variahigbelongs to the
current implication and to the clausg. As x4, does not belong tog, any implication
containing this literal does not subsuse

Then, we have to find other literals belonging to this subgiongrom the pre-
decessors af4: x1 andx,. Following our principlez; andx, are not literals ot
andd is predecessor of both of them. Then, we can deduger; — x5 and the
corresponding clausé, : —d V —z3 V 25 subsumesg. Following the process ot
upon the current set = {x3,d}, the functionchoice chooses fromA the last as-
signed variablexs. Throughg,;,(X1, {d}), 1 andd are sucessively visited and the
implicationd — x5 is deduced. The corresponding sub-clatfse —d Vv x5 directly
subsumess. These two subsumptions froeg to ¢ and then fromeg to ¢f has been
possible thanks to the functiathoice which chosers. Indeed, if this function chose
the variabled, the computation would have stopped without other dednctioced
has no antecedent. Subsumption freio ¢/ would have been found later, when call-
ing GetSubclause(Gigq, pred(xs), x3, ¢, ). It will (trivialy) show z; — x3, and then
d — x3, equivalent to the claused V x3, whose resolvent with is ¢f : =d V xs.

Applying this technique on the clause and from the samég;, (3, {d}), we can
deduce the implicatiom; A z2 — x5. The resolvent between the corresponding clause
of this implication andc; is ¢, : -1 V 5, which subsumes;. Finally, this impli-
cation graph allows to redueg by two literals and the clause by one literal. Such
reductions can lead to further unit propagation that imeribve search process.

Indeed, starting from original formuld;, assigninge; to false will not produce
unit clause. However, withs : —dV x5 andey : =21 V x5, assigninges to false implies
d = false andxz; = false.

4.1 Local subsumption

Considering dynamic use of sub-clauses inference DPLé tikhnique, the algorithm
3 previously described finds sub-clauses available onljéwthole solving tree. As
the number of such sub-clauses is restricted, the algoi®lman be improved to find
subsumptions available only in part of the solving treerdiééd by a decision level.
Let 3 be this decision level. These subsumptions will be deletednia backtrack
occurs at or before decision-level

As previous version, considering a clausef ¥ and the set of literalg(},,) as-
signed at current decision level the functionGetSubClauseLevel tries to deduce
subsumptions from (see linel and7 of the algorithm 4) available as long as all liter-
als from A, not belonging ta: and whose decision level is different fram keep their
truth value. When a literdlfrom A has been assigned at a lower decision level than
and does not belong toit can be ignored fromd while it is assigned (i.e. backtrack on
1 is not yet occurred)4\{!} can be used to produce sub-clause.ofo illustrate this
new method, let us consider the Implication Graph in the feg(b), obtained from
the formulaX; when assigning to true at decision-levetr and assigning to true at
decision-levels < a. X5 is obtained from;, provided in example 2, by substituting
the clause, for the clause’, : —x1 V -2z V -z V x4. From this graph, the implication
1Az A2 — T35, can be deduced. The corresponding clauge:isiz VoV —2Vas.
The resolvent betweeati andc; is ¢, : —21 V =2 V 25 which does not subsume be-

10



Algorithm 4 GetSubClauseLevel(in G, A, y, c, a))
1:if 3z, € AU {y}|-x, € candVz € (AU {y}) — {z+}) Nn(Va),z € cthen

20 S E A U{e—{zr Dasmar,ge peanmw—va)) (@)
3:  if pred(z,) # 0 then

4: GetSubClauseLevel(G, A — {x,} U pred(z,),y, c, a)

5. endif

6. else

7. ifve € (Au{y}) Nn(Va),z € cthen

8: = EAGUANOY VY aismar,ge e ann(v—ve) (@)
9: z « choice(A)

10: if pred(z) # 0 then

11: GetSubClauseLevel(G, A — {z} U pred(z), y, ¢, @)

12: end if

13: else

14: Chooser € A|lx € cand —x & ¢
15: if pred(z) # 0 then

16: GetSubClauseLevel(G, A — {z} Upred(z),y, c, a)
17: end if

18: endif

19: end if

causez does not appear in this clause. However, sint@as been assigned at a lower
decision-level¢) can be considered as only composeéeof \ —z5 V 24 while z keeps
its current value. Thus, the resolvent: —x; Vx5 subsumes; until a backtrack occurs
at decision level lower or equal & The implicationd A z — x5 can also be deduced
and corresponds to the clause: —d VvV —z V x5. In the same way;” will subsumecg
only if we consider that will keep its current value, so that is equivalent to~d V x5
(for decision-level greater thas). Socg is directly subsumed. This implication graph
allows to reduceg by two literals and the clause by one literal, for decision-levels
greater tharg.

5 Preliminary comparative experimental results

Our sub-clause detection approach can be used as soon asxi@Paad then can
be applied at each node of the DPLL search-tree. Let us rétgaltechnique can be
applied either if BCP leads to a conflict or not. In this settiwe provide some pre-
liminary comparative experimental results showing theaotpvhich such an approach
can have on a panel of formulae resulting from either indalstind structured prob-
lems. The goal of this preliminary experimentation is to swa the influence of our
technigue on the number of nodes developped in the DPLL lséeze when one ex-
haustively deduces the sub-clauses of a given formula. Xhaustive application of
the sub-clause deduction at each node of the search-treg m@snconsiderable in-
crease of time consuming as a result. Within a practical émark, our sub-clause
deduction approach should be both empirically and heoalki limited. For these ex-
perimentations, we only provide the size of the searchitrégrms of number of nodes
and that independently of the computation time of our trestimDuring the pretreat-
ment, we apply our sub-clause detection approach tryingadyze all the subsuming
sub-clauses so that there is no possibility to deduce stextelause from the initial for-
mula. A dynamic implementation of this technique, like nienéd in previous section,
applying at each node of the search-tree is our future watleTl shows comparative

11



Zchaff Pretreatment+Zchaff
Instance S/U nodes nodes subs | var fixed
barrel6 U 31 866 24766 | 1207 342
barrel7 U 66 789 62054 | 1600 455
SAT.dat.k90 S N/A 3684949 5680| 6373
logistics.b S 3810 422 859 405
logistics.c S 9577 1282 1434 557
abp4-1-k31-unsat.
shuffled-as.sat03-4038 U N/A 0 106 2712
abpl-1-k31-unsat.
shuffled-as.sat03-40R U N/A 0 178 2878
2bitadd 10 U 60 605 60 605 0 0
2bitadd 11 S 7 870 7870 0 0
longmult6 U 5833 5949 442 690
longmult7 u 26942 19 457 496 730
longmult9 U 273182 273836 | 631 798
longmult10 U 711 397 562517 | 689 826
longmult12 U 1164 158|| 906 626 | 824 870
longmult13 U 1567 022| 997981 | 956 892
longmultl5 U 625 534 286858 | 1269| 1057
bf0432-007 U 864 295 427 363
bf2670-001 U 64 0 212 290
flat200-10 S 14 202 14 202 0 0
flat200-100 S 1157 1157 0 0

Table 1: Preliminary comparative results

results on selected benchmarks in terms of number of desidietween standalone
state-of-the-art solver Zchafaind our sub-clause deduction approach helping Zchaff
as a pretreatment. All the results have been computed on ANtiloA 2000+ with
512Mo RAM under Linux/OS. Table 1 provides also the numbeatesfuced subsump-
tions and the number of fixed variables. Note that in columiy’S’S” means "Satis-
fiable” and "U” means "Unsatisfiable”. Finally, Zchaff hasimé&out of 7200 seconds.
For the class of unsatisfiable instances longmult, we cae fustZchaff applied on
pretreated benchmarks by the sub-clauses deduction apaagain greater thas0%

in comparison with Zchaff without the sub-clause deducpogtreatement. For some
of them like abp*, our pretreatment proves the unsatisfigithiefore Zchaff runs. Note
that for these formulas, Zchaff was not able to responsesitlean 7200 seconds, and
comparatively, the pretreatment is less than one minute iomputing. However, no
subsumption are found while processing families flat* anite2iol* although any BCP
exists.

1zchaff version 2004.11.15
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6 Conclusion and future work

In this paper a new extension of the scope of boolean consfabpagation is pre-

sented. We have described two possible ways to translaBQReamplication graph to

a resolution tree. The second translation, gives us a newrpion BCP, usually con-
sidered as limited form of resolution. Indeed, many inténgsand new resolvent can
be generated using the BCP implication graph leading to eedalwesolution-based

technique. To make such extension practicable, we haverstt@at when a subset of
such resolvent (those that achieve a sub-clause deduetiergonsidered, we obtain
a polynomial time approach that can be grafted to DPLL-ld&hhiques. Clearly, our
preliminary experimental are encouraging. On some clagfsestances, a substantial
reduction on the number of nodes has been obtained. To stibsteour claim on the

usefulness of the proposed approach, further experimeatidiation are needed. Us-
ing different criteria, we also plan to investigate in a sysatic way the pertinence of
a given resolvent with respect to its practical potential.
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