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Connected gradings and fundamental group

Claude Cibils, Maŕıa Julia Redondo and Andrea Solotar ∗

Abstract

The main purpose of this paper is to provide explicit computations
of the fundamental group of several algebras. For this purpose, given a
k-algebra A, we consider the category of all connected gradings of A by a
group G and we study the relation between gradings and Galois coverings.
This theoretical tool gives information about the fundamental group of
A, which allows its computation using complete lists of gradings.

2000 Mathematics Subject Classification : 16W50, 16S50.

Keywords : grading, Galois covering, fundamental group.

1 Introduction

The main goal of this article is to provide explicit computations of the intrinsic fun-
damental group of some algebras. For this, we study in detail the relation between
gradings and Galois coverings of the algebra considered as a k-linear category with
one object. Particular attention is paid to matrix algebras, since the problem of clas-
sifying gradings of these algebras has been extensively treated in the literature (see
[1, 2, 4, 6, 7, 8, 9, 11, 14, 17, 21], and also [3]).

We recall that the intrinsic fundamental group of an algebra has been defined in
[13] using Galois coverings. We make use of an equivalence between the category of
Galois coverings and its full subcategory with objects obtained from the smash product

∗This work has been supported by the projects UBACYTX212, PIP-CONICET 5099,
and CONICET-CNRS. The second and third authors are research members of CONICET
(Argentina). The third author is a Regular Associate of ICTP Associate Scheme.
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construction, which is deeply attached to connected gradings. We replace algebras by
linear categories over a base ring: a category over a ring k is considered as an algebra
with several objects, see [23], and a k-algebra A can be viewed as a k-category with
a single object and endomorphism ring equal to A. Note that in [19, 20] a relation
between gradings and coverings is established for quivers with relations. In this paper
we consider an intrinsic context, i.e., the categories are not given by a presentation.

When performing the computation of the fundamental group of an algebra, one
faces the problem of classifying and organizing their connected gradings. The meth-
ods we introduce allow the computation of the fundamental groups of matrix algebras,
triangular matrix algebras, group algebras and diagonal algebras. We restrict to con-
nected gradings and we prove that the matrix algebras do not admit a universal grading.
Indeed, there exist at least two non-isomorphic Galois coverings or, equivalently, two
non-isomorphic connected gradings which are simply connected, in the sense that they
have no nontrivial Galois coverings. In particular this provides a confirmation of the
fact that the fundamental group of an algebra takes into account the matrix structure,
in other words it is not a Morita invariant.

In Section 2 we show that the connectedness of gradings is the right notion which
corresponds to the connectedness of the smash product associated. We recall the
concept of Galois covering and we observe that the smash product construction gives
examples of Galois coverings. We describe in detail the morphisms between smash
coverings.

In Section 3 we make an explicit comparison between Galois coverings and smash
coverings of a k-category B. More precisely, we provide an equivalence between the
category Gal(B, b0) of Galois coverings of B and its full subcategory Gal#(B, b0), whose
objects are the smash product coverings. We consider the fundamental group that has
been defined in [13] using Galois coverings and show that we can restrict to smash
coverings when computing the fundamental group π1(B, b0).

In the following sections we focus on the description of connected gradings of
certain algebras in order to compute their fundamental group. As a rule, we wonder
about the existence of a universal grading, since when such a grading exists the grading
group is isomorphic to the fundamental group of the algebra.

In Section 4 we consider matrix algebras: we prove that there is no universal
covering by providing two non-isomorphic simply connected gradings. Despite the fact
that they appear to be very different in nature, we show that they have a unique largest
common nontrivial quotient. Using the classification of gradings of M2(k) given by
C. Boboc, S. Dăscălescu and R. Khazal [21] and of M3(k) given by C. Boboc, S.
Dăscălescu [9], we compute the fundamental group of these algebras in case the field
is algebraically closed of characteristic different from 2 and 3, respectively. Using
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analogous methods and the classification of Yu. A. Bahturin and M.V. Zaicev [4], we
compute the fundamental group of Mp(k), where p is prime and k an algebraically
closed field of characteristic zero, which is the direct product of the free group on
p−1 generators with the cyclic group of order p. Finally we compute the fundamental
group of triangular matrix algebras, using results of A. Valenti and M.V. Zaicev in [24],
without any hypothesis on the characteristic of the field k. The fundamental group in
this case is the free group on n− 1 generators.

In Section 5 we first prove that the natural grading of a group algebra is simply
connected. Next we consider in detail the group algebra of the cyclic group of order
p, where p is a prime, in case of a field of characteristic p. This algebra is isomorphic
to the truncated polynomial algebra k[x]/(xp), and we show that it does not admit
a universal grading. Nevertheless, we provide a complete description of its connected
gradings, and we conclude that the fundamental group of the truncated polynomial
algebra in characteristic p is the product of the infinite cyclic group and the cyclic
group of order p.

Finally, in Section 6 we consider the group algebra kG, for G an abelian group
of order n and k a field with enough n-th roots of unity or, equivalently, the algebra
kE of all maps from E to k, where E is a set with n elements. In case n is not
square free, we show that kn has no universal covering. A quite special case occurs for
n = 2 and k a field of characteristic different from 2: there exists a universal covering.
More precisely we prove that there is only one nontrivial group providing a connected
grading of the set algebra k2, namely the cyclic group of order 2, which in turn is the
fundamental group of this algebra. We end the paper by computing the fundamental
group of the set algebras k3 and k4, using a description of all the gradings of kE given
by S. Dăscălescu in [16]. In case k is a field containing all roots of unity of order 2 and
3, we prove that π1(k

3) = C2×C3, while if k contains all roots of unity of order 3 and
4, we obtain that π1(k

4) = (C2 ∗C2)×C6×C4×C2. A detailed study of Dăscălescu’s
classification and the relations among the grading groups together with the techniques
presented in this paragraph should lead to the computation of the fundamental group
for arbitrary diagonal algebras.

We would like to thank S. Dăscălescu for a valuable exchange during the prepara-
tion of this work.

2 Gradings and coverings

Let k be a commutative ring and let B be a small category such that each morphism
set yBx from an object x to an object y is endowed with a k-module structure such that
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composition of morphisms is k-bilinear. Such a category is called a k-category; note
that each endomorphism k-module xBx is a k-algebra and yBx is a yBy-xBx-bimodule.
Each k-algebra A provides in this way a single object k-category.

In [12, 19] it has been shown that connected group gradings and Galois coverings
are in one-to-one correspondence. We recall the definition of these categories and,
even if they are not equivalent, we make precise the relation between them.

Definition 2.1. A grading X of a k-category B by a group Γ is given by a direct
sum decomposition of each k-module of morphisms

yBx =
⊕

s∈Γ

Xs (yBx)

such that Xt (zBy)X
s (yBx) ⊂ Xts (zBx). The homogeneous component of

degree s from x to y is the k-module Xs (yBx).

Next we will consider connected gradings in order to establish the correspondence
with Galois coverings. We use the following notation: given a morphism f , its source
object is denoted s(f) and t(f) is its target object.

We will also make use of walks. For this purpose we consider the set of formal
pairs (f, ǫ) as “morphisms with sign”, where f is a morphism in B and ǫ ∈ {−1, 1}.
We extend source and target maps to this set as follows:

s(f, 1) = s(f), s(f,−1) = t(f), t(f, 1) = t(f), t(f,−1) = s(f).

Definition 2.2. Let B be a k-category. A non-zero walk in B is a sequence of
non-zero morphisms with signs (fn, ǫn) . . . (f1, ǫ1) such that s(fi+1, ǫi+1) = t(fi, ǫi).
We say that this walk goes from s(f1, ǫ1) to t(fn, ǫn).

A non-zero walk α = (fn, ǫn) . . . (f1, ǫ1) is called homogeneous if each fi is a
homogeneous morphism in the graded category B. We shall denote degf the degree of
a homogeneous morphism f . Now we define the degree of a homogeneous non-zero
walk α as follows:

degα = (degfn)
ǫn . . . (degf1)

ǫ1 .

As expected, a k-category B is called connected if any two objects of B can be joined
by a non-zero walk. Moreover, a Γ-grading of B is connected if given any two objects
in B, and any element g ∈ Γ, they can be joined by a non-zero homogeneous walk of
degree g. Of course, if a grading of a k-category is connected, then the underlying
category is connected. Conversely, the following easy result holds.
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Lemma 2.3. Let B be a connected k-category equipped with a Γ-grading and let
x0 be an object of B. Assume there exist homogeneous walks of any degree from
x0 to itself. Then the grading is connected.

The definition of a connected grading restricts to algebras as follows. First recall
that the support of a grading X of a k-algebra A by a group Γ is:

SuppX = {s ∈ Γ | XsA 6= 0}.

If the category has only one object, the following result describes the notion of
connected grading of an algebra. Note that Dăscălescu [16] gives the name faithful

to this kind of gradings.

Proposition 2.4. Let A be k-algebra and X be a Γ-grading of A. The grading is
connected if and only if SuppX is a set of generators of Γ.

Proof: Consider the k-category BA with a single object ∗ and ∗(BA)∗ = A. Assume
that the grading is connected. Then, for any element g of Γ there is a homogeneous
non-zero walk α = (fn, ǫn) . . . (f1, ǫ1) such that degα = g, which precisely means
that SuppX generates Γ. Conversely, let g ∈ Γ. Since SuppX generates Γ, we have
that g = gǫnn . . . gǫ11 where gi ∈ SuppX and ǫi = ±1. Let an, . . . , a1 be non-zero
homogeneous elements of A such that degai = gi. Then (an, ǫn) . . . (a1, ǫ1) is a
non-zero closed homogeneous walk from ∗ to itself, of degree g. �

Remark 2.5. Clearly each Γ-grading of an algebra provides a unique connected
grading by restricting Γ to the subgroup generated by the support.

We recall now the smash product category associated to a grading, as defined in
[12]. This construction is compatible with the one in the algebra case, in the sense
that for a finite group Γ and a Γ-graded algebra A, we recover the smash product
A#Γ given in [12].

Definition 2.6. Let X be a Γ-grading of the k-category B. The objects of the
smash product category B#Γ are B0 × Γ while the module of morphisms from
(b, g) to (c, h) is Xh−1g

cBb. In other words, morphisms are provided by homoge-
neous components, and composition in B#Γ is given by the original composition
in B. The composition of morphisms is well-defined as an immediate consequence
of the definition of a graded category.
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Remark 2.7. Consider the previous definition for a single object k-category BA

associated to a k-algebra A, and denote A#Γ = BA#Γ. Then, the set of objects
of A#Γ is Γ, while the morphisms from g to h are the homogeneous elements of
degree h−1g. If Γ is finite, the matrix algebra obtained as the direct sum of all the
morphisms of this category is precisely the smash product algebra of [12].

Proposition 2.8. B#Γ is a connected category if and only if the Γ-grading of B
is connected.

Proof: Note first that there is a canonical functor F : B#Γ → B given on objects by
F (b, g) = b, while, on morphisms, F is the inclusion map of homogeneous components.
Assume that B#Γ is connected and let b and c be objects of B and g in Γ. Consider
the objects (b, 1Γ) and (c, g) in B#Γ. Let α = (fn, ǫn) . . . (f1, ǫ1) be a non-zero walk
from (b, 1Γ) to (c, g). Each fi is a homogeneous morphism in B, by definition of B#Γ.
Note also that the target in B#Γ of (f1, ǫ1) is (t(f1, ǫ1), (degf1)

−ǫ1). Moreover, the
target in B#Γ of (f2, ǫ2) is (t(f2, ǫ2), (degf1)

−ǫ1 .(degf2)
−ǫ2). In this way we obtain

g = (degf1)
−ǫ1(degf2)

−ǫ2 . . . (degfn)
−ǫn ,

consequently α is a homogeneous non-zero walk from b to c of degree g.
Conversely, assume that the Γ-grading of B is connected. Let (b, g) and (c, h) be
objects of B#Γ, and consider α = (fn, ǫn) . . . (f1, ǫ1) a homogeneous non-zero walk
in B from b to c of degree h−1g. Then α provides a non-zero walk from (b, g) to
(c, h). �

Coverings of k-categories have been introduced by K. Bongartz and P. Gabriel in
[10] in order to study representation theory. We recall the definition given in [13].
First we define the star Stb0B at an object b0 of a k-category B as the direct sum
of all k-modules of morphisms with source or target b0. We note that a k-functor
F : C → B induces a k-linear map F : StxC → StFxB for any object x of C.

Definition 2.9. Let C and B be k-categories. A k-functor F : C → B is a cov-

ering if it is surjective on objects and if F induces k-isomorphisms between the
corresponding stars. More precisely for each b0 ∈ B0 and each x in the non-empty
fibre F−1(b0), the map

F x
b0

: StxC → Stb0B,

provided by F , is a k-isomorphism.

A morphism from a covering F : C → B to a covering G : D → B is a pair
of k-linear functors (H,J) where H : C → D, J : B → B are such that J is an
isomorphism, J is the identity on objects and GH = JF .
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We will consider within the group of automorphisms of a covering F : C → B, the
subgroup Aut1F of invertible endofunctors G of C such that FG = F .

Let b ∈ B and let F−1(b) be the corresponding fibre. This fibre is non-empty by
definition, and Aut1F acts freely on it, see [22, 13].

Definition 2.10. A covering F : C → B of k-categories is a Galois covering if
C is connected and if Aut1F acts transitively on some fibre.

Remark 2.11. One can prove that for a Galois covering F , the group Aut1F acts
transitively on any fibre, see [22, 13].

As an example of Galois coverings we have those coming from the smash product
construction, that is, if X is a Γ-grading of the k-category B, the functor B#Γ → B,
given by (b, g) 7→ b and the inclusion on morphisms, is a Galois covering with Γ as
group of automorphisms.

It is useful to observe that the evident action of Γ on the smash product category
B#Γ is given as follows. The action on objects is given by the left action of Γ on
itself. It is a free action. Observe that for any u ∈ Γ, a morphism from (b, g) to (c, h)
is also a morphism from (b, ug) to (c, uh) since h−1g = (uh)−1ug.

We consider now Galois coverings together with a fixed object as follows. Given a
k-category B and a fixed object b0 of B, the objects of the category Gal(B, b0) are Galois
coverings F : C → B. Morphisms are Galois covering morphisms (H,J) : F1 → F2,
where H : C1 → C2 and J : B → B is an isomorphism which is the identity on objects.

We have proved in [13] that a morphism (H,J) induces a unique group epimor-
phism λH : Aut1 F1 → Aut1 F2 verifying Hf = λH(f)H, for all f ∈ Aut1 F1.

The following proposition describes morphisms of smash coverings in terms of the
corresponding λ.

Proposition 2.12. Let b0 ∈ B and let F1 : B#G1 → B and F2 : B#G2 → B be
Galois coverings associated to connected gradings X1 and X2 of B with groups G1

and G2. Given a morphism of coverings (H,J) : F1 → F2 in Gal(B, b0), there exists
a map h : G1 → G2 such that H(b0, g) = (b0, h(g)) for all g ∈ G1. Moreover, h is a
G1-morphism and h(g) = λH(g)h(1), where λH : G1 → G2 is the group morphism
associated to H.

Proof: It is clear that H(b0, g) = (b0, g
′) for some g′ ∈ G2 since b0 = JF (b0, g) =

FH(b0, g). We denote h(g) = g′.
We have thus obtained that given b0 ∈ B, the morphism H induces a map

h : F−1
1 (b0) → F−1

2 (b0).
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Moreover, F−1
i (b0) is a Gi-set (i = 1, 2), by indentifying Gi with Aut1Fi, and λH

makes F−1
2 (b0) a G1-set, more precisely, if f ∈ G1 and y ∈ F−1

2 (b0), then f · y =
λH(f) · y. We assert that h is a morphism of G1-sets. For this purpose, take x ∈
F−1
1 (b0) and f ∈ G1, then

(b0, h(f · x)) = H(b0, f · x) = Hf(b0, x)
= λH(f)H(b0, x) = λH(f)(b0, h(x))
= (b0, λH(f)h(x)).

Finally, h(g) = h(g · 1) = λH(g)h(1). �

3 Fundamental group

In [13] the fundamental group of a connected k-category has been defined using Galois
coverings. Our purpose is to relate this fundamental group to connected gradings. Let
us recall the definition given in [13]. Considering the fibre functor

Φ : Gal(B, b0) → Sets

given by Φ(F ) = F−1(b0), we have defined π1(B, b0) = AutΦ.

In order to study the fundamental group we introduce the full subcategory Gal#(B, b0):
of Gal(B, b0) whose objects are the smash product Galois coverings F : B#Γ → B.

Theorem 3.1. The categories Gal#(B, b0) and Gal(B, b0) are equivalent.

Proof: It is immediate from [12] since any Galois covering F : C → B is isomorphic
to the Galois covering B#Aut1F → B. Note that the grading of B by Aut1F is not
canonical, it depends on a choice of an object in each fibre. �

The following proposition shows that we can restrict to the subcategory Gal#(B, b0)
of Gal(B, b0) when considering the fundamental group π1(B, b0).

Proposition 3.2. Let F : C → D be an equivalence of categories, ΦC : C → Sets,
ΦD : D → Sets such that ΦDF = ΦC. Then there exists an isomorphism F ∗ :
AutΦD → AutΦC.

Proof: Recall that an element τ ∈ AutΦD is an invertible natural transformation,
that is, a family of invertible set maps τd : ΦD(d) → ΦD(d) for every object d in D,
which are compatible with morphisms in D. Since F is a functor, it is clear that F ∗(τ)
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defined by F ∗(τ)c = τF (c) is an element in AutΦC.
Let τ ∈ AutΦD be such that F ∗(τ) = id. Since F is dense, for any object d in D
there exists c in C with an isomorphism α : d → F (c); the naturality of τ induces the
commutative diagram

ΦD(d)

ΦD(α)
��

τd
// ΦD(d)

ΦD(α)
��

ΦD(F (c))
τF (c)

// ΦD(F (c)).

Since τF (c) = id for all c ∈ C, this implies that τd = id, and hence τ = id.
In order to prove that F ∗ is surjective, let σ ∈ AutΦC and consider σ̂ defined in the
following way. For any object d in D, we choose c and an isomorphism α : d → F (c);
in case d = F (c), we choose α = id. Now we define σ̂d such that the following
diagram is commutative

ΦD(d)

ΦD(α)
��

σ̂d
// ΦD(d)

ΦD(α)
��

ΦC(c) = ΦD(F (c))
σc

// ΦD(F (c)) = ΦC(c).

Since F is full we have that σ̂ is a natural transformation and F ∗(σ̂) = σ. �

Corollary 3.3. Let Φ# : Gal#(B, b0) → Sets be the functor given by

Φ(F : B#G → B) = F−1(b0) = G.

Then π1(B, b0) ∼= AutΦ#.

Corollary 3.4. If B only admits the trivial connected grading, then π1(B, b0) = 1.

An advantage of considering Gal#(B, b0) instead of Gal(B, b0) is explained by the
following proposition, which describes the automorphisms of the fibre functor.

Proposition 3.5. Let σ ∈ AutΦ# and let G be a group grading the category B in
a connected way. The map σG : G → G is given by σG(x) = xg, where g ∈ G is
uniquely determined.

Proof: Consider a covering F : B#G → B. Each g ∈ G induces an automorphism of
the covering F , which is the identity on B and it is the left action of G on itself. We
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shall denote it lg. Given σ ∈ AutΦ# we get a map σG : G → G. It must make the
following diagram commutative:

G
σG

//

l̃g
��

G

l̃g
��

G
σG

// G

where l̃g is induced by lg. So, for all x ∈ G, we get σG(g0x) = g0σG(x). Taking
x = 1 we obtain σG(g0) = g0σG(1). Note that g0 is an arbitrary element of G. �

4 Fundamental group of matrix and triangular algebras

Let k be a field containing a primitive n-th root of unity q and let Mn(k) be the k-
algebra of n×n matrices. The problem of classifying all the gradings of Mn(k) is not
solved. Lists of gradings have been described by several authors [1, 2, 4, 6, 7, 8, 11, 17],
and the complete lists for n = 2 and n = 3 are obtained in [21] and [9].

We will consider connected gradings of the algebra Mn(k). In case of a non-
connected grading we shall restrict to the subgroup generated by the support, in order
to study the unique associated connected grading.

We briefly recall the definition of the universal covering of a k-category and The-
orem 4.6 of [13].

Definition 4.1. A universal covering U : U → B is an object in Gal(B) such
that for any Galois covering F : C → B, and for any u0 ∈ U0, c0 ∈ C0 with
U(u0) = F (c0), there exists a unique morphism (H, 1) from U to F verifying
H(u0) = c0.

Theorem 4.2. Suppose that a connected k-category B admits a universal covering
U . Then

π1(B, b0) ≃ Aut1U.

Definition 4.3. A connected k-category is simply connected if its only connected
grading is the trivial grading. A connected grading is simply connected if the
corresponding Galois covering is simply connected.

We will prove that there is no universal cover for Mn(k). Indeed there exist at
least two non-isomorphic connected gradings ofMn(k) which provide simply connected
Galois coverings. Recall that a covering is simply connected if it admits no proper
Galois covering.
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Proposition 4.4. [2, 14] There exists a connected Cn × Cn-grading of Mn(k).

Proof: The algebra Mn(k) has a well-known presentation as follows:

Mn(k) = k{x, y}/〈xn = 1, yn = 1, yx = qxy〉

where

x =




0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0




, y =




q 0 0 · · · 0
0 q2 0 · · · 0
0 0 q3 · · · 0
...

. . .
...

0 0 0 · · · qn




,

with q a primitive n-th root of unity. We provide a connected grading of k{x, y} by
assigning degree (t, 1) to x and degree (1, t) to y, where t is a generator of Cn. The
group is abelian and the order of the generators is n, hence the ideal of relations is
homogeneous. Since the support coincides with Cn ×Cn, the grading is connected.�

Proposition 4.5. Let C be a k-category with a finite set of objects and one-
dimensional vector spaces of morphisms between any pair of objects b and c, de-
noted by cCb = k cfb, verifying

(dfc)(cfb) = qd,c,b (dfb)

for any triple of objects of C, where qd,c,b ∈ k∗ are the structure constants. Then
C is simply connected.

Proof: Let G be a group providing a grading of the category C. As we have already
written, we consider connected gradings. Since all the k-vector spaces of morphisms
are one-dimensional, they are homogeneous. Let csb be the degree of cCb. Note that
for each object b we have bCb = k, hence bsb = 1 and bsc = cs

−1
b . We assert that

any non-zero homogeneous closed walk has degree 1. Indeed, since composition of
non-zero morphisms is non-zero in C, and since bsc = cs

−1
b , a non-zero homogeneous

closed walk at b can be replaced by a non-zero endomorphism of b, having the same
degree. Since endomorphisms of b have degree 1, the assertion is proved. Recall that a
grading is connected if for any pair of objects, any group element appears as the degree
of a non-zero homogeneous walk between them. Since the grading is connected, the
group is trivial. �

Corollary 4.6. Let C be a category as above. Then π1(C) = 1.
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Let jEi be the matrix whose entries are zero, except the (j, i) entry which equals
1. We recall that a good grading of a matrix algebra is a grading where the elemen-
tary matrices jEi, also called matrix units, are homogeneous, see for instance [17].
Note that the k-category Mn(k) associated to a matrix algebra with respect to the
idempotent elementary matrices iEi is precisely a category as in the above proposition,
where all the structure constants equal 1.

Clearly good gradings of Mn(k) and gradings of the k-category Mn(k) coincide.

Corollary 4.7. Let G be a group providing a good grading of a matrix algebra,
and assume that the corresponding grading of the k-category Mn(k) is connected.
Then G is trivial.

Remark 4.8. A good grading by a nontrivial group G of a matrix algebra Mn(k)
can be connected when Mn(k) is viewed as a category with a single object. This
means that the support of the grading generates G. Corollary 4.7 makes precise
that the corresponding grading of the k-category Mn(k) will not be connected.

Theorem 4.9. The connected grading of the matrix algebra Mn(k) by the group
Cn × Cn of Proposition 4.4 is simply connected.

Proof: We will prove that the Galois covering C = Mn(k)#(Cn × Cn) is simply
connected. The category C = Mn(k)#(Cn × Cn) has set of objects Cn × Cn =
{aibj | 0 ≤ i, j ≤ n− 1} and

asblCaibj = Xai−sbj−l

Mn(k) = k(xi−syj−l).

Hence the k-vector spaces of morphisms are one-dimensional with basis elements

(s,l)f(i,j) = xi−syj−l

and

(u,v)f(s,l)(s,l)f(i,j) = xs−uyl−vxi−syj−l = ql+i−v−s
(u,v)f(i,j).

Finally, Proposition 4.5 asserts that such categories are simply connected. �

Each time a universal covering exists, the fundamental group is isomorphic to its
Galois group. Clearly, if there exist at least two non-isomorphic simply connected
coverings, there is no universal covering.

We will now show that this is the case for Mn(k), i.e., there exists at least an-
other simply connected grading of Mn(k). For this purpose we first provide another
presentation of the matrix algebra, as a quotient of a path algebra.

12



Proposition 4.10. Let Q be the quiver with n vertices labelled 1, . . . , n, and arrows
xi from i to i + 1 as well as reverse arrows yi from i + 1 to i for for 1 ≤ i < n.
We denote e1, . . . , en the idempotents of the path algebra kQ corresponding to the
vertices. Let I be the two-sided ideal of kQ generated by yixi − ei and xiyi − ei+1

for 1 ≤ i < n. Then kQ/I is isomorphic to Mn(k).

Proof: Consider the morphism of algebras ϕ : kQ → Mn(k) given by ϕ(ei) = iEi,
ϕ(xi) = i+1Ei and ϕ(yi) = iEi+1, which is well defined by the universal property
of path algebras, which are in fact tensor algebras over the semisimple commutative
algebra given by the length zero paths. This map is surjective since the matrices jEi

are clearly images of paths of Q. Moreover I ⊂ Kerϕ and dimk kQ/I ≤ n2. �

Let Fn−1 be the free group on n−1 generators s1, . . . , sn−1. First we introduce an
Fn−1 grading of kQ as follows: for 1 ≤ i ≤ n, let deg ei = 1, while for 1 ≤ i ≤ n− 1
we set deg xi = si and deg yi = (si)

−1. The path algebra is a free algebra on the set
of arrows with respect to the semisimple subalgebra of vertices, so this provides a well
defined grading of kQ. More precisely the degree of any path is the corresponding
product of the degrees of the arrows. Since the ideal I is homogeneous with respect to
this grading, we obtain a grading of kQ/I, hence of Mn(k). Note that this grading,
considered as a grading of the algebra Mn(k), that is, as a grading of the single object
category with endomorphism algebra Mn(k), is connected since the generators of the
free group are in the support.

Proposition 4.11. The above Fn−1-grading of Mn(k) is simply connected.

Proof: The set of objects ofMn(k)#Fn−1 is Fn−1. For j > i, let jsi = sj−1 . . . si+1si.
There is a one-dimensional vector space of morphisms from a word w in Fn−1 consid-
ered as an object of Mn(k)#Fn−1 to each object jsiw with basis vector denoted jEi

w.
Similarly for j < i there is a one-dimensional vector space of morphisms from w to

js
−1
i w , with basis jEi

w. From w to w, the n-dimensional vector space of morphisms
has basis {1E1

w, . . . , nEn
w}. Note that the endomorphism algebra of each object is

the n-dimensional diagonal algebra k(1E1
w)×· · · ×k(nEn

w). Consider now a grading
of this category by a group G. Since the spaces of morphisms between different objects
are one-dimensional, they are homogeneous. This fact implies that for each object w
the subvector space k (iEi

w) is homogeneous since

iEj
(jsiw)

jEi
w = iEi

w.

Observe that an idempotent homogeneous element has necessarily degree 1, hence
each endomorphism algebra has trivial grading (all elements have degree 1). As a
consequence,

deg
(
iEj

(jsiw)
)
= (degjE

w
i )

−1.
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Moreover, for j > i

deg (jEi
w) = deg

(
jEj−1

(j−1siw)
)

· · · deg (i+2Ei+1
siw) deg (i+1Ei

w) .

For j < i, the statement is analogous considering the inverses of the above degrees.
This complete description of any possible grading of the smash category shows that
any closed homogeneous non-zero walk has degree 1. Consequently the grading is
connected only if the group is trivial. �

The complete list of good gradings of a matrix algebra is obtained in [11]. In order
to compute the fundamental groups of matrix algebras, we make this classification
explicit using Proposition 4.10.

Theorem 4.12. There is a one-to-one correspondence between good connected G-
gradings of Mn(k) and maps {1, . . . , n − 1} → G such that the image generates
G.

Proof: Let m be a map from {1, . . . , n − 1} to G. We obtain a grading of the
algebra kQ defined in Proposition 4.10 as before, namely deg(i+1Ei) = m(i) and
deg(iEi+1) = m(i)−1. The ideal of relations of Proposition 4.10 is homogeneous and
we obtain a good grading of Mn(k). If the image of m generates G, then the grading
is connected. Conversely, consider a good connected grading of Mn(k) by a group G.
The image of the map m : {1, . . . , n−1} → G given by m(i) = deg(i+1Ei) generates
G. �

Note that relaxing the connectedness requirement for good gradings is equivalent
to deleting the condition that the image of each map m generates G. In [11] the
algebra Mn(k) is viewed as the endomorphism algebra of a vector space V , and good
gradings are obtained from a grading of V , considering graded endomorphisms as
homogeneous components.

Definition 4.13. The quotient of a G-grading X of a category B by a normal
subgroup N of G is a G/N -grading X/N of B, where the homogeneous component
of degree α is

(X/N)αcBb =
⊕

g∈α

Xg
cBb.

Observe that if X is connected then X/N is also connected.

The corresponding functor between the smash product coverings is precisely the
canonical projection obtained through the quotient of B#G → B by N .
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Proposition 4.14. Any good connected G-grading of Mn(k) is a quotient of the
Fn−1-grading considered before.

Proof: Let m0 : {1, . . . , n − 1} → Fn−1 be the map corresponding to this grading,
given by m0(i) = si and let m : {1, . . . , n − 1} → G be another map such that the
image of m generates G. Then the group homomorphism given by si 7→ m(i) is a
surjective group morphism. �

We recall that a simply connected grading is a grading which is maximal in the
sense that it is not isomorphic to a proper quotient of a connected grading.

Proposition 4.15. Let k be a field containing a primitive n-th root of unity.
The grading by Cn × Cn of Proposition 4.4 and the grading by the free group of
Proposition 4.11 have a unique maximal common quotient Cn-grading.

Proof: We denote by X the grading by Cn × Cn and we observe that the vector
space X1 of homogeneous elements of trivial degree is one-dimensional. Let Y be the
grading by Fn−1: observe that Y

1 is the n-dimensional subalgebra of diagonal matrices.
Assume that Z is a common quotient of X and Y and let N be the normal subgroup
of Cn × Cn which provides Z as a quotient of X. As Z is a quotient of Y , clearly
Z1 contains at least Y 1, the diagonal matrices. Observe that the elementary diagonal
matrices are homogeneous for X, consequently their degrees must be elements of N in
order to become trivial. Note that the set of degrees of the diagonal matrices for X is
precisely 1×Cn. Hence 1×Cn is the smallest subgroup of Cn×Cn which has a chance
to meet a quotient of Y ; let N = 1×Cn. In fact we assert that X/N is already a good
grading, in other words, elementary matrices are homogeneous. Indeed, consider the
n-dimensional subvector space E of Mn(k) with basis {2E1, 3E2, . . . , nEn−1, 1En}.
Recall that x is the circulant matrix, which is the sum of all the previous basis vectors
of E, while y is the diagonal matrix made with powers of the primitive root of unity q.
Then the set {x, xy, xy2, . . . , xyn−1} is clearly contained in E. Moreover the elements
xyi, for 0 ≤ i ≤ n− 1, are homogeneous for the grading X, of different degrees (t, ti)
where t is the generator of Cn. Hence they are linearly independent and they form a
basis of E. Finally we observe that for X/N all these elements have the same degree
(t, 1), hence E is contained in the the set of homogeneous elements of degree (t, 1)
of X/N .
Consequently each elementary matrix is homogeneous for X/N . Considering Y , we
obtain X/N as the quotient Y/M , where M is the smallest normal subgroup of Fn−1

such that in Fn−1/M all the generators of Fn−1 are equal, and this element is of order
n. �

15



Theorem 4.16. Let k be an algebraically closed field.

(1) If char(k) 6= 2, then π1M2(k) ≃ Z× C2.

(2) If char(k) 6= 3, then π1M3(k) ≃ F2 × C3.

Proof: Under these assumptions, the classifications of [21, 7] show that all gradings
are good gradings or quotients of the one given by Proposition 4.4. The latter and
the grading by the free group have a common quotient described in Proposition 4.15.
Recall that we have proved that all good gradings of Mn(k) are quotients of the Fn−1-
grading. We now prove the first assertion. We construct two inverse group morphisms
between π1M2(k) and F1 × C2. Let σ ∈ AutΦ#, where Φ# : Gal#(M2(k)) → Sets
is the fibre functor. Consider the good F1-grading of M2(k). By Proposition 3.5 the
map σF1 verifies σF1(x) = xg for some uniquely determined g ∈ F1. Analogously,
the C2 × C2-grading provides σC2×C2 and an element (ta, tb), where C2 = 〈t〉. The
compatibility condition obtained when considering the maximal common quotient C2

says that ta equals the class of g in C2. We associate the pair (g, tb) to σ.
Conversely, given (g, tb) ∈ F1 × C2, we will construct σ ∈ AutΦ# associated to it.
One needs to have maps σG : G → G for each group G providing a connected grading
of M2(k). Using the classification of the gradings given in [21] and Proposition 4.15, it
is sufficient to describe σF1 and σC2×C2 . Fix σF1(x) = xg and σC2×C2(x) = x(g, tb).
Note that these maps satisfy the compatibility condition. Of course, for the other
quotients G of F1 or of C2 × C2, the map σG is uniquely determined thanks to the
quotient compatibility conditions.
The proof of the second statement is completely analogous. �

Next we will prove a generalization of the preceding theorem for matrices of prime
size. We will use the main result obtained by Y. Bahturin and M. Zaicev in [4].
Considering an algebraically closed field k of characteristic zero, Theorem 5.1 of [4]
states that any grading of Mn(k) by a group G is a tensor product of gradings, in
the sense that there exists a decomposition n = n1n2, a fine grading of Mn1(k)
by a subgroup G1 of order n2

1 and a good G-grading of Mn2(k) such that Mn(k)
is isomorphic as G-graded algebra to the tensor product algebra Mn1(k) ⊗ Mn2(k)
which is obtained as an induced grading. Observe that the construction of an induced
grading resembles to a tensor construction, however it is well defined only in case one
of the graded algebras involved is a matrix algebra with a good grading, see [4].

Proposition 4.17. Let p be a prime and k be an algebraically closed field of
characteristic zero. Let X be a maximal connected grading by a group G of Mp(k).
Then either the group G is isomorphic to Cp × Cp and the grading is fine as in
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Proposition 4.4, or the grading is a good grading given by m : {1, . . . , p− 1} → G
such that Imm generates G.

Proof: Since p is a prime, Theorem 5.1 of [4] cited above shows that the grading is
either good, or fine with group of order p2. We already know that good connected
gradings are as described in Proposition 4.14. If the grading is fine, the order p2 of the
group is precisely the dimension of the matrix algebra, hence SuppX = G. Moreover,
for fine gradings of matrix algebras, homogeneous non-zero elements are invertible
by Corollary 2.7 of [4]. Then we assert the group is not cyclic: indeed, if G has a
generator t of order p2, let x be a non-zero element of degree p2, hence invertible.
Note that X1Mp(k) = k. Hence xp

2
∈ k and xp

2
6= 0, we can normalize x dividing it

by a scalar in order to obtain x′ ∈ XtMp(k) such that x′p
2
= 1. Then Mp(k) would

be isomorphic to the group algebra of the cyclic group of order p2, which is false since
for instance the former is commutative.
Consequently a fine connected grading of Mp(k) is given by Cp × Cp. As before
SuppX = G for dimensional reasons. Let t be a generator of Cp, let x and y be non-
zero elements of degrees (t, 1) and (1, t) respectively. Again, x and y are invertible
and we normalize them in order to have xp = yp = 1. They do not commute, since
otherwise the algebra would be the commutative algebra k(Cp × Cp). In fact xy and
yx are both non-zero and they have common degree (t, t). Hence they differ by a
scalar: yx = qxy. Moreover qp = 1 since x = ypx = qpxyp = qpx. Then q is a
primitive root of unity and the grading corresponds to the grading of Proposition 4.4.
�

Theorem 4.18. Let k be an algebraically closed field of characteristic zero, and
let p be a prime. Then

π1Mp(k) ≃ Fp−1 × Cp.

The proof is completely analogous to the proof of Theorem 4.16.

We end this section with a computation of the fundamental group of triangular
matrix algebras, based on the work of A. Valenti and M.V. Zaicev [24].

A grading of an upper triangular matrix algebra Tn(k) is good if the elementary
matrices jEi are homogeneous. Clearly any good grading is completely determined
by assigning group elements to sub-diagonal elementary matrices i+1Ei, since the
idempotents iEi have necessarily trivial degree. In other words a good grading is
determined as before by a map m : {1, . . . , n− 1} → G. The grading is connected if
and only if Imm generates G. As before, any good connected grading is a quotient of
the grading given by the free group Fn−1 on a set {s1, . . . , sn−1} and a map m such
that Imm = {s1, . . . , sn−1}.
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The main result of [24] states that any grading of a triangular algebra is good, with-
out any hypothesis concerning the field (Theorem 7). As an immediate consequence
we obtain the following:

Theorem 4.19. Let k be a field and let Tn(k) be the algebra of triangular matrices
of size n. Then

π1Tn(k) ≃ Fn−1.

5 Fundamental group of truncated polynomial algebras

In this section we compute the fundamental group of the group algebra of the cyclic
group of order p in characteristic p, in other words we compute the fundamental group
of k[x]/(xp).

Proposition 5.1. Let G be a finite group and let k be any field. The usual G-
grading of the group algebra kG is simply connected.

Proof: The Galois covering kG#G has G as set of objects and, given s, t ∈ G,

t(kG#G)s = k(t−1s).

The composition is given by the product of G. In other words, all k-vector spaces of
morphisms are one-dimensional and all the structure constants are 1. By Lemma 4.5,
this category is simply connected. �

Remark 5.2. As a consequence of the previous proof we recover the Cohen-Mont-
gomery duality theorem for coactions [15]: the algebras kG#G and M|G|(k) are
isomorphic. The algebra associated to a finite object category is obtained as the
direct sum of all the vector spaces of morphisms. In particular, if all the vector
spaces of morphisms are one-dimensional, we get the matrix algebra. Hence the
algebra associated to the category kG#G is M|G|(k). On the other hand, it has
been proved in [12] that the algebra corresponding to the categorical smash product
by a finite group is precisely the usual smash product algebra.

Next we provide an example of a path k-algebra of a quiver with admissible re-
lations, which does not admit a universal cover when the field is of characteristic p.
The quiver is a loop, and the relation is given by the pth-power of the loop. There are
at least two simply connected coverings by smash categories. One of them is not a
covering of ”quivers with relations” in the sense of [18].
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Proposition 5.3. Let k be a field of characteristic p. The truncated polynomial
algebra k[x]/(xp) does not admit a universal covering.

Proof: First, note that k[x]/(xp) is isomorphic to the k-group algebra of the cyclic
group Cp of order p, hence the preceding proposition provides a simply connected
covering with group Cp. Note that this covering is the category with p vertices, where
all vector spaces of morphisms are one-dimensional and all the structure constants are
1.
On the other hand, consider the usual Z-grading of k[x]. Since (xp) is an homogeneous
ideal - this holds in any characteristic - it induces a grading in k[x]/(xp). For this
grading, [k[x]/(xp)]#Z is the category which has Z as set of objects, one-dimensional
vector spaces of morphisms from i to j if 0 ≤ j − i < p, and 0 otherwise. In other
words the morphisms in the category are generated by morphisms from i to i+ 1 for
each integer i, with relations such that any composition of p generators is zero. As a
consequence of this description, each grading of [k[x]/(xp)]#Z is freely determined by
assigning a degree to the one dimensional vector space of morphisms from i to i+ 1.
Hence any homogeneous non-zero closed walk has trivial degree.
Recall that by definition of connected grading, any element of the group should be the
degree of an homogeneous walk between objects. Then the unique group that grades
this smash product category in a connected way is the trivial one. As a consequence,
this covering category is simply connected. Finally note that the Galois coverings are
not isomorphic since their groups of automorphisms are not isomorphic. In this way
we have constructed two non-isomorphic simply connected coverings. �

It is well known and easy to prove that the trivial homogeneous component of any
grading always contains the ground field k.

A grading is called fine if the dimension of each homogeneous component is at
most one, see for instance [2].

Theorem 5.4. Let k be a field of characteristic p and let A = k[x]/(xp). There are
two types of connected gradings of A, with no common quotient except the trivial
one. The first type corresponds to the group algebra case and the grading group is
Cp. In the second one, the grading group is either Z or any of its quotients.

Proof: Let X be a connected basic grading of A. There are two cases, according
to the existence of an invertible homogeneous element of nontrivial degree. First we
suppose that there exists an invertible homogeneous element a of degree s 6= 1. We
write a = a0 + a+ where a0 ∈ k∗ and a+ ∈ (x), and we normalize a in order to have
a0 = 1. Since the characteristic of k is p, we obtain that ap = 1 and p is the order of
a. For i < p we infer that ai 6= 0, then XsiA 6= 0. Moreover XsiA 6= XsjA for i 6= j,
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i, j < p. Also 1 = ap ∈ XspA implies sp = 1. Computing dimensions and since the
grading is connected, we deduce that the group is cyclic of order p, and the grading
is fine.
As a second case, assume all homogeneous elements of nontrivial degree belong to the
maximal ideal (x), that is ⊕

s∈G,s 6=1

XsA ⊆ (x).

Consider now the usual valuation ν on A, namely for f 6= 0 we have that ν(f) is the
smallest exponent of x appearing in f . Of course ν(f) = 0 if and only if f is invertible.
The valuation ν has the following properties:

• ν(f + g) ≥ inf{ν(f), ν(g)} for f, g, f + g 6= 0.

• ν(fg) = ν(f) + ν(g) for f, g, fg 6= 0.

Then for f 6= 0 we obtain f = xν(f)u where u is invertible.
Assume first that there exists a homogeneous g1 ∈ X1A of valuation 1, that is,
g1 = x+u with u ∈ (x2). Since gp−1

1 = xp−1 and gp−1
1 is homogeneous, we infer that

xp−1 is homogenous of degree 1. Now, gp−2
1 = xp−2+λxp−1, so, xp−2 = gp−2

1 −λxp−1

hence xp−2 is homogenous of degree 1. If we continue with this procedure, we finally
get that x is homogenous of degree 1 and the grading is trivial. Finally, assume
ν(g1) ≥ 2 for any homogeneous g1 ∈ X1A. We claim that there exists a homogeneous
f of valuation 1. If not, for any g ∈ (x) we have ν(g) ≥ 2, by decomposing g as
a sum of its homogeneous components and using the above property of a valuation,
which is clearly false since ν(x) = 1. Now ν(f i) = i for i < p. Since f i ∈ XsiA, the
latter is not zero. For dimensional reasons we infer that the support of the grading is
{1, s, . . . , sp−1} which generates a cyclic group. �

Corollary 5.5. Let k be a field of characteristic p. Then

π1 (k[x]/(x
p)) = Z× Cp.

6 Fundamental group of diagonal algebras

Let E be a finite set and k a field. The diagonal algebra kE is the vector space of maps
from E to k with pointwise multiplication. Next we will consider connected gradings
of diagonal algebras (see [16] and [5]). The following result shows that any abelian
group with the cardinality of a given set grades the diagonal algebra in a connected
way, provided the field contains enough roots of unity.
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Proposition 6.1. Let E be a finite set of order n and let k be a field with enough
n-th roots of unity. Let G be any abelian group of order n. Then there is a simply
connected G-grading of kE.

Proof: We first sketch the proof of the following well known result. Let G be any
abelian group of order n, E a set of cardinal n and k a field containing n different
n-th roots of unity, then the algebras kG and kE are isomorphic. First assume that
G is cyclic. Let t be a generator of G and let µn be the set of n-th roots of unity
in k. Note that under our assumptions p does not divide n, in case k is a field of
characteristic p > 0. Then the set

{
eζ =

1

n

n−1∑

i=0

ζ iti

}

ζ∈µn

is a complete set of orthogonal idempotents of kG, which has n elements. This set
provides a new basis of kG, proving that kG is isomorphic to ⊕ζ∈µn

keζ , which in turn
is identified with kE through a bijection between E and µn by considering the Dirac
masses in kE .
For an arbitrary abelian group G of order n, note that G is a direct product of finite
cyclic groups. Note also that a group algebra k(G1×G2) is isomorphic to kG1⊗kG2,
while the algebras kE1×E2 and kE1 ⊗ kE2 are also isomorphic. The previous case
provides the required isomorphism.
Next we prove the statement of the proposition. Consider the algebra kE , an arbitrary
abelian group G of order n, and an algebra isomorphism between kG and kE as before.
The usual G-grading of kG provides a grading of kE by transporting the structure
through the isomorphism. Consequently any abelian group of order n provides a
simply connected grading of the algebra kE . �

Corollary 6.2. Let n be a non-square free positive integer and let k be a field as
above. The algebra kn does not admit a universal covering.

Proof: If n is not square free there exist at least two non-isomorphic groups of order
n. The result above provides at least two non-isomorphic simply connected coverings,
then kn does not admit a universal cover. Moreover, each abelian group G of order n
provides a simply connected grading through the isomorphism of kn with kG. �

The following result is based on the fact that k×k admits precisely one connected
grading. We provide a proof of this, which is also a particular case of S. Dăscălescu’s
classification in [16] (see also J. Bichon approach in [5]).
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Proposition 6.3. Let k be a field of characteristic different from 2. The funda-
mental group π1(k × k) is cyclic of order 2.

Proof: Let X be a connected G-grading of k × k for some group G. The trivial
homogeneous component X1(k× k) contains the unit of the algebra. If X1(k× k) =
k × k, the group is trivial since the support of X is just the trivial element of G and
the grading is connected. Otherwise there is exactly one more non-zero homogeneous
component Xs(k × k) which is one dimensional. Note that s has to generate G. We
will prove that s is of order 2. Let (x, y) be a non-zero element of degree s. Clearly
(x, y)2 6= 0, moreover (x, y)2 ∈ Xs2(k × k). Since there are only two homogeneous
components, we infer that Xs2(k × k) = X1(k × k) or Xs2(k × k) = Xs(k × k). In
the first case s2 = 1, while in the second case s = 1. Consequently there are precisely
two connected gradings and the fundamental group is cyclic of order two. �

Lemma 6.4. Let A and B be algebras provided with connected GA and GB-
gradings X and Y respectively. Then the algebra C = A × B has a natural
GA ∗GB-connected grading Z. As a consequence all quotients of GA ∗GB grade C
connectedly.

Proof: Consider the following subspaces of C:

Z1C = X1A× Y 1B,
ZsC = XsA× 0, if s 6= 1 and s ∈ GA,
ZtC = 0× Y tB, if t 6= 1 and t ∈ GB ,
ZwC = 0, in the remaining cases.

Note that the support of the grading Z is the union of the supports of X and Y .
These supports generate GA and GB respectively, hence the support of Z generates
GA ∗GB . �

Example 6.5. Let E5 be a set with five elements. There exists a connected C6-
grading of kE5 .

Indeed let E2 and E3 be sets with two and three elements respectively. Then
kE5 ∼= kE2 × kE3 and we consider the previous fine and connected gradings given
by C2 and C3 of kE2 and kE3 respectively. The previous lemma shows that the
product group C2 ∗ C3 grades the product algebra kE5 in a connected way, as well
as any of its quotients, in particular C6.

This example is in fact the basis of the general procedure developed by S. Dăscălescu
in order to describe all the connected gradings of a diagonal algebra. First we rephrase
one of his results.
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Lemma 6.6. [16, Lemma 1] Let kn be a diagonal algebra. Any connected G-
grading with one-dimensional trivial homogeneous component is given by the usual
G-grading of kG, where G is any abelian group of order n.

Note that Dăscălescu call ergodic a grading with one-dimensional trivial homoge-
neous component. For n = 2, a nontrivial grading has to be ergodic, hence we recover
the fact that there is only one nontrivial grading of k × k as in Proposition 6.3.

Dăscălescu provides a description of all the gradings of kE , which is based on
ergodic ones (see [16, Theorem 5]). We shall use it in order to compute π1(k

n) for
small values of n. In order to state his result, we fist consider the following specific
connected gradings of a diagonal algebra which are modeled on Example 6.5

Roughly speaking the specific gradings are free product gradings of connected
ergodic ones based on a product algebra decompositions of a diagonal algebra. Note
that connected ergodic gradings of diagonal algebras are classified by Lemma 6.6.

More precisely, let A = kE be a diagonal algebra and let M1, . . . ,Ms be a partition
of E. Let AMi

be the algebra A(eMi
), where eMi

=
∑

x∈Mi
δx, and δx is the Dirac

mass at x. It is well known and easy to prove that any direct product decomposition
of kE is obtained in this way. Let Hi be an abelian group of order #(Mi) and finally
let Xi be the corresponding Hi-ergodic grading of AMi

. Then by Lemma 6.4, the
group H1 ∗ · · · ∗Hs provides a connected grading of A = AM1 × · · · ×AMs , which we
call specific.

Theorem 6.7. [16] Let E be a finite set and let k be a field containing all roots of
unity of order less than or equal to #E. Any connected grading of kE is a quotient
of a specific grading.

Corollary 6.8. Let k be a field containing all roots of unity of order 2 and 3.
Then π1(k

3) = C2 × C3.

Proof: The two nontrivial partitions of {1, 2, 3} provide connected gradings by C2

and C3. Clearly they do not have nontrivial common quotients.

Theorem 6.9. Let k be a field containing all roots of unity of order 2, 3 and 4.
Then π1(k

4) = (C2 ∗ C2)× C4 × C2 × C2 × C3 = (C2 ∗ C2)× C6 × C4 × C2.

Proof: The specific gradings of k4 are given by the partitions of the set {1, 2, 3, 4} as
follows.
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Group Dimension Dimension
of the trivial component of other components

{1} 4 0

C2 ∗ C2 2 1, 1

C3 2 1, 1

C2 3 1

C4 1 1, 1, 1

C2 × C2 1 1, 1, 1

An inspection of the possible common quotients taking into account the structure of
the groups and the dimension of the trivial homogeneous components shows that the
C2-grading is a quotient of the C2 ∗C2-grading. Moreover, there is no other nontrivial
common quotient. �
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Université Montpellier 2,
F-34095 Montpellier cedex 5, France.
Claude.Cibils@math.univ-montp2.fr

M.J.R.:
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