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We present statistic-preserving bijections between ftasses of combinatorial objects. Two of them, the class of
unlabeled 2 + 2)-free posets and a certain class of chord diagrams (or itigok), already appeared in the literature,
but were apparently not known to be equinumerous. The thiedi® a new class of pattern avoiding permutations,
and the fourth one consists of certain integer sequenclesieaicent sequences.

We also determine the generating function of these clagsagects, thus recovering a non-D-finite series obtained
by Zagier for chord diagrams. Finally, we characterize $weat sequences that correspond to permutations avoiding
the barred patterB1524, and enumerate those permutations, thus settling a cargeat Pudwell.

Résume. Nous présentons des bijections, transportant de nonmdsestatistiques, entre quatre classes d'objets.
Deux d’'entre elles, la classe des EPO (ensembles partmieondonnés) sans mofi2 + 2) et une certaine classe
d’involutions, sont déja apparues dans la littératlueetroisieme est une classe de permutations a motifs gxetda
guatrieme une classe de suites que nous appslotes a montées

Nous déterminons ensuite la série génératrice de essed, retrouvant ainsi un résultat prouvé par Zagier lpsu
involutions sus-mentionnées. La série obtenue n'esDpfisie. Apparemment, le fait qu’elle compte aussi les EPO
sans moti2 + 2 est nouveau. Finalement, nous caractérisons les suitest&es qui correspondent aux permutations
évitant le motif barré81524 et éEnumérons ces permutations, ce qui démontre uneatorgede Pudwell.
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1 Introduction

This paper presents correspondences between four segminglated structures; unlabelezi+ 2)-free
posets om elements, certain sequencesiafonnegative integers callegcent sequences new class of
permutations om letters, and finally certain involutions @m points.

A poset is said to b€ + 2)-freeif it does not contain an induced subposet that is isomorot2ct 2,
the union of two disjoint 2-element chains. Fishburn [6]wkd that a poset i§2 + 2)-free precisely
when it is isomorphic to an interval order. Another chardzsgion is that a poset iR + 2)-free if and
only if the collection of strict principal down-sets can loglarly ordered by inclusion [5; 4].

Our ascent sequencésive a simple recursive definition, given in Section 2. We disfine there the
class of permutations we consider: they avoid a particidétepn of length three, but this type of pattern
is new, in the sense that it does not admit an expressionrmstef the dashédl patterns introduced by
Babson and Steingrimsson [1]. It is our hope that the regilthis paper will stimulate research into
these new patterns. We show how to deconstruct these peimmstalement by element, and how this
gives a bijection with ascent sequences. In Section 3 weperd similar task fof2 + 2)-free posets.

In Section 4 we present a simple algorithm that given an assguenca computes what we call the
modified ascent sequence, denate@ome of the properties of the permutation and the posetspond-
ing to « are more easily read fromthan fromz. We also explain how to go directly from a given poset
to the corresponding permutation as opposed to via the Bsegnence. As an additional application, we
show that the fixed points under— Z are in one-to-one correspondence with permutations avpitiie
barred patter31524. We count ascent sequences that are left unchanged by the map, thus proving
a conjecture of Lara Pudwell on the numbeBt524-avoiding permutations.

In Section 5 we present statistics on the objects that argepred under the stated bijections. In
Section 6, we determine the generating function of asceqiesees (and thus, ¢2 + 2)-free posets
and pattern avoiding permutations), which turns out to betlaer complicated, non-D-finite series. This
series has already been shown by Zagier [13] to count cestaird diagramsor involutions, introduced
by Stoimenow [12] to give upper bounds on the dimension offiece of Vassiliev’s knot invariants of
a given degree. In Section 7 we give a new proof of this resutidtablishing a bijection between these
involutions and 2 + 2)-free posets.

The proofs are omitted in this abstract, but can be founderfuh version of the paper [2].

2 Ascent sequences and pattern avoiding permutations

Let(xy,...,2;) be an integer sequence. The numbeasfentof this sequence is
asc(z1,...,x) ={1<j<i:z; <xjp1}
Let us call a sequence= (z1,...,z,) € N® anascent sequence of lengthf it satisfiesz; = 0 and
x; € [0,1+asc(z,...,2,-1)] for2 <i < n. Forinstance, (0, 1,0, 2,3, 1,0, 0, 2) is an ascent sequence.
The length (number of entries) of a sequends denotedz|.
Let S,, be the symmetric group on elements. LelV = {vy,va,...,v,} With v; < vy < -+ <

v, be any finite subset dfi. The standardisatiorof a permutationr on V' is the permutatiostd(r)

() Babson and Steingrimsson call these patterns “genetaliather than “dashed”, but we wish to promote a change ofiteslogy
here, since “dashed” is more descriptive.
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on [n] := {1,2,...,n} obtained fromr by replacing the lettep; with the letteri. As an example,
std(19452) = 15342. Let R,, be the following set of permutations:

Rp={m...my €S8, : if std(mm;my) =231thenj #i+1orm # m, +1}.

Equivalently, ifr;7;11 forms an ascent, them; — 1 is not found to the right of this ascent. This class
of permutations could be more descriptively writterfgs = S, (;I'_.) the set of permutations avoiding

the pattern in the diagram. Dark lines indicate adjacemtenthorizontally or vertically) whereas lighter
lines indicate an elastic distance between the entries.

5 [} 5 ®
As illustrated here, the permutation 31524 avoids the patte  * ° : . o
;I'_. while the permutation 32541 does not. 2 ° ;@

1 [ ] 1 ®

1 2 3 45 1 2 3 45

Consider the following three symmetries of a square: refladh a centered vertical line, reflection
in a centered horizontal line, and reflection in the diaganal y. In the context of permutations these
operations are known asverse complemenandinverse respectively. Together they generate the dihe-
dral groupDsg, the symmetry group of a square. This is the symmetry of dakpatterns. The dashed
patterns of Babson and Steingrimsson [1] can be seen as platterns that allow dark vertical (but not
horizontal) lines in their diagram. That set of patternsas closed under inverse: under reflection in
the diagonal: = y a (dark) vertical line turns into a (dark) horizontal linehus dashed patterns only
enjoy the symmetry of a rectangle. Our patterns provide timénnal extra generality needed to contain
the dashed patterns and have the full symmetry of a square.

Let us return to the seR := U, R,, of permutations avoidingl'_.. Let 7 be a permutation oR,,,
with n > 0. Let be obtained by deleting the entryfrom 7. Thent € R,_:. Indeed, ifr;7;417;
is an occurrence of the forbidden patternritfbut not inr), then this implies that; . ; = n. But then
m;mi+1mj+1 would form an occurrence of the forbidden pattermrin

This property allows us to construct the permutation®gfinductively, starting from the empty per-
mutation and adding a new maximal value at each step. Givenr; ... 7,1 € R,_1, the sites where
n can be inserted im so as to produce an element®f, are calledactive It is easily seen that the site
beforer; and the site after,,_; are always active. The site between the entrjesdr;, ; is active if and
only if ; = 1 orr; — 1is to the left ofr;. Label the active sites, from left to right, with labels 021.,

Our bijectionA between permutations &,, and ascent sequences of lengtis defined recursively
onn as follows. Fom = 1, we setA(1) = (0). Now letn > 2, and suppose that € R,, is obtained by
insertingn in the active site labeledof a permutatiom € R,,_1. Then the sequence associated with
isA(m) = (z1,...,2n—1,1), Where(z, ..., z,—1) = A(7).

Example 1 The permutationr = 61832547 corresponds to the sequence= (0,1, 1,2,2,0,3,1), since
it is obtained by the following insertions (the subscriptdicate the labels of the active sites):

ol1 255 01425 2255 0153 25 ¥75 0143 2945 20 0143 2,5 44

x6=0 06 113 295 43 r7=3 06 113 295 43574 E 61832547.

Theorem 2 The map\ is a bijection fromR,, to the set of ascent sequences of length
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The proof proceeds by induction. The key is to understandthewnumber of actives sites of and the
label located just before its maximal entry, can be readérattent sequence.

3 Ascent sequences and unlabeled (2 + 2)-free posets

Let P, be the set of unlabelg@ + 2)-free posets om elements. In this section we shall give a bijection
betweenp,, and the setd,, of ascent sequences of length As in the previous section, this bijection
encodes a recursive way of decomposiBgt+ 2)-free posets by removing one maximal element. This
removal procedure is less elementary than in the case ofytations. Before giving these operations we
need to introduce some terminology.

Let D(z) = {y: y < = } be the set opredecessorsf x (the strict down-set af). It is well-known—
see for example Khamis [8]—that a pose{#s+ 2)-free if and only if the se{D(z) : = € P} can be
linearly ordered by inclusion. Let

D(P)={Dy,Ds,...,D}

with ) = Dy C Dy C --- C Dy. In this context we defin®;(P) = D, and we write/(P) = k. We
say the element is at leveli in P if D(x) = D, and we write/(x) = i . The set of all elements at
leveli we denotel;(P) = {x € P:4(z) =i} ={x € P: D(zx) = D; }. ForinstanceLy(P) is the
set of minimal elements. All the elementsbf(P) are maximal, but there may be maximal elements of
P at level less tha. If L;(P) contains a maximal element, we say ttia leveli contains a maximal
element. Let*(P) be the minimum level containing a maximal element.

Example 3

Consider the following2 + 2)-free posef?, which we

have labeled for convenience. The diagram on the right
shows the poset redrawn according to the levels of the b
elements. We have(a) = {b, ¢, d, f,g,h}, D(b) = 0,
D(e) = D(d) = {f,9.h}, D(e) = D(f) = D(g) =
{h} andD(h) = (). These may be ordered by inclusion
as

D

D(h) = D) < D(e)=D(f)=D(g) < D(c)
~——————
((h) =) =0 Lle) =L(f) =L(g) =1
Thus/(P) = 3. The maximal elements &f are ¢ and a, and they lie respectively at levels 3 and 1.
Thus¢*(P) = 1. In addition,Dy = 0, Dy = {h}, D2 = {f,g,h} and D3 = {b,c,d, f,g,h}. With
L; = L;(P) we also havd.g = {h,b}, L1 = {e, f,g}, L2 = {¢,d} and L3 = {a}.

3.1 Removing an element from a (2 + 2)-free poset

The removal operation will be the counterpart of the detetibthe last entry in an ascent sequence (or the
deletion of the largest entry in a permutation/f. Let P be a(2 + 2)-free poset of cardinality > 2,

and let; = ¢*(P) be the smallest level aP containing a maximal element. All the maximal elements
located at level are order-equivalent in the unlabeled poBetWe will remove one of them. L&D be

the poset that results from applying:
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(Rem1l) If |L;(P)| > 1 then simply remove one of the maximal elements at lével
(Rem2) If |L;(P)| =1 and: = £(P) then remove the unique element lying at leiel

(Rem3) If |[L;(P)| = 1andi < ¢(P) thensetN' = D;41(P)\ D;(P). Make each element ¢f" a maximal
element by deleting from the order all relations< y wherex € N. Finally, remove the unique
element lying at level.

The second diagram shows the poset re-
drawn according to the levels of the ele-
ments. There is a uniqgue maximal element
of minimal level, which is marked witk
and ¢*(P) = 2. Since2 < ((P), apply
Rem3 to remove this maximal element.
The elements of/ are indicated by #'s.

In order to delete all relations of the '
formz < y wherex € NV, one deletes 30
all edges corresponding to coverings
of elements ofV, and adds an edge
between the elements at level 0 and 3—
to preserve their relation. Finally, one
removes the element at level 2. This
gives a new(2 + 2)-free poset, with o
level numbers shown on the right.

=

There are now two maximal elements of min-
imal level/* = 1, both marked by. Remove
one of them according to rulBeml. This
gives the first poset shown to the right, for
which ¢* is still 1. ApplyRem1 again to ob-

tain the second poset on the right.

There is now a single maximal element, lying
at maximal level 3, so we apply ruRem?2.

In the poset thus obtained;(P) = 1 <
¢(P) and there is a unique element at level 1
1, so applyRem3. The set\ consists of the
rightmost point at level 0.

atlevel 0, so applRem1, and finallyRem2. "~

In the new poset, the star elementis not alone 1 I s

We have thus reducd@dto a one element poset by removing the elements in a cananmazd
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3.2 From (2 + 2)-free posets to ascent sequences

Our bijection¥ between(2 + 2)-free posets of cardinality and ascent sequences of lengtis defined
recursively om as follows. Fom = 1, we associate with the one-element poset the sequéncow let
n > 2, and suppose that the removal operation, appligd toP,,, gives the posep. Then the sequence
associated wittP is ¥ (P) := (x1,...,2n—1,1), Wherei = £*(P) and(zy, ..., xn—1) = U(Q).

For instance, the poset of Example 4 corresponds to the seg(e 1,0, 1,3,1,1,2).

Theorem 5 The map? is a one-to-one correspondence betwézr- 2)-free posets of size and ascent
sequences of length

4 Modified ascent sequences and their applications

In this section we introduce a transformation on ascent esecgs and show some applications. For
instance, this transformation can be used to give a nongeeudescription of the bijectioN between
permutations ofR and ascent sequences. It is also useful to characterizentigeibyA of a subclass of
R, which we will enumerate in Subsection 4.4. We also desdrthe to transform2 + 2)-free posets
into permutations without resorting to ascent sequences.

4.1 Modified ascent sequences

Letz = (x1, a2, ...,x,) be any finite sequence of integers. Define
asc(z) = (i:i € [n—1] anda; < 41 );

soasc(z) = |asc(z)|. In terms of an algorithm we shall now describe a functiomfiateger sequences
to integer sequences. Let= (z1, z2, ..., z,) be the input sequence. Do

for i€ asc(z):
for jeli—1]:
i f :ij:vthhen:vj Z:,Ij-‘rl

and denote the resulting sequenceiby Assuming that: is an ascent sequence we calthe modi-
fied ascent sequencés an example, consider the ascent sequenee(0,1,0,1,3,1,1,2). We have
asc(x) = (1, 3,4, 7) and the algorithm computes the modified ascent sequencthe following steps:

r=01013112
01013112
02013112
02013112
03014112=172

In each step every element strictly to the left of and weaddgér than the boldface letter is incremented
by one. Observe that the positions of ascents andz coincide, and that the number of ascents:in
(or z) is asc(z) = asc(Z) = max(z). The above procedure is easily invertible and the map 7 is
therefore injective.
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The modified ascent sequentes related to the level distribution of

the posef” associated with:. First, observe that the removal operation
of Section 3.1 induces a canonical labelling of the sizgosetP by 3. 2
elements ofn]: the first element that is removed gets labghnd so S
on. Applying this to the poset of Example 4 we get the labgléhown -
on the right. 1167
The following lemma is easily proved by induction.

Lemma 6 Let P be a(2 + 2)-free poset equipped with its canonical labelling. kebe the associated
ascent sequence, aad= (71, ..., ,) the corresponding modified ascent sequence. Then for<ath,
the element of the poset lies at levél,.

For instance, listing the elements of the poset above andrdspective levels gives

12345678
03014112=7z,

where we recognize the modified ascent sequen¢e @f0,1,3,1,1,2) = ¥(P).

4.2 From posets to permutations

The canonical labelling of the posftcan also be used to set up the bijection fr(@n+ 2)-free posets

to permutations ofR without using ascent sequences. We read the elements ob#ed py increas-
ing level, and, for a fixed level, in descending order of tHabrels. This gives a permutatiof{ P).

In our example we ge}1764825, which is the permutation oRs associated with the ascent sequence
(0,1,0,1,3,1,1,2) = ¥(P).

Proposition 7 For any (2 + 2)-free poset equipped with its canonical labelling, the permutatit(P)
described above is the permutatior®fcorresponding to the ascent sequerdgd’). In other words,

~ o~

A" o W(P) = LoLy...Lyp) =,

wherer is the word obtained by reading the elementé ofP) is decreasing order. Moreover, the active
sites of the above permutation are those preceding andwollpr, as well as the sites separating two
consecutive factors ;.

4.3 From ascent sequences to permutations, and vice-versa

By combining Lemma 6 and Proposition 7, we obtain a non-igeardescription of the bijection be-
tween ascent sequences and permutatiori8.oflLet x be an ascent sequence, andits modified se-
quence. Take the sequenceand write the numbers throughn below it. In our running example,
x=(0,1,0,1,3,1,1,2), this gives

r=03014112
12345678
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Let P be the poset associated with By Lemma 6, the element labelédn P lies at levelz;. This
information is not sufficient to reconstruct the pogebut it is sufficient to reconstruct the worfi( P)
obtained by reading the elements Bfby increasing level: Sort the pai@') in ascending order with
respect to the top entry and brake ties by sorting in desogratider with respect to the bottom entry. In
the above example, this gives

00111234

31764825

By Proposition 7, the bottom row, hesa 764825, is the permutatiod ~!(x). We have thus established
the following direct description af —*.

Corollary 8 Letz be an ascent sequence. Sorting the p@r@ in the order described above gives the
permutationt = A~!(z). Moreover, the number of entries obetween the active sitésindi + 1 is the
number of entries of equal toz, for all : > 0.

The second statement gives a non-recursive way of deriwingA(7) (or, rather,z) from 7. Take a
permutationr € R,,, and indicate its actives sites. For instancesq 31,7642832455. Write the letter
below all entriesr; that lie between the active site labeleand the active site labeledt 1:

31764825 12345678
00111234 03014112

We have recovered, on the bottom row, the modified asceneseqii corresponding tar.

— Sort the paird"7) by increasing order of the;, —

4.4 Permutations avoiding 31524 and self modified ascent sequences

A permutationr avoids the barred pattef1524 if every occurrence of the (classical) pattern 231 plays
the role of 352 in an occurrence of the (classical) patte62311n other words, for every< j < k such
thatm, < m; < 7, there existd € (4, j) andm > k such thatr; 7,7 ;7 m,, is an occurrence of 31524.
Note that every such permutation avoids the pat‘isfir;n and thus belongs to the sBt A conjecture
concerning the enumeration of these permutations was @iyétudwell [10, p. 84]. Here, we describe
the ascent sequences corresponding to these permutaigotie\bijectionA from which we can settle
her conjecture.

An ascent sequenceis self modifiedf it is fixed by the mapr — Zz defined above. For instance,
(0,0,1,0,2,2,0,3,1,1) is self modified. In view of the definition of the map— Z, this means that, if
Tiy1 > Ty, thean < Tjs1 for a”_] <.

Proposition 9 The ascent sequenaeis self modified if and only if the corresponding permutation
avoids31524. In this casemax(z) = asc(r) = rmin(7) — 1, wherermin(r) is the number of right-to-
left minima ofr, that is, the number afsuch thatr; < =; forall j > i.

Recall thatisc(z) = max(Z). Itis not hard to see thdt:y, ..., z,) is a self modified ascent sequence if
and only ifz; = 0 and, for alli > 1, eitherxz;+1 < z; orx;41 = 1 + max{x; : j < i}. Consequently,
a modified ascent sequengewith max(z) = k reads0A4g1A12As ... k Ax, where A; is a (possibly
empty) weakly decreasing factor, and each element;dé less than or equal to This structure is the
key to count these sequences, and thus permutations ay8idin4.

Proposition 10 The length generating function 8f524-avoiding permutations is_, -, t*/(1 — t)(kgl).
Thek-th term of this sum counts those permutations that aight-to-left minima, or, equivalently;—1
ascents. This is also the number of self modified ascent segsief lengtn with largest element — 1.
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5 Statistics

We shall now look at statistics on ascent sequences, peiionga@and posets—statistics that we can trans-
late between using our bijections.

Letz = (21,29, ...,2,) be any sequence of nonnegative integerslie{x) = x,,. Definezeros(z)
as the number of zeros in A right-to-left maximunof x is a letter with no larger letter to its right; the
number of right-to-left maxima is denotethax(z). For example,

rmax(0,1,0,2,2,0,1) = 3;

the right-to-left maxima are in bold. For sequeneemdy of nonnegative integers, letby = xy’, where

y' is obtained fromy by addingl 4+ max(x) to each of its letters, and juxtaposition denotes concétama

For example(0,2,0,1) & (0,0) = (0,2,0, 1, 3,3). We say that a sequengéask componentg it is the

sum ofk, but notk + 1, nonempty nonnegative sequences. Noteghat: is a modified ascent sequence
(as defined in Section 4) if and onlyjfandz are themselves modified ascent sequences. This is the case
in the above example.

For any permutatiom = = ... m,, the statistiddr(r) (theleftmost decreasing ryns defined as the
largest integef such thatr; > m» > --- > ;. For permutationg ando, let T ¢ o = 7o', whereo’ is
obtained fromr by adding|~| to each of its letters. We say thathask components if it is the sum @f,
but notk + 1, nonempty permutations. Observe thab o avoids -'. if and only if both7 ando avoid
it. This is the case for instance f8t4265 = 3142 @ 21, which corresponds to the above modified ascent
sequenc€0,2,0,1,3,3) = (0,2,0,1) & (0,0).

Form € R, label the active sites with, 1, 2, etc. Therb(r) denotes the label immediately to the left
of the maximal entry ofr.

The number of minimal (resp. maximal) elements of a pd3ét denotednin(P) (resp. max(P)).

The ordinal sum of two poset8 and( is the poset” @ ) on the unionP U () such thatr <pgg y if

x <py,orz <gy,orz € Pandy € (). The definition applies to labeled or unlabeled posets. ket u
say thatP hask components it is the ordinal sum ofk, but notk + 1, nonempty posets. Observe that
P @ Qis (2 + 2)-free if and only if bothP and@ are(2 + 2)-free.

Theorem 11 Given an ascent sequenece= (z1,. .., 2, ) with modified ascent sequeneglet P and
be the poset and permutation corresponding tinder the bijections described in Sections 2 and 3. Then
(min(P), £*(P),(P), max(P),comp(P)) = (zeros(z),last(x),asc(x), rmax(Z), comp(T))

= (ldr(m), b(m), asc(r "), rmax(r), comp(n)) ,
wherecomp denotes the number of components of the individual strastas defined above.

Example 12 Let P be the poset from Example 4 anddedndr be the corresponding ascent sequence and
permutation. One checks that the above theorem holdgwiith( P), £*(P), £(P), max(P), comp(P)) =
(2,2,4,2,1).

T = (0,1,0,173,171,2); ™ :03117642832455,
z=1(0,3,0,1,4,1,1,2); 7' =27158436.
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6 Enumeration

Theorem 13 Letp, be the number af2 + 2)-free posets of cardinality and letP(t) = >, -, p,t" be
the associated generating function. Then -

P(t) =Y ﬁ(1—(1—t)i).

n>0 i=1
This series also counts permutationsfand ascent sequences, by length.

To our knowledge, this result is new. El-Zahar [4] and Khal8]jsised a recursive description & + 2)-
free posets, different from that of Section 3, to derive a p&functional equations that define the series
P(t). However, they did not solve these equations. Haxell, Maddand Thomasson [7] provided an
algorithm, based on a complicated recurrence relationiddyzce the first numbeys, .

These numbers, and the above expressio® @, occur in the Encyclopedia of Integer Sequences
as sequence A022493 [11]. But there(t) is described as counting certain involutions, or chord dia-
grams [12; 13], that form the topic of Section 7. It is know8][that

n 6\"
% ~ K (P) \/57
which proves that the serid¥(t) is not D-finite (the exponential growth constant would beshigic).
The proof of Theorem 13 exploits the recursive structuresoat sequences. The structure translates

into a functional equation that defines a 3-variable gemegdtinction F'(¢; u, v), which counts these
sequences hy length)( ascent numben and last entry«):

(v—1—tv(l —u) Ft;u,v) = (v —1)(1 — tuv) — tF(t;u, 1) + tuwv? F(t; uv, 1).

The so-calledkernel methodhen gives:

(1 —u)uF=1(1 —t)*
F(t;u,1) = _
T T B} AR T

Observe that this expression is divergent whea 1. In a final step, we transform it into

Fltu, 1) =Y Y (u—1)""fuf Y (=1 <;:L) a-om* J[ (-0a-97,
n>0£=0 m=/ 1=m—I{+1

which specializes to Theorem 13 when-= 1.

7 Involutions with no neighbour nesting

As discussed above, the series of Theorem 13 is known to ceutatin involutions or2n points, called
regular linearized chord diagram@LCD) by Stoimenow [12]. This result was proved by Zagie3]j1
following Stoimenow’s paper. In this section, we give a nawqgs of Zagier’s result, by constructing a
bijection between RLCDs o2 points and unlabele@ + 2)-free posets of size.
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LetZ,, be the collection of involutions in Sy, that have no fixed points and for which every descent

crosses the main diagonal in its dot diagram. Equivaleiftly;, > w1 thenw; > i > 7;41. An
alternative description can be given in terms of t@rd diagramof 7, which is obtained by joining
the pointsi and~ (i) by a chord (Figure 1, left). Indeed, € I, if and only if, for anyi, the chords
attached ta andi + 1 are notnested in the terminology used recently for matchings [3; 9]. Tlsat
the configurations shown on the left of the rules of Fig. 2 aréifiden (but a chord linkingto: + 1 is
allowed).

Recall that a poseP is (2 + 2)-free if and only if it is aninterval order[5]. This means that there
exists a collection of intervals on the real line whose red¢abrder isP, under the order relation:

[a,b] < [e,d] <= b<ec
Let m € Iy, with transpositiong («;, ;) }7, wherea; < g; for all i. DefineO(r) to be the interval

order (or equivalently, poset) associated with the cdbvecof intervals{[a, 5;]}1- ;.

Example 14 Considerr = 45712836109 € 7. The transpositions of are shown in the chord
diagram of Figure 1. Beneath the chord diagram is the coitetbf intervals that corresponds tg and
the (2 + 2)-free poseO(n) is illustrated on the right hand side. We have added labelsigblight the
correspondence between intervals and poset elements.

TN KN A .

1 2 3 456 78 910

ai i di | e

Fig. 1: An involution inZ;0, the corresponding collection of intervals and the assedi@ + 2)-free poset.

Theorem 15 The mapO is a bijection between involutions 35,, and (2 + 2)-free posets on elements.

It is not very hard to prove tha® is a surjection. That is, for evefy2 + 2)-free orderP, one can find an
involution 7 such thatD(r) = P. The proof uses the transformations of Fig. 2. We then empleit the
involution is uniquely determined by the poset.

Fig. 2: Two operations on chord diagrams.
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