N

N
N

HAL

open science

Robust identification of switched regression models

Elom Ayih Domlan, Biao Huang, José Ragot, Didier Maquin

» To cite this version:

Elom Ayih Domlan, Biao Huang, José Ragot, Didier Maquin.
regression models. IET Control Theory and Applications, 2009, 3 (12), pp.1578-1590.

¢ta.2008.0274 . hal-00396230

HAL Id: hal-00396230
https://hal.science/hal-00396230v1
Submitted on 30 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Robust identification of switched
10.1049/iet-


https://hal.science/hal-00396230v1
https://hal.archives-ouvertes.fr

Robust identification of switched regression
models
E. Domlan® B. Huang® J. Ragot® D. Maquin®

IDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton AB T6G 2G6, Canada

2Centre de Recherche en Automatique de Nancy, UMR 7039, Nancy-Université, CNRS 2, Avenue de la Forét de Haye, 54516
Vandceuvre-les-Nancy, France

E-mail: Biao.Huang@ualberta.ca

Abstract: This study addresses the problem of parameters estimation for switched regression models used to
represent systems with multiple operating modes or regimes. For the identification of such models, the
collected data are from different operating modes and there is no a priori information holding on the
partitioning of the data in regard to the different operating modes. The essential contributions of this study
lie first in the estimation procedure of the model parameters that provides an analytical solution, second in
the simultaneous resolution of the problem of estimating the model parameters and allocating the data
points to the different local models and finally the robustness of the estimation procedure regarding the

presence of outliers in the identification dataset.

1 Introduction

The interest of researchers in modelling systems presenting
multiple operating regimes with classical linear or multi-linear
models can be traced back to the early 1970s in various
research areas such as economics, finance or engineering. This
carly attention to multiple operating regime systems has given
rise to many modelling paradigms known as switching
regression models or more generally as switched or switching
models. Among the pioneering work, those of Hudson [1],
Quandt [2] and Goldfeld [3] gave the first principles of such
representation. Since then, many subsequent contributions
have helped define a clear and precise framework for this
formalism that can potentially be applied to any system or
process that exhibits, in a natural or forced manner, a
switched operating regime behaviour [4, 5]. Switched
regression models can be generally classified into two categories:

* Models whose operating regime changes are determined
by a known variable, meaning the values of that variable
can be obtained directly through the instrumentation
system or indirectly through the usage of observers.

¢ Models whose operating regime changes are determined
by an unknown variable. In this later situation, the

mechanism that generates the changes of operating regime
has to be also modelled using the available measured
variables.

It may be noticed that hybrid models cover both situations
where the operating regime changes can moreover be
described by a Markov process [6, 7] that can potentially
bring additional knowledge for the characterisation of these
systems.

Before describing the behaviour of a process or a system
with a switched regression model, the preliminary question
to be addressed is the actual existence of different operating
regimes or modes. The most difficult situation is
encountered when only input/output measurements exist
without further information on the physical existence of
many operating regimes. It is then mandatory to discover
these operating regimes based on the available measurements.
Once their existence is confirmed, they have to be
characterised by assessing their number and the parameters
of their corresponding local model.

Switched regression models can be viewed as a particular
class of hybrid models that regroups different models such
as switched auto regressive exogenous (ARX) models [8] or



piece-wise affine (PWA) models [9] and their extension to
piece-wise auto regressive exogenous (PWARX) models
[10]. From a general point of view, switched regression
models are constructed by partitioning the operating space
of the system into a finite number of regions and allocating
a local autoregressive exogenous model to each obtained
region. A switching mechanism is then defined in order to
determine the conditions of occurrence of a switch from
one local model to another. This can be equivalently
viewed as imposing logical constraints on the model [11].
The resulting identification problem for this type of models
is generally non-linear [12] because of the logical
constraints that generate the switches from one local model
to another, translating the physical viewpoint of changes in
the process operating regime. The main difficulty results
from the coupling between the estimation of the
parameters of the local models and the estimation of the
validity domains of these models with the arising question
being: how is the identification dataset, the data relevant to
a particular operating mode selected? It is therefore
appropriate to resort to different concepts: data clustering,
data classification and parameter estimation.

The conventional approaches typically use a two-stage
procedure [13]. In the first stage, the dataset is a priori
partitioned in several regions and; in the second stage, one
proceeds to the estimation of the parameters of the local
models in the resulting partitioned space [14]. The initial
partitioning is then updated based on the results of the
estimated parameters until the convergence of the
successive obtained solutions.

The attention for the estimation problem of switched
regressions models has been recently revived by several
publications in the literature. In [10], a combination of
clustering, classification and linear identification methods is
used to provide a solution to the identification problem.
Ragot e al. [15] introduced a method based on the
selection of an adapted weighting function that is used to
perform the allocation of the data to the operating modes.
A Bayesian inference approach is used in [16] to solve the
identification problem. A procedure based on the selection
of a bound on the identification error is presented in [17].
The selection of an identification error bound allows us to
simultaneously resolve the issue of data allocation and
parameters estimation. Vidal e al [8] proposed an
algebraic geometric solution to the identification problem
and Nakada er @/ [18] developed an algorithm based on a
statistical clustering technique.

Generally, during the identification of a process or a
system, the data used for the identification procedure
usually come from an instrumentation system that is subject
to various perturbations, and even failures. The collected
data are then often corrupted by measurement errors. If the
measurement errors are of relatively small magnitude
(regarding the magnitude of the measured variable) with
zero-mean values and can be represented by Gaussian

random variables, estimation methods based on the least
square estimation technique can handily minimise the
influence of these measurement errors. By contrast, the
presence of outliers or measurement errors of relatively
large magnitude is far more delicate to handle and it is well
known that conventional least squared methods show little
robustness in regard to this type of error.

Based on the work in [8, 19] presenting a general
formulation of the problem of principal component analysis
and its application for the identification of switched
regression models, a robust identification method for
switched regression is proposed for the quite realistic and
practical situation where the data used for the estimation of
the model parameters are corrupted by possible outliers.
The model parameters are first extracted from the so-called
hybrid decoupling constraint (HDC) and then the usage
of an estimation criterion that simultaneously takes into
account both outliers and measurement errors of small
magnitude provides a robust estimation method for the
model parameters, that is largely insensitive to the presence
of outliers.

The problem under investigation is presented in Section 2
through an introductory example. The formalisation of the
estimation procedure is given in Section 3. Section 4 deals
with the problem of robustness of the estimation in regard
to the presence of outliers. An illustrative example is
presented in Section 5 to demonstrate the effectiveness of
the procedure.

2 Introductory example

Consider the multiple operating regime system, represented
by (1), which has two operating modes that are selected
according to the switching mechanism described by (2)

Y1 = a0, (1)
) = 2
a(8,) Iaz if , — 0.5 <0 @

with ; € Rand a, € R. The variable 6, can be regarded as
the realisation of a random variable or as a variable parameter
under the influence of unknown exogenous variables or even
as a parameter that depends on the current operating
conditions of the system.

Fig. 1 shows the time evolution of the system input and
output for @; =1.05 and 4, = —0.5. In this figure, the
output data resulting from the resolution of (1) has been
corrupted by a multiplicative noise represented as a zero-
mean Gaussian distribution with a standard deviation of
0.1. In addition to the measurement noise, three outliers
have been added to the data at the time instants 9, 28 and
40. The outliers have been simulated by adding to the
corresponding output an offset with a magnitude of 50% of
the true value of the measured output.
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Figure 1 Output and input of system (1)

Conversely, knowing the output y; of the system on a
finite time horizon [1...N], an identification problem
can be formulated in the sense of identifying the values a;
and @, taken by the parameter # and determining the time
instants at which the operating mode of the system
changes, that is, the switching instants. Eventually, if the
parameter ), depends on some internal variables (input,
output or state) of the system, it may be interesting
to characterise this dependence in the form of a model

[20, 21].

The solution to this estimation problem is simple if the
switching instants of the parameter 4 are known and if the
ongoing operating mode of the system is known at every
time instant. In this case, the estimation of the parameter
could be simply done by using the data points belonging
to the first operating mode for estimating #; and those
belonging to the second operating mode for estimating a,.
In what follows, the estimation problem is considered for
the situation in which these switching instants are
unknown. Thus, the portions of the state trajectory
described with the parameter 4; and those described with
parameter @, are a priori unknown.
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Figure 2 a(6}) as a function of time

To estimate the parameter @ of the model, it is noticed
that, for #, # 0, (1) can be written as

L — 4(9,) 3)

Uy

Fig. 2 shows the temporal evolution of the ratio expressed by
(3). The changes of operating modes clearly appear and are
expressed by the piecewise constant shape of the plot. The
distribution (in the form of a histogram bar plot) of the
values of a(f,) is presented in Fig. 3 and it clearly reveals
the existence of two distinct values for a(O(‘)).

The existence of several operating regimes is also confirmed in
Fig. 4 drawn in the Plane {u;; y;.,}. The time link with the
changes of operating modes no longer appears, the time being
a hidden parameter in this representation. By contrast, the
presence of two distinct operating modes is clearly highlighted.
These two operating regimes must then be characterised.

Thus, in view of these different data representations,

one is able to specify the number of operating regimes
characterising the system. It remains to identify the models
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Figure 3 Histogram of the values of a(-)
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related to these two operating modes. In general, this double
identification problem is made difficult by the presence of
measurement errors and in particular those qualified as
accidental of large magnitude.

The search for the values of a(6,) may be done using either
previously presented representations. On a more analytical
viewpoint, the retaining principle rests on the maximisation
of a cost function simultaneously valid for both operating
modes. A candidate cost function could be [22]

N-1 1
Ua(0) =Y (4)

T\t O — ‘3(6'&)”&)2

where 1 is a small real constant. The cost function in (4) allows
an automatic partitioning of the data points. Indeed, given the
form of the cost function (4), when a(6,) # a; or a(8,) # a,
the value of £(-) is small as the term (y,,, — a(6,)u,)" is
significantly different from zero and larger than 1. When
a(0) = a; or a(6,) =a,, the term (y,,, — a(0)u) is
equal to zero whenever the data point (y, q; #;) belongs to
the operating regime described by «(#,). In that case, the
value of £(-) is relatively large as it is constituted of several
terms which values equal 1/m. Therefore the maxima of the
cost function (4) correspond to the case where a(6,) = a; or
a(0,) = a,. Note that the effectiveness of the cost function
(4) is of course conditioned to how representative is the
identification dataset regarding the different operating
regimes of the system. This is a prerequisite for any
identification method for multiple operating regimes systems.
Also, the usage of the cost function (4) is limited by the
number of operating modes and the number of identification
data points. Indeed, with the increase of the number of
operating modes, a larger and ‘richer’ identification dataset
would be required. Fig. 5 shows the form of the cost function
in (4) for the data presented in Fig. 1. The function has been
plotted with 1 =0.001 and for a(6,) € [—4,4]. The
function exhibits two local maxima in the vicinity of the
values a4, and a,.
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Figure 5 Cost function of (4) for n = 0.001

Although the maximisation of the cost function (4) is
intractable from an analytical point of view, iterative
optimisation methods, for example the gradient method,
can help to extract the values of a(6,) through the
optimisation of (4). Based on the hybrid decoupling
constraint (HDC) proposed by Vidal e# 4/, one can define
another cost function, similar to the one in (4), that
presents the advantage to be well posed in terms of
analytical tractability. The HDC equation conveys all the
information about the different operating modes and is also
independent of the switching mechanism of the system.
For the system of (1), the HDC is expressed as

(yé+1 -4 “é)(y,é_;_] - azué) =0 (5)

From (5), in order to estimate a; and a,, a new cost function
can be defined as

‘Nl'
tay, ay) = Z (i1 = @) Gagr — @)’ (6)
k=1

The model parameters @; and a, are obtained by the
minimisation of the cost function (6). In fact, by using the
substitution § = @; + a4, and P = a;a,, it is easy to show
that § and P are solutions of the (7)

N N
2 3 3

> Vg1 > Vg1 s > Yit1

A=1 A=1 — =1 (7)

N s Moy, P N,

Eyéﬂué > U ;J’&H“&

The model parameters @, and a, can be easily assessed from §
and P.

This introductory example illustrates a particular case of
multiple-operating mode systems and the way to
characterise the operating modes. In the general case, the
switched regression model is given by (8)

U, X =0 8)

where Xy =[=y; ypoioo Yoo, ity 1]" is the
extended regression vector, n, and n, are the model orders.
The variable u, € {1,2, ..., s} is the discrete state that
determines the local regression model describing the system
at each time instant, with s being the number of operating
modes. The parameters vector i, i € {1, 2, ..., s}, is the
regression parameters vector of the ith operating mode.
Changes of operating modes are generally the result of a
change in the operating conditions (a change in the feed
grade of a separation unit for example) or a change in the
control strategy (supervisory control scheme for example).
The model of (8) has many effective applications in various
engineering problems such as air traffic management [23],
video segmentation [24] and process control [25]. In the
remaining part of this paper, the orders of the model and
the number of operating modes s are assumed known. The



problem under investigation is then the determination of the
model parameters 6., i € {1, 2, ..., s} from a collection of
input/output data of the system. For the sake of clarity, the
method is first discussed on a switched regression model
with two operating modes and then extended to the
general case.

3 Parameters estimation
3.1 Underlying principle

In (8), let us denote the ith component of the regression
vector X, ERY, d=un,+ n,+2, by x. The jth
component of the ith parameters vector i, € R,

i€(1,2, ..., s} is denoted y;

Xéz[x1-<<xi<”xd:|}‘

©)
=y ‘f’g SR N{’m’]T

Note the, by definition of the equation model of (8), if,; = 1.

The HDC equation for the switched regression model of (8)
is given by

[T x)=0 (10)
i=1

The HDC equation is in fact the product of the local
regression models describing the different operating modes.
It can be expressed in a polynomial form [19] constructed
from the combinations in R’ of the regression variables x;,
i=1, ...,d. The polynomial expression of the HDC

equation is given by

N Pr =0 (11)

Mg

with the constraints

|ﬂ1+n2+"‘+ﬂd:‘§ (12)

O=m=s, i=1,...,d

The coefficients p, , depend on the local model parameters
Y, i=1, ..., s The idea proposed in [8] consists of first
identifying the parameters p, . , and then deducing the
local model parameters , i=1,...,s from the
coefficients p, . The first step of the identification
procedure is equivalent to an identification procedure from
available measurements, whereas the second step amounts
to a problem of model inversion in which the local models
parameters are expressed as functions of the parameters
Pay.n,- A new approach is presented here for the step of
model inversion that allows us to obtain the parameters of
the local models from the coefficients p, .

3.2 Case of a two modes switched
regression model

Consider the switched regression model of (8) with n, =1
and 7, = 1. The HDC equation for such a model is given by

WL X)W X,) =0 (13)

with i, = [fq 5 3], 1 €{1,2} and X, =[x x; x5].
Equation (13) is written in a developed form as

(P200)%1 + (Pr10)2123 + (Pror) 2y 25
+ (Po20)5 + (Po11)x2x3 + (Poor)as = 0 (14)

Using the available measurements X, £=1, ..., N, the
coefficients py00, P110» P101> Po20» Po11 and pogy can easily be
estimated with a linear estimation technique by minimising
a cost function of the type

N 2
Epy.n,) = Z( Z Pryon X1’ x;“’) (15)

k=1 \ny.my

In fact, one does not even need to estimate the coefficient
Pago as this coefficient is always equal to 1 because of the
fact that i; is always equal to 1 by definition of the
structures of 1;’1;1& and Xj.

By identifying the two polynomials of (13) and (14), the
model inversion step, which involves the estimation of the
model parameters 6, i =1, ..., s from the coefficients
Pny..np €an be analytically addressed. This leads to the
following set of equations that explicitly shows the relations
between the model parameters by i=1...,5/j=1...,4d
and the coefficients p,,

Proo = Y11y (16)
P110 = Yt + Yy, (17)
Pro1 = Yoz + Y3ty (18)
Po2o = Y12ty (19)
Por1 = Yoz + Yz (20)
Pooz = Y133 (21)

Equations (16)—(21) can be combined in order to extract the
values of the pairs of ratios (/W55 sy /Unr),

(Y12/n3; Uy /3) and (dhy3/4ny5 a3/ Yy). For instance,
the extraction of (Yiy;/yy; ¥y /Wn,) is performed with
(16), (17) and (19)

Pao0 = Y11 ¥
Pr1o = Yy + ity (22)
Pozo = Y12t

By combining (22), the ratios s, /4, and s, /i, are then



obtained as the roots of the polynomial (23) in «;,

Pozof"%z — P110%12 + pago =0 (23)

Similarly, the ratios t,/in; (respectively, y5/1;) and
Uy /by (respectively, 3 /i,,) can be inferred from (19)-
(21) (respectively, (16), (18) and (21)) as the roots of the
polynomial (24) (respectively, (25))

Puozﬂ’%s — Po11%3 + pozo =0 (24)
PZOU‘T%] = L1191 + ooy =0 (25)

The resolution of (23)—(25), respectively, provides two
solutions for a@y;, a,; and @y, which leads to eight
potential models. However, because of the inherent
definition of the ratios a;, i=1 ...,5j=1,...,4d, the
quantity

T= Q303 — 1 (26)

must be equal to zero. The constraint (26) is then used to
determine the ratios related to the true model parameters.

Numerical example: In order to give more insight into this
problem of root selection, let us assume that, for a given
system with multiple operating modes, the estimation of
the coefficients of the polynomial of (11) leads to the
following polynomial equation

X3 — 5xy0, — 3xyx3 4 635 + Sayxy — 4l = 0 (27)

Equation (27) can be compared with (14) in order to obtain
the correspondence with the parameters p, . The
resolution of the polynomial (23)—(25) gives the following
ratios as the roots of the polynomial equations

1 -1
a12 = _E or ?
a5, = —2 or 1
ay = —4orl

Eight possible models can then be identified. The constraint
7= 0 in (26) is used to determine the acceptable solutions.
Table 1 shows all the values of the test variable for all
possible roots combinations. From Table 1, one can see
that there are only two acceptable solutions, which are
indicated by the value 7=0 (grey cells in Table 1). The

Table 1 Test of the possible solutions

first solution is

g/ = =172, Py /ins = =2, 3/ =1

which also gives: iy, = —2s; and ;3 = ;. This allows us
to express the first model as

(e — 2%, +x3) =0
The second solution is

U/t = —1/3, /iy =3/4, Y3/t = —4

which leads to: ), = —31,; and 5, = —44,. The second

model is then written as
l,{le(xl — 3%, — 4x3) =0
Finally, the identified switched model is given by

X —3x; —4x; =0

3.3 General algorithm

For the general switched regression model of (8), the
estimation of the local regression model parameters is done
in five steps:

e Step 0: Collect the input/output data and build the
regressors x,' ... x.

e Step 1: Compute the coefficients p, , from (11). The
number of coefficients p, , to be estimated is equal to

_(s+d—1
n, = . .

e Step 2: For each local regression model, compute the ratios

(lﬁlliiw‘lj)! (%gﬁf’zj), ey ("ab,:if‘lw_gj)! with i = 13 EEEE] d— 1:
j=j+1 and for i=d, j=1, as the roots of the
polynomial equations (28) in &

o+ @ b qatg=0 (28)

The coefficients ¢, ..., ¢ of the polynomial equations (28)
are obtained from the previously calculated coefficients

@, -1/2 -1/3 -1/2 -1/3 -1/2 -1/3 -1/2 -1/3
s -2 -2 -2 -2 3/4 3/4 3/4 3/4
s -4 -4 1 1 -4 —4 1 1

T -5 -11/3 0 -1/3 1/2 0 -11/8 ~5/4




Pnl.,,n“, and givcn by

—(_1\0 — —
&= ( 1) PU...OH;‘_ﬂjﬂ...O = 0, =S
-1 = (_l)pO...On- #,0...0 =T =S 1
. i Ty
— ( _ 1\ — e —
g=(=1) Loon mo.2 T ST M= d
_(_1ye=1) _1_ _
= ( 1) PO...OJ’I; M'J,-O...D, n, = 1 ?IJ-, ??jl =
5
0= (_1) PO...OJ:,- n 0.0 =5 HJ; =0

]

(29)

e Step 3: Use the constraint

d—1

= 1_! (5/ u‘r,-(,-ﬂ))((fﬂ;f/ ) —1=0 (30)

to select the solutions corresponding to the parameters of the
local models.

e Step 4: Extract the local model parameters from the
selected ratios.

The derivation of the coefficients ¢, ..., ¢ of the
polynomial equations (28) is straightforward. In fact, one
can easily verify that while identifying the relations between
the coefficients p, .~ of the HDC equation and the
local models parameters py i=1, 0,5 j=1,...,4,
for n; # 0 and n; # 0, the coefficients Pﬂ_njo...ﬂ as

given by (29) are the sum of terms that are the product of
n, parameters ‘I’ili, HhES8, $;C{1,2,...,5), and n,
parameters WV, ., L €S, 8§ C{1,2,...,s5}, with

§;N 8 =0. For n =0 (respectively, n; # 0), the

cocfficients  p~ ~ ~ are  simply equal to
Ly w0,
‘If-l(!;+1)‘lr2(f+1) . "PI(H']) (respectively, 1{’]{‘1’2{ . IP\_“-).

5 by s of the ratios of step 2 can always be retrieved from
the coefficients p 0..0m; 700" Finally, the polynomial
—

equations (28) is obtaiﬁcd by means of the Viéte’s formulas
[26], which relate the roots of a polynomial to its coefficients.

3.4 On the presence of measurement
noise

The presence of measurement noise in the input/output
identification dataset generally introduces some estimation
errors for the coefficients p, . , leading to the violation
of the constraint 7= 0. This situation is handled by the
usage of a user-defined threshold or by selecting the
configurations corresponding to the s smallest absolute values
of 7. For example, let us consider the polynomial equation
(27) of the previous numerical example with a variation in its
coefficients resulting from the influence of measurement
noise on the estimation of the coefficients p,

X} — 5.3x,%, — 3.1x,%; + 6.5 + 5.2x,%; — 4.3%5 = 0 (31)

By using the coefficients p, , in (31), the resolution of the
polynomial (23)—(25) gives the following solutions

a;; = —0.519 or —0.297
ay; = —1.977 or 0.763
oy = —4.133 or 1.042

The resulting values of 7 are shown in Table 2. All the values
of 7 are different from zero. However, by identifying
the configurations corresponding to the two smallest
absolute values of 7 (grey cells in Table 2), the acceptable
solutions are iy /iy, = —0.519, iy, /iy = —1.977,
Yr3/dny = 1.042 and ¢y /iy = —0.297, 4y /i3 = 0.763,
55/ = —4.133, which can be compared with the values
previously obtained in the numeric example.

Remark 1: It is obvious that the effectiveness of the
identification  procedure largely depends on  how
representative the identification dataset is in regard to the
operating regimes of the system. This property is linked to
the characterisation of the set of sufficiently exciting input
for switched operating regime systems. Although this issue
still remains opened, some answers can be found in [24, 27].

Remark 2: In the presence of outliers, the estimated

From there, the sums of the product from one by one until coefficients p, , ~can become less accurate and eventually
Table 2 Test of the possible solutions
gy —0.519 —0.297 —0.519 —0.297 —0.519 —0.297 —0.519 —0.297
Qa3 —-1.977 —1.977 —1.977 —1.977 0.763 0.763 0.763 0.763
Q3 —4.133 —4.133 1.042 1.042 —4.133 —4.133 1.042 1.042
T —5.239 —3.424 0.068 —0.389 0.637 —0.064 —1.412 —1.236




render inoperative the roots selection procedure. This
scenario fuels the development of a robust approach.

Remark 3: When the model structure is not known a priori,
the results of the estimation procedure could be used to detect
structural errors in the model. Indeed, the parameters
2o.on, P 0, are generally different from

zero. The presence of parameters n. =735
p p P{'ﬁ...ﬂn’J ”_;0---“‘ i ’

—

i

n; =0, with a value equal to zero (noise-free case) or close
to zero (case of noisy measurements) is an indication of an
over-sized regression vector. For instance, in the two modes
switched system example, if the value of the parameter pyg,
is equal to zero, one can suspect an over-sized regression
vector as i3 or ii; will be equal to zero. The model
dimension should then be reduced. An under-sized
regression vector is indicated by an impossibility to solve
some of the polynomial (28) as they are never satistified.
Future work will consider how to use these tools for
extending the proposed method to the case where the
number of operating modes and the model structure are
unknown.

4 Robust estimation procedure

In the parameter estimation procedure presented in Section
3, the first stage of the method for the characterisation of
a system with multiple operating modes has consisted of
estimating from the HDC equation, the parameters Py
of a single model characterising all the operating modes.
In general, the least squares method is inefficient for this
estimation in the presence of outliers in the identification
dataset. In this section, a robust technique that tolerates
the presence of outliers in the identification dataset is
proposed. This robust approach allows us to render the
whole identification procedure insensitive to the presence of
outliers.

4.1 Principle of the robust approach

In a deterministic scenario (noise-free scenario), the HDC
equation is given by (10) and it is used to retrieve the
coefficients p, , . In the more realistic situation where
different sources of errors are considered, the HDC
equation is modified into the form (32)

[Tw/ x)=s¢ (32)
=1

where g, is the resulting equation error, which accounts for
the presence of different sources of errors. By using the
polynomial form (11) of the HDC equation, (32) can be
written as

mn L
Z Pr.rl...rrr;xl Xy =8y (33)
Ly

For sake of clarity in the following development, let us denote

the coefficients p, .~ and the variables x'...x},
respectively, by &, i=1, ..., n, and zy, i=1, ..., n,
with n, = ('H—‘j_ 1). Equation (33) is then simply
rewritten as

HP

Zé;z% = E,é (34)

i=1

The variable g, is assumed to be a realisation of a random
variable that can accommodate two types of errors. The
first type involves errors of low magnitude and centred
around zero; the second type relates to large magnitude
errors, essentially of accidental nature, and that are not
necessarily of zero-mean values. Given the presence of
these two types of error, the probability density
function (pdf) of the variable &, is chosen in an
additive form depending on a blending factor A.
Hence, for the 4th measurement, the pdf of g, is
written as [28]

P(E,e) = )lpl(g,(,) +(1- /\)Pz(gé) (35)

The partial pdf p;(-) and p,(-) are given by

1 1/g\°
=———exp| -2 36
P& V2moy =P 2(0-1) (36)
1 1/e,\
= exp[ -2 (2 37
P& 27, P 2(02) (37)

with @, 3 &;. The parameters A, oy and o, characterise
the shape of the pdf p(-) known as a contaminated
distribution function. The blending factor A accounts
for the proportion of outliers present in the dataset. An
empirical value of 0.7-0.9 seems to be well suited. In
addition, the numerical results obtained throughout the
various simulations have shown little sensitivity to this
choice.

The partial pdfs p;(-) and p,(-) represent random
measurement errors of low magnitude and accidental errors
of large magnitude, respectively. The standard deviations
o, and o, are used to distinguish these two pdfs. The
main idea is to maintain a ratio of about 5-10 between
oy and a;. Note that this type of contaminated distribution
functions has been used in the area of data validation [29]
where the variables of interest for the estimation procedure
are the system’s variables. To refine the selection of the
tuning parameters A, oy and o, in a situation where the
number of measurements is sufficient, it is also possible to
consider them as parameters to be estimated.

By assuming the statistical independence of the errors
g, #=1,...,N, the log-likelihood function of the



identification dataset can be written as

N
V= log(ﬂ p(s,:,)) (38)
k=1

which is equivalent to

VY= Zlog (Api(e) + (1 = A)py(ey) (39)

N "
Z og (1\}71 (Z b,z“() + (1 - A)p, (Z )) (40)
i=1

=1

The estimation of the parameters 4, i=1, ..., n, (which
stand for the coefficients p, , ) is then formulated as the
maximisation of the log-likelihood function (39) in regard
to these parameters. For a given parameter 4,
iy €{1, ..., n,}, using (35)-(37) and (40), the partial

derivative of the log-likelihood function with respect to b;, is

VR 2
% Z (“’é (Z 5:‘3&) zfﬂk) (41)
] =1 i=1

_pi(e/at] + (1= Npy(ex)/ 3]

= e + (0= Npaley) (42

From the definitions of the extended regression and
parameters vectors in (8), one has #;, =1 as this coefficient
is the one corresponding to the term z; = y; in the HDC
equation. From there, (41) can be put in the form

)V b
1 k=1 i=2

which is equivalently written in the following matrix form

Z'(Zb—2) =0 (44)
with
o R Zw
%2 R Zw2
Z= _ o ) (45)
BN RN T ZaN
0 = diag(w,, ... wy) (47)
=(...5,)" (48)
The parameters 4,, i = 1, ..., n, are therefore given by

by =1

b=(Z2"02)"' 7270z “9)

Note that in (49), the vector & depends on the diagonal
matrix (), which is a function of &, as shown by (42) and
(47). Therefore (49) is clearly a non-linear equation with
respect to 4. An iterative algorithm is proposed for the
calculation of 4 from (49):

e Step 0: Start with an initial guess # = 2.

e Step 1: Compute the model errors from (34):
gp =3 Bz k=1...,N.

o Step 2: Calculate the pdfs p;(-), p,(-) and p(-) from (36),
(37) and (35).

o Step 3: Compute w,, £=1, ..., N from (42) and the
matrix () from (47).

e Step 4: Calculate 4 as the eigenvector corresponding to
the smallest eigenvalue of z'0z.

e Step 5: Return to step 1 until ||ZT:'F —¥! || < nwhere]| - ||
is a vector norm, / is the iteration step and 7 is the solution
convergence tolerance.

Note that for A = 1, the proposed estimation procedure is
exactly the ordinary least square estimation technique. For
A € (0, 1), the procedure performs a weighted least square
estimation, the weights being given by (42). This weighting
plays a fundamental role in the estimation procedure
because it makes it partially insensitive to the presence of
outliers that is reflected by large magnitude values of &;.
Fig. 6 highlights the importance of this weighting function.
For 0y =1, 0, =10, A=0.8 and ¢, € [—6, 6], the pdf
£(-) (35) and the weighting function @, (42) have been
plotted for A =0.8 (upper graphics) and A =1 (lower
graphics). The graphics clearly shows that for A =1, the
weights w, are constant while, for A = 0.8, these weights
decrease when the absolute value of g, increases. The
estimation method rejects outliers by assigning small
weights to the corresponding data points during the
estimation.

0.4 1

7=08 %=08
Z 02 /\ & 05
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-5 0 5 -5 0 5
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E k

k

Figure 6 pdf p(-) and weighting function w;, for A = 0.8
and 1



The initial guesses of the parameters o, 0, and A could
be selected by seeking their values that minimise the log-
likelihood function (38). In practice, the obtained
improvement is not quite significant and a few trials are
generally sufficient to obtain satisfactory values for oy, o,
and A.

The approach proposed here for the parameters
estimation of a switched regression model can generally
be viewed as an alternative to the approach presented in
[8, 24]. The performances of the two approaches are the
same in a deterministic situation with the advantage of a
recursive implementation for the one in [8, 24].
Recursive implementation of the approach presented here
will be considered in future work. Both approaches take
into account the presence of measurement noise by
resorting to different tuning parameters. Robustness to
outliers is integrated to the approach proposed in this

paper.
5 lllustrative examples
5.1 Example 1

Consider the following switched regression model [17]

0l o +e ifdyy —u g +10<0
— 9;‘191» +e ifdy—uy_;+10=0
Y= and S5y, + w1 —6<0 (50)
Bgl(lo.{' + €p if Sy,&_l + Hp 1 — 6=>0

where ¢y is a measurement noise, ¢, = [y, %y 117,
6 =[-04 1 15], 6 =[05 —1 —0.5] and
93?" =[-03 0.5 —1.7]. The focus here is on the
estimation of the model parameters 6, 6, and 6;. Let us
point out that, once the model parameters 6;, 6, and 6;
have been estimated, the estimation of the parameters of
the switching mechanism, defined by the inequalities in
model (50), can still be performed by resorting to two-class
or multi-class linear separation techniques [30, 31].
Practical applications of the model structure presented in
(50) can be found in [10, 17, 24, 32].

The input signal # is generated as the realisations of an
uniformly distributed random wvariable on the interval
[—5, 5]; the measurement noise e(:) is simulated as an

Figure 7 Hyperplanes and data points (with outliers)

generated dataset constitutes of 200 data points and is
corrupted by outliers in a proportion of approximatively
10% of the total number of data points. The presence of
outliers can be appreciated in Fig. 7, which shows the
available identification data points in contrast to the
hyperplanes representing the three operating modes. In
Fig. 7, the hyperplanes are presented without taking into
account their respective domain of validity. The
estimation of the model parameters 6;, 6, and 6; is
done using the technique presented in Section 3. The
step of the estimation of the coefficients p, ...p, 1is
done in two different manners with a TLS estimation
technique [33] and the robust procedure (RP) presented
in Section 4. The tuning parameters for the RP have
been arbitrarily set at A =038, o, =2 and o, =20.
Table 3 presents the parameters
obtained without (A6"®) and with the robust approach
(AGRY). The estimation error AHE—') for a parameter 0, is
calculated as the diﬁereq%% between the true parameter 6,
and the estimated one 6;". The improvement introduced
by the use of the robust approach can be clearly noticed
while comparing the different estimation errors. Let us
mention that during the conducted simulations, it has
been observed that the proposed method fails to recover
the model parameters when the number of outliers is
relatively large (approximately greater than 30% of the
number identification data points). Fig. 8 shows the
evolution of the weighting function of (42) for this
simulation. The zero values of this function correspond to

estimation errors

uniform distribution on the interval [—0.1, 0.1]. The the measurements detected as outliers during the
Table 3 Parameters estimation errors with and without the robust approach
A6} A6 AGYS A65° AGLS AGE°
0.325 0.006 2.889 —0.002 —0.082 —0.006
—0.913 —0.074 —1.301 —0.098 —0.529 —0.028
—1.315 —0.206 4.010 —0.154 —6.591 0.079
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Figure 9 Separation unit

identification process and that are then automatically
discarded from the identification procedure. In a fault
detection perspective, the weighting function can be used
to detect and locate outliers.

5.2 Example 2

Consider the simplified separation unit example presented in
Fig. 9. The feed of the unit, which is a mixture of different
products from upstream process, is introduced through the
control valve V1. The valve V1 is controlled in such a way
that the level of the mixture inside the unit is always above
the reference level 50. The feed mixture is separated into
two distinct phases by the means of gravity separation. The
light phase, which is the final product, leaves the unit
through the middling stream with a flow rate Q2. The
heavy phase settles at the bottom of the vessel and exits the
units through either the valves V3 or V4 for additional
processing in downstream processes. The valves V3 and V4
are ON—OFTF valves that are used to produce two different
types of products. Indeed, opening either the valve V3 or
the valve V4 changes the composition of the light and
heavy phases as the residence time of the different particles

Table 4 True and estimated parameters

present in the feed is more or less reduced. So, when the
valve V3 is opened, the unit produces a product of grade A
and when the valve V4 is opened, the unit’s product is of
grade B. The valves V3 and V4 are never opened
simultaneously. The operating conditions leading to grade
A and B products are, respectively, characterised by (51)
and (52)

Sh= 01 — K;v/h— b0 — Kz (51)
Sh= Q1 — K;v/h— H0 — Kb (52)

where 54 is the level of the product in the vessel, S is the
surface area of the vessel, K, K; and K, are constants that
depend on the gravity constant, the coefficients of
discharge of the outlets, and their cross-sectional areas. An
identification dataset has been obtained for this process by
a finite discretisation of (53) and (54) with a sampling time
of one second

S(bé - }Jiv—l) =01, — Khy — 50 — K3/ by (53)
Sy — b)) = Qlyy — KoV by — B0 — K/ By (54)

The dataset is composed of 500 data points in an
approximate proportion of 60% for the operating
regime corresponding to a product of grade A and 40%
for the operating regime corresponding to a product of
grade B. The measurements of the level 4 are corrupted
with a Gaussian white noise of wvariance 0.5. The
dataset is also corrupted with outliers in a proportion
of 10%. The numerical values of the physical
parameters are: /0 =10, § =2, K, =1.063, K5 =0.620
and K, = 1.187.

The proposed identification procedure is applied with
A=09, 0y =4 and 0, =20. The extended regression
vector in this case is X, =[-h by
Vhioy By —H 01, ,]. Note that the model
parameters to be estimated are Yy =[—-1 1 —K;/§
-K,/8 1/5]"  and =[-1 1 -K,/§ -K/§
lfS]T. The estimated parameters l:!:ll and t}z are shown in
Table 4. One can noticed that the results of the
identification procedure are overall good.

iy —1.000 1.000 —0.310 —0.532 0.500
Jfl —1.000 0.998 —0.308 —0.536 0.491
i —1.000 1.000 —0.594 —0.532 0.500
sz —1.000 0.998 —0.607 —0.535 0.505




6 Conclusion

In this paper, an estimation procedure has been proposed
for the identification of switched regression models. The
proposed method provides a solution to the parameter
estimation as a root selection problem from the resolution
of polynomial equations. The issue of robustness to outliers
in the input/output dataset is also addressed. The usage of
a robust technique, based on contaminated distributions,
renders the procedure readily usable in the quite realistic
and practical situation in which the identification dataset is
corrupted by the presence of outliers. To expand the scope
of this approach, the problem of the simultaneous
determination of the number of operating modes and the
structure of the models associated with these different
modes should be considered. An open issue is the design of
sufficiently rich excitation signal for identification.
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