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Evaluation of Statistical Association Measures for the
Automatic Signal Generation in Pharmacovigilance

Emmanuel Roux, Frantz Thiessard, Annie Fourrier, Bernard Bégaud, and Pascale Tubert-Bitter

Abstract—Pharmacovigilance aims at detecting the adverse ef-
fects of marketed drugs. It is generally based on the spontaneous
reporting of events thought to be the adverse effects of drugs.
Spontaneous Reporting Systems (SRSs) supply huge databases
that pharmacovigilance experts cannot exhaustively exploit with-
out data mining tools. Data mining methods; i.e., statistical associ-
ation measures in conjunction with signal generation criteria, have
been proposed in the literature but there is no consensus regard-
ing their applicability and efficiency, especially since such methods
are difficult to evaluate on the basis of actual data. The objec-
tive of this paper is to evaluate association measures on simulated
datasets obtained with SRS modeling. We compared association
measures using the percentage of false positive signals among a
given number of the most highly ranked drug–event combinations
according to the values of the association measures. By considering
150 drugs and 100 adverse events, these percentages of false posi-
tives, among the 500 most highly ranked drug-event couples, vary
from 1.1% to 53.4% (averages over 1000 simulated datasets). As
the measures led to very different results, we could identify which
measures appeared to be the most relevant for pharmacovigilance.

Index Terms—Adverse drug reaction reporting systems, associ-
ation measures, computer simulation, information systems, valida-
tion studies.

I. INTRODUCTION

C LINICAL trials are efficient for identifying the most fre-
quent adverse effects of a drug prior to marketing. How-

ever, for obvious reasons, the effects of rare occurrences cannot
be detected. Such effects can be specific to a population sub-
group and/or can have a latency longer than the trial duration.
The identification of such effects is the scope of pharmacovig-
ilance, whose role includes the post-marketing surveillance of
adverse effects based on the spontaneous reporting by the med-
ical community of adverse events suspected to be related to a
medication. The main drawbacks of this spontaneous report-
ing system (SRS) are considerable underreporting, to an un-
known extent, and the fact that a report does not prove the
causal relationship between drug(s) and event(s). Moreover,
SRS supplies huge databases with a continuous flow. For ex-
ample, in 1997, 35 000 new reports were added quarterly to
the World Health Organization (WHO) database [1]. In 1999,

Manuscript received February 20, 2004; revised January 20, 2005.
E. Roux is with the Laboratory of Image and Signal Processing, Institut
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DuMouchel mentioned that the Food and Drug Administration
(FDA) database contained 1.2 million different reports [2]. On
1 January 2000, The Netherlands Pharmacovigilance Founda-
tion LAREB contained 26 555 reports concerning 17 330 differ-
ent drug–event combinations [3]. At the end of 2001, the French
pharmacovigilance database contained about 200 000 reports re-
ferring to about 185 000 different drug–event couples [4]. Such
massive databases preclude human-based exploration, so sev-
eral automated signal generation methods have recently been
proposed to assist pharmacovigilance experts.

A good evaluation of the suspicious character of a drug–
event couple would be to determine to what extent the observed
number of reports referring to this couple exceeds the expected
number of reports, assuming the independence between expo-
sure to the drug and the adverse event. However, the background
incidence of the event in the whole population, the number of pa-
tients exposed to the drug, and the extent of under-reporting are
unknown. This prevents reliable computation of the expected
number of reports for drug–event couples. One solution pro-
posed is to use Data Mining (DM) methods that only exploit
the intrinsic information of the database in order to estimate,
for a given couple, the expected number of reports by means of
the data related to all the other drugs and events. Pharmacovigi-
lance experts are able to identify unusually frequent drug–event
reports and serious events, but numerous adverse reactions are
difficult to identify. Those reactions are not obviously frequent
or even rare, appear with a substantial latency period, are not
serious enough to draw the attention of the experts, etc. So DM
methods are supposed to draw experts’ attention to more “sur-
prising” drug–event couples. Such methods are not supposed
to replace experts, but act as hypotheses generators. These hy-
potheses are destined to be validated or invalidated by the experts
after deeper investigations.

Several methods have been proposed, from very simple and
intuitive ones using disproportionality measures to Bayesian
ones, demanding more statistical and computational skills. How-
ever, since no consensus exists concerning the DM method(s)
to be used, routine application of such methods in pharma-
covigilance is still limited. In fact, the unknown features of the
data, i.e., the events background incidence, the number of pa-
tients exposed to the drug, the extent of under-reporting and the
true status of the drug-event relationship, not only prevent to
compute a reliable expected number of reports, but also pre-
vent to quantitatively, objectively, and absolutely evaluate DM
methods. Moreover, the suitability of these methods for phar-
macovigilance is questioned [5].

Waller et al. [6] recalled that “A judgment on the validity
and utility of these measures should be based on comparison
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of their sensitivity, specificity and predictive values in signal
detection from a real dataset” but also precised that “such (real)
data do not yet exist.” Nevertheless, some authors attempted to
evaluate automatic signal generation methods on real data. The
main contributions have been published by Van Puijenbroek et
al. [3] and Gould [7]. Van Puijenbroek et al. compare different
methods in terms of sensitivity, specificity, positive, and negative
predictive values by considering the results of one of these
methods as the reference. This permits a relative evaluation of
the methods, but does not describe their absolute performances.

In this paper, we evaluate ten DM methods on simulated
datasets. To our knowledge, these methods are all the proposed
ones in the context of pharmacovigilance. Simulated data are
generated by the SRS model proposed in [8]. In fact, by knowing
all the model parameters, and especially the status of the drug–
event relationships, it is possible to label generated signals as
“true” or “false.”

However, to be accepted and used by pharmacovigilance ex-
perts, an automated signal generation method must not only be
reliable, but also well adapted to specific practical issues. The
main drawback in most of the existing methods is the excessive
number of signals they generate, thus preventing the assessment
of all of them by pharmacovigilance experts. For this reason, a
suitable method would be one that either generates an acceptable
number of “true” signals, or which correctly ranks drug–event
couples on a continuum from more to less suspicious. In fact,
by analyzing a limited number of the most highly ranked com-
binations depending on the human, material and time resources
available, the risk of uselessly analyzing false signals would be
minimized if the ranking is pertinent according to the relative
risks of the events.

In this paper, we first briefly describe the data generation
process and the simulated data. Then, we present the DM meth-
ods and discuss their evaluation criteria in view of the above-
mentioned issues. We then present our results and discuss them.

II. METHODS

A. Simulated Data

Data to which we applied the signal generation methods were
generated by the spontaneous reporting system modeling pro-
posed in [8], where the reporting process is viewed as a Poisson
process. For a given drug–event couple and during a given pe-
riod, the expected number of reports is defined as follows:

δ = e · i · RR · pr (1)

where e, i, and RR are the drug exposure frequency, the
event background incidence, and the event relative risk, re-
spectively. The event relative risk is the rate of the proba-
bility to observe the event given the exposure to the drug
over the probability to observe the event without the expo-
sure to the drug. pr is the reporting probability. This report-
ing probability, which is quantitatively unknown, is derived
in the model from the qualitative knowledge reported in the
literature and expressed by experts. The knowledge is rep-
resented and exploited by means of a fuzzy characterization
of variables and a set of fuzzy rules. For a given drug–event
combination, the reporting probability depends on the delay

Fig. 1. Relative cumulated number of drug–event combinations according to
the number of reports and according to (a) the maximal exposures to the drugs,
(b) the seriousness of the events, (c) the background incidences of the events
and (d) the delays since drug launch. The thick line is for all the drug–event
combinations.

since the drug launch, the number of reports in the past and
the seriousness of the event.

In the present study, 10 years of spontaneous reporting sys-
tem were simulated, with a generation period of six months. We
arbitrarily considered 150 drugs and 100 adverse events. The
maximal exposures to the drugs over the 10-year period, e, were
three million, 300 000 and 30 000, each value being applied to
one third of the drugs. For each maximal exposure value, five
drugs were launched each year during the 10 year period, lead-
ing to 10 different delays since launch, denoted d. Background
incidences of adverse events, i, were 1/50 000 and 1/10 000,
each being associated to one half of the events. For each value
of background incidence, half of the events were serious and
the remaining ones were mild. Ten percent of the drug–event
couples were associated with a relative risk, RR, ranging from
1.2 to 10, and for 90% of couples, RR was equal to 1. This
distribution was imposed on each data subset having the same
value for e, i, seriousness, and d.

One thousand datasets were generated. On average, 10502
(Standard Deviation (SD = 35) drug–event combinations were
reported at least once. Two thousand (SD = 37) drug–event
couples were reported only once, 1181(SD = 29) twice,
770(SD = 25) three times and 6551(SD = 23) at least four
times. These numbers correspond to 19.0%, 11.3%, 7.3%
and 62.4% of the reported couples, respectively. The aver-
age maximal number of reports for a drug–event couple was
537(SD = 19). The average number of “true associations” i.e.,
the number of couples whose relative risk exceeds one, was
1182(SD = 10), thus corresponding to 11.3% of the reported
couples. Ideally, a signal generation method should detect all
11.3% of the associations.

Fig. 1 presents the relative cumulated number of drug–event
combinations (averaged over the 1000 simulated datasets)
according to the number of reports and as a function of the
model parameters.
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TABLE I
A 2× 2 CONTINGENCY TABLE

B. Signal Generation Methods

Ten signal generation methods were applied to the simulated
data. They are, to our knowledge, all the methods proposed in
the context of pharmacovigilance. They are described in the Ap-
pendix and all exploit the 2× 2 contingency table as in Table I.
Although the data generation process was sequential in order to
take into account the time in the reporting process modeling [8],
the signal generation methods were applied at the end of the 10
year period.

In addition to the observed numbers of reports, some methods
exploit the expected number of reports according to the infor-
mation present in the database. For a given drug–event couple,
this expected number of reports, E, is the theoretical number
of reports for independent rows and columns in the dataset. It
is computed with the marginal numbers and the total amount of
reports, N , in the database. By using notations of Table I, E is
obtained with the following equation:

E =
(a + b) · (a + c)

N
. (2)

The automatic signal generation methods we compared are
based on the proportional reporting ratio (PRR) [9], the report-
ing odds ratio (ROR) [3], [10], [11], Yule’s Q [3], the sequential
probability ratio test (SPRT) [12], [13], the tests using Poisson
and Chi-square distributions (denoted Poisson and χ2, respec-
tively) [3], the information component (IC) [1], [7], [14], the
empirical bayes arithmetic mean (EBAM) [2], [15] and an alter-
native method called empirical bayes probability (EBp) derived
from an intuitive interpretation of the mixture model of Du-
Mouchel [2], [15].

C. Evaluation Criteria

The ten association measures presented in the Appendix were
applied to 1000 simulated datasets, thus allowing the computa-
tion of averages and variances of the evaluation indexes. In the
following, the same names are used for the signal generation
methods and the corresponding association measures.

In Section III, we first present and discuss the receiver oper-
ating characteristic (ROC) curves of the association measures,
computed with 200 simulated datasets. However, as shown in
Section III and in Table II, the signal generation methods, i.e., as-
sociation measures in conjunction with generation criteria, pro-
vided too many signals, making them inapplicable in the routine,
as such. In fact, it would be impossible for pharmacovigilance
experts to assess all the generated hypotheses. For this reason, it
seems more practical to rank the drug–event combinations in a
decreasing order according to the association measure values for
EBAM, EBp, IC, χ2, PRR, ROR, Yule’s Q, and SPRT2, and in an

increasing order according to the probabilities for Poisson. Then
investigations can be performed on an acceptable number of the
most highly ranked hypotheses. This method was proposed by
DuMouchel [2], [15]. In such a context, evaluating signal gen-
eration methods by means of sensitivity and specificity does not
make sense. In fact, experts can choose to investigate a number
of combinations that is quite lower than that of the “true asso-
ciations” in the dataset. Sensitivity and specificity, which aim
at evaluating the methods’ ability to detect all the “true” and
“false” associations, respectively, are not appropriate.

Therefore, in Section III, we evaluate the signal generation
methods by means of the percentage of false positive signals
among a predefined number of the most highly ranked drug–
event couples. This index reflects the cost of the useless analysis
performed by pharmacovigilance experts and is of major practi-
cal interest. We studied these proportions for different numbers
of the most highly ranked couples: 10, 20, 50, 100, 200, and
500. The results presented are the averages of the percentages
of the false positive signals over the 1000 simulated datasets.

III. RESULTS

Fig. 2 presents the ROC curves for all the association mea-
sures except ROR, which presents similar results as PRR. For
each curve, the point that corresponds to the threshold proposed
in literature is represented by a circle. χ2 gives the worst per-
formances. All the other measures provide comparable results.
EBAM performances appear to be highly variable when the
sensitivity increases. However, in the present paper, by studying
relatively low numbers of the most highly ranked drug–event
couples, we consider very restrictive signal generation criteria
that do not lead to significant variability.

It appears that for all the measures, sensitivity could be greatly
improved while keeping an acceptable specificity by using less
restrictive criteria.

Table II presents the number of potentially suspicious com-
binations for the generation criteria presented in the Appendix.
These numbers are to be related to the number of reported drug–
event combinations in the simulated datasets (10 502, SD = 35).
In the “real” pharmacovigilance databases, this number of com-
binations is much larger, thus leading to a much larger number
of signals.

Increasing sensitivity would also increase the number of gen-
erated signals and, consequently, worsen this problem. This
justifies the practical viewpoint adopted in the present article
by studying a manageable number of the most highly ranked
drug–event couples according to measures values.

Table III presents, on average, over the 1000 simulated
datasets, the numbers of reports, the relative risks, and the val-
ues of the measures associated with the 10 most highly ranked
drug–event combinations for each measure. Obviously, EBAM,
SPRT2, ICBate (ICBate is for IC with Bate’s priors), and χ2

rank the couples more correctly than ICGould (IC with Gould’s
priors), PRR, and ROR, the relative risk being high, especially
for EBAM. On the other hand, PRR, ROR, and ICGould retrieve
couples with a low relative risk. Moreover, these three measures
only reveal couples with a low number of reports. Note that
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TABLE II
AVERAGE NUMBER OF SIGNALS, SENSITIVITIES, AND SPECIFICITIES FOR THE GENERATION CRITERIA PROPOSED IN THE LITERATURE. THE NUMBERS OF REPORTED

DRUG-EVENT COMBINATIONS AND OF “TRUE DRUG-EVENT ASSOCIATIONS” ARE 10 502 (SD = 35) AND 1182 (SD = 10), RESPECTIVELY

Fig. 2. ROC curves for the association measures presented in the Appendix,
except ROR for which the ROC curve is similar to PRR. All the ROC curves are
represented in gray in all the sub-figures, and the curve highlighted corresponds
to the title of the sub-figure. Probability thresholds for curves construction are
{0.025, 0.05, 0.1, 0.2, . . . , 0.9, 0.95, 0.975}. For each measure, the point that
corresponds to the threshold proposed in literature (see Appendix) is represented
by a circle. For each threshold, the mean plus/minus the standard deviation, on
200 simulated datasets, is represented.

the ten most highly ranked couples for EBp and Poisson do not
appear in Table III, as they always have the same association
measure values; i.e., EBp = 1 and p = 0, respectively. The re-
sults concerning Yule’s Q, measure are also absent, as they are
identical to the results for ROR. In fact, if ROR ≥ ROR′, then
Q ≥ Q′. Therefore, the ranking results are equal for ROR and
Yule’s Q. Results for χ2 seems to contradict the ones obtained
with ROC curves that highlighted bad performances for this

measure. It is not surprising, as evaluation criteria are different.
In fact, by studying relative risk or percentage of false positives,
among a given number of the most highly ranked couples, we
do not evaluate the capacity of the method to identify all the
“true” drug–event associations as ROC curves do.

In the following, when the combinations are equally ranked
at the highest place, then the mean number of the equally ranked
couples over the 1000 simulated datasets is provided (in brackets
in the tables), and the mean percentage among the equally ranked
combinations is given. When the number of the most highly
ranked drug–event combinations that are considered exceeds
the maximal number of the equally ranked couples within the
1000 simulated datasets, then only the mean percentages among
the considered combinations are presented.

The results in Table III are further investigated in Table IV,
which presents the distribution of the drug–event couples among
various relative risk intervals and for various numbers of the
most highly ranked combinations. This shows the ability of the
respective measures to correctly rank the combinations accord-
ing to the relative risk of the events. For a given measure and a
given number of combinations, the sum of the percentages is not
equal to 100% owing to the presence of couples with RR = 1,
i.e., false positives (see Table V).

We now compare the association measures by means of the
false positive percentages according to various numbers of the
most highly ranked combinations considered as “signals.”
Table V shows results for all the drug–event associations
reported at least once. Note the great differences between
EBAM, EBp, SPRT2, χ

2, Poisson, and ICBate, on one hand, and
ICGould, PRR, and ROR, on the other. The most obvious differ-
ence concerns the percentage of false positive signals. Another
difference is the influence, on this percentage, of the number of
combinations taken into account. For EBAM, EBp, SPRT2, χ

2,
Poisson and ICBate, the proportion of false positive signals in-
creases with the number of couples, while the proportion for the
other measures decreases.

As shown in Table VI, measures performances are compara-
ble for associations with high report numbers (a ≥ 5 or e = 3
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TABLE III
AVERAGE OF THE NUMBER OF REPORTS, a, THE RELATIVE RISK, RR AND THE VALUE OF THE ASSOCIATION MEASURE, VAL, FOR THE 10 MOST HIGHLY RANKED

COMBINATIONS AND FOR EACH MEASURE

TABLE IV
DISTRIBUTION OF THE DRUG-EVENT COUPLES AMONG DIFFERENT RELATIVE RISK INTERVALS AND AS A FUNCTION OF THE NUMBER OF COMBINATIONS TAKEN

INTO ACCOUNT

TABLE V
AVERAGE OF THE FALSE POSITIVE PERCENTAGES FOR ALL

THE DRUG-EVENT COMBINATIONS

million) and lead to low proportions of false positive signals.
Significant differences can be observed for a large number of
couples (500), where the χ2 method becomes the least effective
measure. This corroborates the relatively bad performances of
χ2 according to ROC curves of Fig. 2. EBAM, EBp, Poisson,
SPRT2 and ICBate are less sensitive to the increase in the number

of couples, thus underlining the better ranking performances for
these measures, even with many couples.

Measure performances on drug–event couples with a low
number of reports are presented in Table VII. Performances
of EBAM, EBp, SPRT2, χ

2, Poisson, and ICBate are more
sensitive to an increase in the reports number when a ≤ 4.
The differences between these measures and the others are
more significant for a low number of combinations (10 to
100) and especially when a ≤ 3 or a ≤ 4. In these cases,
the measures derived from DuMouchel’s model (EBAM and
EBp), ICBate, and SPRT2 are the most efficient and provides
comparable results.

Results according to the seriousness of events and background
incidence are not presented here. In fact, the influence of these
parameters on the results is not significant and the performances
are comparable to those for the whole dataset (Table V).

IV. DISCUSSION

All the results presented in this paper were obtained with
simulated data. Consequently, any conclusions have to be care-
fully transposed to the “real” domain of pharmacovigilance,
especially with regard to performances of methods according to
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TABLE VI
AVERAGE OF PERCENTAGES OF FALSE POSITIVES FOR HIGHLY

REPORTED COMBINATIONS

the SRS parameters. It seems especially important to study the
influence of the choice of the model parameters’ values on the
performances of the signal generation methods. This would eval-
uate the robustness of the results presented here. The qualitative
knowledge exploiting for the model definition is consensual
knowledge found in the literature and expressed by pharma-
covigilance experts. Moreover, the temporal evolution of the
reporting probability (see (1) and [8]) follows the expected ones
according to this knowledge. Therefore simulated data could be
considered as realistic. However, an effort should be made in
order to make the distributions of the marginal numbers of Table
I comparable with the real ones for a comparable size subset of
the real pharmacovigilance database. First, these numbers are
exploited by the signal generation methods to determine the ex-
pected numbers of reports. Second, studying the distributions of
these numbers is, to our knowledge, the only manner to quantita-
tively evaluate the SRS model at the database scale. Differences
between simulated and real datasets can be observed, especially
concerning the distribution of the number of drug–event combi-
nations as a function of the number of reports per combination.
In the dataset used by Van Puijenbroek et al. [3], the proportion
of combinations with one, two, three and four or more reports
was 68.4%, 14.2%, 6.2% and 11.2%, respectively, compared to
19.0%, 11.3%, 7.3% and 62.4% in our simulated data. On the
other hand, DuMouchel [2] used a dataset that contained 35.5%
of drug–event couples with one report. This demonstrates the
disparity of “real” database features and, when performing strat-
ification of the databases according to sex, age, etc., the disparity
from a stratum to another. This makes the need to go further into
the quantitative evaluation of the model of secondary impor-
tance. Eventually, some SRS features have not been taken into
account in the model of the spontaneous reporting system. The
most important one is the drugs interactions i.e., the fact that
some events can be caused by the simultaneous exposure to two
or more drugs and not by the drugs taken alone. DuMouchel pro-
poses a method to identify the associations between an event and
more than one drug by means of the “all-two-factor” model [15].
In order to evaluate such a method, it seems necessary to model
drugs interactions in the simulated datasets.

By choosing the evaluation criteria of the present paper, we
deliberately chose to evaluate measures of association and not

automatic signal generation methods. However, our results also
throw light on the generation criteria. Overall, there is one group
including EBAM, EBp, SPRT2, χ

2, Poisson, and ICBate, and
another including ICGould, PRR, ROR, and Yule’s Q. The for-
mer provides better results, especially for drug–event associa-
tions with a low number of reports. Such results are of major
interest as drug–event couples with fewer than five reports are
the most numerous in the database.

In the present study, IC is very sensitive to the choice of the
prior parameter values. Bate et al. [1] and Orre et al. [14] pro-
pose using available data to define prior parameters. Gould [7]
proposes fixed priors once for all the drug–event couples in
the database. According to the results of the present study,
exploiting prior knowledge derived from the data as Bate
et al. do seems to provide better results. Such differences of
results should be reduced when using larger databases; i.e.,
when the total number of reports in the database is more impor-
tant (see Appendix). However, if surveillance strategies consist
in applying signal generation methods to data subsets (seri-
ous events and/or recent drugs for example), the total num-
ber of reports of these subsets could be comparable to the one
of the simulated datasets used in the present study. Thus, ex-
ploiting available data in order to define priors seems a good
solution. It is especially the solution adopted in DuMouchel’s
method. In fact, EBAM is an empirical Bayesian method in
the sense that priors parameters values are obtained by a maxi-
mum likelihood estimation using the data (see Appendix). The
Bayesian approach seems to be efficient for pharmacovigilance
database screening, as it provides a better estimation of the
measures values for drug–event couples with a low number
of reports.

Over the 1000 simulated datasets, 219(SD = 52) and
106(SD = 4) drug–event couples were placed equal first with
EBp and Poisson, respectively. However, there was a very low
number of false positive signals among the couples equally
placed. For these two measures, the value corresponding to the
couples equally ranked at the first place does not provide a pri-
ority index for further investigations. However, other priority
criteria can be applied, such as the seriousness of the events,
the numbers of reports, etc. Moreover, the number of couples
equally placed was lower than the number of signals provided
with the generation criteria proposed in the literature.

Modified measures of association could provide better rank-
ing performances. For EBAM, IC, PRR, ROR, and Yule’s Q,
all the previously-mentioned results were obtained by ranking
drug-event couples on the basis of the expectation of the values
of the association measures. On the other hand, ranking perfor-
mance could be modified by considering the variance. As shown
in Table VIII, performances increase when couples are ranked
by means of the lower bound of the 95% confidence/credibility
interval. The number of combinations taken into account is
equal to the number of signals when using the generation cri-
teria presented in the Appendix. However, except for EBAM,
confidence, or credibility intervals are obtained by assuming the
normality of the distributions. In fact, the lower bound of the
95% confidence/credibility interval is probably not the optimal
index for ranking drug–event couples too efficiently.
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TABLE VII
AVERAGE OF PERCENTAGE OF FALSE POSITIVES FOR COMBINATIONS

WITH A LOW NUMBER OF REPORTS

TABLE VIII
RESULTS OBTAINED BY RANKING DRUG-EVENT COUPLES BY MEANS OF THE

AVERAGE AND THE LOWER BOUND OF THE 95% CONFIDENCE/CREDIBLE

INTERVAL (IN BOLD), RESPECTIVELY

V. CONCLUSION

This paper demonstrates that it is possible to evaluate the
automatic signal generation methods proposed in the litera-
ture within the field of pharmacovigilance. First, the realistic
simulated datasets provided by modeling the spontaneous re-
porting system make it possible to estimate the performances
of the methods. Second, the practical point of view adopted in
this paper, which consists in ranking drug–event couples and
in comparing the association measures by means of the per-
centage of false positive signals among a given number of the
most highly ranked combinations, make it possible to iden-
tify the most efficient and applicable measures for users; i.e.,
the pharmacovigilance experts. According to this study, EBAM
and ICBate provide the better results. These two methods use
Bayesian measures exploiting available data for priors defini-
tion, thus proving the efficiency of this philosophy. However,
their theoretical background and implementation are less ob-
vious than other methods, like SPRT2 and χ2, which seem to
provide good results as well.

The practical approach adopted in this paper for evaluating
automatic signal generation methods implicitly involves the hu-
man, material, and time resources available for interpreting and
exploiting retrieved information. It is of major interest, since
the quantity of data now available is huge. Moreover, this ap-
proach should be adopted not only for evaluating measures of
association, but also for developing new measures.

APPENDIX I

ASSOCIATION MEASURES AND SIGNAL GENERATION CRITERIA

1) Chi Square (Yates Correction): Chi square with Yates
correction is defined as [3]

χ2 =
∑

4 cases of Table 1

(
|a − E| − 1

2

)2

E
. (3)

The generation criterion is [3]

Pr
(
χ2

1 > χ2
)
≤ 0.05. (4)

2) Proportional Reporting Ratio, PRR: PRR is defined as

PRR =
a

a+b
c

c+d

. (5)

PRR was initially proposed for signal generation in pharma-
covigilance by Evans et al. [9]. Criterion to generate a signal
is PRR ≥ 2 and χ2 ≥ 4 and a ≥ 3. Evans et al. calculate a
confidence interval around the PRR as an alternative to chi-
square. Van Puijenbroek et al. [3] generate a signal when the
lower bound of the 95% confidence interval, noted LI95(PRR),
exceeds 1, with

LI95(PRR) = exp(ln(PRR)−1.96·
√

( 1
a − 1

a +b + 1
c + 1

c +d ))
. (6)

3) Reporting Odds Ratio, ROR:

ROR =
a · d
b · c . (7)

Van Puijenbroek et al. propose a similar signal generation cri-
terion as in PRR, i.e., LI95(ROR) > 1 [3], with:

LI95(ROR) = exp(ln(ROR)−1.96·
√

( 1
a + 1

b + 1
c + 1

d )). (8)
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In a recent paper, Rothman et al. [16] argue that the ROR is a
better measure than PRR for signal generation because it is a
better estimator of the Risk Ratio (RR). They propose that its
computation should be done by selecting control events; i.e.,
events independent of the exposure to the drug of interest. How-
ever, they mention the difficulty of introducing this extrinsic
knowledge. They also notice that the lack of knowledge about
the reporting ratio, which varies with many factors (seriousness
and incidence of the events, exposure to the drug, etc.), makes
the interpretation of the PRR and ROR equally problematic. As
a response to the paper of Rothman, Waller et al. [6] propose that
PRR and ROR are both disproportionality measures that give
similar results when a and c (see Table I) are small compared
with (a + b) and (c + d), respectively, as is the case in phar-
macovigilance databases. Waller et al. also that in the context
of pharmacovigilance, neither the PRR nor the ROR is meant
to estimate the RR, but to rather identify suspicious drug–event
couples. These measures should be evaluated according to their
sensitivity, specificity, and predictive values obtained with a real
dataset, and should not be compared with the true RR. Unfortu-
nately, dataset that would permit such an evaluation does not yet
exist as the true status of the drug–event relations in databases
are unknown (this justifies the approach of the present paper).

4) Yule’S Q: Yule’s Q measure is defined as

Q =
ROR − 1
ROR + 1

=
a · d − b · c
a · d + b · c . (9)

For Yule’s Q, the generation criterion is LI95 (Q) > 0 [3], and:

LI95(Q) = Q − 1.96 ·
(

1
2
· (1 − Q2) ·

√(
1
a

+
1
b

+
1
c

+
1
d

))
.

(10)

5) Poisson: This method assumes that for a drug–event cou-
ple, the number of reports is Poisson-distributed. A signal is
generated if [3]

Pr(Pois(E) > a) ≤ 0.05 (11)

i.e.,

1 −
a∑

k=1

exp−E · Ek

k!
≤ 0.05. (12)

6) Sequential Probability Ratio Test, SPRT: SPRT was pro-
posed by Spiegelhalter et al. [12] for monitoring the cumulative
occurrence of various adverse clinical outcomes, and its use
has been suggested by Evans in the context of pharmacovigi-
lance [13]. By assuming a Poisson distribution for the number
of reports and an event relative risk for “true” associations twice
(SPRT2) the event relative risk for coincidental associations, the
SPRT2 criterion for a signal generation is

ln(2) · a − E ≥ ln(B) (13)

where

B = ln
(

1 − β

α

)
(14)

α and β being the risk of generating a false positive signal and a
false negative signal, respectively. By choosing α = β = 0.05,
we obtain the following generation criterion:

ln(2) · a − E ≥ 2.94. (15)

7) Information Component, IC: Using a Bayesian approach,
Bate et al. [1] define the IC as follows:

IC = log2

(
r

p · q

)
(16)

p, q, and r are, respectively, the probabilities of being exposed
to the drug, of observing the considered event, and of having
the drug–event association, given the data in Table I. p, q, and
r are taken to be beta-distributed. Two sets of prior parameters
have been proposed in literature.

a) Orre et al. [14] and Bate et al. [1] propose the non-
informative prior distributions Beta(p0

1 = 1, p0
2 = 1) and

Beta(q0
1 = 1, q0

2 = 1) for p and q, respectively. Then, they
consider the fact that the posterior expectation (Post-
Expect) of the information component should tend to-
ward zero when the observed number of reports tends
toward zero. Consequently, they define the prior dis-
tribution for r as Beta(r0

1 = 1, r0
2 = (1/PostExpect(p) ·

PostExpect(q) − 1). So they introduce knowledge on the
observed data in the prior parameters, and thus define a
sort of semiempirical Bayesian method;

b) Gould [7] proposes the same priors for p and q,
but do not exploit the available information for de-
termining the prior parameters for r. For r, the prior
distribution is Beta(r0

1 = 1, r0
2 = (1/PriorExpect(p) ·

PriorExpect(q) − 1); i.e., Beta(r0
1 = 1, r0

2 = 3).
Therefore, the posterior distributions of p, q, and r are Beta

distributions with parameters:

p1 = p0
1 + (a + b) = 1 + a + b;

p2 = p0
2 + N − (a + b) = 1 + N − a − b;

q1 = q0
1 + (a + c) = 1 + a + c;

q2 = q0
2 + N − (a + c) = 1 + N − a − c;

r1 = r0
1 + a = 1 + a;

r2 = r0
2 + N − a.

Then, by assuming a normal distribution for IC, Bate et al.’s
signal generation criterion is LI95 (IC) > 0, with:

LI95(IC) = Expect(IC) − 1.96 · SD(IC) (17)

where Expect and SD are the posterior expectation and standard
deviation, respectively, with [7]

E(IC) =
1

ln(2)
· (Ψ(r1) − Ψ(r1 + r2)

− (Ψ(p1) − Ψ(p1 + p2)

+ Ψ(q1) − Ψ(q1 + q2))) (18)
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(SD(IC))2 = (ln(2))−2 · (Ψ′(r1) − Ψ′(r1 + r2)

+ (Ψ′(p1) − Ψ′(p1 + p2)

+ Ψ′(q1) − Ψ′(q1 + q2))). (19)

Ψ and Ψ′ being the digamma and the trigamma functions, re-
spectively. These functions are tabulated in statistical software.

8) Empirical Bayes Method: DuMouchel [2] assumes a
Poisson distribution with a mean µ for the number of reports
related to a drug–event couple. Then he considers the rate
λ = (µ/E). An a priori mixture of two gamma distributions
is assumed for λ

λapriori ∼ P · Γ(a1, b1) + (1 − P ) · Γ(a2, b2). (20)

This mixture means that the probabilities that λ stems from a
gamma distribution with parameters (a1, b1) and (a2, b2) are P
and (1 − P ), respectively. At the dataset scale, P and (1 − P )
can be interpreted as the proportions of drug–event couples
that stem from gamma distribution with parameters (a1, b1) and
(a2, b2), respectively. The “empirical” character of the method
comes from the estimation of the prior distribution parameters,
q = {P, a1, b1, a2, b2}, by means of a maximum likelihood es-
timation from the data. The posterior distribution of λ is also a
mixture of two gamma distributions

λaposteriori ∼ Q · Γ(a1 + a, b1 + E)

+ (1 − Q) · Γ(a2 + a, b2 + E). (21)

Q is the posterior probability (see [2], [7] for more details on
the computations). It is then possible to obtain the exact posterior
mean of λ, termed EBAM. DuMouchel uses this value (in fact,
DuMouchel uses the geometric mean derived from log2 (λ)) to
order the drug–event couples, and does not recommend a thresh-
old. Gould [7] applies the same decision criterion as Bate et al.
by computing the lower bound of the 95% confidence interval.
This lower bound can be approached with a predefined pre-
cision. Indeed, Gamma quantiles are tabulated in commercial
software, and a basic optimization procedure can easily find the
quantiles of the posterior mixture. The quantile l corresponding
to a given probability pr is the one that minimizes the following
expression:

f =
(

Q ·
∫ l

0

Γ(x, a1 + a, b1 + E) dx

+ (1 − Q) ·
∫ l

0

Γ(x, a2 + a, b2 + E) dx

)
− pr. (22)

9) Alternative Generation Criterion for the Empirical Bayes
Method: In the present paper, we propose an alternative signal
generation criterion exploiting the empirical Bayes model of
DuMouchel. As stated by the model in 8), the ratio λ, for each
drug–event couple of the database, is supposed to stem from
component 1 or 2 with the probability P and 1 − P , respectively.

For the definition of our new measure, we distinguish the
two mixture components and consider the probability EBp that
the λ ratio stems from a gamma distribution with an average
exceeding 1. In fact, the higher this probability is, the higher
the probability that λ itself exceeds 1 is. A drug–event couple

associated with λ > 1 has an observed number of reports greater
than the expected one and is supposed to be identified as a
suspicious couple.

EBp is defined as

EBp = Q · δ1 + (1 − Q) · δ2 (23)

with δk = 1 if the posterior mean of the component k

exceeds 1, and δk = 0 otherwise. With the notations previously
stated

k ∈ {1, 2}
{

δk = 1, if ak +a
bk +E > 1

δk = 0, otherwise.
(24)

A signal is generated when EBp exceeds a given value. In the
present paper, we generate a signal when EBp > 0.5.
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