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Abstract

We consider the semiclassical limit of nonrelativistic quantum many-boson systems with delta po-
tential in one dimensional space. We prove that time evolvedcoherent states behave semiclassically as
squeezed states by a Bogoliubov time-dependent affine transformation. This allows us to obtain prop-
erties analogous to those proved by Hepp and Ginibre-Velo ([Hep], [GiVe1, GiVe2]) and also to show
propagation of chaos for Schrödinger dynamics in the mean field limit. Thus, we provide a derivation of
the cubic NLS equation in one dimension.

2000 Mathematics subject classification: 81S30, 81S05, 81T10, 35Q55

1 Introduction

The justification of the chaos conservation hypothesis in quantum many-body theory is the main concern of
the present paper. This well-know hypothesis finds its rootsin statistical physics of classical many-particle
systems as a quantum counterpart. See, for instance [MS], [Go] and references therein.

Non-relativistic quantum systems ofN bosons moving ind-dimensional space are commonly described
by the Schrödinger Hamiltonian

HN :=
N

∑
i=1

−∆xi + ∑
i< j

VN(xi −x j) , x∈ R
d , (1)

acting on the space of symmetric square-integrable functions L2
s(R

dN) over RdN. HereVN stands for an
even real pair-interaction potential. The Hamiltonian (1), under appropriate conditions onVN, defines a
self-adjoint operator and hence the Schrödinger equation

i∂tΨt
N = HNΨt

N, (2)

admits a unique solution for any initial dataΨ0
N ∈ L2(RdN). The interactingN-boson dynamics (2) are

considered in the mean field scaling, namely, whenN is large and the pair-potential is given by

VN(x) =
1
N

V(x) ,

with V independent ofN. The chaos conservation hypothesis for theN-boson system (2) amounts to the
study of the asymptotics of thek-particle correlation functionsγt

k,N given by

γt
k,N(x1, · · · ,xk;y1, · · · ,yk) =

∫

Rd(N−k)
γt
N(x1, · · · ,xk,zk+1, · · · ,zN;y1, · · · ,yk,zk+1,zN)dzk+1 · · ·dzN , (3)
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whereγt
N = Ψt

N(x1, · · · ,xN)Ψt
N(y1, · · · ,yN). More precisely, this hypothesis holds if for an initial datum

which factorizes as
Ψ0

N = ϕ0(x1) · · ·ϕ0(xN) such that||ϕ0||L2(Rd) = 1,

thek-particle correlation functions converges in the trace norm

γt
k,N

N→∞−→ ϕt(x1) · · ·ϕt(xk)ϕt(y1) · · ·ϕt(yk), (4)

whereϕt solves the nonlinear Hartree equation

{
i∂tϕ = −∆ϕ +V ∗ |ϕ |2ϕ
ϕ|t=0 = ϕ0 .

(5)

The convergence of correlation functions (4) for the Schrödinger dynamics (2) is equivalent to the statement
below :

lim
N→∞

〈Ψt
N,ONΨt

N〉 = lim
N→∞

∫

R2dk
γt
k,N(x1, · · · ,xk;y1, · · · ,yk)Õ(y1, · · · ,yk;x1, · · · ,xk)dx1 · · ·dxkdy1 · · ·dyk

= 〈ϕ⊗k
t ,Oϕ⊗k

t 〉 , (6)

whereON are observables given byON := O ⊗1(N−k) acting onL2(RdN) with O : L2(Rdk) → L2(Rdk) a
bounded operator with kernel̃O andk is a fixed integer. The relevance of those observables is justified by
the fact thatON are essentially canonical quantizations of classical quantities.

In the recent years, mainly motivated by the study of Bose-Einstein condensates, there is a renewed
and growing interest in the analysis of many-body quantum dynamics in the mean field limit (for instance
see [ABGT],[BEGMY],[BGM],[ESY],[EY],[FGS],[FKP],[FKS], etc.). For a general presentation on the
subject we refer the reader to the reviews [Spo] and [Gol]. Various strategies were developed in order to
prove the chaos conservation hypothesis or even stronger statements. One of the oldest approaches is the
so-called BBGKY hierarchy (named after Bogoliubov, Born, Green, Kirkwood, and Yvon) which consists
in considering the Heisenberg equation,

{
∂tρt = i[ρt ,HN],

ρ|t=0 = |ϕ⊗N
0 〉〈ϕ⊗N

0 | , (7)

together with the finite chain of equations arising from (7) by taking partial traces on 0≤ k ≤ N variables.
Sinceρt are trace class operators one can write the corresponding hierarchy of equations on thek-particle
correlation functionsγt

k,N:







i∂tγt
k,N =

N

∑
i=1

[−∆xi + ∆yi ]γ
t
k,N +

1
N ∑

1≤i< j≤k

[V(xi −x j)−V(yi −y j)]γt
k,N

+
1
N ∑

1≤i≤k,k+1≤ j≤N

∫

R(N−k)d
[V(xi −x j)−V(yi −y j)]γt

N dxk+1 · · ·dxN

+
1
N ∑

k+1≤i< j≤N

∫

R(N−k)d
[V(xi −x j)−V(yi −y j)]γt

N dxk+1 · · ·dxN

γ0
k,N = ϕ0(x1) · · ·ϕ0(xk)ϕ0(y1) · · ·ϕ0(yk) .

An alternative approach to the chaos conservation hypothesis uses the second quantization framework
(details on this notions are recalled in Section 2). Consider the Hamiltonian,

ε−1Hε =

∫

Rd
∇a∗(x)∇a(x) dx+

ε
2

∫

R2d
V(x−y)a∗(x)a∗(y)a(x)a(y) dxdy,

wherea,a∗ are the usual creation-annihilation operator-valued distributions in the Fock space overL2(Rd).
Recall thata anda∗ satisfy the canonical commutation relations

[a(x),a∗(y)] = δ (x−y) , [a∗(x),a∗(y)] = 0 = [a(x),a(y)] .
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A simple computation leads to the following identity

ε−1Hε|L2
s(RdN)

= HN, if ε =
1
N

.

Thus, the statement on the chaos propagation stated in (6) may be written (up to an unessential factor) as

lim
ε→0

〈
e−itε−1Hε Ψ0

ε , bWicke−itε−1Hε Ψ0
ε
〉

= 〈ϕ⊗k
t ,Oϕ⊗k

t 〉 ,

wherebWick denotesε-dependent Wick observables defined by

bWick = εk
∫

R2kd

k

∏
i=1

a∗(xi) Õ(x1, · · · ,xk;y1, · · · ,yk)
k

∏
j=1

a(y j) dx1 · · ·dxkdy1 · · ·dyk,

with Õ(x1, · · · ,xk;y1, · · · ,yk) the distribution kernel of a bounded operatorO on L2(Rkd). Therefore, the
mean field limitN → ∞ for HN can be converted to a semiclassical limitε → 0 for Hε . The study of the
semiclassical limit of the many-boson systems traces back to the work of Hepp [Hep] and was subsequently
improved by Ginibre and Velo [GiVe1, GiVe2]. The latter analysis are based on coherent states,i.e.,

Ψ0
ε = e−

|ϕ|2
2ε

∞

∑
n=0

ε−n/2 ϕ⊗n
√

n!
, ϕ ∈ L2(Rd) ,

which have infinite number of particles in contrast to the Hermite statesΨ0
N = ϕ⊗N

0 . However, a simple
argument in the work of Rodnianski and Schlein [RoSch] showsthat the semiclassical analysis is enough
to justify the chaos conservation hypothesis and even provides convergence estimates on thek-particle
correlation functions. The authors of [RoSch] considered the problem under the assumption of(−∆+1)1/2-
bounded potential (i.e., V(−∆+1)−1/2 is bounded). The main purpose of the present paper is to extend the
latter result to more singular potentials using the ideas ofGinibre and Velo [GiVe2].

For the sake of clarity, we restrict ourselves in this paper to the particular example of point interaction
potential in one dimension,i.e.,

V(x) = δ (x) , x∈ R . (8)

This example is typical for potentials which are−∆-form bounded (i.e., (−∆ + 1)−1/2V(−∆ + 1)−1/2 is
bounded). Indeed, we believe that such simple example sums up the principal difficulties on the problem.
Moreover, we state in Appendix C some abstract results on thenon-autonomous Schrödinger equation
which have their own interest and allow to consider a more general setting. We also remark that the results
here can be easily extended to the caseV(x) = −δ (x) at the price to work locally in time.

The paper is organized as follows. We first recall the basic definitions for the Fock space framework
in Section 2. Then we accurately introduce the quantum dynamics of the considered many-boson system
and its classical counterpart, namely the cubic NLS equation. The study of the semiclassical limit through
Hepp’s method is carried out in Section 6 where we use resultson the time-dependent quadratic approx-
imation derived in Section 5. Finally, in Section 7 we apply the argument of [RoSch] to prove the chaos
propagation result.

2 Preliminaries

Let H be a Hilbert space. We denote byL (H) the space of all linear bounded operators onH. For a linear
unbounded operatorL acting onH, we denote byD(L) ( respectivelyQ(L)) the operator domain (respec-
tively form domain) ofL. LetDxj denotes the differential operator−i∂xj onL2(Rn) where(x1, · · · ,xn)∈Rn.

In the following we recall the second quantization framework. We denote byL2
s(R

nd) the space of
symmetric square integrable functions,i.e.,

Ψn ∈ L2
s(R

nd) iff Ψn ∈ L2(Rnd) and Ψn(x1, · · · ,xn) = Ψn(xσ1, . . . ,xσn) a.e.,
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for any permutationσ on the symmetric group Sym(n). The orthogonal projection fromL2(Rnd) onto the
closed subspaceL2

s(R
nd) is given by

SnΨn(x1, · · · ,xn) =
1
n! ∑

σ∈Sym(n)

Ψn(xσ(1), · · · ,xσ(n)), Ψn ∈ L2(Rnd) .

We will often use the notation
Ss(R

nd) := SnS (Rnd)

whereS (Rnd) is the Schwartz space onRnd. The symmetric Fock space overL2(R) is defined as the
Hilbert space,

F =
∞⊕

n=0

L2
s(R

nd) ,

endowed with the inner product

〈Ψ,Φ〉 =
∞

∑
n=0

∫

Rnd
Ψn(x1, · · · ,xn) Φn(x1, · · · ,xn) dx1 · · ·dxn ,

whereΨ = (Ψn)n∈N andΦ = (Φn)n∈N are two arbitrary vectors inF . A convenient subspace ofF is given
as the algebraic direct sum

S :=
alg
⊕

n=0

Ss(R
nd) .

Most essential linear operators onF are determined by their action on the family of vectors

ϕ⊗n(x1, . . . ,xn) =
n

∏
i=1

ϕ(xi) , ϕ ∈ L2(Rd) ,

which spans the spaceL2
s(R

nd) thanks to the polarization identity,

Sn

n

∏
i=1

ϕi(xi) =
1

2nn! ∑
εi=±1

ε1 · · ·εn

n

∏
i=1

( n

∑
j=1

ε jϕ j(xi)
)
.

For example, the creation and annihilation operatorsa∗( f ) anda( f ), parameterized byε > 0, are defined
by

a( f )ϕ⊗n =
√

εn 〈 f ,ϕ〉ϕ⊗(n−1)

a∗( f )ϕ⊗n =
√

ε(n+1) Sn+1( f ⊗ϕ⊗n) , ∀ϕ , f ∈ L2(Rd).

They can also by written as

a( f ) =
√

ε
∫

Rd
f (x)a(x)dx, a∗( f ) =

√
ε
∫

Rd
f (x)a∗(x)dx,

wherea∗(x),a(x) are the canonical creation-annihilation operator-valueddistributions. Recall that for any
Ψ = (Ψ(n))n∈N ∈ S , we have

[a(x)Ψ](n)(x1, · · · ,xn) =
√

(n+1)Ψ(n+1)(x,x1, · · · ,xn),

[a∗(x)Ψ](n)(x1, · · · ,xn) =
1√
n

n

∑
j=1

δ (x−x j)Ψ(n−1)(x1, · · · , x̂ j , · · · ,xn) ,

whereδ is the Dirac distribution at the origin and ˆx j means that the variablex j is omitted. The Weyl
operators are given forf ∈ L2(Rd) by

W( f ) = e
i√
2
[a∗( f )+a( f )]

,
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and they satisfy the Weyl commutation relations,

W( f1)W( f2) = e−
iε
2 Im〈 f1, f2〉 W( f1 + f2), (9)

with f1, f2 ∈ L2(Rd).

Let us briefly recall the Wick-quantization procedure of polynomial symbols.

Definition 2.1 We say that a function b: S (Rd) → C is a continuous(p,q)-homogenous polynomial on
S (Rd) iff it satisfies:
(i) b(λz) = λ̄ qλ pb(z) for anyλ ∈ C and z∈ S (Rd),
(ii) there exists a (unique) continuous hermitian formQ : Ss(R

dq)×Ss(R
dp) → C such that

b(z) = Q(z⊗q,z⊗p).

We denote byE the vector space spanned by all those polynomials.

The Schwartz kernel theorem ensures for any continuous(p,q)-homogenous polynomialb, the existence
of a kernelb̃(., .) ∈ S ′(Rd(p+q)) such that

b(z) =

∫

Rd(p+q)
b̃(k′1, · · · ,k′q;k1, · · · ,kp)z(k′1) · · ·z(k′q)z(k1) · · ·z(kp) dk′dk,

in the distribution sense. The set of(p,q)-homogenous polynomialsb∈ E such that the kernel̃b defines a
bounded operator fromL2

s(R
dp) into L2

s(R
dq) will be denoted byPp,q(L2(Rd)). Those classes of polyno-

mial symbols are studied and used in [AmNi1, AmNi2].

Definition 2.2 The Wick quantization is the map which associate to each continuous(p,q)-homogenous
polynomial b∈ E , a quadratic form bWick onS given by

〈Ψ,bWickΦ〉 = ε
p+q

2

∫

Rd(p+q)
b̃(k′,k) 〈a(k′1) · · ·a(k′q)Ψ,a(k1) · · ·a(kp)Φ〉

F
dk dk′

=
∞

∑
n=p

ε
p+q

2

√

n!(n− p+q)!
(n− p)!

∫

Rd(n−p)
dx
∫

Rd(p+q)
dkdk′ b̃(k′,k)Ψ(n)(k,x)Φ(n−p+q)(k′,x),

for anyΦ,Ψ ∈ S .

We have, for example,

a∗( f ) = 〈z, f 〉Wick and a( f ) = 〈 f ,z〉Wick.

Furthermore, for any self-adjoint operatorA on L2(Rd) such thatS (Rd) is a core forA, the Wick quanti-
zation

dΓ(A) := 〈z,Az〉Wick,

defines a self-adjoint operator onF . In particular, if A is the identity we get theε-dependent number
operator

N := 〈z,z〉Wick.

We recall the standard number estimate (see,e.g., [AmNi1, Lemma 2.5]),
∣
∣
∣〈Ψ,bWickΦ〉

∣
∣
∣≤ ||b̃||L (L2

s(R
d p),L2

s(R
dq)) ||Nq/2Ψ||× ||Np/2Φ|| , (10)

which holds uniformly inε ∈ (0,1] for b∈ Pp,q(L2(Rd)) and anyΨ,Φ ∈ D(Nmax(p,q)/2).
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3 Many-boson system

In nonrelativistic many-body theory, boson systems are described by the second quantized Hamiltonian in
the symmetric Fock spaceF formally given by

− ε
∫

Rd
a∗(x)∆a(x)dx+

ε2

2

∫

Rd

∫

Rd
a∗(x)a∗(y)δ (x−y)a(x)a(y)dxdy. (11)

The rigorous meaning of formula (11) is as a quadratic form onS , which we denote byhWick, obtained by
Wick quantization of the classical energy functional

h(z) =

∫

Rd
|∇z(x)|2 dx+P(z), where P(z) =

1
2

∫

Rd
|z(x)|4 dx, z∈ S (Rd) . (12)

More explicitly, we have forΨ ∈ S

〈Ψ,hWickΨ〉 = ε
∞

∑
n=1

n
∫

Rdn

∣
∣
∣∂x1Ψ(n)(x1, · · · ,xn)

∣
∣
∣

2
dx1 · · ·dxn

+ ε2
∞

∑
n=2

n(n−1)

2

∫

Rd(n−1)

∣
∣
∣Ψ(n)(x2,x2, · · · ,xn)

∣
∣
∣

2
dx2 · · ·dxn .

Moreover, in one dimensional space (i.e., d = 1) one can show the existence of a unique self-adjoint operator
bounded from below, which we denote byHε , such that

〈Ψ,Hε Ψ〉 = 〈Ψ,hWickΨ〉, for any Ψ ∈ S .

This is proved in Proposition 3.3.
In all the sequel we restrict our analysis to space dimensiond = 1 and consider the small parameterε

such thatε ∈ (0,1]. Theε-independent self-adjoint operator,

SµΨ := Ψ+
∞

∑
n=1

[

nµ Ψ(n) +
n

∑
j=1

−∆xj Ψ
(n)

]

=
(
ε−1dΓ(−∆)+ ε−µNµ +1

)
Ψ ,

with µ > 0, defines the Hilbert spaceF µ
+ given as the linear spaceD(S1/2

µ ) equipped with the inner product

〈Ψ,Φ〉
F

µ
+

:= 〈S1/2
µ Ψ,S1/2

µ Φ〉
F

.

We denote byF µ
− the completion ofD(S−1/2

µ ) with respect to the norm associated to the following inner
product

〈Ψ,Φ〉
F

µ
−

:= 〈S−1/2
µ Ψ,S−1/2

µ Φ〉
F

.

Therefore, we have the Hilbert rigging
F

µ
+ ⊂ F ⊂ F

µ
− .

Note that the form domain of theε-dependent self-adjoint operator dΓ(−∆)+Nµ with µ > 0 is

Q(dΓ(−∆)+Nµ) = F
µ
+ for anyε ∈ (0,1] .

Lemma 3.1 For anyΨ,Φ ∈ S ,

∣
∣
∣〈Ψ,PWickΦ〉

∣
∣
∣≤ 1

4
||[dΓ(−∆)+N3]1/2Ψ|| × ||[dΓ(−∆)+N3]1/2Φ|| .

Proof. A simple computation yields for anyΨ,Φ ∈ S

〈Ψ,PWickΦ〉 =
∞

∑
n=2

ε2 n(n−1)

2

∫

Rn−1
Ψ(n)(x2,x2,x3, · · · ,xn) Φ(n)(x2,x2,x3, · · · ,xn)dx2 · · ·dxn .
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Cauchy-Schwarz inequality yields

∣
∣
∣〈Ψ,PWickΦ〉

∣
∣
∣ ≤

[
∞

∑
n=2

ε2 n(n−1)

2

∫

Rn−1
|Ψ(n)(x2,x2,x3, · · · ,xn)|2dx2 · · ·dxn

]1/2

×
[

∞

∑
n=2

ε2 n(n−1)

2

∫

Rn−1
|Φ(n)(x2,x2,x3, · · · ,xn)|2dx2 · · ·dxn

]1/2

.

Using Lemma A.1, we get for anyα(n) > 0

∣
∣
∣〈Ψ,PWickΦ〉

∣
∣
∣ ≤

[
∞

∑
n=2

ε2 n(n−1)

2
√

2

(

α(n)〈D2
x1

Ψ(n),Ψ(n)〉+ α(n)−1

2
〈Ψ(n),Ψ(n)〉

)]1/2

×
[

∞

∑
n=2

ε2 n(n−1)

2
√

2

(

α(n)〈D2
x1

Φ(n),Φ(n)〉+ α(n)−1

2
〈Φ(n),Φ(n)〉

)]1/2

.

Hence, by choosingα(n) = 1√
2ε(n−1)

, it follows that

∣
∣
∣〈Ψ,PWickΦ〉

∣
∣
∣ ≤ 1

4

[
∞

∑
n=2

εn〈D2
x1

Ψ(n),Ψ(n)〉+
∞

∑
n=2

ε3n(n−1)2〈Ψ(n),Ψ(n)〉
]1/2

×
[

∞

∑
n=2

εn〈D2
x1

Φ(n),Φ(n)〉+
∞

∑
n=2

ε3n(n−1)2〈Φ(n),Φ(n)〉
]1/2

≤ 1
4

√

〈Ψ, [dΓ(−∆)+N3]Ψ〉 ×
√

〈Φ, [dΓ(−∆)+N3]Φ〉 .

This leads to the claimed estimate. �

Remark 3.2 Note that, as in Lemma 3.1, the estimate

∣
∣
∣〈Ψ,PWickΦ〉

∣
∣
∣≤ ε2

4
||Ψ||

F3
+

||Φ||
F3

+
(13)

holds true for anyΨ,Φ ∈ S andε ∈ (0,1].

We can show thathWick is associated to a self-adjoint operator by considering itsrestriction to each
sectorL2

s(R
n), however we will prefer the following point of view.

Proposition 3.3 There exists a unique self-adjoint operator Hε such that

〈Ψ,hWickΦ〉 = 〈Ψ,Hε Φ〉 for any Ψ ∈ F
3
+,Φ ∈ D(Hε)∩F

3
+ .

Moreover, e−it/εHε preservesF 3
+.

Proof. We first use the KLMN theorem ([RS, Theorem X17]) and Lemma 3.1to show that the quadratic
form hWick+N3 +1 is associated to a unique (positive) self-adjoint operator L with

Q(L) = Q(dΓ(−∆)+N3) = F
3
+ .

Observe that we also have

||[dΓ(−∆)+N3]1/2Ψ|| ≤ ||L1/2Ψ|| for anyΨ ∈ F
3
+ . (14)

Next, by the Nelson commutator theorem (Theorem B.2) we can prove that the quadratic formhWick is
uniquely associated to a self-adjoint operator denoted byHε with D(L) ⊂ D(Hε )∩F 3

+ and deduce the
invariance ofF 3

+. Indeed, we easily check using Lemma 3.1 and (14) that

∣
∣
∣〈Ψ,hWickΦ〉

∣
∣
∣≤ 5

4
||L1/2Ψ|| ||L1/2Φ|| for anyΨ,Φ ∈ F

3
+. (15)
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Furthermore, we have forΨ,Φ ∈ F 3
+ andλ > 0

〈L(λL+1)−1Ψ,hWick(λL+1)−1Φ〉− 〈(λL+1)−1Ψ,hWickL(λL+1)−1Φ〉 = 0. (16)

The statements (15)-(16) with the help of Lemma B.3, allow touse Theorem B.2. �

Remark 3.4 The same argument as in Proposition 3.3 shows that the quadratic form onF 3
+ given by

G := ε−1dΓ(−∆)+ ε−2PWick+ ε−1N+1,

is associated to a unique (positive) self-adjoint operatorwhich we denote by the same symbol G.

4 The cubic NLS equation

Let Hs(Rm) denote the Sobolev spaces. The energy functionalh given by (12) has the associated vector
field

X : H1(R) −→ H−1(R)

z 7−→ X(z) = −∆z+ ∂z̄P(z) ,

which leads to the nonlinear classical field equation

i∂tϕ = X(ϕ)
= −∆ϕ + |ϕ |2ϕ (17)

with initial dataϕ|t=0 = ϕ0 ∈ H1(R). It is well-known that the above cubic defocusing NLS equation is
globally well-posed onHs(R) for s≥ 0. In particular, the equation (17) admits a unique global solution on
C0(R,Hm(R))∩C1(R,Hm−2(R)) for any initial dataϕ ∈ Hm(R) whenm= 1 andm= 2 (see [GiVe3] for
m= 1 and [T] form= 2). Moreover, we have energy and mass conservationsi.e.,

h(ϕt) = h(ϕ0) and ||ϕt ||L2(R) = ||ϕ0||L2(R) ,

for any initial dataϕ0 ∈ H1(R) andϕt solution of (17). It is not difficult to prove the following estimates

||ϕ ||2L∞(R) ≤ 2||ϕ ||L2(R) ||∂xϕ ||L2(R) ≤ 2||ϕ ||L2(R) h(ϕ)1/2 ,

||ϕ ||pLp(R)
≤ 2

p−2
2 ||ϕ ||

p+2
2

L2(R)
||∂xϕ ||

p−2
2

L2(R)
≤ 2

p−2
2 ||ϕ ||

p+2
2

L2(R)
h(ϕ)

p−2
4 ,

(18)

for p≥ 2 and anyϕ ∈ H1(R). Furthermore, using Gronwall’s inequality we show for anyϕ0 ∈ H2(R) the
existence ofc > 0 depending only onϕ0 such that

||ϕt ||H2(R) ≤ ec|t| ||ϕ0||H2(R) , (19)

whereϕt is a solution of the NLS equation (17) with initial conditionϕ0.

5 Time-dependent quadratic dynamics

In this section we construct a time-dependent quadratic approximation for the Schrödinger dynamics. We
prove existence of a unique unitary propagator for this approximation using the abstract results for non-
autonomous linear Schrödinger equation stated in the Appendix C. This step will be useful for the study of
propagation of coherent states in the semiclassical limit in section 6.

The polynomialP has the following Taylor expansion for anyz0 ∈ H1(R)

P(z+z0) =
4

∑
j=0

D( j)P
j!

(z0)[z] .
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Let ϕt be a solution of the NLS equation (17) with an initial dataϕ0 ∈ H1(R). Consider the time-dependent
quadratic polynomial onS (R) given by

P2(t)[z] :=
D(2)P

2
(ϕt)[z]

= Re
∫

R

z(x)
2

ϕt(x)
2 dx+2

∫

R

|z(x)|2 |ϕt(x)|2 dx.

Let {A2(t)}t∈R be theε-independent family of quadratic forms onS defined by

εA2(t) := dΓ(−∆)+P2(t)
Wick. (20)

Lemma 5.1 For ϕ0 ∈ H1(R) let

ϑ1 := 162(||ϕ0||L2(R) +1)3(h(ϕ0)+1) and ϑ2 := 162(||ϕ0||L2(R) +1)3/2
√

h(ϕ0)+1.

The quadratic forms onS defined by

S2(t) := A2(t)+ ϑ1ε−1N+ ϑ21, t ∈ R ,

are associated to unique self-adjoint operators, still denoted by S2(t), satisfying

• S2(t) ≥ 1,

• D(S2(t)1/2) = F 1
+ for any t∈ R .

Proof. The caseϕ0 = 0 is trivial. By definition of Wick quantization we have forΨ,Φ ∈ S ,

〈Φ,P2(t)
WickΨ〉 = 2

∞

∑
n=1

εn
∫

Rn
|ϕt(x1)|2 Φ(n)(x1, · · · ,xn)Ψ(n)(x1, · · · ,xn)dx1 · · ·dxn

+
∞

∑
n=0

ε
√

(n+1)(n+2)

∫

Rn
Φ(n)(x1, · · · ,xn)

(∫

R

ϕt(x)
2
Ψ(n+2)(x,x,x1, · · · ,xn)dx

)

dx1 · · ·dxn

+
∞

∑
n=0

ε
√

(n+1)(n+2)

∫

Rn
Ψ(n)(x1, · · · ,xn)

(∫

R

ϕt(x)
2Φ(n+2)(x,x,x1, · · · ,xn)dx

)

dx1 · · ·dxn.

(21)

Therefore, using Cauchy-Schwarz inequality, we show

|〈Φ,P2(t)
WickΨ〉| ≤ 2||ϕt ||2L∞(R)||N1/2Φ||× ||N1/2Ψ||

+ ||ϕt ||2L4(R) ||(N+ ε)1/2Φ||×
[

∞

∑
n=0

ε(n+2)||Ψ(n+2)(x,x,x1, · · · ,xn)||2L2(Rn+1)

]1/2

+ ||ϕt ||2L4(R) ||(N+ ε)1/2Ψ||×
[

∞

∑
n=0

ε(n+2)||Φ(n+2)(x,x,x1, · · · ,xn)||2L2(Rn+1)

]1/2

.

Now we prove, by Lemma A.1, the crude estimate

|〈Φ,P2(t)
WickΨ〉| ≤ max(||ϕt ||2L4(R)

, ||ϕt ||2L∞(R))
[

2||N1/2Φ||× ||N1/2Ψ||

+ ||(N+ ε)1/2Φ||× ||(αdΓ(−∆)+ α−1N)1/2Ψ||
+ ||(N+ ε)1/2Ψ||× ||(αdΓ(−∆)+ α−1N)1/2Φ||

]

.

This yields for anyα > 0

|〈Φ,P2(t)WickΨ〉| ≤ α max(||ϕt ||2L4(R)
, ||ϕt ||2L∞(R))

×||
[
dΓ(−∆)+ (α−1+3)α−1N+ α−1ε1

]1/2 Φ||
×||
[
dΓ(−∆)+ (α−1+3)α−1N+ α−1ε1

]1/2 Ψ|| .
(22)

9



Remark now that (18) yields

max(||ϕt ||2L4(R), ||ϕt ||2L∞(R)) ≤ 2(||ϕ0||L2(R) +1)3/2
√

h(ϕ0)+1.

Hence, forα−1 = 3(||ϕ0||L2(R) +1)3/2
√

h(ϕ0)+1 > 0, we obtain

ε−1|〈Φ,P2(t)WickΨ〉| ≤ 2
3 ||[ε−1dΓ(−∆)+ ϑ1ε−1N+ ϑ21]1/2Φ||
×||[ε−1dΓ(−∆)+ ϑ1ε−1N+ ϑ21]1/2Ψ|| . (23)

Applying now the KLMN theorem (see [RS, Theorem X.17]) with the help of inequality (23) we show that

S2(t) = A2(t)+ ϑ1ε−1N+ ϑ21 with ϑ1 > (α−1 +3)α−1, andϑ2 > α−1 +1,

are associated to unique self-adjoint operatorsS2(t) satisfyingS2(t) ≥ 1. Furthermore, we have that the
form domains of those operators are time-independent,i.e.,

Q(S2(t)) = F
1
+

for anyt ∈ R. �

Remark 5.2 The choice ofϑ1, ϑ2 in the previous lemma takes into account the use of KLMN’s theorem in
the proof of Lemma 6.3.

We consider the non-autonomous Schrödinger equation
{

i∂tu = A2(t)u, t ∈ R,
u(t = s) = us.

(24)

HereR ∋ t 7→ A2(t) is considered as a norm continuousL (F 1
+,F 1

−)-valued map (see Lemma 5.3). We
show in Proposition 5.5 the existence of a unique solution for any initial dataus∈ F 1

+ using Corollary C.4.
Moreover, the Cauchy problem’s features allow to encode thesolutions on aunitary propagatormapping
(t,s) 7→U2(t,s) such that

U2(t,s)us = ut ,

satisfying Definition C.1 withH = F , H± = F 1
± andI = R.

In the following two lemmas we check the assumptions in Corollary C.4.

Lemma 5.3 For any ϕ0 ∈ H1(R) and t∈ R the quadratic form A2(t) defines a symmetric operator on
L (F 1

+,F 1
−) and the mapping t∈ R 7→ A2(t) ∈ L (F 1

+,F 1
−) is norm continuous.

Proof. Using (23) we show for anyΨ,Φ ∈ S

|〈Φ,A2(t)Ψ〉| ≤ |〈Φ,ε−1dΓ(−∆)Ψ〉|+ |〈Φ,ε−1P2(t)WickΨ〉|

≤ ||S1/2
1 Φ|| ||S1/2

1 Ψ||+ 2
3ϑ1||S1/2

1 Φ|| ||S1/2
1 Ψ||

≤ 5
3 ϑ1 ||Ψ||

F1
+
||Φ||

F1
+

,

(25)

whereϑ1,ϑ2 are the parameters introduced in Lemma 5.1. Hence, this allows to considerA2(t) as a bounded
operator inL (F 1

+,F 1
−). SinceA2(t) is a symmetric quadratic form it follows that it is also symmetric as

an operator inL (F 1
+,F 1

−).
Now, using a similar estimate as (22) we prove norm continuity. Indeed, we have

|〈Φ, [A2(t)−A2(s)]Ψ〉| = ε−1|〈Φ, [P2(t)−P2(s)]
WickΨ〉|

≤ 4 max
(

||ϕ2
t −ϕ2

s ||L2(R),
∥
∥|ϕt |2−|ϕs|2

∥
∥

L∞(R)

)

||Ψ||
F1

+
||Φ||

F1
+

.

Note that it is not difficult to prove that

max
(

||ϕ2
t −ϕ2

s ||L2(R),
∥
∥|ϕt |2−|ϕs|2

∥
∥

L∞(R)

)

−→ 0 whent → s.

This follows by (18) and the fact thatϕt ∈C0(R,H1(R)). �
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Lemma 5.4 For anyϕ0 ∈ H2(R) there exists c> 0 (depending only onϕ0) such that the two statements
below hold true.
(i) For anyΨ ∈ F 1

+, we have

|∂t〈Ψ,S2(t)Ψ〉| ≤ ec(|t|+1)||S2(t)
1/2Ψ||F .

(ii) For any Ψ,Φ ∈ D(S2(t)3/2), we have

|〈Ψ,A2(t)S2(t)Φ〉− 〈S2(t)Ψ,A2(t)Φ〉| ≤ c||S2(t)
1/2Ψ||F ||S2(t)

1/2Φ||F .

Proof. (i) Let Ψ ∈ S , we have

∂t〈Ψ,S2(t)Ψ〉 = ε−1 ∂t〈Ψ,P2(t)
WickΨ〉

= ε−1〈Ψ, [∂tP2(t)]
WickΨ〉 ,

where∂tP2(t) is a continuous polynomial onS (R) given by

∂tP2(t)[z] = 2Re
∫

R

z(x)
2

ϕt(x)∂t ϕt(x)dx+4Re
∫

R

|z(x)|2 ϕt(x)∂tϕt(x)dx.

A simple computation yields

〈Ψ, [∂tP2(t)]
WickΨ〉 = 4Re

∞

∑
n=1

nε

(1)
︷ ︸︸ ︷
∫

Rn
ϕt(x1)∂tϕt(x1) |Ψ(n)(x1, · · · ,xn)|2 dx1 · · ·dxn

+
∞

∑
n=0

ε
√

(n+2)(n+1)

∫

Rn
Ψ(n)(x1, · · · ,xn)

(∫

R

ϕt(x)∂tϕt(x)Ψ(n+2)(x,x,x1, · · · ,xn) dx

)

dx1 · · ·dxn

+hc.

From (18) we get

|(1)| ≤ ||ϕt ∂tϕt ||L1(R)

∫

Rn−1
sup
x1∈R

∣
∣
∣Ψ(n)(x1, · · · ,xn)

∣
∣
∣

2
dx2 · · ·dxn

≤ ||ϕt ||L2(R) ×||∂tϕt ||L2(R) 〈(1− ∂ 2
x1

)Ψ(n),Ψ(n)〉L2(Rn) .

Now we apply Cauchy-Schwarz inequality,

|〈Ψ, [∂tP2(t)]
WickΨ〉| ≤ 4 ||ϕt ||L2(R) ||∂tϕt ||L2(R)

(
∞

∑
n=1

εn〈(1− ∂ 2
x1

)Ψ(n),Ψ(n)〉L2(Rn)

)

+2||ϕt ||L∞(R)||∂tϕt ||L2(R)

(
∞

∑
n=0

ε(n+2)||Ψ(n+2)(x,x, .)||2L2(Rn+1)

)1/2

×
(

∞

∑
n=0

ε(n+1)||Ψ(n)||2L2(Rn)

)1/2

.

In the same spirit as in (22), we obtain a rough inequality

|〈Ψ, [∂tP2(t)]
WickΨ〉| ≤ max(||ϕt ||L∞(R), ||ϕt ||L2(R)) ||∂tϕt ||L2(R)

[

4||(dΓ(−∆)+N)1/2Ψ||2

+2 ||(dΓ(−∆)+N+1)1/2Ψ||2
]

.

Observe that (23) impliesS1 ≤ 3S2(t) for all t ∈ R. Hence, we have

ε−1|〈Ψ, [∂tP2(t)]
WickΨ〉| ≤ 6 max(||ϕt ||L∞(R), ||ϕt ||L2(R)) ||∂tϕt ||L2(R) ||Ψ||2

F1
+

≤ 18 max(||ϕt ||L∞(R), ||ϕt ||L2(R)) ||∂tϕt ||L2(R) ||S2(t)
1/2Ψ||2F .

This proves (i) since (18)-(19) ensure the existence ofc > 0 (depending only onϕ0) such that

max(||ϕt ||L∞(R), ||ϕt ||L2(R)) ||∂tϕt ||L2(R) ≤ ec(|t|+1) .
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(ii) If Ψ,Φ ∈ D(S2(t)3/2) the quantity

C := 〈Ψ,A2(t)S2(t)Φ〉− 〈S2(t)Ψ,A2(t)Φ〉,

is well-defined sinceA2(t) ∈ L (F 1
+,F 1

−) and S2(t)D(S2(t)3/2) ⊂ D(S2(t)1/2) = F 1
+. Note thatN ∈

L (F 1
+,F 1

−). Hence, we can write

C = 〈Ψ, [S2(t)−ϑ1ε−1N−ϑ21]S2(t)Φ〉− 〈S2(t)Ψ, [S2(t)−ϑ1ε−1N−ϑ21]Φ〉

= ϑ1
(
〈S2(t)Ψ,ε−1NΦ〉− 〈ε−1NΨ,S2(t)Φ〉

)
.

Observe that, forλ > 0, ε−1N(λ ε−1N+1)−1F 1
+ ⊂ F 1

+ and that

s− lim
λ→0+

ε−1N(λ ε−1N+1)−1 = ε−1N in L (F 1
+,F 1

−).

Therefore, we have

C = ϑ1 lim
λ→0+

〈S2(t)Ψ,ε−1N(λ ε−1N+1)−1Φ〉− 〈ε−1N(λ ε−1N+1)−1Ψ,S2(t)Φ〉
︸ ︷︷ ︸

Cλ

.

Let Nλ denoteε−1N(λ ε−1N+1)−1. A simple computation yields

εCλ = 〈Ψ,P2(t)
WickNλ Φ〉− 〈Nλ Ψ,P2(t)

WickΦ〉
= 〈Ψ,g(t)WickNλ Φ〉− 〈Nλ Ψ,g(t)WickΦ〉 ,

whereg(t) is the polynomial given by

g(t)[z] = Re
∫

R

z(x)
2

ϕt(x)
2dx.

A similar computation as (21) yields

Cλ =
∞

∑
n=0

κ(n)

∫

Rn
Ψ(n)(x1, · · · ,xn)

(∫

R

ϕt(x)
2
Φ(n+2)(x,x,x1, · · · ,xn)dx

)

dx1 · · ·dxn

−
∞

∑
n=0

κ(n)
∫

Rn
Φ(n)(x1, · · · ,xn)

(∫

R

ϕt(x)
2Ψ(n+2)(x,x,x1, · · · ,xn)dx

)

dx1 · · ·dxn ,

where

κ(n) =
(n+2)

√

(n+1)(n+2)

(λ (n+2)+1)
− n
√

(n+1)(n+2)

(λn+1)
.

Note thatκ(n) ≤ 2(n+2). Hence, using Cauchy-Schwarz inequality, we show

|Cλ | ≤ 2||ϕt ||2L4(R)

[
∞

∑
n=0

(n+2)||Ψ(n)||2L2(Rn)

]1/2[ ∞

∑
n=0

(n+2) ||Φ(n+2)(x,x, .)||2L2(Rn+1)

]1/2

+2||ϕt ||2L4(R)

[
∞

∑
n=0

(n+2)||Φ(n)||2L2(Rn)

]1/2[ ∞

∑
n=0

(n+2) ||Ψ(n+2)(x,x, .)||2L2(Rn+1)

]1/2

.

Using Lemma A.1, withα = 1√
2
, we get

∞

∑
n=0

(n+2) ||Ψ(n+2)(x,x, .)||2L2(Rn+1) ≤ 1
2

∞

∑
n=0

(n+2)〈D2
x1

Ψ(n+2),Ψ(n+2)〉+(n+2)||Ψ(n+2)||2L2(Rn+2)

≤ 1
2
〈Ψ,S1Ψ〉 ,

together with an analogue estimate whereΨ is replaced byΦ. Now, we conclude that there existsc > 0
depending only onϕ0 such that

ϑ1 |Cλ | ≤ c ||Ψ||
F1

+
||Φ||

F1
+

. (26)

This proves part (ii). �
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Proposition 5.5 Let ϕ0 ∈ H2(R) and A2(t) given by (20). Then the non-autonomous Cauchy problem

{
i∂tu = A2(t)u, t ∈ R,
u(t = s) = us,

admits a unique unitary propagator U2(t,s) in the sense of Definition C.1 with I= R and H± = F 1
±.

Moreover, there exists c> 0 depending only onϕ0 such that

||U2(t,0)||
L (F1

+) ≤ ecec|t|
.

Proof. The proof immediately follows using Corollary C.4 with the help of Lemma 5.3-5.4 and the inequal-
ity

c1S1 ≤ S2(t) ≤ c2S1,

which holds true using (25). �

6 Propagation of coherent states

In finite dimensional phase-space, coherent state analysisis a well developed powerful tool, see for instance
[CRR]. Here we study, using the ideas of Ginibre and Velo in [GiVe2], the asymptotics whenε → 0 of the
time-evolved coherent states

e−it/εHε W(

√
2

iε
ϕ0)Ψ ,

for Ψ in a dense subspaceG+ ⊂ F defined below. We consider the following Hilbert rigging

G+ ⊂ F ⊂ G− ,

defined via theε-independent self-adjoint operator (see Remark 3.4) givenby

G := ε−1dΓ(−∆)+ ε−2PWick+ ε−1N+1,

as the completion ofD(G±1/2) with the respect to the inner product

〈Ψ,Φ〉
G± := 〈G±1/2Ψ,G±1/2Φ〉

F
.

We have the continuous embedding

F
3
+ ⊂ G+ ⊂ F

1
+ .

The main result of this section is the following propositionwhich describes the propagation of coherent
states in the semiclassical limit.

Proposition 6.1 For anyϕ0 ∈ H2(R) there exists c> 0 depending only onϕ0 such that
∥
∥
∥
∥
∥
e−it/εHε W(

√
2

iε
ϕ0)Ψ−eiω(t)/εW(

√
2

iε
ϕt)U2(t,0)Ψ

∥
∥
∥
∥
∥

F

≤ ecec|t|
ε1/8 ‖Ψ‖

G+
,

holds for any t∈ R andΨ ∈ G+ whereϕt solves the NLS equation (17) with the initial conditionϕ0 and
ω(t) =

∫ t
0 P(ϕs) ds. Here U2(t,s) is the unitary propagator given by Proposition 5.5.

To prove this proposition we need several preliminary lemmas.

Lemma 6.2 The following three assertions hold true.

(i) For any ξ ∈ L2(R) and k∈ N, the Weyl operator W(ξ ) preservesD(Nk/2). If in additionξ ∈ H1(R)
then W(ξ ) preserves alsoF µ

+ whenµ ≥ 1.
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(ii) For any ξ ∈ H1(R), we have in the sense of quadratic forms onF 3
+ ,

W(

√
2

iε
ξ )∗ hWickW(

√
2

iε
ξ ) = h(.+ ξ )Wick.

(iii) Let (R ∋ t 7→ ϕt) ∈C1(R,L2(R)), then for anyΨ ∈ D(N1/2) we have inF

iε∂tW(

√
2

iε
ϕt)Ψ = W(

√
2

iε
ϕt)
[

Re〈ϕt , i∂tϕt〉+2Re〈z, i∂tϕt〉Wick
]

Ψ

=
[

−Re〈ϕt , i∂tϕt〉+2Re〈z, i∂t ϕt〉Wick
]

W(

√
2

iε
ϕt)Ψ .

Proof. (i) Let F0 be the linear space spanned by vectorsΨ ∈ F such thatΨ(n) = 0 for anyn except for a
finite number. It is known that for anyξ ∈ L2(R) andΨ ∈ F0

ÑΨ := W(

√
2

iε
ξ )∗NW(

√
2

iε
ξ )Ψ =

(

N+2Re〈z,ξ 〉Wick+ ||ξ ||21
)

Ψ . (27)

For a proof of the latter identity see [AmNi1, Lemma 2.10 (iii)]. Hence, by Cauchy-Schwarz inequality it
follows that

||N1/2W(

√
2

iε
ξ )Ψ||2 = 〈Ψ,

[

N+2Re〈z,ξ 〉Wick+ ||ξ ||21
]

Ψ〉

= 〈Ψ,(N + ||ξ ||2L2(R)1)Ψ〉

+
∞

∑
n=0

√

ε(n+1)

∫

Rn
Ψ(n)(y)

(∫

R

ξ (x)Ψ(n+1)(x,y)dx

)

dy+hc

≤ (1+ ||ξ ||L2(R))
2 ||(N+1)1/2Ψ||2 .

Now, for k ≥ 1 we show the existence of anε-independent constantCk > 0 depending only onk and
||ξ ||L2(R) such that

||Nk/2W(

√
2

iε
ξ )Ψ||2 = 〈Ψ,ÑkΨ〉 ≤Ck ||(N+1)k/2Ψ||2 . (28)

This is a consequence of the number operator estimate (10) and the fact thatÑk is a Wick polynomial in
∑0≤r,s≤kPr,s(L2(R)) (see,e.g.,[AmNi1, Prop. 2.7 (i)]). Thus, we have proved the invariance of D(Nk/2)

sinceF0 is a core ofNk/2.
Now the invariance ofF µ

+ , µ ≥ 1, follows by Faris-Lavine Theorem B.1 where we take the operator

A =
√

2Re〈z,ξ 〉Wick and S= Sµ = ε−1dΓ(−∆)+ ε−µNµ +1,

and remember that

W(ξ ) = ei
√

2Re〈z,ξ 〉Wick
.

In fact, assumingξ ∈ H1(R) we have to check assumptions (i)-(ii) of Theorem B.1. For anyΨ ∈ F
µ
+ , we

have by Wick quantization

2Re〈z,ξ 〉WickΨ =
∞

∑
n=0

√

ε(n+1)
∫

R

ξ (x)Ψ(n+1)(x,x1, · · · ,xn)dx

+
∞

∑
n=1

√
ε
n

n

∑
j=1

ξ (x j)Ψ(n−1)(x1, · · · , x̂ j , · · · ,xn) .

Therefore, it is easy to show

||Re〈z,ξ 〉WickΨ|| ≤
√

ε ||ξ ||L2(R) ||(ε−1N+1)1/2Ψ||
≤

√
ε ||ξ ||L2(R) ||S1Ψ|| ,
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and hence we obtain thatD(Sµ) ⊂ D(A). Let Ψ ∈ D(Sµ), a standard computation yields

√
2
(
〈AΨ,SµΨ〉− 〈SµΨ,AΨ〉

)
= 〈a(−∆ξ )Ψ,Ψ〉− 〈Ψ,a(−∆ξ )Ψ〉
+ 〈[(N

ε +1)µ − (N
ε )µ ]Ψ,a∗(ξ )Ψ〉−hc.

(29)

Each two terms in the same line of (29) are similar and it is enough to estimate only one of them. We have
by Cauchy-Schwarz inequality

|〈a(−∆ξ )Ψ,Ψ〉| ≤
∣
∣
∣
∣
∣

∞

∑
n=0

√

ε(n+1)
∫

Rn
Ψ(n)(y)

(∫

R

−∆ξ (x)Ψ(n+1)(x,y)dx

)

dy

∣
∣
∣
∣
∣

≤ ||ξ ||H1(R) ||S
1/2
1 Ψ||2 ,

and for 1≤ θ ≤ µ −1

∣
∣
∣〈ε−θ Nθ Ψ,a∗(ξ )Ψ〉

∣
∣
∣ ≤

∣
∣
∣
∣
∣

∞

∑
n=0

√

ε(n+1)(n+1)θ
∫

Rn
Ψ(n)(y)

(∫

R

ξ (x)Ψ(n+1)(x,y)dx

)

dy

∣
∣
∣
∣
∣

≤ 2µ ||ξ ||L2(R) ||S
1/2
µ Ψ||2 .

This shows for anyΨ ∈ D(Sµ),

±i〈Ψ, [A,Sµ ]Ψ〉 ≤C ||S1/2
µ Ψ||2.

Part (ii) follows by a similar argument as [AmNi1, Lemma 2.10(iii)] and part (iii) is a well-known formula,
see [GiVe1, Lemma 3.1 (3)]. �

Set

W (t) = W(

√
2

iε
ϕt)

∗ e−iω(t)/ε e−it/εHε W(

√
2

iε
ϕ0) .

Lemma 6.3 For anyϕ0 ∈ H2(R) there exists c> 0 such that the inequality

‖W (t)‖
L (G+,F1

+) ≤ ecec|t|

holds for t∈ R uniformly inε ∈ (0,1].

Proof. Observe that the subspaceD+ given as the image ofD(Hε )∩F 3
+ by W(

√
2

iε ϕ0)
∗ is dense inF .

Let Ψ ∈ D+ andΦ ∈ G+, then differentiating the quantity〈Φ,W (t)Ψ〉 with the help of Lemma 6.2 and
Proposition 3.3, we obtain

iε∂t 〈Φ,W (t)Ψ〉 = 〈Φ, [P(ϕt)−Re〈ϕt , i∂tϕt〉−2Re〈z, i∂tϕt〉Wick]W (t)Ψ〉

+ 〈Φ,W(

√
2

iε
ϕt)

∗e−iω(t)/εHε W(

√
2

iε
ϕ0)Ψ〉

︸ ︷︷ ︸

(1)

. (30)

Let Rν := 1[0,ν](ε−1N) and remark thats− limν→∞ Rν = 1. Furthermore, we have thatRνG+ ⊂ F 3
+ since

it easily holds that

||RνΦ||2
F3

+
≤ ν3 ||Φ||2G+

.

Therefore, sinceW(
√

2
iε ϕt)Rν Φ andW(

√
2

iε ϕ0)Ψ belong toF 3
+, we have

(1) = lim
ν→∞

〈RνΦ,W(

√
2

iε
ϕt)

∗e−iω(t)/εHε W(

√
2

iε
ϕ0)Ψ〉

= lim
ν→∞

〈RνΦ,h(.+ ϕt)
Wick

W (t)Ψ〉 .
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So, we get

iε∂t 〈Φ,W (t)Ψ〉 = (1)+ lim
ν→∞

〈RνΦ,
[

P(ϕt)−Re〈ϕt , i∂tϕt〉−2Re〈z, i∂tϕt〉Wick
]

W (t)Ψ〉

= lim
ν→∞

〈RνΦ,(εA2(t)+P3(t)
Wick+PWick

︸ ︷︷ ︸

=:εΘ(t)

)W (t)Ψ〉 ,

where we denote

P3(t)[z] :=
D(3)P

3!
(ϕt)[z] = 2Re

∫

R

ϕt(x)z(x)|z(x)|2 dx and P(z) =
D(4)P

4!
(ϕt)[z] =

1
2

∫

R

|z(x)|4 dx.

A simple computation yields

〈Φ,P3(t)
WickΨ〉 =

∞

∑
n=1

√

n2(n+1)ε3
∫

Rn−1

(∫

R

ϕt(x)Φ(n)(x,y)Ψ(n+1)(x,x,y)dx

)

dy

+
∞

∑
n=1

√

n2(n+1)ε3
∫

Rn−1

(∫

R

ϕt(x)Φ(n+1)(x,x,y)Ψ(n)(x,y)dx

)

dy.

Using Cauchy-Schwarz inequality and Lemma A.1, we obtain

∣
∣〈Φ,P3(t)WickΨ〉

∣
∣ ≤ 2

√
2
||ϕt ||L∞(R)√

ϑ2

√

〈Φ, [ε−1PWick+ ϑ1ε−1N+ ϑ21]Φ〉

×
√

〈Ψ, [ε−1PWick+ ϑ1ε−1N+ ϑ21]Ψ〉 ,
(31)

whereϑ1,ϑ2 are the parameters in Lemma 5.1. Hence,Θ(t) extends to a bounded operator inL (G+,G−)
sinceA2(t) andPWick belong toL (G+,G−). As an immediate consequence we obtain

iε∂t 〈Φ,W (t)Ψ〉 = 〈Φ,εΘ(t)W (t)Ψ〉. (32)

Now, we consider the quadratic formΛ(t) onG+ given by

Λ(t) := Θ(t)+ ϑ1ε−1N+ ϑ21.

It is easily follows, by (18) and (31), that

∣
∣〈Φ,P3(t)WickΨ〉

∣
∣ ≤ 1

4 ||
(
−ε−1dΓ(−∆)+ ε−1PWick+ ϑ1ε−1N+ ϑ21

)1/2 Φ||
||
(
−ε−1dΓ(−∆)+ ε−1PWick+ ϑ1ε−1N+ ϑ21

)1/2Ψ|| .
(33)

Therefore, using (23) and (33) we show that

ε−1

[

D(2)P
2

(ϕt)[z]+
D(3)P

3!
(ϕt)[z]

]Wick

is form bounded byε−1dΓ(−∆)+ ε−1PWick+ ϑ1ε−1N + ϑ21 with a form-bound less than 1 uniformly in
ε ∈ (0,1]. Hence, by the KLMN Theorem [RS, Thm. X17], the quadratic form Λ(t) is associated to a unique
self-adjoint operator which we still denote byΛ(t), satisfyingQ(Λ(t)) = G+ andΛ(t) ≥ 1. Moreover, it is
not difficult to show the existence ofc1,c2 > 0 such that

c1S1 ≤ Λ(t) ≤ c2G (34)

uniformly in ε ∈ (0,1] for anyt ∈ R . Now, we consider the non-autonomous Schrödinger equation

i∂tut = Θ(t)ut , (35)

with initial datau0 ∈ G+. Next, we prove existence and uniqueness of a unitary propagatorV (t,s) of the
Cauchy problem (35). This will be done if we can check assumptions of Corollary C.4 withG± = H±,
A(t) = Θ(t) andS(t) = Λ(t). Thus, we will conclude that

||Λ(t)1/2
V (t,0)Ψ||F ≤ ecec|t| ||Λ(0)1/2Ψ||F . (36)
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Observe thatR ∋ t 7→ Θ(t) ∈ L (G+,G−) is norm continuous since

|〈Φ,(Θ(t)−Θ(s))Ψ〉| ≤ ||Φ||G+ ||A2(t)−A2(s)||L (F1
+,F1

−) ||Ψ||G+ + |〈Φ,ε−1(P3(t)−P3(s))
Wick Ψ〉| ,

and an estimate similar to (31) yields

|〈Φ,ε−1(P3(t)−P3(s))
Wick Ψ〉| ≤ 2

√
2||ϕt −ϕs||L∞(R) ||Φ||G+ ||Ψ||G+ .

Let us check assumption (i) of Corollary C.4. We have forΨ ∈ G+ ⊂ F 1
+,

∂t〈Ψ,Λ(t)Ψ〉 = ∂t〈Ψ,S2(t)Ψ〉+ ∂t〈Ψ,ε−1P3(t)
WickΨ〉 .

A simple computation yields

∂t〈Ψ,ε−1P3(t)
WickΨ〉 = 2Re

[
∞

∑
n=1

√

n2(n+1)ε
∫

Rn−1

(∫

R

∂tϕt(x)Ψ(n)(x,y)Ψ(n+1)(x,x,y)dx

)

dy

]

.

So, by Cauchy-Schwarz inequality and Lemma A.1, we get

∣
∣
∣∂t〈Ψ,ε−1P3(t)

WickΨ〉
∣
∣
∣ ≤ 2||∂tϕt ||L2(R)

[
∞

∑
n=1

(n+1)||sup
x∈R

∣
∣
∣Ψ(n)(x, .)

∣
∣
∣ ||2L2(Rn−1)

]1/2

×
[

∞

∑
n=1

n2ε||Ψ(n+1)(x,x, .)||2L2(Rn)

]1/2

≤ 2
√

2||∂tϕt ||L2(R) ||Λ(t)1/2Ψ||2 .

The latter estimate with Lemma 5.4 (i) and (18)-(19) give us

|∂t〈Ψ,Λ(t)Ψ〉| ≤ ec(|t|+1)||Λ(t)1/2Ψ||2 .

Now, we check assumption (ii) of Corollary C.4. We follow thesame lines of the proof of Lemma 5.4
(ii) by replacingS2(t) by Λ(t) andA2(t) by Θ(t). So, we arrive at the step where we have to estimate for
Ψ,Φ ∈ D(Λ(t)3/2) andλ > 0, the quantity

Cλ [g(t)] := 〈Ψ,ε−1g(t)WickNλ Φ〉− 〈Nλ Ψ,ε−1g(t)WickΦ〉 ,

whereNλ := ε−1N(λ ε−1N+1)−1 andg(t) is the continuous polynomial onS (R) given by

g(t)[z] = P2(t)[z]+P3(t)[z] .

Note that the partCλ [P2(t)] involving only the symbolP2(t) is already bounded by (26). Thus, we need
only to considerCλ [P3(t)]. A simple computation yields

Cλ [P3(t)] =
∞

∑
n=1

κ(n)

∫

Rn−1

(∫

R

ϕt(x)Φ(n+1)(x,x,y)Ψ(n)(x,y) dx

)

dy

−
∞

∑
n=1

κ(n)

∫

Rn−1

(∫

R

ϕt(x)Φ(n)(x,y)Ψ(n+1)(x,x,y)dx

)

dy,

where

κ(n) =
(n+1)

√

εn2(n+1)

(λ (n+1)+1)
− n
√

εn2(n+1)

(λn+1)

satisfying|κ(n)| ≤
√

n2(n+1) uniformly in ε ∈ (0,1] andλ > 0. So, using a similar estimate as (31), we
obtain

|Cλ [P3(t)]| ≤
1√
2
||ϕt ||L∞(R) ||Λ(t)1/2Ψ|| ||Λ(t)1/2Φ|| .
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This proves assumption (ii) of Corollary C.4. Now, we check that

W (t) = V (t,0).

In fact, forΦ ∈ G+ andΨ ∈ D+ we have

i∂r〈Φ,V (0, r)W (r)Ψ〉 = −〈Θ(r)V (r,0)Φ,W (r)Ψ〉+ i lim
s→0

〈V (r +s,0)Φ,
W (r +s)−W (r)

s
Ψ〉 ,

and since by (30) we know that lims→0
W (r+s)−W (r)

s Ψ exists inF , we conclude using (32) that

∂r〈Φ,V (0, r)W (r)Ψ〉 = 0.

This identifiesW (t) as the unitary propagator of the non-autonomousSchrödinger equation (35). Therefore,
by (34)-(36) we get

√
c1 ||W (t)Ψ||

F1
+
≤ ||Λ(t)1/2

W (t)Ψ||F ≤ ecec|t| ||Λ(0)1/2Ψ||F ≤√
c2ecec|t| ||Ψ||G+ ,

for anyt ∈ R uniformly in ε ∈ (0,1]. �

Lemma 6.4 For anyϕ0 ∈ H2(R) andΨ ∈ G+ we have

‖W (t)Ψ−U2(t,0)Ψ‖2
F

= 2〈Ψ,(1−Rν)Ψ〉−2Re〈W (t)Ψ,(1−Rν)U2(t,0)Ψ〉

+2 Im
∫ t

0
〈W (s)Ψ, [Θ(s)Rν −RνA2(s)]U2(s,0)Ψ〉 ds,

where Rν := σ( ε−1N
ν ) with σ any bounded Borel function onR+ with compact support and here

Θ(s) = A2(s)+ ε−1Qs(z)
wick ,

with Qs(z) the continuous polynomial onS (R) given by

Qs(z) =
D(3)P

3!
(ϕs)[z]+

D(4)P
4!

(ϕs)[z] .

Proof. We have

‖W (t)Ψ−U2(t,0)Ψ‖2
F

= 2‖Ψ‖2
F
−2Re〈W (t)Ψ,U2(t,0)Ψ〉

= 2〈Ψ,(1−Rν)Ψ〉−2Re〈W (t)Ψ,(1−Rν)U2(t,0)Ψ〉
+2Re〈Ψ,RνΨ〉−2Re〈W (t)Ψ,RνU2(t,0)Ψ〉.

(37)

Hence to prove the lemma it is enough to show that

R ∋ s 7→ Re〈W (s)Ψ,RνU2(s,0)Ψ〉 ∈C1(R) (38)

and compute its derivative. Recall that the propagatorU2(s,0) ∈ C0(R,L (F 1
+)), by Proposition 5.5 and

thatW (s) ∈C0(R,L (G+)) since it is the unitary propagator of the Cauchy problem (35). It is easily seen
that

s 7→ RνU2(s,0)Ψ ,

are in∈C0(R,G+) sinceRν maps continuouslyF 1
+ into G+. We also have that

s 7→ W (s)Ψ ∈C1(R,G−) and s 7→U2(s,0)Ψ ∈C1(R,F 1
−) .

This proves the statement (38). Therefore, we have

2Re〈Ψ,RνΨ〉−2Re〈W (t)Ψ,RνU2(t,0)Ψ〉 = −2
ε

Im
∫ t

0
iε∂s 〈W (s)Ψ,RνU2(s,0)Ψ〉 ds. (39)
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The fact thatW (t) is the unitary propagator of (35) with Proposition 5.5 yields

iε∂s〈W (s)Ψ,RνU2(s,0)Ψ〉 = −〈εΘ(s)W (s)Ψ,RνU2(s,0)Ψ〉+ 〈W (s)Ψ,Rν εA2(s)U2(s,0)Ψ〉 . (40)

Now, collecting (37), (39) and (40) we obtain the claimed identity. �

Proof of Proposition 6.1We are now ready to prove Proposition 6.1.
First observe that we have

∥
∥
∥
∥
∥
e−it/εHε W(

√
2

iε
ϕ0)Ψ−eiω(t)/εW(

√
2

iε
ϕt)U2(t,0)Ψ

∥
∥
∥
∥
∥

2

F

= ‖W (t)Ψ−U2(t,0)Ψ‖2
F .

Now, using Lemma 6.4 one obtains fort > 0 (the caset < 0 is similar) the estimate

‖W (t)Ψ−U2(t,0)Ψ‖2
F

≤ 2|〈Ψ,(1−Rν)Ψ〉|+2|〈W (t)Ψ,(1−Rν)U2(t,0)Ψ〉|

+2
∫ t

0
|〈W (s)Ψ, [Θ(s)Rν −RνA2(s)]U2(s,0)Ψ〉| ds.

Here we considerσ to be in the classC1(R+), decreasing and satisfyingσ(s) = 1 if s≤ 1 andσ(s) = 0 if
s≥ 2. We have forν positive integer,

〈Ψ,(1−Rν)Ψ〉 ≤ 1
ν

∞

∑
n=ν+1

n〈Ψ(n),(D2
x1

+1)Ψ(n)〉

≤ 1
ν 〈Ψ,ε−1[dΓ(−∆)+N]Ψ〉 ≤ 1

ν ‖Ψ‖2
F1

+
.

Hence, we easily check with the help of Proposition 5.5 and Lemma 6.3 that

|〈W (t)Ψ,(1−Rν)U2(t,0)Ψ〉| ≤ 1
ν ||U2(t,0)Ψ||

F1
+
||W (t)Ψ||

F1
+

≤ 1
ν ec1ec1t ||Ψ||

F1
+
||Ψ||G+ ≤ 1

ν ec1ec1t ||Ψ||2
G+

.

Next, we show that there existsC > 0 depending only onϕ0 such that
∥
∥
∥ε−1Qs(z)

WickRν

∥
∥
∥

L (F1
+,F1

−)
≤C(ν ε1/2 + ν2ε) .

The latter bound follows by Cauchy-Schwarz inequality, Lemma A.1 and (18),

|〈Φ,
P3(s)

ε

Wick

RνΨ〉| ≤
√

ε ||ϕt ||L∞(R)

[
2ν

∑
n=1

(n+1)||Φ(n)||2L2(Rn)

]1/2 [ 2ν

∑
n=1

n2||Ψ(n+1)(x,x, .)||2L2(Rn)

]1/2

+
√

ε ||ϕt ||L∞(R)

[
2ν

∑
n=1

(n+1)||Ψ(n)||2L2(Rn)

]1/2 [ 2ν

∑
n=1

n2||Φ(n+1)(x,x, .)||2L2(Rn)

]1/2

≤ 2ν
√

ε||ϕt ||L∞(R) ||(ε−1N+1)1/2Φ||F ||Ψ||
F1

+

+ 2ν
√

ε||ϕt ||L∞(R) ||(ε−1N+1)1/2Ψ||F ||Φ||
F1

+
,

and a similar estimate forPWick,

|〈Φ,PWickRνΨ〉| ≤ ν2ε2 ||Φ||
F1

+
||Ψ||

F1
+

.

Hence we can check that
∫ t

0

∣
∣
∣〈W (s)Ψ,ε−1Qs(z)

WickRνU2(s,0)Ψ〉
∣
∣
∣ ds ≤ C(νε1/2 + ν2ε)

∫ t

0
||W (s)Ψ||

F1
+
||U2(s,0)Ψ||

F1
+

ds.
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Now, by Lemma 6.3 and Proposition 5.5 we obtain

∫ t

0
‖W (s)Ψ‖

F1
+
‖U2(s,0)Ψ‖

F1
+

ds ≤
∫ t

0
ec1ec1s‖Ψ‖G+

‖U2(s,0)Ψ‖
F1

+
ds

≤
∫ t

0
ec2ec2s‖Ψ‖G+

‖Ψ‖
F1

+
ds

≤ ececs‖Ψ‖2
G+

.

A simple computation yields

A2(s)Rν −RνA2(s) =
1
2

[

σ(
ε−1N+2

ν
)−σ(

ε−1N
ν

)

](∫

R

ϕt(x)
2z(x)

2
dx

)Wick

+
1
2

[

σ(
ε−1N−2

ν
)−σ(

ε−1N
ν

)

](∫

R

ϕt(x)
2
z(x)2 dx

)Wick

.

We easily check that

∥
∥
∥
∥

σ(
ε−1N±2

ν
)−σ(

ε−1N
ν

)

∥
∥
∥
∥

L (F1
+)

≤ 2
ν
||σ ′||L∞(R+) ,

sinceε−1dΓ(−∆)+ ε−1N commute withε−1N. Thus, using (23) there existsc0,c > 0 such that

∫ t

0
|〈W (s)Ψ, [A2(s),Rν ]U2(s,0)Ψ〉| ds ≤ c0

ν

∫ t

0
‖W (s)Ψ‖

F1
+
‖U2(s,0)Ψ‖

F1
+

ds

≤ 1
ν

ecect ‖Ψ‖2
G+

.

Finally, the claimed inequality in Proposition 6.1 followsby collecting the previous estimates and letting
ν = ε−1/4. �

We have the following two corollaries.

Corollary 6.5 For anyϕ0 ∈ H2(R) and anyξ ∈ L2(R) we have the strong limit

s− lim
ε→0

W(

√
2

iε
ϕ0)

∗ eit/εHε W(ξ )e−it/εHε W(

√
2

iε
ϕ0) = ei

√
2Re〈ξ ,ϕt〉1,

whereϕt solves the NLS equation (17) with initial dataϕ0.

Proof. It is enough to prove for anyΨ,Φ ∈ G+ the limit:

lim
ε→0

〈e−it/εHε W(

√
2

iε
ϕ0)Ψ, W(ξ )e−it/εHε W(

√
2

iε
ϕ0)Φ〉 = ei

√
2Re(ξ ,ϕt) 〈Ψ,Φ〉 . (41)

Indeed, using Proposition 6.1, we show

〈e−it/εHε W(

√
2

iε
ϕ0)Ψ,W(ξ )e−it/εHε W(

√
2

iε
ϕ0)Φ〉 = 〈W(

√
2

iε
ϕt)U2(t,0)Ψ,W(ξ )W(

√
2

iε
ϕt)U2(t,0)Φ〉

+ O(ε1/8).

Therefore by Weyl commutation relations we have

〈W(

√
2

iε
ϕt)U2(t,0)Ψ, W(ξ )W(

√
2

iε
ϕt)U2(t,0)Φ〉 = 〈U2(t,0)Ψ, W(ξ )U2(t,0)Φ〉ei

√
2Re(ξ ,ϕt) ,

Thus the limit is proved sinces− limε→0W(ξ ) = 1. �

Recall thatF0 is the subspace ofF spanned by vectorsΨ ∈ F such thatΨ(n) = 0 for any indexn∈ N

except for finite number. Note thatF0∩G+ is dense inF .
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Corollary 6.6 For anyϕ0 ∈ H2(R) and anyΨ,Φ ∈ F0∩G+ and b∈ Pp,q(L2(R)), we have

lim
ε→0

〈W(

√
2

iε
ϕ0)Ψ, eit/εHε bWicke−it/εHε W(

√
2

iε
ϕ0)Φ〉 = b(ϕt)〈Ψ, Φ〉 ,

whereϕt solves the NLS equation (17) with initial dataϕ0.

Proof. Consider a(p,q)-homogenous polynomialb∈ Pp,q(L2(R)). We have

A := 〈W(

√
2

iε
ϕ0)Ψ, eit/εHε bWicke−it/εHε W(

√
2

iε
ϕ0)Φ〉

= 〈(N+1)qW(

√
2

iε
ϕ0)Ψ,eit/εHε Bε e−it/εHε (N+1)pW(

√
2

iε
ϕ0)Φ〉 ,

whereBε := (N+1)−qbWick(N+1)−p. The number estimate (10) yields

‖Bε‖ ≤
∥
∥b̃
∥
∥

L (L2
s(R

p),L2
s(R

q))
,

uniformly in ε ∈ (0,1]. Let Ñt be the positive operator given by

Ñt = N+2Re〈z,ϕt 〉Wick+ ||ϕt ||2L2(R) .

By (27), we get

A = 〈W(

√
2

iε
ϕ0)(Ñ0 +1)qΨ, eit/εHε Bε e−it/εHε W(

√
2

iε
ϕ0)(Ñ0 +1)pΦ〉 .

Now, observe that

lim
ε→0

(Ñ0 +1)pΦ = (1+ ||ϕ ||2L2(R))
pΦ and lim

ε→0
(Ñ0 +1)qΨ = (1+ ||ϕ ||2L2(R))

qΨ .

So, using Proposition 6.1 we obtain

A = (1+ ||ϕ0||2L2(R))
p+q 〈W(

√
2

iε
ϕt)U2(t,0)Ψ, Bε W(

√
2

iε
ϕt)U2(t,0)Φ〉+O(ε1/8)

= 〈U2(t,0)Ψ, (Ñt +1)−qb(.+ ϕt)
Wick(Ñt +1)−pU2(t,0)Φ〉+O(ε1/8) .

We setΨε = (N +1)q(Ñt +1)−qU2(t,0)Ψ andΦε = (N+1)p(Ñt +1)−pU2(t,0)Φ and remark that we can
show forϕ0 6= 0 andµ a positive integer the following strong limit

s− lim
ε→0

(N+1)µ(Ñt +1)−µ =
1

(1+ ||ϕt ||2L2(R)
)µ . (42)

This holds since we have by explicit computation

||(a(ϕt)+a∗(ϕt))(N + ||ϕt ||2 +1)−1|| ≤ ||ϕt ||
2
√

||ϕt ||2 +1
+

||ϕt ||
2
√

||ϕt ||2 +1− ε
< 1,

for ε sufficiently small and hence we can write

(N+1)(Ñt +1)−1 = (N+1)(N+ ||ϕt ||2 +1)−1[

Rε
︷ ︸︸ ︷

(a(ϕt)+a∗(ϕt))(N + ||ϕt ||2 +1)−1+1]−1 .

This proves (42) forµ = 1 sinces− limε→0Rε = 0. Now, we proceed by induction onµ using a commutator
argument

(N+1)µ+1(Ñt +1)−(µ+1) = (N+1)µ(Ñt +1)−µ(N+1)(Ñt +1)−1

+ (N+1)µ(Ñt +1)−µ [(Ñt +1)µ ,N](Ñt +1)−(µ+1) ,
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with the observation that the second term of (r.h.s.) converges strongly to 0. Therefore, we obtain

lim
ε→0

Ψε =
1

(1+ ||ξ ||2
L2(R)

)q
U2(t,0)Ψ and lim

ε→0
Φε =

1

(1+ ||ξ ||2
L2(R)

)p
U2(t,0)Φ .

It is also easy to show by explicit computation that

w− lim
ε→0

(N+1)−qbWick
r,s (N+1)−p = 0,

for anybr,s∈ Pr,s(L2(R)) such that 0< r ≤ p and 0< s≤ q. Hence, lettingε → 0, we get

lim
ε→0

A = (1+ ||ϕ0||2L2(R)
)p+q lim

ε→0
〈Ψε ,(N +1)−qb(ϕt)(N+1)−pΦε 〉

= b(ϕt)〈U2(t,0)Ψ, U2(t,0)Φ〉 = b(ϕt) 〈Ψ, Φ〉 ,

since||ϕt ||L2(R) = ||ϕ0||L2(R) ands− limε→0(N+1)−µ = 1 for µ > 0. �

We identify the propagatorU2(t,s) as a time-dependent Bogoliubov’s transform on the Fock represen-
tation of the Weyl commutation relations.

Proposition 6.7 Letϕ0 ∈H2(R) and consider the propagatorU2(t,0) given in Proposition 5.5. For a given
s∈ R let ξs ∈ H2(R), we have

U2(t,s)W(
ξs

i
√

ε
)U2(s,t) = W(

β (t,s)ξs

i
√

ε
)

whereβ (t,s) is the symplectic propagator on L2(R), solving the equation

{

i∂tξt(x) = [−∆ +2|ϕt(x)|2] ξt(x)+ ϕt(x)2 ξt(x) ,
ξ|t=s = ξs,

(43)

such thatβ (t,s)ξs = ξt .

Proof. Observe that ifϕ0 ∈ H2(R) then the solutionϕt of the NLS equation (17) with initial condition
ϕ0 satisfiesϕt ∈ C0(R,L∞(R)). Hence, by standard arguments the equation (43) admits a unique solution
ξt ∈C0(R,H2(R))∩C1(R,L2(R)) for anyξs ∈ H2(R). Moreover, the propagator

β (t,s)ξs = ξt ,

defines a symplectic transform onL2(R) for anyt,s∈ R. This follows by differentiating

Im〈β (t,s)ξ ,β (t,s)η〉 ,

with respect tot for ξ ,η ∈ H2(R). Furthermore,β satisfies the laws

β (s,s) = 1, β (t,s)β (s, r) = β (t, r) for t, r,s∈ R.

Now, we differentiate with respect tot the quantity

U2(s,t)W(
ξt

i
√

ε
)U2(t,s)

in the sense of quadratic forms onF 1
+, with ξt solution of (43). Hence, using Lemma 6.2 (ii), we get

∂t

[

U2(s, t)W(

√
2

i
√

ε
ξt)U2(t,s)

]

= U2(s,t)W(
√

2
i
√

ε ξt)
[

W(
√

2
i
√

ε ξt)
∗iA2(t)W(

√
2

i
√

ε ξt)− iA2(t)

−i
(

Re〈ξt , i∂t ξt〉+ 2√
ε Re〈z, i∂tξt〉Wick

)]

U2(t,s) .

(44)
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Now, by [AmNi1, Lemma 2.10], we obtain

W(

√
2

i
√

ε
ξt)

∗A2(t)W(

√
2

i
√

ε
ξt) = ε−1m(t)[z+

√
εξt ]

Wick,

wherem(t)[z] is the continuous polynomial onS (R) given by

m(t)[z] = 〈z,−∆z〉+P2(t)[z] .

Therefore, the (r.h.s.) of (44) is null if we show that

m(t)[z+
√

εξt ]−m(t)[z]−
(
εRe〈ξt , i∂tξt〉+2

√
εRe〈z, i∂tξt〉

)
= 0.

This follows by straightforward computation. �

7 Propagation of chaos

Propagation of chaos for a many-boson system with point pair-interaction in one dimension was studied in
[ABGT] (see also the related work [AGT]). Here we prove this conservation hypothesis for such quantum
system using the method in [RoSch]. Thus, we are led to study the asymptotics of time-evolved Hermite
states

e−it/εnHεn ϕ⊗n
0 with ϕ0 ∈ H2(R), ||ϕ0||L2(R) = 1,

whenn→ ∞ with nεn = 1. We denote the coherent states by

E(ϕ0) := W(

√
2

iε
ϕ0)Ω0,

whereΩ0 = (1,0, · · ·) is the vacuum vector in the Fock spaceF . To pass from coherent states to Hermite
states we use the integral representation proved in [RoSch],

ϕ⊗n
0 =

γn

2π

∫ 2π

0
e−iθn E(eiθ ϕ0) dθ , where γn :=

e1/2εn
√

n!

ε−n/2
n

. (45)

Asymptotically, the factorγn grows as(2πn)1/4 whenn→ ∞.

In the following proposition we prove the chaos conservation hypothesis.

Proposition 7.1 For anyϕ0 ∈ H2(R) such that||ϕ0||L2(R) = 1 and any b∈ Pp,p(L2(R)), we have

lim
n→∞

〈ϕ⊗n
0 ,eit/εnHεn bWick e−it/εnHεn ϕ⊗n

0 〉 = b(ϕt) ,

where nεn = 1 andϕt solves the NLS equation (17) with initial dataϕ0.

Proof. It is known that if a sequence of positive trace-class operatorsρn on L2(R) converges in the weak
operator topology toρ such that limn→∞ Tr[ρn] = Tr[ρ ] < ∞ thenρn converges in the trace norm toρ (see,
for instance [DA]). This argument reduces the proof to the case

b(z) =
p

∏
i=1

〈z, fi〉 〈gi ,z〉 ,

where fi ,gi ∈ L2(R). For shortness, we set

Eθ = E(eiθ ϕ0) and Et
θ = e−it/εnHεn Eθ .

Using formula (45), we get

Γn := 〈ϕ⊗n
0 ,eit/εnHεn bWicke−it/εnHεn ϕ⊗n

0 〉 =
γ2
n

(2π)2

∫

[0,2π ]2
e−in(θ−θ ′)〈Et

θ ′ , bWickEt
θ 〉 dθdθ ′ .
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It is easily seen that
(N+1)−pe−it/εnHεn ϕ⊗n

0 = 2−pe−it/εnHεn ϕ⊗n
0 .

Therefore, we write

Γn =
4pγ2

n

(2π)2

∫

[0,2π ]2
e−in(θ−θ ′)〈Et

θ ′ , (N+1)−p
p

∏
i=1

a∗( fi)
p

∏
j=1

a(g j)(N+1)−pEt
θ 〉 dθdθ ′ .

Now, we use the decomposition

p

∏
i=1

a∗( fi)
p

∏
j=1

a(g j) = ∑
I ,J⊂Np

∏
i∈Ic

[a∗( fi)−〈ϕθ ′
t , fi〉] ∏

j∈Jc
[a(g j)−〈g j ,ϕθ

t 〉]e−i(#Iθ ′−#Jθ)

× ∏
i∈I

〈 fi ,ϕt〉 ∏
j∈J

〈g j ,ϕt〉 ,

where the sum runs over all subsetsI ,J of Np := {1, · · · , p}. Thus, we can write

Γn−b(ϕt) =
#I+#J<2p

∑
I ,J⊂Np

4pγ2
n

(2π)2

∫

[0,2π ]2
e−i[(n−#J)θ−(n−#I)θ ′]〈Ẽt

θ ′ , BWick
I ,J Ẽt

θ 〉 dθdθ ′ , (46)

whereẼt
θ := (N+1)−pEt

θ andBI ,J(z) are sums of homogenous polynomials such that

〈Ẽt
θ ′ ,BWick

I ,J Ẽt
θ 〉 = ∏

i∈I
〈ϕt , fi〉 ∏

j∈J
〈g j ,ϕt〉×

〈

∏
i∈Ic

[a( fi)−〈 fi ,ϕθ ′
t 〉]Ẽt

θ ′ , ∏
j∈Jc

[a(g j)−〈g j ,ϕθ
t 〉]Ẽt

θ

〉

.

We have, for 0≤ #I ,#J < p, by Cauchy-Schwarz inequality
∣
∣
∣〈Ẽt

θ ′ ,BWick
I ,J Ẽt

θ 〉
∣
∣
∣≤ ∏

i∈I , j∈J
||g j ||L2(R) || fi ||L2(R)

×
∥
∥
∥
∥
∥
∏
i∈Ic

[a( fi)−〈 fi ,ϕθ ′
t 〉]Ẽt

θ ′

∥
∥
∥
∥
∥

F

×
∥
∥
∥
∥
∥

∏
j∈Jc

[a(g j)−〈g j ,ϕθ
t 〉]Ẽt

θ

∥
∥
∥
∥
∥

F

.

In the following we make use of the positive self-adjoint operator

Ñ := N+2Re〈z,ϕt〉Wick+ ||ϕt ||21.

Observe that we have for anyθ ′ ∈ [0,2π ] andr ≥ 1,
∥
∥
∥
∥
∥

r

∏
i=1

[a( fi)−〈 fi ,ϕθ ′
t 〉]Ẽt

θ ′

∥
∥
∥
∥
∥

F

=

∥
∥
∥
∥
∥

r

∏
i=1

a( fi)(Ñ+1)−p
W (t)Ω0

∥
∥
∥
∥
∥

F

≤
∥
∥
∥
∥
∥

r−1

∏
i=1

a( fi)(Ñ +1)−pa( fr)W (t)Ω0

∥
∥
∥
∥
∥

F

+

∥
∥
∥
∥
∥

r−1

∏
i=1

a( fi)[a( fr),(Ñ +1)−p]W (t)Ω0

∥
∥
∥
∥
∥

F

.

We easily show that

‖a( fr)W (t)Ω0‖F
≤ || fr ||L2(R)

√
εn ‖W (t)‖

L (G+,F1
+) .

Furthermore, we have
∥
∥[a( fr),(Ñ +1)p](Ñ+1)−p

∥
∥

L (F )
≤C εn ,
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using (28) and the fact that[a( fr),(Ñ + 1)p] is a Wick polynomial where we gainedεn in its symbol, see
[AmNi1, Proposition 2.7 (ii)]. Recall also that we have by the number estimate (10) and (28),

∥
∥
∥
∥
∥

r−1

∏
i=1

a( fi)(Ñ+1)−p

∥
∥
∥
∥
∥

L (F )

≤C,

uniformly in n andθ ′ ∈ [0,2π ]. Therefore, we have
∣
∣
∣
∣
∣

∑
0≤#I ,#J<p

4pγ2
n

(2π)2

∫

[0,2π ]2
e−i[(n−#J)θ−(n−#I)θ ′]〈Ẽt

θ ′ , BWick
I ,J Ẽt

θ 〉 dθdθ ′
∣
∣
∣
∣
∣
≤C γ2

nε2p−(#I+#J)
n

n→∞
−→ 0 . (47)

It still to control the terms #I = p,#J = p−1 and #I = p−1,#J = p which are similar. In fact, remark that
we have

4pγ2
n

(2π)2

∫

[0,2π ]2
e−i[(n−p)θ−(n−p+1)θ ′]〈Ẽt

θ ′ , BWick
I ,Np

Ẽt
θ 〉 dθdθ ′ =

4pγn

2π

∫ 2π

0
ei(n−p+1)θ ′〈Ẽt

θ ′ , BWick
I ,Np

eit/εnHεn ϕ⊗(n−p)
0 〉 dθ ′ .

Now, a similar estimate as (47) yields that
∣
∣
∣
∣

4pγ2
n

(2π)2

∫

[0,2π ]2
e−i[(n−p)θ−(n−p+1)θ ′] 〈Et

θ ′ , BWick
I ,Np

Ẽt
θ 〉 dθdθ ′

∣
∣
∣
∣
≤C γn

√
εn

n→∞
−→ 0 .

Thus, we conclude that lim
n→∞

Γn−b(ϕt) = 0. �

Remark 7.2
1) Let γt

k,n be the k-particle correlation functions, defined by (3), associated to the states e−it/εnHεn ϕ⊗n
0 .

Then Proposition 7.1 implies the following convergence in the trace norm

lim
n→∞

γt
k,n = ϕt(x1) · · ·ϕt(xk) ϕt(y1) · · ·ϕt(yk) .

2) In terms of Wigner measures, introduced in [AmNi1, AmNi2], Proposition 7.1 says that the sequence
(e−it/εnHεn ϕ⊗n

0 )n∈N admits a unique (Borel probability) Wigner measureµt given by

µt =
1

2π

∫ 2π

0
δeiθ ϕt

dθ ,

whereδeiθ ϕt
is the Dirac measure on L2(R) at the point eiθ ϕt .

Appendix

A Elementary estimate

Lemma A.1 For anyα > 0 and anyΨ(n) ∈ Ss(R
n), we have

∫

Rn−1
|Ψ(n)(x2,x2, · · · ,xn)|2dx2 · · ·dxn ≤

α√
2
〈D2

x1
Ψ(n),Ψ(n)〉L2(Rn) +

α−1

2
√

2
|Ψ(n)|2L2(Rn) . (48)

Proof. Let x′,ξ ′ ∈ R
n−1 andg∈ S (Rn). Let us denote the Fourier transform ofg by

ĝ(ξ ) =

∫

Rn
e−ixξ g(x)dx.

We have

g(0,x′) =
1

(2π)n−1

∫

Rn−1
eix′ξ ′

(
1

2π

∫

R

ĝ(ξ1,ξ ′)dξ1

)

dξ ′ .
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Cauchy-Schwarz inequality yields

∣
∣
∣
∣

∫

R

ĝ(ξ1,ξ ′)dξ1

∣
∣
∣
∣

2

≤
∫

R

∣
∣ĝ(ξ1,ξ ′)

∣
∣2 (α−1 + αξ 2

1 )dξ1×
∫

R

dξ1

α−1 + αξ 2
1

.

Therefore, we get

∫

Rn−1

∣
∣g(0,x′)

∣
∣2 dx′ =

1
4π2(2π)n−1

∫

Rn−1

∣
∣
∣
∣

∫

R

ĝ(ξ1,ξ ′)dξ1

∣
∣
∣
∣

2

dξ ′

≤ 1
2(2π)n

∫

Rn
|ĝ(ξ1,ξ ′)|2 (α−1 + αξ 2

1 )dξ1dξ ′ .

Setg(x1, · · · ,xn) = Ψ(n)( x1+x2√
2

, x2−x1√
2

,x3, · · · ,xn), we obtain

∫

Rn−1

∣
∣
∣Ψ(n)(x2,x2, · · · ,xn)

∣
∣
∣

2
dx2 · · ·dxn =

1√
2

∫

Rn−1

∣
∣
∣g(n)(0,x2, · · · ,xn)

∣
∣
∣

2
dx2 · · ·dxn

≤ (2π)−n

2
√

2

∫

Rn
|ĝ(n)(ξ1,ξ ′)|2 (α−1 + αξ 2

1 + αξ 2
2 )dξ1dξ ′

≤ (2π)−n

2
√

2

∫

Rn
|Ψ̂(n)(ξ1,ξ ′)|2 (α−1 + αξ 2

1 + αξ 2
2 )dξ1dξ ′ .

Thus, by Plancherel’s identity we obtain

∫

Rn−1
|Ψ(n)(x2,x2, · · · ,xn)|2dx2 · · ·dxn ≤

α
2
√

2
〈(D2

x1
+D2

x2
)Ψ(n),Ψ(n)〉L2(Rn) +

α−1

2
√

2
|Ψ(n)|2L2(Rn) .

Thanks to the symmetry ofΨ(n), it is easy to see that

〈(D2
x1

+D2
x2

)Ψ(n),Ψ(n)〉 = 2〈D2
x1

Ψ(n),Ψ(n)〉 .

Hence, we arrive at the claimed estimate (48). �

B Commutator theorems

Here we first recall an abstract regularity argument from Faris-Lavine work [FL, Theorem 2].

Theorem B.1 Let A be a self-adjoint operator and let S be a positive self-adjoint operator satisfying

• D(S) ⊂ D(A),

• ±i [〈AΨ,SΨ〉− 〈SΨ,AΨ〉] ≤ c||S1/2Ψ||2 for all Ψ ∈ D(S).

ThenQ(S) is invariant by e−itA for any t∈ R and the inequality

||S1/2e−itAΨ|| ≤ ec|t| ||S1/2Ψ||

holds true.

Next we recall the Nelson commutator theorem (see,e.g., [RS, Theorem X.36’],[N]) with a useful regularity
property added as a consequence of Faris-Lavine’s Theorem B.1.

Theorem B.2 Let S be a self-adjoint operator on a Hilbert spaceH such that S≥ 1. Consider a quadratic
form a(., .) with Q(a) = D(S1/2) and satisfying:

(i) |a(Ψ,Φ)| ≤ c1||S1/2Ψ|| ||S1/2Φ|| for anyΨ,Φ ∈ D(S1/2);

(ii) |a(Ψ,SΦ)−a(SΨ,Φ)| ≤ c2||S1/2Ψ|| ||S1/2Φ|| for anyΨ,Φ ∈ D(S3/2).
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Then the linear operator A: D(A) → H , D(A) = {Φ ∈ D(S1/2) : H ∋ Ψ 7→ a(Ψ,Φ) continuous} asso-
ciated to the quadratic form a(., .) through the relation

〈Ψ,AΦ〉
H

= a(Ψ,Φ) for all Ψ ∈ D(S1/2),Φ ∈ D(A)

is densely defined and satisfies:

1. D(S) ⊂ D(A) and||AΨ|| ≤ c||SΨ|| for anyΨ ∈ D(S);

2. A is essentially self-adjoint on any core of S;

3. e−it Ã preservesD(S1/2) with the inequality

||S1/2e−it ÃΨ|| ≤ ec2|t| ||S1/2Ψ||

whereÃ denotes the self-adjoint extension of A.

Proof. The point (3) follows from Theorem B.1 since its assumptions:

• D(S) ⊂ D(A),

• ±i [〈AΨ,SΨ〉− 〈SΨ,AΨ〉] ≤ c2||S1/2Ψ||2, for anyΨ ∈ D(S),

hold true using items 1), 2) and hypothesis (ii). �

We naturally associate to a self-adjoint operatorS≥ 1 acting on a Hilbert spaceH , a Hilbert rigging
H±1 whereH+1 is defined asD(S1/2) endowed with the inner product

〈ψ ,φ〉H+1
:= 〈S1/2ψ ,S1/2φ〉H ,

andH−1 is the completion ofD(S−1/2) with respect to the inner product

〈ψ ,φ〉
H−1

:= 〈S−1/2ψ ,S−1/2φ〉
H

.

Assumption (ii) of Theorem B.2 can be reformulated in some other slightly different ways.

Lemma B.3 Consider a self-adjoint operator S satisfying S≥ 1 with the associated Hilbert riggingH±1

defined above. Let A be a symmetric bounded operator inL (H+1,H−1), then the three following state-
ments are equivalent,

(1) There exists c> 0 such that for anyΨ,Φ ∈ D(S3/2),

|〈SΨ,AΦ〉− 〈AΨ,SΦ〉| ≤ c ||Ψ||H+1 ||Φ||H+1 ,

(2) There exists c> 0 such that for anyΨ,Φ ∈ D(S1/2) andλ > 0,

|〈(λS+1)−1SΨ,A(λS+1)−1Φ〉− 〈A(λS+1)−1Ψ,(λS+1)−1SΦ〉| ≤ c ||Ψ||H+1 ||Φ||H+1 ,

(3) There exists c> 0 such that for anyΨ,Φ ∈ D(S1/2) andλ > 0,

|〈(λS+1)−1SΨ,AΦ〉− 〈AΨ,(λS+1)−1SΦ)| ≤ c ||Ψ||H+1 ||Φ||H+1 .

Proof. • (1)⇔(2):
Observe that ifλ > 0 then(λS+ 1)−1D(S1/2) ⊂ D(S3/2). Assume (1) and let us prove (2) forΨ,Φ ∈
D(S1/2). Using (1) withΨ̃ = (λS+1)−1Ψ ∈ D(S3/2) andΦ̃ = (λS+1)−1Φ ∈ D(S3/2), we obtain

∣
∣〈SΨ̃,AΦ̃〉− 〈AΨ̃,SΦ̃〉

∣
∣≤ c

∥
∥(λS+1)−1Ψ

∥
∥

H+1
×
∥
∥(λS+1)−1Φ

∥
∥

H+1
. (49)

It is easy to see that the right hand side of (49) is bounded byc||Ψ||H+1||Φ||H+1. Thus, we obtain (2). Now,
to prove (2)⇒(1), we observe that(λS+1)D(S3/2)⊂D(S1/2) and use (2) withΨλ =(λS+1)Ψ∈D(S1/2),
Φλ = (λS+1)Φ ∈ D(S1/2) such thatΨ,Φ ∈ D(S3/2). Therefore, we get forλ > 0

|〈SΨ,AΦ〉− 〈AΨ,SΦ〉| ≤ c‖Ψλ‖H+1
×‖Φλ‖H+1

. (50)
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Letting λ → 0 in the right hand side of (50), we obtain (2).
• (2)⇔(3):
Let Ψ,Φ ∈ D(S1/2) andλ > 0, we have as identity inL (H+1,H−1)

A(λS+1)(λS+1)−1 = AλS(λS+1)−1+A(λS+1)−1,

sinceλS(λS+ 1)−1 ∈ L (H+1) and(λS+ 1)−1 ∈ L (H+1). Therefore, since(λS+ 1)−1SΨ ∈ H+1 and
(λS+1)−1SΦ ∈ H+1, the following computation is justified

〈(λS+1)−1SΨ,AΦ〉− 〈AΨ,(λS+1)−1SΦ〉
= 〈(λS+1)−1SΨ,A(λS+1)(λS+1)−1Φ〉− 〈A(λS+1)(λS+1)−1Ψ,(λS+1)−1SΦ〉
= 〈(λS+1)−1SΨ,A(λS+1)−1Φ〉− 〈A(λS+1)−1Ψ,(λS+1)−1SΦ〉 .

So, this shows the equivalence of the statements (2) and (3). �

C Non-autonomous Schr̈odinger equation

Consider the Hilbert rigging
H+ ⊂ H ⊂ H− .

This means thatH is a Hilbert space with an inner product(., .)H andH+ is a dense subspace ofH

which is itself a Hilbert space with respect to another innerproduct(., .)H+ such that

||u||H :=
√

(u,u)H ≤ ||u||H+ :=
√

(u,u)H+ ∀u∈ H+ .

The Hilbert spaceH− is defined as the completion ofH with respect to the norm

||u||H− := sup
f∈H+,|| f ||H+

=1
|( f ,u)H | . (51)

This extends by continuity the inner product(., .)H to a sesquilinear form onH−×H+ satisfying

|(u,ξ )H | ≤ ||u||H+ ||ξ ||H− ∀u∈ H+,∀ξ ∈ H− .

Furthermore, we have

||u||H+ = sup
ξ∈H−,||ξ ||H−=1

|(u,ξ )H | . (52)

Let I be a closed interval ofR and let
(
A(t)

)

t∈I denote a family of self-adjoint operators onH such that
D(A(t))∩H+ is dense inH+ andA(t) are continuously extendable to bounded operators inL (H+,H−).
We aim to solve the following abstract non-autonomous Schr¨odinger equation

{
i∂tu = A(t)u, t ∈ I
u(t = 0) = u0 ,

(53)

whereu0 ∈ H+ is given andt 7→ u(t) ∈ H+ is the unknown. This is a particular case of the more gen-
eral topic of solving non-autonomous Cauchy problems where−iA(t) are infinitesimal generators ofC0-
semigroups (see [Si],[Ki]). We provide here a useful result(Theorem C.2) which follows from the work of
Kato [Ka].

Definition C.1 We say that the map
I × I ∋ (t,s) 7→U(t,s)

is a unitary propagator of the problem (53) iff:
(a) U(t,s) is unitary onH ,
(b) U(t,t) = 1 and U(t,s)U(s, r) = U(t, r) for all t ,s, r ∈ I,
(c) The map t∈ I 7→U(t,s) belongs to C0(I ,L (H+))∩C1(I ,L (H+,H−)) and satisfies

i∂tU(t,s)ψ = A(t)U(t,s)ψ , ∀ψ ∈ H+,∀t,s∈ I .
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HereCk(I ,B) denotes the space ofk-continuously differentiableB-valued functions whereB is endowed
with the strong operator topology.

Theorem C.2 Let I be a compact interval and letH+ ⊂ H ⊂ H− be a Hilbert rigging with
(
A(t)

)

t∈I a
family of self-adjoint operators onH as above satisfying:
(i) I ∋ t 7→ A(t) ∈ L (H+,H−) is norm continuous.
(ii) R ∋ τ 7→ eiτA(t) ∈ L (H+) is strongly continuous.
(iii) There exists a family of Hilbertian norms

(
||.||t

)

t∈I onH+ equivalent to||.||H+ such that:

∃c > 0,∀ψ ∈ H+ : ||ψ ||t ≤ ec|t−s| ||ψ ||s and ||eiτA(t)ψ ||t ≤ ec|τ|||ψ ||t .

Then the non-autonomous Cauchy problem (53) admits a uniqueunitary propagator U(t,s).
Moreover, the following estimate holds

∀ψ ∈ H+, ||U(t,s)ψ ||t ≤ e2c|t−s| ||ψ ||s.

Proof. We follow the same strategy as in [Ka] and split the proof intothree steps. We assume, for reading
convenience, that the intervalI is of the form[0,T],T > 0 however the proof works exactly in the same way
for any compact interval. Remark also that there is no restriction if we assume that||.||H+ = ||.||0 .
Propagator approximation:
Let (t0, · · · , tn) be a regular partition of the intervalI with

t j =
jT
n

, j = 0, · · · ,n.

Consider the sequence of operator-valued step functions defined by

An(t) := A(T)1{T}(t)+
n−1

∑
j=0

A(t j)1[t j ,t j+1[(t) ,

for anyn∈ N∗ andt ∈ I . Assumption (i) ensures that

lim
n→∞

||An(t)−A(t)||L (H+,H−) = 0,

uniformly in t ∈ I . We now construct an approximating unitary propagatorUn(t,s) as follows:






- if t j ≤ t,s≤ t j+1 thenUn(t,s) = e−i(t−s)A(t j )

- if t j < s≤ t j+1 < · · · < tl ≤ t < tl+1 thenUn(t,s) = e−i(t−tl )A(tl ) · · ·e−i(t j+1−s)A(t j )

- if t j < t ≤ t j+1 < · · · < tl ≤ s< tl+1 thenUn(t,s) = e−i(t−t j+1)A(t j ) · · ·e−i(tl−s)A(tl ) ,

(54)

for any j = 0, · · · ,n−1 andl = 1, · · · ,n with j < l .
By definition, the operatorsUn(t,s) are unitary onH for t,s∈ I and satisfy

Un(t, t) = 1, Un(t,s)
∗ = Un(s,t) . (55)

Moreover, one can first check that

Un(t,s)Un(s, r) = Un(t, r) for r ≤ s≤ t, with t,s, r ∈ I

and then extend it for any(t,s, r) ∈ I3 with the help of (55). Therefore,Un(t,s) satisfy the properties (a)-(b)
of Definition C.1. Again by (54) and assumptions (i)-(ii) we have

i∂tUn(t,s)ψ = An(t)Un(t,s)ψ and − i∂sUn(t,s)ψ = Un(t,s)An(s)ψ , (56)

for anyψ ∈ H+ and anyt,s 6= t j , j = 0, · · · ,n.

Convergence of the approximation:
Assumption (iii) implies that

||e−isnA(tn) · · ·e−is1A(t1)ψ ||T ≤ ecTec(s1+···+sn)||ψ ||0 ,
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and

||e−is1A(t1) · · ·e−isnA(tn)ψ ||0 ≤ ecTec(s1+···+sn)||ψ ||T ,

for anysj ≥ 0, j = 1, · · · ,n. Hence, using the equivalence of the norms||.||0 = ||.||H+ and||.||T one shows
the existence ofM > 0 (M = e2cT) such that

||Un(t,s)||L (H+) ≤ M ec|t−s| and by duality ||Un(t,s)||L (H−) ≤ M ec|t−s| . (57)

Furthermore, the same argument above yields

||Un(t,s)ψ ||t ≤ e2c(|t−s|+T/n)||ψ ||s. (58)

Using (56) we obtain for anyψ ∈ H+

∂r [Un(t, r)Um(r,s)ψ ] = i Un(t, r)[An(r)−Am(r)]Um(r,s)ψ , (59)

for r 6= jT
n , r 6= jT

m with j = 1, · · · ,max(n,m). Integrating (59) we get the identity

Um(t,s)ψ −Un(t,s)ψ = i
∫ t

s
Un(t, r) [An(r)−Am(r)]Um(r,s)ψ dr .

Now (57) yields

||Um(t,s)−Un(t,s)||L (H+,H−) ≤ M2|t −s|e2c|t−s| sup
r∈I

||Am(r)−An(r)||L (H+,H−) . (60)

Therefore, for anyt,s∈ I , the sequenceUn(t,s) converges in norm to a bounded linear operatorU(t,s) ∈
L (H+,H−). SinceUn(t,s) are norm bounded operators onH− uniformly in n, it follows by (57) that
they converge strongly to an operator inL (H−) continuously extendingU(t,s). Moreover, this strong
convergence yields

lim
n→∞

(φ ,Un(t,s)ψ)H = (φ ,U(t,s)ψ)H ∀ψ ∈ H+,∀φ ∈ H+ .

where(., .)H is the continuous extension of the inner product ofH to the rigged Hilbert spacesH±. Thus,
using (57), we obtain

|(φ ,U(t,s)ψ)H | ≤ Mec|t−s|||φ ||H− ||ψ ||H+ .

Hence, it is easy to see by (52) that

||U(t,s)||L (H+) ≤ Mec|t−s| .

A similar argument yields

||U(t,s)||L (H ) ≤ 1. (61)

Now, sinceUn(t,s) satisfy part (b) of Definition C.1, we easily conclude that

U(t, t) = 1, U(t, r)U(r,s) = U(t,s), t,s, r ∈ I , (62)

by strong convergence inL (H−). Furthermore, combining (61) and (62) we show the unitarityof U(t,s)
onH . Thus, we have proved thatU(t,s) satisfy (a)-(b) of Definition C.1.

For anyψ ∈ H+, the continuity of the mapI ∋ t 7→ Un(t,s)ψ ∈ H− follows from the definition of
Un(t,s). Now, we prove

lim
t→s

(φ ,U(t,s)ψ)H = (φ ,ψ)H ∀ψ ∈ H+,∀φ ∈ H− ,

by applying anε/3 argument when writing

|(φ ,U(t,s)ψ)H − (φ ,ψ)H | ≤ ||φ −φκ ||H− ||U(t,s)ψ ||H + + |(φκ , [U(t,s)−Un(t,s)]ψ)H |
+ |(φκ , [Un(t,s)−1]ψ)H |+ ||φ −φκ ||H−‖|ψ ||H+ ,
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whereφκ → φ in H−. Therefore, by the duality(H+)′ ≃ H−, we get the weak limit

w− lim
t→s

U(t,s) = 1,

in L (H+). Now, observe that whent → swe can show by (57) that

limsup
t→s

||U(t,s)ψ ||H+ ≤ ||ψ ||H+ .

So, we conclude that

limsup
t→s

||U(t,s)ψ −ψ ||2H+
≤ limsup

t→s

(

||ψ ||2H+
+ ||U(t,s)ψ ||2H+

−2Re(ψ ,U(t,s)ψ)H+

)

= 0.

This gives the continuity ofI ∋ t 7→U(t,s)ψ ∈ H+ since we have inH+

s− lim
t→r

U(t,s) = s− lim
t→r

U(t, r)U(r,s) = U(r,s).

Now, we have forψ ∈ H+ as identity inH−

e−iτA(s)ψ = ψ − iA(s)
∫ τ

0
e−irA(s)ψ dr , (63)

since this holds first forψ ∈ D(A(s))∩H+ and then extends by density ofD(A(s))∩H+ in H+. By (63)
we have

||e
−iτA(s)ψ −ψ

τ
+ iA(s)ψ ||H− ≤ 1

τ
||A(s)||L (H+,H−)

∣
∣
∣
∣

∫ τ

0
||e−irA(s)ψ −ψ ||H+ dr

∣
∣
∣
∣

and hence using assumption (ii), we show the differentiability of τ 7→ e−iτA(s)ψ for ψ ∈ H+. By differen-
tiatinge−i(t−r)A(s)Um(r,s)ψ with ψ ∈ H+ and then integrating w.r.t.r, we get

Um(t,s)ψ −e−i(t−s)A(s)ψ = i
∫ t

s
e−i(t−r)A(s)[A(s)−Am(r)]Um(r,s)ψ dr .

Lettingm→ ∞ in the latter identity and estimating as in (60), one obtains

||U(t,s)ψ −e−i(t−s)A(s)ψ ||H− ≤ M2e2c|t−s|
∣
∣
∣
∣

∫ t

s
||[A(s)−A(r)||L (H+,H−) dr

∣
∣
∣
∣
||ψ ||H+ .

Using the fact that

lim
t→s

1
|t −s|

∫ t

s
||A(s)−A(r)||L (H+,H−)dr = 0 and lim

t→s

e−i(t−s)A(s)ψ −ψ
t −s

= −iA(s)ψ

it holds that

lim
t→s

∥
∥
∥
∥

U(t,s)ψ −ψ
t −s

+ iA(s)ψ
∥
∥
∥
∥

H−
= 0.

Thus, we obtain with the help of (62)

i∂sU(s, r)ψ = lim
t→s

U(t,s)U(s, r)ψ −U(s, r)ψ
t −s

= A(s)U(s, r)ψ ,

for anyψ ∈H+ and anyr,s∈ I . Hence we have proved the existence of a unitary propagatorU(t,s) for the
non-autonomous Cauchy problem (53).

Uniqueness:
Suppose thatV(t,s) is a unitary propagator for (53). By differentiatingUn(t, r)V(r,s)ψ , ψ ∈ H+ with
respect tor we get

V(t,s)ψ −Un(t,s)ψ = i
∫ t

s
Un(t, r)[An(r)−A(r)]V(r,s)ψ .
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Using a similar estimate as (60) we obtain

‖V(t,s)ψ −Un(t,s)ψ‖H+ ≤ Mec|t−s| sup
r∈[s,t]

‖V(r,s)‖
L (H+)

∣
∣
∣
∣

∫ t

s
||A(r)−An(r)||L (H+,H+)dr

∣
∣
∣
∣
||ψ ||H+

and since the r.h.s. vanishes whenn→ ∞ we conclude thatV(t,s) = U(t,s).
Finally, the uniform boundedness principle, equivalence of norms||.||t , ||.||H+ and the inequality (58) give
us the claimed estimate,

∀ψ ∈ H+, ||U(t,s)ψ ||t ≤ lim inf
n→∞

||Un(t,s)ψ ||t ≤ e2c|t−s|||ψ ||s.

�

Remark C.3 It also follows that(t,s) 7→U(t,s) ∈ L (H+) is jointly strongly continuous.

In the following we provide a more effective formulation of the above result (Theorem C.2) which
appears as a time-dependent version of the Nelson commutator theorem (see,e.g., [N], [RS] and Theorem
B.2).

We associate to each family of self-adjoint operators{S(t)t∈I ,S} on H such thatS≥ 1, S(t) ≥ 1 and
D(S(t)1/2) = D(S1/2) for any t ∈ I , a Hilbert riggingH±1 defined as the completion ofD(S±1/2) with
respect to the inner product

〈ψ ,φ〉
H±1

= 〈S±1/2ψ ,S±1/2φ〉
H

. (64)

Corollary C.4 Let I ⊂ R be a closed interval and let{S(t)t∈I ,S} be a family of self-adjoint operators on a
Hilbert spaceH such that:

• S≥ 1 and S(t)≥ 1, ∀t ∈ I,

• D(S(t)1/2) = D(S1/2), ∀t ∈ I, and consider the associated Hilbert riggingH±1 given by (64).

Let{A(t)}t∈I be a family of symmetric bounded operators inL (H+1,H−1) satisfying:

• t ∈ I 7→ A(t) ∈ L (H+1,H−1) is norm continuous.

Assume that there exists a continuous function f: I → R+ such that for any t∈ I, we have:
(i) for anyψ ∈ D(S(t)1/2),

|∂t〈ψ ,S(t)ψ〉| ≤ f (t) ||S(t)1/2ψ ||2 ;

(ii) for any Φ,Ψ ∈ D(S(t)3/2),

|〈S(t)Ψ,A(t)Φ〉− 〈A(t)Ψ,S(t)Φ〉| ≤ f (t) ||S(t)1/2Ψ|| ||S(t)1/2Φ||.

Then the non-autonomous Cauchy problem (53) admits a uniqueunitary propagator U(t,s). Moreover, we
have

||S(t)1/2U(t,s)ψ || ≤ e2 |∫ t
s f (τ)dτ| ||S(s)1/2ψ || .

In addition, if we have c1,c2 > 0 such that c1S≤ S(t) ≤ c2S for t∈ I, then there exists c> 0 such that

||U(t,s)||L (H+1) ≤ c e2|∫ t
s f (τ)dτ| , ∀t ∈ I . (65)

Proof. First observe that the operatorA(t) satisfies the hypothesis of Nelson’s commutator theorem (The-
orem B.2) for anyt ∈ I . Hence, we conclude thatA(t) is essentially self-adjoint onD(S(t)3/2) which is
dense inH+1. We keep the same notation for its closure. Moreover, the unitary groupeiτA(t) preserves
H+1 and we have the estimate

||S(t)1/2eiτA(t)ψ ||H ≤ ef (t)|τ| ||ψ ||H . (66)
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Now, observe thatt 7→ e−itA(s)ψ ∈ H+1 is weakly continuous for anyψ ∈ H+. This holds using aη/3-
argument with the help of the estimate

∣
∣
∣〈 f ,(e−itA(s) −1)ψ〉

∣
∣
∣≤ (1+ec(|t|+1)) || f − fκ ||H−1 ||ψ ||H+1 +

∣
∣
∣〈(eitA(s)−1) fκ ,ψ〉

∣
∣
∣

where fκ ∈ H is a sequence convergent tof in H−1 andt is near 0. Since strong and weak continuity
of the group of bounded operatorse−itA(s) in L (H+1) are equivalent, we conclude that assumption (ii) of
Theorem C.2 holds true.
By assumption (ii), we also have

∣
∣
∣
∣

d
dt
||S(t)1/2ψ ||2

∣
∣
∣
∣
≤ f (t)||S(t)1/2ψ ||2 .

Hence, by Gronwall’s inequality we have

||S(t)1/2ψ ||2 ≤ e|
∫ t
s f (τ)dτ|||S(s)1/2ψ ||2, ∀t,s∈ I . (67)

Now, we use Theorem C.2 with the Hilbert rigging

H+ = H+1 ⊂ H ⊂ H− = H−1

and the family of equivalent norms onH+ given by

||ψ ||t := ||S(t)1/2ψ ||H .

Indeed, assumptions (i)-(iii) of Theorem C.2 are satisfied in any compact subinterval ofI with the help of
(67)-(66). Therefore, we obtain existence and uniqueness of a unitary propagatorU(t,s) of the Cauchy
problem (53) in the whole intervalI with the following estimate

||U(t,s)ψ ||t ≤ e2|t−s| maxτ∈∆(t,s) f (τ) ||ψ ||s,

for anyt,s∈ I and where∆(t,s) stands for the interval of extremitiest, s.
Using the multiplication law of the propagator, we obtain for any partition(t0, · · · ,tn) of the interval

∆(t,s) the inequality

||U(t,s)ψ ||t ≤
n−1

∏
j=0

e
2 |t−s|

n maxτ∈∆ j
f (τ) ||ψ ||s,

where∆ j are the subintervals[t j , t j+1]. Since f is continuous, by lettingn→ ∞, we get

||U(t,s)ψ ||t ≤ e2 |
∫ t
s f (τ)dτ| ||ψ ||s.

Finally, the assumptionc1S≤ S(t) ≤ c2S for t ∈ I , allows to involve the norm||.||H+1. Thus we have

||U(t,s)ψ ||H+1 ≤
1√
c1
||U(t,s)ψ ||t ≤

1√
c1

e2 |∫ t
s f (τ)dτ| ||ψ ||s ≤

√
c2

c1
e2 |∫ t

s f (τ)dτ| ||ψ ||H+1 .

�
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