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Abstract. Recently Murlak and one of the authors have shown that the
family of trees recognized by weak alternating automata (or equivalently,
the family of tree models of the alternation free fragment of the modal µ-
calculus) is closed under three set theoretic operations that corresponds
to sum, multiplication by ordinals < ωω and pseudo exponentiation with
the base ω1 of the Wadge degree. Moreover they have conjectured that
the height of this hierarchy is exactly ε0. We make a first step towards
the proof of this conjecture by showing that there is no set definable
by an alternation free µ-formula in between the levels ωω and ω1 of the
Wadge Hierarchy of Borel Sets. However, very little is known about the
Wadge hierarchy for the full µ-calculus, the problem being that most of
the sets definable by a µ-formula are even not Borel. We make a first
step in this direction by introducing the Wadge hierarchy extending the
one for the alternating free fragment with an action given by a difference
of two Π1

1 complete sets.

Keywords : µ-calculus, Wadge games, topological complexity, parity games,
alternating tree automata, descriptive set theory.

1 Introduction

A natural measure of complexity for the propositional modal µ-calculus is the
alternation depth of a formula: the number of non-trivial nestings of alternating
least and greatest fixpoints. By a result of Bradfield [Brad98a,Brad98b], it is
well known that the fixpoint alternation depth hierarchy is strict. Subsequently,
Arnold nicely showed in [Arn99] that the hierarchy is also strict over binary
trees. The µ-calculus is very strongly related to infinite games and automata
theory. On one hand the evaluation games for this logic are parity games. On
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the other hand, from the automata theory point of view, over trees a µ-formula
corresponds to an alternating tree automaton. Given these correlations, it is not
surprising that the levels of the hierarchy of Mostowski indices coincide with
the ones of the alternation depth hierarchy. From this fact, Bradfield’s result
implies the strictness of the hierarchy of Mostowski indices for alternating tree
automata.

If we consider sets of models of µ-formulae as sets of infinite trees, from a
set-theoretical point of view, these are sets of reals. It is therefore very natural
to relate the logical complexity of a µ-formula to the topological complexity
of its set of models. However those sets of reals are much more complicated
than languages recognized by usual automata or even tree automata. Sets of
models of µ-formulae are ∆1

2 sets, which correspond to sets being both Σ1
2 and

Π1
2 . Even if this is simply the second projective class, it is by far much less

understood that the first one: the class of ∆1
1 sets. Indeed, by a well known

theorem of Suslin, Borel sets correspond to ∆1
1 sets, which were set up by Baire

in a nice hierarchy as soon as they were introduced. Nevertheless such a natural
hierarchy for ∆1

2 sets still remains an open problem (even under determinacy).
However there is a natural hierarchy for ∆1

2 sets : the Wadge hierarchy, induced
by an infinite two-player game which yields under determinacy a well-founded,
extremely fine, pre-ordering. Unfortunately there is yet no description of this ∆1

2

Wadge hierarchy.

This paper makes a first, very little, step towards the study of the connections
between the fixpoint alternation depth hierarchy, or the hierarchy of Mostowski
indices, and the Wadge hierarchy for ∆1

2 sets. In the first part of the paper,
we extend the set theoretical operations defined in terms of alternating tree
automata presented first in [DM07] by introducing the operation given by an
action of a recognizable topological property – even a non Borel one – over
a class of trees. In [DM07], the authors considered properties recognizable by
weak alternating tree automata, or equivalently by alternation free formulae.
In this way they proved that the family of trees recognized by wak alternating
automata is closed under three set theoretic operations that corresponds to sum,
multiplication by ordnals < ωω and pseudo exponentiation with the base ω1 of
the Wadge degree. They then conjectured that the height of this hierarchy is
exactly ε0. We make a first step towards the proof of this conjecture by showing
that there is no weakly recognizable set in between the levels ωω and ω1 of the
Wadge Hierarchy of Borel Sets

In the final part of the paper we make a first step towards the description
of the Wadge hierarchy for the full modal µ-calculus by introducing the Wadge
hierarchy extending the one for weak alternating tree automata with the help of
a sort of action of a difference of two Π1

1 complete sets.
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2 Preliminaries

2.1 Tree Automata

Let W be a non empty alphabet. A tree over Σ is a partial function t : W ∗ →
Σ with a prefix closed domain. Those trees can have both infinite and finite
branches. We call them conciliatory. A tree is called full if dom(t) = W ∗, and it
is called binary if W = {0, 1}. In the sequel we only consider binary trees over
Σ.

Let T≤ω
Σ denote the set of all conciliatory binary trees over Σ and let T ω

Σ

denote the set of full binary trees over Σ. Given v ∈ dom(t), by t.v we denote
the subtree of t rooted in v. By n{0, 1} we denote the set of words over {0, 1}
of length n, and by t[n] we denote the finite initial binary tree of height n + 1
given by the restriction of t over

⋃

0≤i≤n
i{0, 1}.

An alternating tree automaton A = 〈Σ, Q, Q∃, Q∀, qI , δ, Ω〉 consists of a finite
input alphabet Σ, a finite set Q of states partitioned into existential states
Q∃ and universal states Q∀, an initial state qI , a transition relation δ ⊆ Q ×
Σ × {ε, 0, 1} × Q and a priority function Ω : Q → ω, which is bounded. The
(Mostowski) index of the automaton is given by [ι, κ], where ι is the minimal
value and κ is the maximal value of the priority function Ω. We can assume that
ι ∈ {0, 1} and that for every n ∈ {ι, . . . , κ}, there is a q ∈ Q such that Ω(q) = n.

The run of the alternating automaton A on a conciliatory input tree t ∈ T≤ω
Σ

is defined in terms of a parity game. A parity game G = 〈V, V0, V1, E, Ω〉 is a
bipartite labelled graph, with the partition (V0, V1) of the set of verteces V , edge
relation E ⊆ V × V and priority function Ω : Q → ω, which is bounded. A
vertex v is a successor of a vertex v′ if (v′, v) ∈ E (or v ∈ E(v′)). A play from
some vertex v0 ∈ Vi, i = 0, 1 procedes as follows: player i chooses a successor
v1 ∈ E(v0). Then, either v1 ∈ V0 or v1 ∈ V1. In the first case, player 0 chooses a
successor v2 ∈ E(v2), in the second case player 1 chooses a successor v2 ∈ E(v2).
And so on for v2, etc. If a player cannot make a move, he looses. If the play is
infinite, we say that player 0 wins if and only if the greatest priority occurring
inifinitely often in the sequence Ω(v0)Ω(v1)Ω(v2) . . . is even. A parity game is
called a weak parity game if, as a winning condition, we say that player 0 wins
(either a finite or an infinite play) if and only if the greatest priority occurring
in the play is even.

Consider an alternating automaton A and a conciliatory input tree t ∈ T≤ω
Σ .

The corresponding parity game GA,t is then defined as follows.

• the set V0 is {0, 1}∗ × Q∃

• the set V1 is {0, 1}∗ × Q∀

• from each vertex (v, q) and for each (q′, a) ∈ δ(q, t(v)), ((v, q), (va, q′)) ∈ E,
• for every vertex (v, q), Ω((v, q)) = Ω(q).

We say that A accepts t iff player 0 has a winning strategy in the parity game
GA,t.

A weak alternating tree automaton A is defined exactly as an alternating
parity automaton, except that the run is given by a weak parity game.
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There is a strong connection between the hierarchy of Mostowski indices of
alternating automata and the fixpoint hierarchy of the modal µ-calculus. In the
later, the complexity of a formula is measured by the number of non trivial
nestings of least (µ) and greatest (ν) fixpoints. So Σµ

1 is the set of formula
having only least fixpoint operators, Πµ

1 is the set of formula having only greatest
fixpoint operators, Σµ

2 is the µ-closure of Πµ
1 formulae, Πµ

2 is the ν-closure of
Σµ

1 formulae, and so on and so forth3. Then it can be shown that a language of
binary trees is definable by a Σµ

n (resp. Πµ
n ) formula of the modal µ-calculus iff it

is recognizable by some alternating automata of index [1, n] (resp. [0, n−1]). On
the other side, the class of weak alternating tree automata correspond exactly
to the alternation free fragment of the modal µ-calculus.

We will also be interested in formulae with no fixpoint at all, that is modal
formulae. These correspond to what are called strict automata. A strict tree
automaton is an automaton with a strict partial order on states, and such that
all possible transitions from a state q lead to another state q′ wich is strictly
smaller than q. It is then easy to verify that a language of binary trees is definable
by a modal formula iff it is recognizable by a strict automaton.

The laguage recognized by a parity tree automaton A, denoted by L(A), is
the set of trees accepted by A. Note that our parity tree automata work on
conciliatory trees, that is along infinite and finite branches, while “standard”
tree automata work only on infinite trees (full trees). Thus, instead of L(A), one
considers Lω(A) = L(A)∩T ω

Σ . The reason of our choice will become clear there-
after. In subsections 2.3 and 3.1 we will see that for any alternating automaton
on conciliatory tree we can find an alternating automata on full trees which has
the same index and, in some sense, the same topological complexity.

We say that an automata B simulates another automaton A if L(A) = L(B).
In this case we write A ≡ B.

Given an automaton A and a state q 6= qI , by Aq we denote the automaton
corresponding exactly to A except the fact that the initial state now is q and not
qI . If q is reachable from qI in the graph of the automaton A, then we say that
Aq is subautomaton of A, denoted by A > Aq. Clearly, the set {Aq : A > Aq}
is finite.

Assume we are given any two parity automata A and B. Without loss of
generality, suppose that QA 6= QB. Then, for every q ∈ QA we denote by
A(q/B) = 〈Σ, Q, Q∃, Q∀, qI , δ, Ω〉 the automaton obtained as follows:

• Q◦ = Q◦A
∪ Q◦B

, for ◦ ∈ {∃, ∀},
• qI = qIA ,
• δ(p, ∗) = δA(p, ∗), for every p ∈ QA \ {q}, and δ(p, ∗) = δB(p, ∗), for every

p ∈ QB,
• δ(q, ∗) = (ε, qIB),
• Ω(p) = ΩA(p), for every p ∈ QA, and Ω(p) = ΩB(p), for every p ∈ QB

Let A and B be any two parity automata. By A∧B (resp. A∨B), we denote
the automaton recognizing L(A) ∩ L(B) (resp. L(A) ∪ L(B)). When C ≡ A ∧ B

3 For a formal definition, cf. [AN01].
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(resp. C ≡ A ∨ B), for some automata A and B, then we call C a conjunctive
(resp. disjunctive) automaton. Sometimes we denote with 0.A (resp. 1.A) the
automaton recognizing the language {t : t.0 ∈ L(A)} (resp. {t : t.1 ∈ L(A)}).
By A we denote the automaton recognizing (L(A))∁.

2.2 Hierarchy of Mostowski indices

Consider a type of parity tree automata. We consider the following partial order
on indices of automata:

[ι, κ] ⊑ [ι′, κ′]

iff

either {ι, . . . , κ} ⊆ {ι′, . . . , κ′} or {ι + 2, . . . , κ + 2} ⊆ {ι′, . . . , κ′}

The hierarchy induced by the partiale order⊑ is called the hierarchy of Mostowski
indices, or simply the Mostowski hierarchy, of the considered type of automata.

[1, 1] [1, 2] [1, 3] . . .

. . .

[0, 0] [0, 1] [0, 2] . . .

The hierarchy is said to be strict if there is an automaton at each level that
cannot be simulated by any automaton of lower level. By a result of Bradfield
[Brad98a,Brad98b], we know that the Mostowski hierarchy of alternating tree
automata, and therefore the fixpoint hierarchy of the modal µ-calculus, is strict.
Arnold’s proof of the same result [Arn99] can be adapted in order to show
that the Mostowski hierarchy is also strict in the case of weak alternating tree
automata.

2.3 Undressing the trees

It will be usefull to relate full and conciliatroy trees on to another. More specif-
ically, given a full tree t ∈ T ω

Σ∪{s}, the undressing of t, denoted by u(t), is the

conciliatory tree defined as follows4. Let v be the first node of t not labelled with
s on the leftmost path of the tree (if there is no such node, then u(t) is empty).
Then for each w ∈ {0, 1}∗, consider two possibly infinite sequences:

• v0 = v, w0 = w,
• vi+1 = vib, wi+1 = w′

i, if wi = bw′
i and s 6= t(vib),

• vi+1 = vi0, wi+1 = wi, if wi = bw′
i and s = t(vib),

4 We follow here [DM07].
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If wn = ε for some n, then w ∈ dom(u(t)) and u(t)(w) = t(vn). Otherwise,
w /∈ dom(u(t)). The idea of the undressing of t is that we want to skip some
nodes and replace it with one of its sons, in our case by its left son. That is, if
we are in a node v such that s ∈ t(v), then we want to replace v with v0. But in
order to do it nicely, we must do it in a top-down manner.

Given a conciliatory language L, we define Ls as the set of trees that belong
to L after undressing, that is:

Ls := {t ∈ T ω
Σ∪{s} : u(t) ∈ L}

Note that, given any alternating automaton A, it is enough to add the set
{(q, s, 0, q) : q ∈ QA} to the transition relation δA in order to obtain an al-
ternating automaton A∗ such that Lω(A∗) = (L(A))s.

3 The Wadge Hierarchy

3.1 Playing Wadge Games

Consider the space T ω
Σ equipped with the standard Cantor topology. Then, if

T, U ⊆ T ω
Σ , we say that T is continuously (or Wadge) reducible to U , if there

exists a continuous function f such that T = f−1(U). We write T ≤w U iff
T is continuously reducible to U . This particular ordering is called the Wadge
ordering. If T ≤w U and U ≤w T , then we write T ≡w U . If T ≤w U but not
U ≤w T , then we write T <w U . Thus, the Wadge hierarchy is the partial order
induced by <w on the equivalence classes given by ≡w.

Let T and U be two arbitrary sets of full binary trees. The Wadge game
Gw(T, U) is played by two players, player I and player II. Both player build a
tree, say tI and tII . At every round, player I plays first, and both players add
a finite number of children to the terminal nodes of their corresponding tree.
Player II is allowed to skip its turn, but not forever.

We say that player II wins the game iff tI ∈ T ⇔ tII ∈ U . This game was
designed precisely in order to obtain:

Lemma 1 ([Wad84]). Let T, U ⊆ T ω
P
. Then T ≤w U iff Player I has a winning

strategy in the game GW (T, U).

Recall that a language L is called self dual if it is equivalent to its complement,
otherwise it is called non-self dual.

From Borel determinacy, if T, U ⊆ T ω
Σ are Borel, then GW (T, U) is deter-

mined. As a consequence, a variant of Martin-Monk’s result shows that <w is
well-founded. Thus, we can define by induction the Wadge degree for sets of
finite Borel rank:

• dw(∅) = dw(∅∁) = 1
• dw(L) = sup{dw(M) + 1 : M is non self dual, M <w L} for L >W ∅.
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Recognizable languages we are considering do not need to be full binary
trees, but also conciliatory binary trees. Thus, following [Dup01], let us define a
conciliatory version of the Wadge game. Suppose T and U is a pair of conciliatory
languages. Then the conciliatory Wadge game Gc(T, U) is played by two players:
player I and player II. Both players build a tree, say tI and tII . At every round,
player I plays first, and both players add a finite number of children to the
terminal nodes of their corresponding trees, and both players are allowed to skip
their turn, even forever. We say that player II wins the game iff tI ∈ T ⇔ tII ∈ U .

If player II has a winning strategy in Gc(T, U), we write T ≤c U . As in the
classical case, if T ≤c U and U ≤c T , then we write T ≡c U . If T ≤c U but not
U ≤c T , then we write T <c U . Thus, the conciliatory hierarchy is the partial
order induced by <c on the equivalence classes given by ≡c.

It is clear that the conciliatory hierarchy embeds naturally into the classical
Wadge hierarchy by the mapping L 7→ Ls. Indeed, a strategy in one game can
be translated into a strategy in the other by noting that an arbitrary skipping
in the conciliatory game gives the same power as playing nodes whose labeling
contains s.

The conciliatory degree of Borel sets of conciliatory trees is then defined as:

• dc(∅) = dc(∅
∁) = 1

• dc(L) = sup{dc(M) + 1 : M <c L} for L >W ∅.

It is possible to characterize a non self dual T as a language such that, up
to Wadge equivalence, it corresponds to Ls, for some well-choosen conciliatory
language L ([Dup01], [DM07]). Thus, since for every conciliatory language L
of finite Borel rank it holds that dw(Ls) = dc(L), if we restrict our attention
to non self dual sets, we can work in the conciliatory hierarchy instead of the
classical Wadge hierarchy. By an abuse of notation, from now on we always use
the subscript �w.

We start defining a basic operation on sets of trees. Let L, M ⊆ T≤ω
Σ . We

define the set L → M as the set of trees t ∈ T≤ω
Σ∪{a}, with a /∈ Σ, satisfying any

of the following conditions:

• t.0 ∈ L and a = t(1n) for all n,
• 11n is the first node on the path 11∗ such that a 6= t(11n) and t.11n1 ∈ M .

A player in charge of L → M is like a player in charge of L endowed with an
extra move, which can be used only once, that erases everything played before.
Then she can restart the play being in charge of M . We say that a non self dual
set L ⊆ T ω

Σ is initializable when L ≥w L → L.
If we assume projective determinacy5, it is possible to show that <w is well-

founded on ∆1
2 sets. Thus, as before, it is possible to define by induction the

Wadge degree for this class of sets.

5 From now on, when we assume projective determinacy in the statement of a propo-
sition, we add the label PD.
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Proposition 1 ([Dup95]). (PD) Let L, M ⊆ T ω
Σ be two non self dual sets,

1. Assume that M is initializable, that L <w M and that for every initializable
set of trees N , if L <w N , then M ≡w N or M∁ ≡w N . Then it holds that
dw(M) = dw(L) � ω1.

2. Any set of Wadge degree dw(L) � ω1 is initializable.

These properties will be usefull in Section 6.

4 The Wadge Hierarchy of Weak Alternating Automata

4.1 The Hierarchy from Below and a Conjecture

In [DM07], it was shown by the authors that the family of weakly recognizable
tree languages, which are all Borel, is closed under the set-theoretical coun-
terpart of ordinal sum (+), multiplication (•) by ordinals < ωω, and pseudo-
exponentiation with base ω1. Since every weakly recognizable language is defin-
able by an alternation free formula of the modal µ-calculus, it holds that the
familiy of sets of binary trees definable by an alternation free formula is also
closed under the preceding three set-theoretical operations.

We recall from [DM07] how these three operations are defined. Moreover, in
discussing pseudo-exponentiation with base ω1, we will explain how it can be
generalized to any recognizable topological property P .

Addition: Suppose that L(A), L(B) ⊆ T≤ω
Σ . We define the set L(B) + L(A) as

the set of trees t ∈ T≤ω
Σ∪a satisfying any of the following conditions:

• t.0 ∈ L(A) and a = t(1n) for all n,
• 11n is the first node on the path 11∗ such that a 6= t(11n) and either a =

t(11n1) and t.11n11 ∈ L(B) or a 6= t(11n1) and t.11n11 ∈ L(B)

This set is weakly recognizable ([DM07]). The weak alternating automaton
recognizing it is denoted by B + A.

From the point of view of the player in charge of the set L(B) + L(A) in a
Wadge Game, everything goes as if she was starting the game being in charge of
L(A). So, provided she plays in such a way that a always holds in the rightmoust
branch of the tree, the question whether the resulting infinite tree she will have
produced at the end of the run belongs to L(B) + L(A) or not reduces to the
question whether the tree starting from the left son of the root belongs to L(A)
or not. But at any moment of the run she can play a node 11n not labelled with
a. Then, everything looks like the whole (finite) tree played since the beginning
of the game is erased and he is now in charge of: L(B) if a is the label of the
node (11n1), (L(B))∁ else.

Remark 1 ([Dup95,Dup01]). Let A,B,A′,B′ be four weak alternating tree au-
tomata such that the languages they recognize are all non self dual. Then
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• (L(A) + L(B))∁ ≡w L(A) + (L(B))∁,
• The operation + preserves the Wadge ordering:

if L(A′) ≤w L(A) and L(B′) ≤w L(B) then L(A′) + L(B′) ≤w L(A) + L(B)

• dw(L(A) + L(B)) = dw(L(A)) + dw(L(B)).

Multiplication by ω: Suppose that L(A) ⊆ T≤ω
Σ . We define L(A) • ω as the

set of trees t ∈ T≤ω
Σ∪{a} having no label a on path 1∗ or satisfying the following

conditions for some 0 < 1 ≤ k and n:

• 1k is the first node labelled by a on the path 1∗,
• i is the minimal such that for all i < j ≤ k the path 1j0+ has no label a,
• 1i0n is the first whith label a on the path 1j0+,
• either a = t(1i0n0) and t.1i0n00 ∈ L(A) or a 6= t(1i0n0) and t.1i0n0 /∈ L(A)

Then there is a weak alternating automata which recognizes L(A)•ω ([DM07]).
We denote this automaton by A � ω.

From the player’s point of view when involved in Wadge Games, a player who
is in charge of the set L(A) • ω is like a player who at the beginning of the play
is trivially rejecting, with the additional option to decide after an arbitrary turn
number k < ω to restart the run being in charge of L(A) (resp. (L(A))∁), and
start again and again replacing L(A) (resp. (L(A))∁) by (L(A))∁ (resp. L(A))
then (L(A))∁ (resp. L(A)) by L(A) (resp. (L(A))∁), etc. But provided that at
every such changing the player descreases the finite ordinal k.

Remark 2 ([Dup95,Dup01]). Let A,B be two weak alternating automata such
that L(A) and L(B) are non self dual. Then

1. (L(A) • ω)∁ ≡w (L(A))∁ • ω,
2. The operation •ω preserves the Wadge ordering:

if L(A) ≤w L(B) then L(A) • ω ≤w L(A) • ω

3. dw(L(A) • ω) = dw(L(A)) � ω

Action over an arbitrary recognizable tree language: Before introducing
the pseudo-exponentiation with base ω1, we introduce a more general operation
called the action over L(A), where A can be any alternating tree automaton.
In order to do so, let P be a certain topological property recognizable by an
alternating tree automaton BP , like for instance “being a complete closed set”, or
“being a difference of two complete closed sets”. Then the action of P over L(A),
denoted by (P ;A) is defined as the class of tree recognized by the automaton
given by replacing state by the following gadget6.

6 If a node q is a member of Q∃ (resp. Q∀) and is such that Ω(q) = n, we denote it in
the fugure by (n,∃) (resp. (n, ∀).
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where ◦ ∈ {∃, ∀}, and every transition ending in (n, ◦) is now ending in (n, ∃).

Let L(A) ⊆ T≤ω
Σ . Suppose L(B) has property P . For t ∈ T≤ω

Σ let

iP (t)(a1 . . . an) =

{

t(a10a2 . . . 0an0) if t.a10a2 . . . 0an1 ∈ L(B)
s if t.a10a2 . . . 0an1 ∈ L(B)

Define
L(A)♮,P = {t ∈ T≤ω

Σ : u(iP (t)) ∈ L(A)}

It is tedious but straightforward to verify that (P,A) defines the language
L(A)♮,P and that (P,A) is always an initializable set. By an abuse of notation,
we sometims write (P,A) instead of L(A)♮,P .

However, when we define the action of P on an alternating tree automaton,
we must ensure that this operation is well defined with respect to the Wadge
ordering. But, on one side by definition we have that the operation commutes
with the complementation:

(P,A) = (P,A)∁.

On the other side7, if player II has a winning strategy σ in Gw(L(A,B), then she
can directly lift σ to a winning strategy in Gw((P,A), (P,B)), for any recognizable
P . Thus, this operation always preserves the Wadge ordering:

if L(A) ≤w L(B) then (P,A) ≤w (P,B)

Having these two properties we are then assured that:

7 We assume projective determinacy when necessary.
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Proposition 2. (PD) Let A and B any two alternating tree automata such that
the languages they recognize are both non self dual. Then, for every recognizable
P it holds that

if L(A) <w L(B) then (P,A) <w (P,B)

But, let us come back to the pseudo-exponentiation of base ω1. The topolog-
ical property of the action corresponding to this exponentiation corresponds to
some Π0

1 complete property. Thus, we may as well take P as the weakly recog-
nizable language of tree having only the label a on the rightmoust branch. This
is clearly a complete closed set.

Define
L(A)♮ = {t ∈ T≤ω

Σ : u(iΠ
0
1 (t)) ∈ L(A)}

Thus, the remark about the general case grants that (Π0
1 ,A) defines the language

L(A)♮. Moreover, if A is a weak alternating automaton, (Π0
1 ,A) is also a weak

alternating automaton. Therefore the class of weakly recognizable languages is
closed under the action (Π0

1 , �).
From the player’s point of view of Wadge Games, a player in charge of L(A)♮

is like a player in charge of L(A) with an additional option to decide that a
chosen node labeled in the past, joint with the subtree rooted in its right child,
is to be ignored.

Remark 3 ([Dup95,Dup01]). Let A be any alternation free formulae such that

L(A) is non self dual. Then dw(L(A)♮) = ω
dw(L(A))+ρ
1 where

ρ =







−1 if dw(L(A)) < ω,
0 if dw(L(A)) = β + n and cofβ = ω1,

+1 if dw(L(A)) = β + n and cofβ = ω,

The definability of these three set-theoretical operations (sum, multiplication
by ω, and pseudo-exponentiation with base ω1) implies that the Wadge hierarchy
of the Mostowski hierarchy of weak alternating automata, and therefore of the
alternation free fragment, has height at least ε0. It was then conjectured in
[DM07] that, in fact, the height is precisely ε0.

In the next subsection we will made a first step forward by proving that
there is no weakly recognizable tree language whose level is between ωω and
ω1. This means that if L is recognizable by a weak alternating automata, then
dw(L) < ωω or dw(L) ≥ ω1.

In what follows, we will use another set-theoretical operation, which gener-
alizes the multiplication by ω: the multiplication by a countable ordinal.

Countable multiplication: We first define a operation that lets a player
choose from a countable collection of sets of trees. Let f : ω → I be a bi-
jection onto a countable set I. Assume that for every i ∈ I, Li ⊆ T ω

Σ is a non

self-dual Borel set. Define supi∈I Li as the set of trees t ∈ T≤ω
Σ satisfying one of

the following conditions:
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• a 6= t(1n) for all n,
• 1n is the first node on 1∗ labelled by a and t.1n0 ∈ Lf(n).

From a player point of view, being in charge of supi∈I Li means “choosing” the
set that the player wants to be in charge of among all the Li’s. This is done
by playing for the first time on the rigthmost path an a and indicated with
the lenght (modulo f) of the path from the root to this node. This operation
preserves the Wadge ordering.

The multiplication by countable ordinals is then defined as follows:

• L � 1 = L
• L � (α + 1) = L � α + L,
• L � λ = supβ<λ L � β, when λ is some limit ordinal.

Let λ be any countable ordinal. From the player point of view of Wadge Games,
being in charge of the set L • λ is like being in charge of L, with the additional
option to restart the run at any moment being in charge of L∁, and start again
and again replacing L∁ by L, and then L by L∁, etc. But provided that at
every such changing the player descreases the countable ordinal λ. Therefore,
during the play, this additional move will provide a decreasing finite sequence of
ordinals, preventing her to reinitializing the play indifinitely.

Remark 4 ([Dup95,Dup01]). Let L, M be two non self-dual sets of trees of finite
Borel rank, and α a countable ordinal. Then

1. (L • α)∁ ≡w L∁ • α,
2. The operation •α preserves the Wadge ordering:

if L ≤w M then L • α ≤w M • α

3. dw(L • α) = dw(L) � α,
4. if dw(L) = α, then either L ≡w ∅ • α or L ≡w ∅∁ • α

4.2 A proof of the first step of the conjecture

In this subsection we introduce a class of reaching games based on the arena of
the run of a alternating automaton over a finite tree. From the player point of
view of Wadge games, these games precisely give us the power of the automaton
we are considering on the border of the finite tree the considered player has
played after a finite number of runs. We suppose that language recognized by
an alternating automaton is a set of full binary trees.

Let A be an alternating automaton, and t[n] a finite tree. Then, consider
the bipartite graph 〈V, E〉 corresponding to the run of A on t[n], excepted the
fact that the partition of V is not given by (V0, V1) but by (V ∗

0 , V ∗
1 ) defined as

follows. We say that some vertex 〈q, v〉 belongs to V ∗
0 iff

1. it is not terminal and q ∈ Q∃,
2. it is terminal and q ∈ Q∃, but v /∈ n{0, 1}.
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We may now define the class of reaching games of A over t[n]. Such a reaching
game is played by two players, player 0 and player 1, over the arena 〈V ∗

0 , V ∗
1 , E〉.

Let {S1, . . . , Sn} be an enumeration of all the subsets of n{0, 1}. Given a subset
Sj , we say that Player 0 wins a play in the reaching game of A over t[n] with
respect to Sj iff the last position 〈q, v〉 ∈ V ∗

1 in the play is such that Player
1 cannot move and either v /∈ n{0, 1} or v ∈ Sj . This game is denoted by
R(A, t[n], Sj).

Whitout loss of generality, we may suppose that for every v, w ∈ dom(t) we
have t(v) 6= t(w) whenever v = w . Therefore, for every v ∈ t[n], there is a strict
automaton Bv and an unique state qv ∈ QBv

such that for every alternating tree
automaton A, t ∈ L(Bv(qv/A)) iff t.v ∈ L(A). We may read Bv as the automaton
describing the only way to reach the node v starting from the root of the tree t.
Moreover, for every n, there is a strict automaton Bt[n] that completely describes
this initial tree of height n + 1. That is, for every tree s, if s ∈ L(Bt[n]), then
s[n] = t[n].

Note that, for very Sj , the number of winninig strategies for Player 0 in
the reaching game R(A, t[n], Sj) is finite. Let {f1, . . . , fk} be an enumeration
of the winning strategies for player 0 in R(A, t[n], Sj). Fix a winning strategy
fi. Let Fi ⊆ Sj ∪

⋃

0≤i<n
i{0, 1} be the set of nodes such that, v ∈ Fi iff there

exists a final winning position having as second component v if player 0 plays
according to fi. Clearly Fi is finite. Suppose Fi = {vi,1, . . . , vi,k}. Then, for
every vi,l ∈ Fi, consider the finite set Φi,l ⊆ QA such that q ∈ Φi,l iff 〈q, vi,j〉 is
a possible final winning position when player 0 plays according to fi. Suppose
Φi,l = {q(i,1l), . . . , q(i,nl)}, for vi,l ∈ Fi. Thus, the automaton

Ci := Bvi,1

(

qvi,1/(Aq(i,11)
∧. . .∧Aq(i,n1)

)
)

∧. . .∧Bvi,k

(

qvi,k
/(Aq(i,1k)

∧. . .∧Aq(i,nk)
)
)

can be seen as describing the tree corresponding to the winning strategy fi for
player 0 in the reaching game R(A, t[n], Sj).

More generally, given

Vj :=
∨

1≤i≤l

Ci

and assuming that t ∈ L(A), Player 0 has a winning strategy in the reaching
game R(A, t[n], Sj) iff t ∈ L(Vj).

Consider now the set MR(A,t[n]) ⊆ {S1, . . . , Sn} given by the following con-
ditions: for every Si ∈ MR(A,t[n]),

1. Player 0 has a winning strategy in R(A, t[n], Si);
2. There is no Sk ⊂ Si such that Player 0 has a winning strategy in R(A, t[n], Sk)

By construction the following holds:

Proposition 3. Let A be an alternating tree automaton and t ∈ T ω
Σ . Then for

every n, it holds that:

L(A∧ Bt[n]) ≡w L(
∨

Sj∈MR(A,t[n])

Vj)
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This terminates the “automata theory” part of the proof of the main result,
the other half of it being the following descriptive set theoretical result8:

Lemma 2 ([Dup03]). Let A ⊆ T ω
Σ be an initializable set of trees; λ, δ be some

countable ordinals and B ⊆ T ω
Σ, if A • (δ + 1) ≤w B ≤w A • λ then there is a

finite tree t such that






Bt ≡w A • (δ + 1),
or

Bt ≡w (A • (δ + 1))∁.

where Bt denotes the set of members of B extending t.

The core of the proof of our main result relies on finding a “reasonable” upper
bound for the degrees of conjunctive and disjunctive automata. First of all we
have to verify that9:

Lemma 3. Suppose A1, . . .An are all weak alternating tree automata, and sup-
pose for every 1 ≤ i ≤ n, L(Ai) is non self dual, dw(L(Ai)) < ω1. Assume
moreover that, for every j = 1, . . . , n, the Cantor normal form of base ω of
dw(L(Aj)) is

∑ij=mj

ij=1 ωκij
� nij

, with κij
> κij+1 for every ij ∈ {1, . . . , mj − 1}

and nij
∈ ω for every ij ∈ {1, . . . , mj}. Then:

1. dw(L(A1 ∧ · · · ∧ An)) ≤ sup{dw(L(Ai)) : 1 ≤ i ≤ n} � (2k)n;
2. dw(L(A1 ∨ · · · ∨ An)) ≤ sup{dw(L(Ai)) : 1 ≤ i ≤ n} � (2k)n

where k < ω is the sum of all
∑ij=mj

ij=1 nij
.

Before giving the proof of the lemma, we introduce the additive normal form
(anf) of two countable ordinals. Assume any two countable ordinals α and β, with

Cantor normal form of base ω respectively
∑i=n

i=1 ωκi
�ni, with κi > κi+1 for every

i ∈ {1, . . . , n − 1} and ni ∈ ω for every i ∈ {1, . . . , n}, and
∑j=m

j=1 ωιj
� mj , with

ιi > ιi+1 for every i ∈ {1, . . . , m − 1} and mi ∈ ω for every i ∈ {1, . . . , m}. We

let k =
∑i=n

i=1 ni +
∑j=m

j=1 mj and also let (γ1, . . . , γm+n) be an enumeration of
{κi : 1 ≤ i ≤ n} ∪ {ιj : 1 ≤ j ≤ m} that satisfies γi ≥ γj iff i ≤ j. Note that for
every i γi ≥ γi+1 and γi > γi+2 are satisfied. Then the additive normal form of
α and β is

anf(α, β) :=

i=n+m
∑

i=1

ωγi
� k.

By the definition of the additive normal form, it is very easy to verify that:

Remark 5. For every pair of countable ordinals α and β, it holds that:

1. α ≤ anf(α, β) and β ≤ anf(α, β),
2. anf(α, β) = anf(β, α),

8 Note that originally this lemma was stated for infinite words. We adapt it for full
binary trees in a straightforward manner.

9 We correct here an inaccuracy in the corresponding Lemma published in [DF08].



15

3. for every α′ < α, we have anf(α′, β) < anf(α, β),
4. max{α, β} � 2k ≥ anf(α, β).

Everything is now ready to prove Lemma 3.

Proof. We verify the first case by induction on n, the second case being anal-
ogous. The case n = 1 is trivial. Assume L(A1 ∧ · · · ∧ An) ≤ L(Ak) • (2k)n,
with dw(L(Ak)) = sup{dw(L(Ai)) : 1 ≤ i ≤ n}. Without loss of generality,
we assume that L(An+1) ≤w L(Ak). If we verify that L(Ak � n ∧ An+1) ≤w

(L(Ak) • (2k)n) • 2k ≡w L(Ak) • (2k)n+1, we are done. By Remark 5, in fact we
demonstrate the following stronger result. Let A1,A2 be two weak alternating
automata such that L(A1) and L(A2) are non self dual and dw(L(A1)) = ξ1,
dw(L(A2)) = ξ2 are countable. Then:

(∗) dw(L(0.A1 ∧ 1.A2)) ≤ anf(ξ1, ξ2)

The proof goes by induction on anf(ξ1, ξ2) simoultaneously on the following three
cases:

1. L(A1) ≡w ∅ • ξ1 and L(A2) ≡w ∅ • ξ2,
2. L(A1) ≡w ∅ • ξ1 and L(A2) ≡w ∅∁ • ξ2,
3. L(A1) ≡w ∅∁ • ξ1 and L(A2) ≡w ∅∁ • ξ2

Case 1: We have to describe a winning strategy for player II in the Wadge Game
Gw(L(0.A1 ∧ 1.A2), ∅ • anf(ξ1, ξ2)). Consider a slightly modified version of the
Wadge Game, where player II is in charge of ∅ • anf(ξ1, ξ2)) and she plays at the
same time against two different opponents, say player Ia and player Ib. Player
Ia is in charge of ∅ • ξ1 and player Ib is in charge of ∅ • ξ2. We say that player II
wins the modified Wadge Game iff tII ∈ ∅ • anf(ξ1, ξ2) and both tIa ∈ ∅ • ξ1 and
tIb ∈ ∅• ξ2 or tII /∈ ∅• (δ2 + δ1 +n2 +n1) and either tIa /∈ ∅• ξ1 or tIb /∈ ∅• ξ2. If
we are able to show that player I has a winning strategy in this modified game,
then we are done. At the beginning of the game, all three players are rejecting
(since, from the player point of view of Wadge Games, they are all in charge of
the empty set). Therefore, Player II has to stay rejecting untill both opponents
are in charge of ∅∁ • ξ′i, with ξ′i < ξi. At this time of the play, both player Ia and
player Ib are momentaneously trivially accepting. When both opponents have
reached such a position in the play, then player II has just to “decrease” her
ordinal and reach a position where she is in charge of ∅∁ • anf(ξ′1, ξ

′
2). This move

can be done because by Remark 5 anf(ξ1, ξ2) > anf(ξ′1, ξ
′
2), and therefore we can

apply the induction hypothesis in order to obtain a winning strategy for player
II. Thus dw(L(0.A1 ∧ 1.A2)) ≤ anf(ξ1, ξ2)
Case 2 and Case 3 are similar to the first case. We have just to consider in the
second case the Wadge Game Gw(L(0.A1∧1.A2), ∅•anf(ξ1, ξ2)) and in the third
case the Wadge Game Gw(L(0.A1 ∧ 1.A2), ∅

∁ • anf(ξ1, ξ2)).
This proves (∗), and therefore the induction step of point 1 of the lemma. ⊣

From Proposition 3 and Lemma 3 we immediatly obtain that:
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Proposition 4. Let A be a weak alternating automaton, L(A) non self dual and
1 < dw(L(A)) < ω1. Let t be a full binary tree such that for a certain n it holds
that L(A∧ Bt[n]) <w L(A). Then there exists k ∈ N:

dw(L(A∧ Bt[n])) = dw(L(
∨

Sj∈MR(A,t[n])

Vj)) ≤ λ � k

where λ = sup{dwL(Aq) : q ∈
⋃

Sj∈MR(A,t[n])

⋃

i

⋃

vi,j∈Fi
Φi,j}.

As a corollary we obtain that:

Corollary 1. Assume A a weak alternating automaton, L(A) non self dual ,
1 < dwL(A) < ω1 and B ⊂ T ω

B satisfying both B ≤w L(A) and cof(dwB) = ω,
then, for every n, there is λ < dwB such that for every tree t and every n:

if L(A∧ Bt[n]) <w B then dw(L(A∧ Bt[n])) < λ � ω

This almost immediately leads to:

Theorem 1. Let A be a weak alternating automaton, L(A) non self dual. Let
α > 1 be a countable ordinal, and suppose dwL(A) = α. Then α < ωω.

Proof. Towards a contradiction, we assume that α ≥ ωω, and apply Corollary
1. Consider B a canonical set of Wadge degree ωω. By corollary 1, there exists
λ < dw(B) such that for every tree t and every n:

if L(A ∧ Bt[n]) <w B then dw(L(A∧ Bt[n])) < λ � ω

Fix such a λ. Since dw(B) = ωω, we have that λ < ωω. Therefore, there is
n < ω such that λ < ωn. Hence λ � ω < ωn+1 holds.

By Lemma 2, there is a tree t, an integer n such that either L(A)t ≡w

∅ • (ωn+1 + 1) or L(A)t ≡w (∅ • (ωn+1 + 1))∁ . Finally, since ωn+1 + 1 < ωω,
dw(L(A)t) < λ � ω holds, we obtain the following contradiction:

λ � ω < ωn+1 < ωn+1 + 1 = dw(L(A)t) < λ � ω.

This concludes the proof of the theorem. ⊣

This theorem proves that there is no language recognizable by a weak al-
ternating automaton in between the levels ωω and ω1 of the Wadge Hierarchy
of Borel Sets, a first step in proving the whole conjecture about the Wadge
Hierarchy of weakly recognizable tree languages.

5 A Wadge hierarchy for the third level of the hierarchy

of Mostowski indices of recognizable language

In this section we assume projective determinacy. We extend the Wadge hier-
archy of weak alternating automata by adding to the three previous operations
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(addition, multiplication by omega and action of some Π0
1 complete set) an

action of a difference of two Π1
1 complete sets. By section 5, we know that if

a Π1
1 complete property is recognizable, then the corresponding action is also

recognizable.

Consider the alphabet Σ[ι,κ] = {0, 1} × {ι, . . . , κ} with ι ∈ {0, 1} and ι ≤ κ.
Then, to every tree t ∈ T ω

Σ[ι,κ]
, we associate a parity game G(t) as follows: a node

v in the tree is a position for player 0 iff the first component of the node is 0,
and the rank of the node corresponds to its second component. The set W[ι,κ]

corresponds to the class of trees in T ω
Σ[ι,κ]

for which Player 0 has a winning

strategy in the corresponding parity game P(t). For every index [ι, κ], the set
W[ι,κ] is called the the game language of index [ι, κ]. It is easy to see that:

Proposition 5. For every game language W[ι,κ] there is an alternating automa-
ton of index [ι, κ] that recognizes it.

We denote by W[ι,κ] the alternating automata which recognizes W[ι,κ]. Game
languages witnesses the strictness of the Mostowski hierarchy of the alternating
tree automata, [Brad98b,Arn99]10. More precisely, each W[ι,κ] is complete for
its corresponding level of the Mostowski hierarchy. Thus, any game language of
index strictly greater than [0, 0] is not Borel. In particular, W[1,2] is Π1

1 complete,

and therefore (W[1,2])
∁ is Σ1

1 complete. Note that (W[1,2])
∁ ≡w W[0,1].

It follows easily that the language recognized by 0.WΠ
µ
2
∧1.W[1,2] corresponds

– up to Wadge equivalence – to a difference of two Π1
1 complete sets. The action

of such a difference of two Π1
1 complete sets is therefore recognizable. We denote

by (D2(Π
1
1 ), �) the alternating tree automaton recognizing it.

Remember that by Proposition 2 we know that this operation is well defined
in the way it (strictly) preserves the Wadge ordering:

if L(A) <w L(B) then (D2(Π
1
1 ),A) <w (D2(Π

1
1 ),B)

If we consider the sub-hierarchy of the Wadge hierarchy induced, up to Wadge
equivalence, by the closure of ∅ under complementation, the set-theoretical coun-
terparts of ordinal sum, multiplication by ordinals < ωω, and the action of a
complete closed set together with the action of a difference of two Π1

1 complete
set, we enrich previous results with a new fragment of the Wadge hierarchy for
alternating tree automata, and therefore for the modal µ-calculus. On one hand,
we can verify that:

Proposition 6. (PD) Let A,B, C be any alternating tree automata.

1. if L(B), L(C) <w (D2(Π
1
1 ),A) then L(B + C) <w (D2(Π

1
1 ),A);

2. if L(B) <w (D2(Π
1
1 ),A) then L(B) • ω <w (D2(Π

1
1 ),A).

10 This result was recently streghntened by Arnold and Niwinski in [AN08], where they
show that game languages form a hierarchy w.r.t. to Wadge reduciility.
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Proof. Clearly, it is enough to proof item 2. Suppose L(B) <w (D2(Π
1
1 ),A).

Consider a set L of degree dw(L(B)) �ω1. By Proposition 1.2, this set is initializ-
able. Because (D2(Π

1
1 ),A) is also initializable, by Proposition 1.1, we have that

L ≤w (D2(Π
1
1 ),A). Therefore L(B) • ω <w (D2(Π

1
1 ),A). ⊣

By adapting some techniques introduced in [Dup95], it is also possible to prove
that:

Proposition 7. (PD) Let A,B any pairs of alternating tree automata. Then

if L(B) <w (D2(Π
1
1 ),A) then (Π0

1 ,B) <w (D2(Π
1
1 ),A).

From Proposition 7, we obtain as a corollary:

Corollary 2. (PD) For every alternating tree automaton A

(

Π0
1 , (D2(Π

1
1 ),A)

)

≡w (D2(Π
1
1 ),A).

As a matter of fact, Propositions 6 and 7 yield that given any two alternating
automata A and B with dw(L(A))+1 = dw(L(B)), in between (D2(Π

1
1 ),A) and

(D2(Π
1
1 ),B) there is enough space for a whole copy of the Wadge hierarchy of

weak alternating tree automata.
It is clear that – up to Wadge equivalence – every level of this hierarchy

corresponds to the class of models of a formula of the modal µ-calculus having
alternation depth 2. However there is no formula corresponding to a finite iter-
ation of the action of a difference of two Π1

1 complete sets over an alternation
free formula defining a game language of index [0, 1] or [1, 2]. Nevertheless we
conjecture that:

Conjecture : The sub-hierarchy of the Wadge hierarchy induced, up to Wadge
equivalence, by the closure of ∅ and W[0,1] under complementation, the set-
theoretical counterparts of ordinal sum, multiplication by ordinals < ωω and
the action of a complete closed set together with the action of a difference
of two Π1

1 complete set, corresponds to the Wadge hierarchy for the sets
definable by a formula of alternation depth 2.

A proof of this conjecture would then imply that the eight of the Wadge
hierarchy for this fragment of the modal µ-calculus is exactly εε0 .

6 Conclusion

In this paper, we made a first (very little) step towards the study of the connec-
tions between the fixpoint alternation depth hierarchy and the Wadge hierarchy
for ∆1

2 sets. First of all, we have introduced the operation given by the action of
some recognizable tree language over an alternating tree automata, which gener-
alized the pseudo exponentiation with the base ω1 presented in [DM07]. In this
last paper, it was conjectured that the height of the Wadge hierarchy for weakly
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alternating tree automata is exactly ε0. With the help of a nice combinatorial
result and of a characterisation of the “power” of a player in a Wadge game
after having played a finite number of runs, we were able to make a first step
towards a complete answer to the conjecture. The operation introduced in the
first part of the paper enables us to define actions with non Borel recognizable
properties over sets of well-behaved languages with respect to the Wadge order.
From this fact, in the final part of the paper we have done a first step towards the
description of the Wadge hierarchy for the full modal µ-calculus by introducing
an extension of the Wadge hierarchy for the alternating free fragment by mean
of an action of a difference of two Π1

1 complete sets.
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