
HAL Id: hal-00396303
https://hal.science/hal-00396303

Submitted on 19 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling with Storage Constraints
Erik Saule, Pierre-Francois Dutot, Grégory Mounié

To cite this version:
Erik Saule, Pierre-Francois Dutot, Grégory Mounié. Scheduling with Storage Constraints. IPDPS’08,
Apr 2008, Miami, United States. pp.1-8. �hal-00396303�

https://hal.science/hal-00396303
https://hal.archives-ouvertes.fr

Scheduling with Storage Constraints

Érik Saule Pierre-François Dutot Grégory Mounié

LIG∗– MOAIS Team

Grenoble Universités, France

{firstname.lastname}@imag.fr

Abstract

Cumulative memory occupation is a quite intuitive but

not so studied constraint in scheduling. The interest in such

a constraint is present in multi-System-on-Chip, embedded

systems for storing instruction code, or in scientific com-

putation for storing results. Memory occupation seen as a

constraint is impossible to solve with approximation algo-

rithms. We believe that transforming the constraint into a

second objective to optimize helps to deal with such con-

straints.

The problem addressed in this paper is to schedule tasks

on identical processors in order to minimize both maximum

completion time and maximum cumulative memory occu-

pation. For independent tasks, a family of algorithms with

good approximation ratios based on a PTAS is given. Sev-

eral approximation ratios are proved to be impossible to

achieve with any schedule. The precedence constrained

case is then studied and a family of performance guaranteed

algorithms based on List Scheduling is proposed. Finally,

optimizing the mean completion time as a third objective is

also studied and a tri-objective algorithm is given.

1 Introduction

The total execution time is the most studied objective

in computer science optimization problems. From a global

point of view this objective satisfies most of the users. In

practice, this quantity is one of the most difficult to de-

crease, as adding new computing resources is not always

sufficient. Some problems involving communication times

are even hard for an unlimited number of resources.

Storage capacity is one of the other basic needs. Most of

the time, it is much easier to increase the available capacity

than to produce memory-aware schedules. The additional

∗LIG is supported by CNRS, INPG, INRIA, UJF and

UPMF. See http://lig.imag.fr. Part of this work

was supported by the “CoreGRID” Network of Excellence.

financial cost is generally linear with the capacity increase.

However increasing the memory is not always possible. For

instance, in a multi-System-on-Chip (SoC) embedded sys-

tem, every SoC has a limited storage capacity per processor

for storing instructions. In such a context, code replication

for online optimization can make memory constraints a key

issue [5]. While the contexts of limiting time and memory

usage appear to be quite different they arise jointly in some

applications, such as large physics applications [4]. In all

cases scheduling techniques can be applied to address both

problems, extending to several models of architecture.

This article addresses the tasks multi-processor schedul-

ing problem with two simultaneous objectives: total

execution time and memory usage. The processing time of

every task is not related to the memory it uses. The problem

of scheduling independent tasks with strict memory con-

straint is a strongly related problem. However, this problem

is intractable through the approximation theory point of

view as detailed in Section 2. Studying the bi-objective

scheduling problem will help to deal with the strictly

constrained problem.

This article proposes two families of parameterized ap-

proximation algorithms to compute a guaranteed solution

for tasks scheduling problem on multiprocessor, optimizing

both makespan and maximum memory consumption over

all processors. The first one computes a (1+∆+ǫ, 1+ 1
∆ +

ǫ)-approximated schedule where ∆ > 0 is the parameter of

the algorithm. This family of algorithms is only valid for

independent tasks and can not be extended to other models

or objective functions.

The second one computes a (2 + 1
∆−2 − ∆−1

m(∆−2) ,∆)-

approximated solution for ∆ > 2 on the DAG schedul-

ing problem. It can be transformed into a tri-objective al-

gorithm on independent tasks, which also optimizes the

mean completion time of tasks with a performance ratio of

(2 + 1
∆−2).

The article also proposes an analysis of the best

achievable performance ratio. It is proven that

no algorithm can have an approximation ratio bet-

ter than (3
2 , 3

2). Approximation ratios better than

(1 + i
km

, 1 + (m − 1)(1 − i
k
)),∀m, k ≥ 2, i ∈ {0, . . . , k}

have also been proved to be impossible.

The remainder of the article is organized as follows.

Section 2 states formally the bi-objective scheduling prob-

lem and discusses the model. An approximation algorithm

for independent tasks is given in Section 3. Some bounds

on best approximation ratio achievable are detailed in Sec-

tion 4. The general cases of DAG scheduling is studied and

an tri-objective extension on independent tasks is detailed

in Section 5. Existing works in the field of multi-objective

optimization are described in Section 6. Concluding re-

marks, including a discussion about the resolution of the

original problem with the method we propose, are given in

Section 7.

2 Preliminaries

2.1 Formal statement

As we start our study with independent tasks, we will

begin by presenting the formal definitions.

Let T = {t1, . . . , tn} be a set of n tasks. Task i takes pi

time units to execute and has a code of si memory units. Let

Q be a set of m identical processors. A schedule π : T → Q
assigns each task to a processor. We denote by Cπ

max =
maxq∈Q

∑

π(i)=q pi the completion time of the last task to

be executed. We denote by Mπ
max = maxq∈Q

∑

π(i)=q si

the maximum memory consumption of a processor. The

parameter π will be omitted when no confusion is possible.

Notice that, with independent tasks Mmax and Cmax are

strictly equivalent and can be exchanged. Thus, we can see

the memory consumption as a second time line. However,

we believe that having two different notations will help the

reader not to confuse both objectives. With independent

tasks, all results are symmetric.

The problem we tackle is to minimize both Cmax and

Mmax at the same time and could be denoted in the Lawler

notation as P | pj , sj | Cmax, Mmax. Recall that P | pj |
Cmax is strongly NP-complete [7]. The optimal makespan

(resp. memory consumption) is denoted by C∗
max (resp.

M∗
max).

In Section 5, we will tackle the problem with precedence

constraints. Thus, we introduce the starting time σ(i) of

task i and its completion time Ci = σ(i) + pi. A processor

can execute only one task at a time. A task can not be

executed until all its predecessors are completed. Prede-

cessors (resp. successors) of task i will be denoted pred(i)
(resp. succ(i)). The completion time of the last task to

be executed is now denoted by Cπ
max = maxi∈T (Ci).

With precedence constraints, the problem is denoted

P | pj , sj , prec | Cmax, Mmax.

2.2 Changing Objectives into Constraints

We briefly discuss here why we chose to do bi-objective

optimization while the related industrial problem is to find a

schedule that minimizes Cmax with respect to Mmax ≤ M .

The main reason is that this problem can not be approxi-

mated within a constant factor. Indeed, deciding if a sched-

ule exists such that Mmax ≤ M is a strongly NP-complete

problem as it is the decision version of P | pj | Cmax [7].

An approximation algorithm should always be able to find

a valid schedule or ensure that none exists. Thus, it is im-

possible (unless P=NP) to find an approximation algorithm

for such a problem that runs in polynomial time.

3 Symmetric Bi-objective Approximation Al-

gorithm

3.1 Principle

The idea of the algorithm is to combine the results of

two algorithms, each dedicated to a single objective. Since

each algorithm will be run with all the tasks as input, we

eventually have to choose between two possible allocations

for each task. This choice will be made by setting a thresh-

old on the ratio between execution time and memory. Intu-

itively, if a task needs a lot of memory and is quickly exe-

cuted, it needs to be scheduled with memory as a primary

concern. Conversely, a long task which does not require a

lot of memory has to be scheduled with an algorithm opti-

mizing the makespan.

Since memory and execution times taken separately are

two similar objectives, we can use the same algorithm for

both schedules replacing the pi values used to minimize the

makespan in the first schedule by si values. Some good

approximation algorithms for the P | pj | Cmax problem

are known. Graham proposed List Scheduling [8], which

is a 2 − 1
m

approximation algorithm which is recalled in

Section 5. A PTAS based on the Subset Sum problem has

also been proposed in [9].

3.2 Algorithm

The algorithm described above is more formally written

in pseudo code as Algorithm 1, and will be named SBO∆

(for Symmetric Bi-Objective) in the rest of the paper where

∆ is strictly greater than zero. As described in the algo-

rithm, π1 is a schedule produced by a ρ1 approximation al-

gorithm on the makespan and π2 is a schedule produced

by a ρ2 approximation algorithm on the memory consump-

tion. To simplify the notations, we will note C the guar-

anteed makespan produced by the first algorithm (Cπ1

max)

and M the maximum memory used by the second algorithm

(Mπ2

max).

Algorithm 1 SBO∆

Input: m: an integer

{p1, . . . , pn}: n integers

{s1, . . . , sn}: n integers

Begin

Let π1 be a ρ1-approximated schedule for Cmax

Let C be Cπ1

max

Let π2 be a ρ2-approximated schedule for Mmax

Let M be Mπ2

max

For i = 1 to n
if pi

C
< ∆ si

M

then π∆(i) = π2(i)
else π∆(i) = π1(i)

End For

Return π∆

End

PROPERTY 1 The schedule π∆ generated by Algorithm 1

is a (1 + ∆)ρ1-approximated schedule on the makespan.

Proof: Let us note S1 the set of tasks allocated according

to π1, and S2 the set of tasks allocated according to π2.

The total execution time for each processor is the sum of

the execution time of the tasks of both sets allocated to that

processor. For set S1, this sum of execution time is easily

bounded by Cπ1

max. For set S2, we have on the one hand

the fact that for each task of S2 the ratio between execution

time and memory is lower than ∆ C
M

, and on the other hand

that the total memory used on each processor by allocation

π2 is bounded by M . Combining those two facts, for each

processor k we obtain:

∑

i∈S2,π2(i)=k

pi <
∑

i∈S2,π2(i)=k ∆C si

M

= ∆C
(

∑

i∈S2,π2(i)=k
si

M

)

≤ ∆Cπ1

max

As Cπ1

max is less or equal to ρ1C
∗
max, this concludes the

proof.
�

PROPERTY 2 The schedule π∆ generated by Algorithm 1

is a (1 + 1/∆)ρ2-approximated schedule on memory.

The proof is similar to the proof of Property 1 and is

omitted.

COROLLARY 1 For any fixed value ǫ > 0, there exist

polynomial algorithms with approximation ratio of (1+∆+
ǫ, 1+ 1

∆+ǫ). Moreover, there always exists a solution whose

makespan and memory consumption are respectively lower

or equal to 2C∗
max and 2M∗

max.

The corollary comes directly from the known PTAS for

P || Cmax.

4 Impossible Approximation Ratios

In this section, we deal with the inapproximability of the

problem with a single solution. We will explain the princi-

ple on a simple result in Section 4.1, which is generalized

in Section 4.2. We will then provide another interesting in-

stance which will give us additional impossibilities.

4.1 Introducing the Concept

Let us consider an instance with 2 processors and 3 tasks

with: p1 = 1, p2 = p3 = 1
2 and s1 = ǫ, s2 = s3 = 1.

There are only 3 possible schedules (by removing sched-

ules with idle time and symmetric schedules): In the first

one, task 1 is scheduled in parallel with task 2 and 3. In

the second one, task 1 and 2 are scheduled on the same

processor. In the third one, all tasks are scheduled on the

same processor. Those 3 solutions lead to 3 objective val-

ues: (1, 2), (3
2 , 1 + ǫ) and (2, 2 + ǫ). The last one is Pareto

dominated by the two others. In Figure 1, we represented

the two dominating schedules as Gantt charts (with time as

rectangle length), and the additional information of memory

consumption as labels on the tasks. For this instance, we

have C∗
max = 1 and M∗

max = 1 + ǫ. Suppose that we have

a (1, 7
4)-approximation algorithm. It will compute on this

instance a solution with Cmax ≤ 1 and Mmax ≤ 7
4 (1 + ǫ).

No such solution exists for this instance. Thus, such an al-

gorithm can not exist. In these results, ǫ may be as small

as needed. More generally, there are no algorithms with a

performance ratio better than (1, 2). Once again, the result

is symmetric.

LEMMA 1 No approximation algorithm can be better

than (1, 2) or (2, 1).

4.2 Extending the Idea to m Processors

To go further, this result can be expressed for more than

two processors and more than three tasks. With m proces-

sors, we construct a similar instance using km + m − 1
tasks. As previously, we use two types of tasks. The m − 1
first tasks are identical and are defined such that p1 = · · · =
pm−1 = 1 and s1 = · · · = sm−1 = ǫ, while the km other

1 1

ǫ

1

1

1ǫ

3
2

Figure 1. The two Pareto optimal schedules

for the first instance (sizes are according to

durations).

tasks are defined such that pm = · · · = pkm+m−1 = 1
km

and sm = · · · = skm+m−1 = 1. The optimal makespan is

therefore 1, and the optimal memory consumption is k + ǫ.

A straightforward case analysis shows that there are k+1
Pareto optimal schedules. Solution i ∈ {0, 1 . . . k} sched-

ules i tasks of the second type and one of the first type on

each of the first m−1 processors, scheduling the remaining

tasks (which are km−i(m−1) tasks of the second type) on

the last processor. Solution i has a makespan of 1+ i
km

and

a memory consumption of k+(k−i)(m−1) unless i equals

to k. Solution k has a maximum memory consumption of

k+ǫ. Again, there are no algorithms with an approximation

ratio better than (1 + i
km

, 1 + (m − 1)(1 − i
k
)).

LEMMA 2 ∀m, k ≥ 2, i ∈ {0, . . . , k} there are no algo-

rithms with an approximation ratio better than (1+ i
km

, 1+

(m − 1)(1 − i
k
)).

Notice that i
k

can reach all values between 0 and 1. Thus,

the inapproximability result is continuous. Furthermore, we

can also produce symmetric results by swapping memory

consumption and processing times.

Results obtained for small values of m are depicted in

Figure 3 along with the results of the following section.

4.3 More Impossibilities

In this second instance, we will again consider only two

processors and three tasks. The computation times and

memory requirements of the tasks are p1 = 1, p2 = ǫ, p3 =
1 − ǫ and s1 = ǫ, s2 = 1, s3 = 1 − ǫ. As in Section 4.1,

there are only a few possible schedules. The three possi-

bly Pareto optimal schedules are obtained by grouping two

tasks on one processor and executing the third one alone.

Executing all three tasks on one processor is dominated by

each of these schedules. The values of the three schedules

are (1, 2 − ǫ) when tasks 1 is alone, (1 + ǫ, 1 + ǫ) when

task 3 is alone and (2 − ǫ, 1) when task 2 is alone. Since

C∗
max and M∗

max are both equal to 1, these values are also

minimum possible approximation ratios. Remark that the

(1 + ǫ, 1 + ǫ) point is Pareto optimal only when ǫ is less

than 1
2 . For values of ǫ close to 1

2 this instance proves the

following lemma:

LEMMA 3 No algorithm can have a better approximation

ratio than (3
2 , 3

2).

The corresponding Pareto optimal schedules are repre-

sented in Figure 2, with respective memory consumption

written as labels on the tasks.

ǫ

1

1 − ǫ

2 − ǫ

ǫ 1

1 − ǫ

1 + ǫ

ǫ

11 − ǫ

1

Figure 2. The three Pareto optimal schedules
for the second instance.

This particular result cannot be extended as we did for

the previous one by introducing a large number of tasks

since all the tasks are different and splitting a task would

lead to better schedules (which in turn leads to less interest-

ing inapproximability results).

This lemma and the previous one (for values of m be-

tween 2 and 6) are illustrated in Figure 3. Note that in this

figure, it may be possible to find algorithms achieving the

values on the border of the designated domain. To complete

the illustration, we included as a dashed curve the approxi-

mation ratio curve obtained in Section 3.

5 General Case

While the independent tasks case models some grid com-

puting problems, DAG scheduling is more suitable for em-

bedded system applications. SBO∆ presented in Section 3

can not be extended to the DAG scheduling problem. Thus,

we design a new algorithm to deal with precedence con-

straints. This algorithm is detailed and analyzed in Sec-

tion 5.1. Then, we present in Section 5.2 an extension of this

algorithm that is able to optimize a third objective, namely

the sum of completion time, on independent tasks.

1

2

3

1 2 3 4

Figure 3. Impossibility domain for minimiz-

ing both makespan and memory consump-

tion ratios. The dashed curve represents ap-
proximation ratios from Section 3.

5.1 An Algorithm Based on List Schedul-
ing

The List Scheduling algorithm was the first heuristic

which have been proved to be efficient with respect to the

makespan, with a fixed performance ratio on Cmax. This

proof was then extended to the precedence constraints case

by Graham in [8]. Its principle is to ensure that when pro-

cessors are experiencing idle times there are no available

tasks. The crucial point is that the approximation ratio came

from the sum of two basic lower bounds of the achievable

makespan: the critical path and the total work divided by

the number of processors. The algorithm we propose is in-

spired from List Scheduling.

Algorithm RLS∆ (for Restricted List Scheduling),

given in Algorithm 2, computes a lower bound LB on the

optimum value of Mmax which is the well known Graham

lower bound. Then a degradation factor of ∆ is allowed on

Mmax; no processor is allowed to use more memory than

∆LB. We schedule iteratively the task which can start the

soonest without violating the memory constraint. We can

use an arbitrary total ordering of tasks to break ties.

For the analysis of this algorithm, we are first interested

in the number of processors that have been marked, that is

the number of processor that at some point have not been

chosen by the algorithm because they were too loaded on

Mmax.

LEMMA 4 The number of marked processor is less or

equal to
⌊

m
∆−1

⌋

.

Proof: For each marked processor j, a task i exists

such that memsize[j] > ∆LB − si ≥ (∆ − 1)LB (the

Algorithm 2 RLS∆

Input: m: an integer

{p1, . . . , pn}: n integers

{s1, . . . , sn}: n integers

Begin

compute LB = max(maxi si,
∑

i
si

m
)

load[1] = · · · = load[m] = 0
memsize[1] = · · · = memsize[m] = 0
Until all tasks are scheduled

For each ready task i
Let j be the processor minimizing load[j]
Let proc[i] = j

such that memsize[j] + si ≤ ∆LB
Let ready[i] = max(maxi′∈prec(i) σ(i′) + pi′ ,

load[j])
/*for analysis only : */

mark processor j′ such that load[j′] < load[j]
End For

Let i∗ be the task minimizing ready[i]
π(i∗) = proc[i∗]
σ(i∗) = ready[i∗]
load[proc[i∗]] = σ(i∗) + pi∗

memsize[proc[i∗]]+ = si∗

End Until

Return (π, σ)
End

last inequality came from si ≤ LB). Suppose there are

more than m
∆−1 marked processors. As they were marked,

∑

j∈marked memsize[j] > m
∆−1 (∆ − 1)LB = mLB.

But
∑

j∈marked memsize[j] ≤
∑

i si ≤ mLB. Thus,

mLB ≥
∑

j∈marked memsize[j] > mLB which is im-

possible. Thus, there are less than m
∆−1 marked processor.

�

This last lemma directly implies that the algorithm can

not take as input values of ∆ lower or equal to 2. Indeed,

for those small values there might be a task which cannot be

placed on any processor due to a large memory requirement,

and consequently marking all processors. Thus, we have to

choose values of ∆ greater than 2 for which the algorithm

yields schedules with Mmax lower or equal to ∆LB. This

leads to the following corollary.

COROLLARY 2 RLS∆ is ∆-approximate on Mmax if

∆ ≥ 2.

Since
⌊

m
∆−1

⌋

processors could have been discarded due

to memory constraints, it means that at least
⌈

m∆−2
∆−1

⌉

pro-

cessors are freely used to optimize Cmax which is sufficient

to be guaranteed on Cmax.

LEMMA 5 RLS∆ is (2 + 1
∆−2 − ∆−1

m(∆−2))-approximate

on Cmax if ∆ > 2.

Proof: We consider a partition CP ∪W of the time units

between 0 and Cmax. A time unit t belongs to CP if a

processor is idle at t and all tasks i scheduled after were not

ready at t : maxi′∈prec(i) σ(i′) + pi′ > t. Remark that the

cardinality of CP is less than the processing time of any

chain in the DAG. Thus, |CP |≤ C∗
max.

All the processing requirement
∑

pi is scheduled in W
except the part which has been executed in CP which is

greater than |CP | (this lower bound is tight if only one pro-

cessor is active during CP). Recall that Lemma 4 implies

that at least m∆−2
∆−1 processors are never constrained on the

memory. Thus, the length of W is smaller than
P

pi−|CP|

m ∆−2

∆−1

.

Since the schedule is partitioned into two sets of time

units W and CP , we can write the length of the schedule as

the sum of the length of both parts:

Cmax =|W | + |CP |≤ (1 + 1
∆−2)

P

pi

m

+(1 − ∆−1
m(∆−2)) |CP |

Recall that
P

pi

m
and | CP | are lower bounds of C∗

max.

Replacing them in the previous equation, we get:

Cmax ≤ (2 +
1

∆ − 2
−

∆ − 1

m(∆ − 2)
)C∗

max

�

We can now state the approximation ratio of RLS∆ :

COROLLARY 3 RLS∆ is a (2+ 1
∆−2 −

∆−1
m(∆−2) ,∆) ap-

proximation algorithm, with ∆ > 2. Its time complexity is

O(n2m).

Note that since n is greater than m this complexity is

polynomial in the size of the instance. For an easier com-

parison to the results obtained in Section 3, we can re-

place ∆ with 2 + ∆′ and write the approximation ratio as

(2 + 1
∆′

− ∆′+1
m∆′

, 2 + ∆′).

5.2 A Three Criteria Extension on Inde-
pendent Tasks

It is sometimes useful in grid computing to obtain some

early results in order to ensure that an application behaves

as the user expects. From a scheduling point of view, this

behavior can be achieved by optimizing the mean comple-

tion time of jobs which is equivalent to optimizing the sum

of completion time. Thus, we are interested in this Sec-

tion in optimizing three objectives namely, makespan, max-

imum memory consumption and sum of completion time,

when scheduling independent tasks. Once again, the algo-

rithm presented in Section 3 can not be adapted to optimize

the sum of completion time. However, the List Schedul-

ing based algorithm presented previously allows to consider

tasks in the SPT order which ensure a guarantee on
∑

Ci.

Recall that a List Scheduling using SPT is optimal on
∑

Ci

on an arbitrary number of processors.

We first consider the degradation in
∑

Ci when a frac-

tion of processor is forbidden.

LEMMA 6 Let π1, π2 be two SPT schedules on m and

ρm processors of the same set of tasks (0 < ρ ≤ 1) then
∑

Cπ2

i ≤ (1
ρ

+ 1)
∑

Cπ1

i .

Proof: We prove the lemma, by proving that ∀j, Cπ2

j ≤

(1
ρ

+ 1)Cπ1

j .

Without loss of generality, tasks are indexed accord-

ing to the SPT rule. In a partial SPT schedule, when

task j is scheduled, it is the last task to complete. Thus,
1
m

∑

k=1,...,j pk ≤ Cπ1

j .

With ρm processors, when j starts, only the j − 1 first

tasks have been scheduled. Thus, sπ2

j ≤ 1
ρm

∑j−1
k=1 pk,

which leads to Cπ2

j ≤ 1
ρm

∑j−1
k=1 pk + pj ≤ 1

ρ
Cπ1

j + pj .

As the completion time Cπ1

j of task j is greater than its ex-

ecution time pj , we have Cπ2

j ≤ (1
ρ

+ 1)Cπ1

j
�

In RLS∆, m∆−2
∆−1 processors are always available. Thus,

we could apply the previous lemma for this particular value

of ρ. Remember that SPT is optimal on
∑

Ci. Thus, hav-

ing additional processors can not degrade the
∑

Ci objec-

tive. From all those result, we can state the approximation

ratio of RLS∆ if the SPT order is chosen to break ties on

independent tasks.

COROLLARY 4 Using SPT as the order of tasks in

RLS∆ leads to a (2 + 1
∆−2 − ∆−1

m(∆−2) ,∆, 2 + 1
∆−2)-

approximated solution on (Cmax, Mmax,
∑

Ci)

6 Related Works

Multi-objective optimization is a quite recent topic. In

the approximation algorithms field, two main approaches

are used to deal with such problems.

The first one is the absolute approximation technique.

An algorithm computes a solution which approximates all

objectives at the same time. In scheduling, it is usual to

optimize two objectives by mixing a schedule efficient on

the first objective and a second one efficient on the sec-

ond objective. Such a method has been used in [12] to de-

rive a framework for absolute approximation on both Cmax

and
∑

Ci. It has been used to deal with a bi-objective

scheduling problem with deadlines [3]. Recently, a simi-

lar approach have been used to schedule independent tasks

to optimze both sum of completion time and weighted sum

of completion time on a single machine [1]. Some adhoc

methods also exist. For instance, Laforest [10] proposes a

tri-criteria approximation algorithm for a network construc-

tion problem.

The second one is the Pareto set approximation. The

idea is to give the set of all Pareto solutions. However, this

set can be of exponential cardinality. Thus, we use an ap-

proximated set of solutions. For an optimization problem

whose decision version belongs to NP, it is proven that there

exists a polynomial approximated set [11]. This approach

have been studied for scheduling problems such as [2]. The

approximation of Pareto set is mainly interesting when no

absolute approximation algorithms exists. In the grid com-

puting and embedded systems community, the problem of

optimizing the reliability of the system as well as its effi-

ciency is such a problem [6].

In this work, we focused on the absolute approxima-

tion technique. Indeed, using the Pareto set approximation

technique implies to chose between several interesting so-

lutions. This choice is often difficult to do automatically

and, thus, require a human decision maker. However, all

algorithms we provide can be tuned using the ∆ parameter.

7 Concluding Remarks

In this article, we tackled the problem of scheduling

tasks with a cumulative memory constraint on processors.

The constraint on memory does not allow us to derive ap-

proximation algorithms due to the NP-completeness of find-

ing a feasible schedule. Thus we transformed the constraint

into an objective to optimize. The bi-objective problem

has been studied: some impossible approximation ratios

have been pointed out, and two algorithms dealing respec-

tively with independent tasks and precedence constraints

have been proposed.

Those results can help to solve the original problem. Re-

garding the problem with precedence constraints, it is easy

to compute the Graham lower bound on the memory us-

age and thus to compute which parameter to use with RLS.

This enables us to know which approximation ratio on the

makespan can obtained. We also know that using another

value of the parameter can not lead to better feasible solu-

tion as the algorithm uses a thresholding approach. How-

ever, this is not the case on independent tasks. A parameter

which always leads to a feasible solution can also be com-

puted. But then the solution can be tentatively improved by

doing a binary search on the parameter. Finally, only few

cases can not be handled by the algorithms we proposed,

which are when it is difficult to fit the tasks due to the mem-

ory constraint. It seems difficult to guarantee performances

in such cases.

The independent tasks case is, as usual, the core of

the problem. Thus, future works should focus on closing

the gap between impossible approximation ratios and the

known achievable ratios. The approximation ratio of the

Restricted List Scheduling algorithm does not seem to be

tight and List Scheduling based algorithms are often used

in practice. Thus, the approximation ratios should be im-

proved or a tight counter example should be presented.

Some more realistic model extensions should be investi-

gated such as conditional task graphs or non identical pro-

cessors.

From a more general point of view, we show a problem

in which transforming a constraint into an objective helps

to deal with it. We also believe that this approach can help

to deal with other constraints such as real-time constraints.

References

[1] E. Angel, E. Bampis, and A. V. Fishkin. A note on schedul-

ing to meet two min-sum objectives. Operation Research

Letters, 35(1):69–73, 2007.

[2] E. Angel, E. Bampis, and A. Kononov. A FPTAS for approx-

imating the Pareto curve of the unrelated parallel machines

scheduling problem with costs. In LNCS, editor, Algorithms

- ESA 2001, volume 2161, pages 194–205, 2001.

[3] F. Baille, E. Bampis, and C. Laforest. A note on bicrite-

ria schedules with optimal approximations ratios. Parallel

processing letters, 14(2):315–323, 2004.

[4] S. Campana, D. Barberis, F. Brochu, A. De Salvo, F. Donno,

L. Goossens, S. Gonzalez de la Hoz, T. Lari, D. Liko,

J. Lozano, G. Negri, L. Perini, G. Poulard, S. Resconi,

D. Rebatto, and L. Vaccarossa. Analysis of the atlas rome

production experience on the lhc computing grid. In E-

SCIENCE ’05: Proceedings of the First International Con-

ference on e-Science and Grid Computing, pages 82–89,

Washington, DC, USA, 2005. IEEE Computer Society.

[5] P. Choudhury, R. Kumar, and P. P. Chakrabarti. Hybrid

scheduling of dynamic task graphs with selective duplica-

tion for multiprocessors under memory and time constraints.

IEEE Transactions on Parallel and Distributed Systems,

(preprint), 2007.

[6] J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi. Bi-objective

scheduling algorithms for optimizing makespan and relia-

bility on heterogeneous systems. In SPAA ’07: Proceedings

of the nineteenth annual ACM symposium on Parallelism in

algorithms and architectures, pages 280–288, 2007.

[7] M. R. Garey and D. S. Johnson. Computers and Intractabil-

ity. Freeman, San Francisco, 1979.

[8] R. L. Graham. Bounds on multiprocessing timing anoma-

lies. SIAM Journal on Applied Mathematics, 17(2):416–429,

March 1969.

[9] D. S. Hochbaum and D. B. Shmoys. Using dual approx-

imation algorithms for scheduling problems: Practical and

theoretical results. Journal of ACM, 34:144–162, 1987.

[10] C. Laforest. A tricriteria approximation algorithm for steiner

tree in graphs. Technical Report 69-2001, LaMI, 2001.

[11] C. H. Papadimitriou and M. Yannakakis. On the approx-

imability of trade-offs and optimal access of web sources.

In FOCS, editor, 41st Annual Symposium on Foundations of

Computer Science, pages 86–92, 2000.

[12] C. Wein and J. Stein. On the existence of schedules that are

near-optimal for both makespan and total weighted comple-

tion time. Operational research letters, 21(3):115–122, Oct.

1997.

