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Abstract

Numerical computation is an essential tool for describing multi-phase and multi-
scale flows accurately. One possibility consists in using very fine monogrids to ob-
tain accurate solutions. However, this approach is very costly in time and memory
size. As an alternative, an Adaptive Mesh Refinement method (AMR) has been
developed in order to follow either interfaces in two-phase flows or concentration of
a pollutant in one-phase flows. This method has also been optimized to reduce time
and memory costs. Several 2D and 3D cases have been studied to validate and show
the efficiency of the method.

Key words: Adaptive mesh refinement (AMR), implicit solving, conservative and
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1 Introduction

One of the current difficulties in fluid mechanics is in describing multi-phase
and multi-scale incompressible flows. It is difficult to simulate such flows in so
far as they are complex and require important computer resources.
This paper focuses on tracking interfaces in two-phase incompressible flows
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and inert species fronts in one-phase incompressible flows. The obtention of
an accurate solution is essential for both flows. However the numerical diffu-
sion introduced by most discretization schemes, such as TV D (Leveque, 1990),
WENO (Liu, 1994) or CIP (Yabe, 2001) schemes, damages its accuracy. In
the same way, discretization schemes such as the V OF − PLIC (Youngs,
1982) are responsible for an artificial interface fragmentation which damages
the solution accuracy.
Given the fact that both numerical diffusion and fragmentation are linked to
the mesh size, a very fine meshing can be used to reduce their effects. However,
this is too expensive in memory size and time on standard fine Cartesian grids.
As a result, we have developed an Adaptive Mesh Refinement (AMR) method
based on (Berger, 1989) and (Vincent, 2000) to obtain accurate solutions with
optimized memory size and time costs.

The physical requirements of incompressible flows involve the use of the Navier-
Stokes equations (1), either coupled with the concentration species transport
equation (2) in one phase flows or the interface transport equation (3) in two
phase flows.

−→∇ .
−→
V = 0 (1)

ρ(
∂
−→
V

∂t
+ (
−→
V .
−→∇)
−→
V ) = ρ−→g −−→∇p +

−→∇ .(µ(
−→∇−→V +

−→∇T−→V ))

∂Sp

∂t
+
−→
V .
−→∇(Sp) =

−→∇ .(D
−→∇(Sp)) (2)

∂Ci

∂t
+
−→
V .
−→∇(Ci) = 0 (3)

with
−→
V = (u,w , v) the velocity vector, ρ the density, p the pressure, µ the

viscosity, −→g the gravity vector,
−→∇T the transpose vector of

−→∇ , Sp the con-
centration and D the diffusion coefficient. Ci is the phase function repairing
fluidi. As a definition, we state Ci = 1 in fluidi and Ci = 0 elsewhere. The
interface between two fluids is defined by Ci = 0.5.
The equations are approximated by the Finite Volumes method described in
(Patankar, 1980) on a staggered Cartesian grid (Harlow, 1965).
Concerning the Navier-Stokes equations, a one order Euler scheme is used for
time discretization, the inertia term is treated by a linearized implicit cen-
tered scheme and the viscous terms are discretized by using a second order
implicit centered scheme (for more details, see (Patankar, 1980)). The cou-
pling between velocity and pressure is treated by the augmented Lagrangian
method described in (Peyret, 1983), (Fortin, 1982) and (Vincent, 2004). They
are solved in an implicit way by using a Bi-Conjugate Gradient Stabilized II
algorithm (BiCGStabII) (Van Der Vorst, 1992) preconditioned by a Modified
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and Incomplete LU Gauss factorization (Gustafsson, 1978).
Concerning equation (2),a one order classic scheme is used for time discretiza-
tion. An explicit Total Variation Diminishing (TV D) scheme (Leveque, 1990)
is used for the advection term. The diffusion term is solved implicitly, by us-
ing an iterative Bi − CGStabII algorithm with a Jacobi preconditioner (see
(Gustafsson, 1978) or (Van Der Vorst, 1992)) is used.
We specify that for a two-phase incompressible flow, the one-fluide model in-
troduced by (Kataoka, 1986) is used. A Volume Of Fluid (V OF ) method is
utilized to transport the interface (see (Hirt, 1981) for more details). Two
methods have been tested to solve equation (3): the first one consists in dis-
cretizing the advection term of equation 3 by a TV D scheme described in
(Hirsh, 1992), (Leveque, 1990) in 1D and adapted to 2D and 3D for inter-
face tracking by (Vincent, 1999) while the second one, called V OF − PLIC
introduced by (Youngs, 1982), consists in using equation (3) to rebuild the
interface geometrically and advect it using the Lagrangian approach.
Section 2 is dedicated to the principles of the AMR approach and more partic-
ularly to the connections, the extension operators and the refinement criteria.
In section 3, we first evaluate the effects of the extension operators on the
solution accuracy via a 2D diffusion case. Then we show the efficiency of the
developed method in conserving the solution accuracy and in minimizing the
memory size and CPU time costs via some 2D and 3D scalar cases which
consist in shearing a fluid disk. In section 4, the AMR approach is applied to
both scalar and Navier-Stokes equations to evaluate its ability to deal with
an academic 2D case, called the Green Taylor vortex, and real two-phase
incompressible flows related to 2D dam break cases. Its efficiency in reduc-
ing the memory and CPU time costs are also studied. Some conclusions and
perspectives are given in section 5.

2 Principle of the AMR method

In this subsection, we give a reminder of the essential points of the AMR
approach described in (Delage, 2006). The current method is an improvement
on the OCLM method developed by (Vincent, 2000), which was based on the
concepts of (Berger, 1989).
This approach consists in generating fine grids of level GL from a coarse one
of level GL−1, L ∈ [1, niv] (where niv is the number of refinement levels),
by means of a refinement criterion (see subsection 2.3 for more details). We
specify that only a pressure node PL−1 of level GL−1 can generate an AMR
cell, provided that PL−1 verifies the refinement criterion. This AMR cell is
composed of a pressure fine grid and a velocity fine grid per component, as
shown in figure 2. An odd cutting is required to ensure a consistent connec-
tion between AMR cells of a same refinement level (a three cutting has been
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chosen in figures 1 and 2).
As explained in (Delage, 2006), the solution ΦL on pressure and velocity nodes
belonging to the limits of the AMR cell (see figure 2) of level GL is calculated
by means of an extension operator, namely non-conservative interpolations
Q1, Q2 or Q3. The solution ΦL on pressure and velocity nodes belonging to
the interior of the AMR cell (see figure 2) of level GL is calculated thanks to
the discretized equations.
The first essential point of this approach is its implicitation: it consists in in-
troducing the interpolation coefficients inside the discretization matrix so as
to solve every node in an implicit way and in only one step. More details can
be found in (Delage, 2006).
Given that the solution ΦL calculated on the nodes of an AMR cell of level
GL is more accurate than the solution ΦL−1 calculated on its father node of
level GL−1, a Full Weighted Control Volume (FWCV ) method, introduced
by (Hackbush, 1984), is used as a restriction operator. The solution on the
father node is calculated from formula (4), where Ωfather is the control volume
associated to the father node, Ωson(i) is the control volume associated to the
son node i, i ∈ [1, Nson] and Nson the number of son nodes. raf is the refine-
ment coefficient and dim corresponds to the space dimension. An illustration
is given in figure 1 with raf = 3 and dim = 2.

∫

Ωfather

ΦL−1dΩ∼
Nson∑

i=1

∫

Ωson(i)

ΦLdΩ. (4)
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Fig. 1. Enrichment of a pressure node by means of a FWCV method as a restriction
operator.

The second essential point of the method is the connections between AMR
cells enabling transmission of information from cell to cell, which improves
the accuracy of the solution. Given that this principle is an improvement on
the method used in the description given by (Delage, 2006), the following
paragraph is dedicated to this principle. When AMR cells of level GL are
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created from nodes of level GL−1, pressure nodes PL ∈ GL can generate AMR
cells of level GL+1, provided they belong to the interior of an AMR cell.

Pressure node of the coarse mesh,
father of the AMR cell

Pressure node in the interior of the AMR cell

Velocity nodes in the interior of the AMR cell

Pressure node of the coarse mesh

Pressure node on the boundaries of the AMR cell

Velocity nodes on the boundaries of the AMR cell

Fig. 2. Composition of an AMR cell.

2.1 Principle of connections

The purpose of this principle is to minimize the number of interpolated nodes
to improve the accuracy of the solution. We take the example of two adjoining
pressure nodes of level GL−1 which generate AMR cells. Figure 3 shows there
is an overlapping. Each grey diamond pressure node of the left AMR cell has
an east pressure neighbour belonging to the right boundary of the same AMR
cell. However, the grey circle pressure nodes of the right AMR cell have the
same coordinates as the east pressure neighbours of the grey diamond pressure
nodes. As a result, each grey circle pressure node of the right AMR cell be-
comes the new east pressure neighbour of a diamond grey pressure node of the
left AMR cell. In the same way, each grey diamond pressure node becomes the
west pressure neighbour of a grey circle pressure node of the right AMR cell.
Moreover, the pressure nodes belonging to the overlapping area and to the
right (respectively left) boundary of the left (respectively right) AMR cell are
no longer solved. However they retain their identity in the AMR tree struc-
ture (see figure 4) to make the refinement-derefinement dynamic management
possible. The solution ΦL is obtained by a non-conservative interpolation pro-
cedure on the black circle nodes.
Moreover, the connection procedure is performed by using the tree AMR
structure of figure 4. If we take the example of figure 3, each grey diamond
pressure node of the left AMR cell can be connected if and only if the west
neighbour of the grey diamond pressure nodes father has created an AMR
cell. This test is true in figure 3, therefore the grey diamond nodes can be
connected to the grey circle pressure nodes.
The approach of connections can be expanded to several adjoining pressure
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nodes of level GL−1. Those which belong to the limits of an AMR cell as well
as the overlapping area are not treated and those belonging to the interface
GL−1 − GL are treated by using a non-conservative interpolation procedure.
The solution ΦL is calculated via the discretized equations on the pressure
nodes belonging to the interior of the AMR cells.
We specify that level GL is considered as a single grid for the solving whereas
each AMR cell conserves its identity to make the refinement-derefinement
procedure possible.
A similar approach is adopted to connect velocity nodes of AMR cells and to
extend the connections procedure to 3D.
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Node belonging to the right AMR cell

Node belonging to the left AMR cell

Node treated by an interpolation

Connection

Overlapping area

Fig. 3. Connections procedure of two AMR cells for the fine pressure grids in 2D.

G0

G1

G2

Fig. 4. Tree structure of several refinement levels with a refinement coefficient
raf = 3.

2.2 Extension operators

Two kinds of extension operators have been developed in our AMR algo-
rithm, depending on the treated problem. The first one is a non-conservative
interpolation procedure whereas the second one is a conservative interpolation.
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2.2.1 Non-conservative interpolation

The finite elements of Lagrange was chosen to build the interpolation func-
tions. It consists in approximating the unknown by a polynomial of degree
n ∈ [1, 3], P ∈ Qn = vect{xlzm} ∀(l, m) ∈ [1, n] (see (Delage, 2006) and (De-
lage Santacreu, 2006) for more details).
A fourth non-conservative interpolation, called binary interpolation, was im-
plemented only for unknowns belonging to the pressure grid, such as the con-
centration Sp or the phase function Ci of fluidi. Let Φ be this scalar unknown
and PL−1 be a pressure node of level GL−1 which has generated an AMR cell
of level GL, L ∈ [1, niv]. For all pressure nodes PL belonging to this cell, the
binary interpolation consists in imposing: Φ(PL) = 1 if Φ(PL−1) ≥ 0.5 and
Φ(PL) = 0 if Φ(PL−1) < 0.5.

2.2.2 Conservative interpolation

This interpolation has been developed for the unknowns belonging to the pres-
sure grid. The interesting results obtained with this procedure have led us to
work on the adaptation of this interpolation to the velocity grids. This work
is in progress.
The conservative interpolation developed here is based on the principle of the
Flux Interface Correction (FIC) method introduced by (Angot, 1992). This
method consists in writing a relation which ensures the continuity of fluxes
through the interface GL−GL−1, L ∈ [1, niv], in order to link the nested grids.
The central idea of the FIC method and the conservative interpolation pro-
cedure explained in (Trottenberg, 2001) have been coupled in order to adapt
them to the staggered cartesian grid of (Harlow, 1965).
We consider a pressure node PL−1 of level GL−1. Its West (respectively East,
South, North) pressure neighbour is noted WL−1 (respectively EL−1, SL−1,
NL−1), L ∈ [1, niv] (see figure 5). We assume the node PL−1 has created an
AMR cell of level GL. The refinement coefficient is raf = 3. The pressure
nodes of level GL−1 (respectively GL) are represented by circles (respectively
points) in figure 5. The pressure grids are represented by solid lines and the
control volumes associated to pressure nodes are represented by dash-dot-dot
lines. We note ΩPL

the control volume associated to the node PL, ΣW,PL
(re-

spectively ΣE,PL
, ΣS,PL

, ΣN,PL
) the West (respectively East, South, North)

face of ΩPL
and (uΣI,PL

, wΣI,PL
), I ∈ {W,E, S, N} the velocity on the centre

of the face ΣI,PL
.

Let Φ be the scalar unknown, solution of the advection-diffusion equation

∂Φ

∂t
+ (
−→
V .
−→∇)Φ =

−→∇ .(K
−→∇Φ) (5)
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An implicit time discretization of equation (5) gives

Φk+1 − Φk

∆t
+ (
−→
V k.

−→∇)Φk+1 =
−→∇ .(K

−→∇Φk+1) (6)

Where k is the time iteration and ∆t the time step. The conservative form of

equation (6) under the assumption
−→∇ .
−→
V k = 0 is

Φk+1 − Φk

∆t
+
−→∇ .(Φk+1

−→
V k) =

−→∇ .(K
−→∇Φk+1) (7)

For a more comprehensible approach, we put K = 0 and we assume space
steps are constant. The aim is to determine the unknown Φ on a node PL. By
applying the finite volume method to the control volume ΩPL

(hachured area
in figure 5) centered in PL to equation (7), we can write

∫

ΩPL

(Φk+1 − Φk)dΩPL
+ ∆t

∫

ΩPL

−→∇ .(Φk+1
−→
V k)dΩPL

= 0 (8)

The space step of a node PL along with the horizontal (respectively vertical)
axis x (respectively z) is noted ∆xL (respectively ∆zL). −→n is a unit vector
normal to a considered face of the control volume. By applying the Green
formula to equation (8), we obtain

1

∆t
(Φk+1

PL
− Φk

PL
)∆xL∆zL + FE,PL

+ FW,PL
+ FN,PL

+ FS,PL
= 0 (9)

where FI,PL
=

∫
ΣI,PL

Φk+1
−→
V k.−→n dΣI,PL

, is the advection flux of Φ through the

face ΣI,PL
, I ∈ {N, S, E,W}.

We note in figure 5, that the west face ΣW,PL
coincides with the East face

ΣE,WL−1
and is on the interface of levels GL − GL−1. By assuming there is a

continuity of the fluxes through the interface GL − GL−1, we can write the
inward flux FW,PL

is equal to 1
raf

of the outward flux FE,WL−1
, i.e :

FW,PL
=− 1

raf

Φk+1
WL−1

+ Φk+1
PL−1

2
uk

ΣE,WL−1
∆zL−1 (10)

The fluxes FE,PL
, FN,PL

and FS,PL
are determined using the classic method

because the faces ΣE,PL
, ΣS,PL

and ΣN,PL
do not belong to the interface GL−

GL−1. If a centered scheme is applied, we find
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FE,PL
=

Φk+1
EL

+ Φk+1
PL

2
uk

ΣE,PL
∆zL (11)

FN,PL
=

Φk+1
NL

+ Φk+1
PL

2
wk

ΣN,PL
∆xL (12)

FS,PL
=−Φk+1

PL
+ Φk+1

SL

2
wk

ΣS,PL
∆xL (13)

We inject (10-13) into equation (9). Then we can determine the contribution of
each discretized term of Φ which represents the coefficients of the discretization
matrix and these of the second member. Hence it is possible to calculate Φk+1

PL

thanks to an implicit solver.
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Fig. 5. Principle of the conservative interpolation on nodes of the pressure grid.

2.3 Refinement criteria

Several kinds of refinement criteria have been developed to manage this mov-
ing mesh strategy efficiently. A first method consists in calculating a posteri-
ori errors to refine a mesh (Berger, 1989). A second one, recently developed,
consists in coupling the solution accuracy and the maximum memory cost
accepted (Bellenger, 2005). We have chosen to use the physical variables as
refinement criteria as in (Vincent, 2000).
Here, the physical variables are the concentration Sp in order to track the
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species in a monophasic incompressible flow and the phase function Ci to
track the interface in a two-phase incompressible flow. For both Sp and Ci,
several parameters can be evaluated, namely their magnitude or their vari-
ation relative to the distance. For each parameter, a threshold is chosen to
manage the refinement. Let Φ represent Sp or Ci.
The criterion based on the value of Φ consists in imposing a minimum thresh-
old V almin and a maximum threshold V almax. Given a node PL−1 ∈ GL−1,
l ∈ [1, niv], if Φ(PL−1) ∈ [V almin, V almax], then the node PL−1 generates an
AMR cell. This criterion is efficient for slow variations of Φ as it is explained
in (Delage Santacreu, 2006). So it is not adapted to track fronts.
Now, we describe the approach of the criterion based on the variations of Φ
relative to the distance. Let PL−1 be a pressure node of level GL−1. As shown
in figure 6 left, its neighbours are noted WL−1, EL−1, SL−1, NL−1, SWL−1,
SEL−1, NWL−1 and NEL−1. The distance between two nodes, PL−1 and WL−1

for instance, is noted dist(PL−1 −WL−1). The procedure consists in imposing
a minimum threshold Grdmin and evaluating the variations of Φ relative to
the distance along with every grid direction:

|Φ(SL−1)− Φ(PL−1)

dist(SL−1 − PL−1)
|,|Φ(PL−1)− Φ(NL−1)

dist(PL−1 −NL−1)
|,|Φ(EL−1)− Φ(PL−1)

dist(EL−1 − PL−1)
|,

|Φ(PL−1)− Φ(WL−1)

dist(PL−1 −WL−1)
|,|Φ(PL−1)− Φ(NWL−1)

dist(PL−1 −NWL−1)
|, |Φ(SEL−1)− Φ(PL−1)

dist(SEL−1 − PL−1)
|,

|Φ(PL−1)− Φ(NEL−1)

dist(PL−1 −NEL−1)
|, |Φ(SWL−1)− Φ(PL−1)

dist(SWL−1 − PL−1)
|

If the maximum value of the previous calculated variations is superior or equal
to Grdmin, then the node PL−1 creates an AMR cell.
A demonstration is made for a 1D problem. We consider a domain Ω = [0, 1]
and a function Φ verifying ∀x ∈ Ω, if x ∈ [0.2, 0.4] then Φ(x) = 1, else
Φ(x) = 0. We represent in figure 6 right this function as well as the nodes
PL−1 ∈ GL−1. By assuming a correct value of Grdmin > 0 has been chosen, we
note the variations of Φ on the black nodes of figure 6 right are equal to zero
whereas it variations on the grey nodes are different from zero. Therefore the
grey nodes of figure 6 right, situated on and close to the front, can generate
AMR cells. This means that this criterion is efficient in determining the front
accurately.
We specify that the derefinement procedure is the same as the refinement

procedure. Moreover, we chose the same criterion for both refinement and
derefinement management.
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Fig. 6. Nodes of level GL−1 used to calculate the variations of Φ on PL−1 relative
to the distance (left). Representation of the function Φ and detection of the nodes
liable to create AMR cells (right).

3 Application of the method to scalar equations

3.1 Two dimensional diffusion case

In this subsection, we aim at determining the effects of the non-conservative
and conservative interpolations on the solution when concentration gradients
are present everywhere in the domain Ω.
We chose the same conditions as those described by (Whitaker, 1983) for a
conduction case in order to have an analytical solution for the steady state.
The difference is that the temperature in (Whitaker, 1983) has been replaced
by the species concentration Sp.
Let Ω be a two dimensional domain, H = 1 meter in height and b = 0.5 meters
in width. The horizontal direction is noted x whereas the vertical is noted z.
Equation (2) is considered with

−→
V =

−→
0 . The diffusion coefficient is equal to

D = 1m2.s−1. A constant concentration Sp0 = 10g.m−3 is imposed on the left,
right and lower boundaries. As for the boundary on the top of the domain,
the following concentration profile Spf

is imposed with Sp1 = 100g.m−3 (see
figure 7 left):

Spf
: [0, b]× [H, H]→<

(x, z) 7→Sp0 −
16

b4 (Sp0 − Sp1)x
2(x− b)2 (14)

Using formula (14), the analytical solution Span can be written as (see also
figure 7 (right)):

Span : Ω→< (15)

(x, z) 7→Sp0 + 16(Sp1 − Sp0)
∞∑

n=1

1− (−1)n

(nπ)3sinh(
nπH

b
)
sin(

nπx

b
)sinh(

nπz

b
)
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Three cases are studied and then compared to achieve our objective.

Sp
0

Sp
0

Sp
0

Sp (x)
f

0 b

H

x

z

X

Z

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
12.1629
10.6565
10.1166

Fig. 7. Description of the diffusion case (left). Analytical concentration distribution
for the steady state (right).

• case1: study of the concentration distribution using a classic mesh.
• case2: study of the concentration distribution using one level of refinement

in the area [0, 0.5][0.8, 1], and a refinement coefficient raf = 3. The solution
is regular, therefore a Q2 interpolation is used for the nodes belonging to
the interface G0−G1, (Delage, 2006). A FWCV injection has been chosen
as a restriction operator (Hackbush, 1984).

• case3: this case is the same as case2. The difference comes from the use of
a conservative interpolation (see subsection 2.2) instead of the Q2 interpo-
lation.

Let Spnum be the numerical concentration obtained when the steady state is
reached. The number of nodes needed to calculate Spnum is noted N .
For case1, N represents the number of the nodes of the monogrid G and the
error ε in the L2 norm can be defined as follows:

ε =
||Spnum − Span||2

||Span||2
ε =

[
∫
Ω |Spnum(x, z)− Span(x, z)|2dxdz]

1
2

[
∫
Ω |Span(x, z)|2dxdz]

1
2

ε∼ [
∑

i=1,N |Spnumi
− Spani

|2∆xi∆zi]
1
2

[
∑

i=1,N |Spani
|2∆xi∆zi]

1
2

.

For case2 and case3, we define Camr = {M belonging to the interior of an
AMR cell } and Vamr = {M ∈ G0

⋃
Camr such as M has not created an AMR
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cell }. Here, N represents the number of nodes so that M ∈ Vamr. Three errors
εG0 , εG1 and εcomposite are defined as

εG0 ∼
[
∑

i∈G0
|Spnumi

− Spani
|2∆xi∆zi]

1
2

[
∑

i∈G0
|Spani

|2∆xi∆zi]
1
2

,

εG1 ∼
[
∑

i∈G1

⋂
Camr

|Spnumi
− Spani

|2∆xi∆zi]
1
2

[
∑

i∈G1

⋂
Camr

|Spani
|2∆xi∆zi]

1
2

.

εcomposite∼
[
∑

i∈Vamr
|Spnumi

− Spani
|2∆xi∆zi]

1
2

[
∑

i∈Vamr
|Spani

|2∆xi∆zi]
1
2

.

mesh G N ε

8 ∗ 8 81 1.2998 10−2

16 ∗ 16 289 4.2915 10−3

32 ∗ 32 1089 1.2316 10−3

64 ∗ 64 4225 3.2712 10−4

128 ∗ 128 16641 8.3961 10−5

256 ∗ 256 65536 2.1340 10−5

Table 1
Evolution of the error ε along with the number of nodes for case1

Table 1 shows the evolution of the error ε when the number of the nodes N
of the mesh G increases. We compare in table 2 the evolution of the different
errors along with the number of nodes, when a conservative interpolation
(FIC) or a non-conservative interpolation Q2 is used. We note that εG0 is
similar in the two cases whereas εG1 is lower in case3 than in case2.
Given that the error is linked to the number of nodes N by the formula

ε = k(
√

L
N

)p (ε corresponds to εcomposite for case2 and case3), where k is a

constant, L =
√

Hb and p the convergence order, we compare the convergence
for the three cases. Figure 8 shows the line ln(ε) along with ln( L

N
) for each

case. Case1 is represented by a dash-dot-dot line and square symbols, case2 by
a dash-dot line and triangular symbols, and case3 by a solid line and circular
symbols. We note in figure 8 that the lines for case1 and case3 are linear if the
first value is not taken into account and the slopes are very close. This means
that case1 and case3 give similar results in term of convergence. As for case2,
the absolute value of the slopes between two successive points increases with
N , but hardly reach the slope of the straight line of case1. So we can deduce
that the method used in case2 is less efficient than that of case1 in terms of
convergence. To confirm these preliminary results, we calculated the slopes p1,

13



G0 Interpolation N εG1 εG0 εcomposite

16 ∗ 16 case2 907 9.61 10−4 3.8 10−2 1.29 10−3

case3 828 2.148 10−3 3.8 10−2 2.133 10−3

32 ∗ 32 case2 3188 5.762 10−4 1.48 10−2 6.561 10−4

case3 3029 5 10−4 1.48 10−2 5 10−4

48 ∗ 48 case2 6845 3.3 10−4 8.33 10−3 3.67 10−4

case3 6606 2.174 10−4 8.31 10−3 2.168 10−4

64 ∗ 64 case2 11878 2.09 10−4 5.498 10−3 2.306 10−4

case3 11559 1.211 10−4 5.48 10−3 1.208 10−4

96 ∗ 96 case2 26939 1 10−4 3.042 10−3 1.092 10−4

case3 26460 5.05 10−5 3.037 10−3 5.049 10−5

Table 2
Evolution of the errors εG0 , εG1 and εcomposite along with the number of nodes for
case2 and case3, when different extension operators are used. The coarse mesh G0

is variable.

p2, p3 and p4 between two successive points for each case. These slopes are
put in table 3. They show that for each case, the limit order of convergence
is p = 2. This value is quickly reached in case1 since p2 = 2. As it has been
already noticed in figure 8, table 3 shows that case2 damages the convergence
order in so far as the limit value seems to be p = 2 but p4 < 2. Therefore,
the use of fine mesh G0 is essential for case2 to reach an order of convergence
p = 2. Table 3 confirms the efficiency of the method used in case3 because the
limit order of convergence is reached from p1.
So we can conclude the use of a conservative interpolation as an extension

p1 p2 p3 p4

case1 1.9 2 2 2

case2 1 1.5 1.7 1.8

case3 2.2 2.1 2.1 2.1
Table 3
successive local slopes of figure for the three cases.

operator (case3) is more efficient than case2, compared with case1, in terms
of convergence.
We are also interested in the ability of the method to conserve the species
mass M defined as:

M =
∫

Ω
SpdΩ (16)

As a consequence, we decide to compare the mass Man deduced from the
analytical solution Span and the use of formula (16) with the mass Mnum

14
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Fig. 8. Convergence study for case1, case2 and case3.

calculated thanks to the numerical concentration field Spnum (steady state
reached) and using formula (16). Man is evaluated on finer and finer meshes
until a constant value of Man considered as a reference is found. We find a
constant value Man = 8.9734g from a fine mesh G = 400 ∗ 400. The mass
Mnum is evaluated for case2 and case3 on the coarse mesh G0 = 32 ∗ 32 when
the steady state is reached. Table 4 shows that for case2, Mnum = 8.9811g,
that is to say an error between Man and Mnum of 0.09%. For case3, we obtain
in table 4 Mnum = 8.9732g, i. e. an error between Man and Mnum of 0.001%.
Hence the error between Man and Mnum is 90 times higher in case2 than in
case3. This means that the mass is better conserved for case3 than for case2.
Nevertheless, the error εG0 obtained for G0 = 32 ∗ 32 in case2 is the same as
in case3 (see table 2). We decide to analyse the error distribution field ε0, in

Ω, defined as ε0(x, z) =
|Spnum(x, z)− Span(x, z)|

|Span(x, z)| , ∀(x, z) ∈ G0 to understand

why the mass conservation depends on the cases whereas the error εG0 is the
same for both cases. Figure 9 compares ε0 obtained on level G0 in case2 with
this in case3. We notice ε0 is different along with the treated case. This means
that both extension operators give the same error εG0 to within about 10−2,
but they differ from their conservation properties.

mesh G0 Mnum(g) error

case2 32 ∗ 32 8.9811 0.09%

case3 32 ∗ 32 8.9732 0.001%
Table 4
Comparaison of Mnum with Man for case2 and case3.
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Fig. 9. Distribution of the error ε0 on the coarse mesh G0 = 32 ∗ 32 with a Q2

interpolation on the left and a conservative interpolation on the right. FWCV
restriction operator.

3.2 Sheared disk in a two dimensional one-phase flow

A two dimensional square domain Ω of characteristic length L = 0.1m, initially
full of a pure fluid (concentration equal to zero), is considered. A disk of a
polluted fluid of concentration 1g.m−3 is introduced in Ω. It is initially centered
on (x = 0.075m, z = 0.05m) and its radius is r = 0.015m (see figure 10 left).

The disk is sheared by a rotating velocity field (see figure 10 right)
−→
V (x, z) =

(u(x, z), w(x, z)) of averaged amplitude Vm = 0.1m.s−1,

u(x, z) =−Vm cos(
π(x− x0)

L
) sin(

π(z − z0)

L
)

w(x, z) = Vm sin(
π(x− x0)

L
) cos(

π(z − z0)

L
) (17)

The velocity field is continuous but not the concentration field. The governing
equation is (2) with a diffusion coefficient D = 10−8m2.s−1.
Given the results obtained in subsection 2.3, we use the criterion based on
the variation of Sp relative to the distance. The efficiency of the method in
reducing the numerical diffusion has been demonstrated in (Delage, 2006)
for a similar case. As a result, we restrict the study to the efficiency of the
AMR approach in preserving a satisfying accuracy of the solution as well as
optimizing time and memory costs.

3.2.1 Accuracy of solutions

As it has been shown in (Delage, 2006), the Q1 interpolation used as an exten-
sion operator can avoid the oscillation phenomenon. However, this operator
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Fig. 10. Polluted fluid disk in a pure fluid (left). Imposed velocity field (right).

introduces a small numerical diffusion when it is used for nodes too close to
the front. As a consequence, a more appropriate non-conservative interpola-
tion, called binary interpolation, was used in this case.
We compare in figure 11 left the concentration contour line Sp = 0.5g.m−3 of
the sheared disk, for binary and Q1 interpolations. The calculation was made
on a coarse mesh G0 = 20 ∗ 20 and two refinement levels. The time step is
∆t = 0.01s and verifies the CFL condition max(Vm∆t

∆x2
, Vm∆t

∆z2
≤ 0.5), where

∆x2 (respectively ∆z2) is the space step of level G2 along with the axis x (re-
spectively z). We can see in figure 11 left that the use of the Q1 interpolation
(solid line) adds an extra numerical diffusion on the head and the tail of the
sheared disk, in relation to the use of the binary interpolation (dotted line).
We specify that a similar numerical diffusion is observed when we compare the
solution obtained on a coarse mesh G0 = 16 ∗ 16, two refinement levels and a
Q1 interpolation with the solution calculated on a single mesh G = 144 ∗ 144.
As for the binary interpolation, the solution Spamr is similar to the solution
Spwamr obtained on a single mesh G = 144∗144. Besides, the calculation of the

error εamr defined as, ∀P ∈ Vamr, εamr =
||Spamr − Spwamr ||2

||Spwamr ||2
gives εamr = 6.17

10−5.
This means the use of the binary interpolation as an extension operator for Sp

enables the AMR method to preserve an accurate representation of the con-
centration field even when Sp is strongly stretched or distorted, as physically
observed in turbulent flows for instance.
As in subsection 4.1, we decide to analyse the convergence of the AMR ap-
proach. Given the fact that an analytical solution does not exist, a solution
calculated on a very fine mesh G = 1296 ∗ 1296 is chosen as a reference so-
lution Spref

. By adopting the same approach as in subsection 4.1, we obtain
a limit convergence order p = 2 with and without AMR. The accuracy and
the convergence order of the standard schemes are not damaged by their non
conforming AMR extension. Figures 12 and 13 show the efficiency of this
method in reducing the numerical diffusion while the number of refinement
levels increases. We specify the connections between the refinement levels are
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not structured only for the graphic application.
In figure 14, we compare the concentration field obtained on a monogrid
G = 16∗16 at time t = 8s with the one for the coarse mesh G0 = 16∗16 when
three refinement levels and a FWCV injection are used. We note that the
maximum value of Sp is about 0.28g.m−3 in the left figure. So the concentra-
tion field has been greatly diffused. In the right figure, the concentration field
observed on G0 = 16 ∗ 16 has a maximum value Sp = 0.8g.m−3. Therefore, it
is less diffused than in the left figure. This result shows that the FWCV in-
jection enrichies Sp on the coarse mesh in such a way as to limit the numerical
diffusion.

Fig. 11. Concentration contour line Sp = 0.5g.m−3 obtained with a Q1 and a binary
interpolations at time t = 8s. Mesh used for the simulation on the right

3.2.2 Memory cost analysis

We compare the memory size needed to simulate the shearing of the disk
during 8s using the AMR method with the memory size required for the
same case without AMR. This study is essential to estimate the memory
gains obtained with the approach.
We note memamr (respectively mem) the memory size (in Mo) required for
the AMR simulation (respectively simulation without AMR), rap the ratio
rap = memamr

mem
. NBGniv represents the number of nodes needed to calculate

the solution with niv levels of refinement. Let KKT be the number of nodes
needed for the simulation on a mesh G, without AMR. This mesh is equivalent
to the finest grid used in the case with AMR. rgl is defined as rgl = NBGniv

KKT
.

For the case with AMR, we use a coarse mesh G0 = 20 ∗ 20, a time step
∆t = 3.08 10−4s and simulate the sheared disk from one to three refinement
levels. Table 5 shows the evolution of the previously defined parameters when
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Fig. 12. Concentration obtained with a binary interpolation at time t = 8s from a
coarse mesh G0 = 16 ∗ 16. There is one refinement level on the left and two on the
right.

Fig. 13. Concentration field obtained with a binary interpolation at time t = 8s
from a coarse mesh G0 = 16 ∗ 16 and three refinement levels (left). Mesh associated
to the concentration field (right).

the number of refinement levels increases for the AMR case as well as when
the monogrid G becomes finer and finer for the case without AMR. We can see
on table 5 that the ratio rap > 1 until two refinement levels. This means that
the AMR approach is more expensive than a classic solving on a fine cartesian
grid. For three refinement levels our approach is interesting because a memory
size gain of 30% has been achieved with the AMR method, compared with
the classic one. If we pay attention to the evolution of the ratio rgl, we realize
rgl is linked to rap. We aim at evaluating a critical value of rgl, noted rglc.
For this, we deem the AMR algorithm cost becomes interesting when the
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Fig. 14. Concentration field obtained with a binary interpolation at time t = 8s on
a monogrid G = 16 ∗ 16 (left) and on the coarse mesh G0 = 16 ∗ 16 when three
refinement levels are used (right).

minimum memory profit is superior or equal to 25%, i. e.: rapc = 0.75. A
linear regression between rap and rgl enables us to obtain a straight line of
equation: rap = 4.605 ∗ rgl − 0.7376 with a correlation coefficient equal to
0.995. We deduce rglc = 32% i. e. that this approach is efficient in minimizing
the memory size cost as long as the number of nodes used with the AMR
method is inferior to 32% of the nodes which would have been used with a
similar fine monogrid. This is very satisfying in 2D.

mesh memamr mem NBGniv KKT rap rgl

60 ∗ 60 18 7 2650 3721 2.6 0.71

180 ∗ 180 37 34 14018 32761 1.1 0.43

540 ∗ 540 82 281 61170 292681 0.3 0.21
Table 5
Memory size required to simulate the case of the sheared disk on different meshes.

3.2.3 CPU time cost analysis

The purpose of this subsection is to estimate the efficiency of the AMR method
concerning the simulation time tamr. Let ttot be the average CPU time of
simulation for one iteration. ttot includes the refinement management time

tref and the solving time tsol. tref , tsol and ttot are defined as:
1

NT

∑

i=1,NT

ti,

where NT is the number of time iterations and ti the considered CPU time
per iteration.
Table 6 represents the different average times tref , tsol and ttot from one to
three refinement levels. The coarse mesh is G0 = 20 ∗ 20 and the time step is
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∆t = 3.08 10−4s. We have also calculated the ratios
tref

ttot
and tsol

ttot
in order to

evaluate the distribution of the costs of refinement and solving in one iteration.
We notice on table 6 that

tref

ttot
increases while tsol

ttot
decreases when the number

of refinement levels increases.
For three refinement levels, the refinement management algorithm is more
expensive in terms of CPU time than the solving algorithm. This can be
explained by the fact that the equation (2) is easy to solve.
So we ask ourselves if the CPU time of simulation tamr is smaller than that
obtained without AMR, twamr. We note rt = tamr

twamr
.

As for the memory cost of the AMR method, the CPU time cost becomes
interesting from three refinement levels (rt = 0.75 in table 7). The results are
satisfying since a CPU time profit of 25% has been made for three refinement
levels (see table 7). However, the CPU time cost depends on the complexity
of the equation to solve. So we cannot estimate a priori the time gains.

number of levels tref tsol ttot
tref

ttot

tsol

ttot

1 0.002499 0.01193 0.02001 0.1249 0.5962

2 0.04609 0.07379 0.1343 0.3432 0.5494

3 0.4509 0.2476 0.7481 0.6027 0.3310
Table 6
Comparison of averaged CPU time at NT = 26000 for different refinement levels.

mesh tamr twamr rt

60 ∗ 60 522.1 475.3 1.10

180 ∗ 180 3495 3144 1.11

540 ∗ 540 19460 25860 0.75
Table 7
Comparison of simulation time with and without AMR.

3.3 Sheared disk in a two dimensional two-phase flow

The aim of this subsection is to show the ability of the method to treat the
same case as that of subsection 3.2 with two immiscible fluids, fluid1 and
fluid2.
As a result, we consider the same situation as in subsection 3.2. The polluted
fluid is replaced by fluid1 and the pure fluid by fluid2. Let Ci be the phase
function of fluidi, i ∈ [1, 2]. Equation (3) is solved to track the interface. We
detail the AMR contribution for the V OF − PLIC method. As it is known,
the V OF −PLIC method is efficient in obtaining an accurate position of the
interface. However, the interface tends to be fragmented when the fluid is too
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sheared compared with the mesh used.
Figure 15 represents the interface position at time t = 6.3s, on three meshes
G = 20∗20, G = 180∗180 and G = 540∗540. The time step is δt = 0.0009s. We
notice that the coarser the mesh, the more fragmented the disk. The problem
is that if the shearing is so strong that the number of nodes needed to avoid
fragmentation is superior to the available memory size, the V OF − PLIC
method becomes unusable.
As a consequence, we aim at coupling the AMR approach to the V OF−PLIC
method so that it becomes usable for finer meshes. The results concerning the
memory and CPU time costs are the same as those in subsection 3.2. That is
the reason why we have restricted our study to the behaviour of this coupling.

We first calculate the error εamr defined as ∀P ∈ Vamr, εamr =
||C1amr − C1wamr ||2

||C1wamr ||2
.

It gives εamr = 6 10−14, which means that both solutions C1amr and C1wamr

are identical. Secondly, we impose the velocity field (17) for 6.3s to the disk
and then the opposite velocity field of (17) for 6.3s to reverse the shearing.
We compare the phase function C1 calculated on a monogrid G = 540 ∗ 540
with C1 obtained on a coarse mesh G0 = 20 ∗ 20 and three refinement levels,
at times t = 6.3s and t = 12.6s (see figures 16 and 17). Results are similar in
both cases, which is very satisfying. As in section 3.2, the same conclusion

Fig. 15. Rebuilt of sheared fluid interface at rime t = 6.3s on three meshes.

applies when a V OF − TV D method is used for treating interfaces, i. e. the
AMR method is efficient in reducing the numerical diffusion while the number
of refinement levels increases.

3.4 Sheared sphere in a three dimensional one-phase flow

We consider a cubic domain Ω of characteristic length L = 0.1m, initially
full of a pure fluid. A sphere of polluted fluid (Sp = 1g.m−3) whose centre
is (x0 = 0.075m, z0 = 0.05m, y0 = 0.05m) and radius is r = 0.015m, is
initially introduced in Ω. The sphere is sheared around the y axis by a rotating

velocity field (see 18)
−→
V (x, z, y) = (u(x, z, y), w(x, z, y), v(x, z, y)) of averaged

amplitude Vm = 0.1m.s−1,
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Fig. 16. Comparison of the interface position on three refinement levels (G0 = 20∗20)
(left) with the interface position obtained without AMR (right), at time t = 6.3s.

Fig. 17. Comparison of the interface position on three refinement levels (G0 = 20∗20)
(left) with the interface position obtained without AMR (right), at time t = 12.6s.
The dash-dot line circle represents the initial position of the interface.

u(x, z) =−Vm cos(
π(x− x0)

L
) sin(

π(z − z0)

L
)

w(x, z) = Vm sin(
π(x− x0)

L
) cos(

π(z − z0)

L
)

v(x, z) = 0 (18)

The governing equation is (2) and a diffusion coefficient D = 10−8m2s−1 has
been chosen. As in subsection 3.2, a criterion based on the variation of the
concentration relative to the distance is used. Given the results obtained in
subsection 3.2, the binary interpolation is utilized as the extension operator.
The goal of this subsection is to evaluate the efficiency of the AMR method in
reducing the numerical diffusion, in preserving the accuracy of solutions and
in obtaining interesting memory and time costs.
For this, we first present the evolutions of the masses M0, M , M1, M2 and
M3 obtained on a monogrid G = 48 ∗ 48 ∗ 48 (see figure 19 left) with these
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Fig. 18. Sketch concentration contour line Sp = 0.5g.m−3 on the refined mesh
G1 = 483 until t = 4s. D = 10−8m2.s−1.

obtained on a coarse mesh G0 = 16 ∗ 16 ∗ 16 and one refinement level (see
figure 19 right) during t = 4s. These masses are defined as follows: M0 is

the theorical mass calculated from the sphere volume
4

3
Πr3 and concentration

Sp = 1g.m−3. M is the total mass of the sheared sphere calculated numeri-
cally from the discretized form of equation (2). M1 (respectively M2, M3) is the
mass corresponding to the concentration values superior or equal to 0.9g.m−3

(respectively 0.95g.m−3, 0.99g.m−3). We note the same evolution of each mass
M , M1, M2 and M3 for both cases. We consider the monogrid case as the ref-
erence. Figure 19 shows the mass M is conserved for both cases. We notice
that for each mass the evolution is similar whatever the case. This means the
AMR approach is efficient in reducing the numerical diffusion and gives sim-

ilar results to a classic method. Table 8 represents the error er =
|Mnum−Mref |

|Mref |
where Mnum is the mass M , M1, M2 or M3 calculated from the AMR method
and Mref the mass M , M1, M2 or M3 obtained on the monogrid. Given the
fact that er depends on time, an approximate value has been put in table
8. Whatever the mass, er is inferior to 2%, which is due to the fact that we
assume the concentration is equal to zero outside the refinement levels. This
result reinforces the previous conclusion.
Figure 20 shows the concentration contour lines Sp = 0.2g.m−3, Sp = 0.4g.m−3,
Sp = 0.6g.m−3 and Sp = 0.8g.m−3 of the sheared sphere for both cases at time
t = 4s. We can see that each contour line is superposed for both cases. The
calculated error ε = 1.6 10−2 reinforces the fact that the AMR approach does
not damage the accuracy of the solution.

Finally, we analyse the memory cost of this method by adopting the same
approach as that used in subsection 3.2. The results are written in table 9.
We determine a critical value of rgl, rglc = 57% associated to rapc = 75%, i.
e. this approach is efficient in minimizing the memory size cost as long as the
number of nodes used with the AMR method is inferior to 57% of the nodes
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Fig. 19. Evolutions of the masses during t = 4s, obtained on a monogrid
G = 48 ∗ 48 ∗ 48 (left) and with one refinement level from G0 = 16 ∗ 16 ∗ 16 (right).

M M1 M2 M3

er 1.28% 1% 1.24% 1.78%
Table 8
Approximative error of masses between the AMR and the monogrid cases.

0.2
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0.
6

0.8

Fig. 20. Concentration contour lines in the x−z plane of the sheared sphere obtained
on a monogrid G = 48 ∗ 48 ∗ 48 (black solid lines) and with one refinement level
(grey dashed lines) at time t = 4s, on the right.

which would have been used with a similar fine monogrid. We repeat that for
the similar case in two dimensions of subsection 3.2, rglc = 32%. This means
that the efficiency of our approach concerning the gains in memory cost is
much more interesting in 3D than in 2D (Benefits multiplied by 1.8).
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mesh memamr mem NBGniv KKT rap rgl

48 ∗ 48 ∗ 48 185 200 85413 117649 0.93 0.7

108 ∗ 108 ∗ 108 1400 2100 616072 1259712 0.67 0.5
Table 9
Memory size required to simulate the case of the sheared sphere on different meshes.

4 Application of the method to the Navier-Stokes equations in 2D

The purpose of this section is to study the ability of the AMR method to
preserve the accuracy of the solution, to minimize the memory and CPU time
costs while solving the Navier-Stokes equations.

4.1 Green-Taylor vortex

0

0.1

0.1

Fig. 21. Velocity field at time t = 0.001s on a mesh G = 90∗90 (left). Introduction of
a polluted fluid to generate one refinement level from G0 = 90∗90 at time t = 0.001s
(right).

We consider a square domain Ω = [−0.1m, 0.1m] × [−0.1m, 0.1m] of charac-
teristic length H = 0.2m, in which an unsteady flow called the Green-Taylor
vortex is induced. This vortex has been modified by introducing a source term−→
S0 = (u0, w0) in the Navier-Stokes equations in order to obtain a steady solu-

tion different from zero. More details are available in (Caltagirone, 1999).
−→
S0

can be written as:

u0(x, z) =− π2µ

2H2
cos(

πx

2H
) sin(

πz

2H
)

w0(x, z) =
π2µ

2H2
sin(

πx

2H
) cos(

πz

2H
) (19)
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This gives the velocity field (see figure 21 left):

u(x, z, t) =− cos(
πx

2H
) sin(

πz

2H
)(1− exp(

−π2µt

2ρH2
))

w(x, z, t) = sin(
πx

2H
) cos(

πz

2H
)(1− exp(

−π2µt

2ρH2
)) (20)

The initial velocity field is equal to zero. The analytical velocity field is im-
posed on the limits of the domain Ω. A disk of a second fluid is initially in-
troduced to manage the refinement-derefinement procedure (figure 21 right).
The disk is initially centered at (x0 = 0.05m, z0 = 0m) and its radius is
r = 0.015m. This disk is sheared by the velocity field (20). We specify the
Navier-Stokes equations and equation (3) are solved. A TV D scheme is used
to solve equation (3). A refinement criterion based on the variations of the
phase function relative to the distance is used.

4.1.1 Accuracy of solutions

The aim of this subsection is to evaluate the ability of the method to solve the
Navier-Stokes equations by using the augmented Lagrangian approach. This
test case has been chosen as it provides an analytical solution (cf equation
(20)) which enables us to study the space convergence. However the interest
of the AMR method is limited given the fact that the velocity field does not
present sharp local variations.
Table 10 represents the errors on the velocity field, εG1 , εG2 and εG3 , obtained
for several coarse meshes G0. We notice the different errors decrease when the
number of refinement levels or the number of nodes on G0 increase.
These results enable us to evaluate a space convergence order q = 2 which
demonstrates that the AMR approach does not damage the convergence order
of the discretization schemes.

mesh G0 εG1 εG2 εG3

20 ∗ 20 6.880 10−5 1.628 10−5 4.495 10−6

40 ∗ 40 1.387 10−5 3.763 10−6 1.083 10−6

60 ∗ 60 3.143 10−6 9.323 10−7 2.737 10−7

Table 10
Evolution of the error according to the refinement levels at time t = 6s. ∆t = 0.01s.

4.1.2 Memory cost analysis

We aim at evaluating the gains of memory obtained with the AMR method.
For this, we compare the memory size required to simulate the shearing of the
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disk during 0.5s using the AMR approach with the memory size used for the
same case without AMR.
We have chosen to simulate the AMR case with the following parameters:
G0 = 20 ∗ 20, from one to three refinement levels and ∆t = 0.001s.
The same approach as in subsection 3.2 is adopted and the same notations
as in subsection 3.2 are used. Given the fact that we solve the Navier-stokes
equations and equation (3) on a staggered cartesian grid (cf (Harlow, 1965)),
the number of nodes required to solve these equations is the sum of the pressure
and velocity nodes. Let NBGniv (respectively KKT ) be this sum of nodes for
the AMR case (respectively the classic case without AMR).
We notice in table 11 that rap < 1 whatever the number of refinement levels.
If we link the variations of rap with those of rgl, a linear regression gives a
straight line of equation rap = 2.55 ∗ rgl− 0.015 with a correlation coefficient
equal to 0.9996. We estimate rglc = 30% for rapc = 75%, i. e. this approach
is efficient in minimizing the memory size cost as long as the number of nodes
used with the AMR method is inferior to 30% of the nodes which would
have been used with a similar fine monogrid. So we obtain a similar result as
that of subsection 3.2. This means that the gain in memory cost, obtained by
the AMR approach compared with a classic method, depends on the number
of nodes required to solve the equation and not on the number of equations
solved.

mesh memamr mem NBGniv KKT rap rgl

60 ∗ 60 7 8 3898 11285 0.9 0.35

180 ∗ 180 15 50 12143 98645 0.3 0.12

540 ∗ 540 38 420 38782 879125 0.1 0.02
Table 11
Memory size required to simulate the case of the Green-Taylor vortices on different
meshes.

4.1.3 CPU time cost analysis

We aim at studying the efficiency of the AMR approach in minimizing the
CPU time cost of simulation tamr compared with the CPU time cost of sim-
ulation twamr. We have chosen to simulate the AMR case with the following
parameters: G0 = 20∗20, from one to three refinement levels and ∆t = 0.001s.
The same notations as in subsection 3.2 are used. Given the fact that we solve
the Navier-stokes equations and equation (3), we note tsol−NS (respectively
tsol−ad) the average CPU time of simulation per iteration to solve the Navier-
Stokes equations (respectively equation (3)). tsol = tsol−NS + tsol−ad.
We can observe on table 12 that the solving of the Navier-stokes equations
is very expensive compared with the solving of equation (3) and with the re-
finement management. In fact, its cost represents about 99% of the average
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CPU time ttot. This means that the CPU time cost of the AMR algorithm is
insignifiant compared with the CPU time cost of the Navier-stokes equations
solving.
Table 13 shows a benefit in the simulation time tamr ranging from 30% to 60%
in relation to the simulation time twamr. However, it is difficult to evaluate this
benefit in advance because the parameter rt cannot be linked to another one
except the complexity of the solving which is impossible to estimate a priori.

number of levels tref tsol−NS tsol−ad ttot
tref

ttot

tsol

ttot

1 0 0.0523 0.0001 0.0526 0 1

2 0.001 0.6471 0.0013 0.6502 0.0023 0.997

3 0.0452 5.9895 0.008 6.0542 0.0075 0.991
Table 12
Comparison of averaged CPU time at NT = 500 for different refinement levels.

mesh tamr twamr rt

60 ∗ 60 26.44 36.98 0.7

180 ∗ 180 325.2 565.2 0.6

540 ∗ 540 3027 7274 0.4
Table 13
Comparison of simulation time with and without AMR.

4.2 Collapse of a liquid column on a rigid horizontal plane

The purpose of this subsection is to analyse the ability of the AMR ap-
proach to treat a real two-phase flow case. We consider the situation de-
scribed in (Martin, 1952), namely a 2D rectangular domain Ω = [0m, 1.2m]×
[0m, 0.14m]. A water column, whose base dimension is a = 0.057m and height
H0 = n2a, is initially present on the left of the domain Ω. The rest of the
domain is full of air. We specify n is a real number verifying n2 = 2 for the
treated case. The governing equations are the Navier-stokes and advection
equations. A TV D scheme is used to solve equation (3).
According to (Martin, 1952), when the water column, initially at rest on the
domain Ω, collapses on to the rigid plane, the fluid spreads out and the height
of the column, h, falls.

The following notations are used: Ta = nt

√
g

a
, Z =

z

a
and H =

h

an2
, where z

is the distance of surge front and g the acceleration due to gravity.
We study the evolution of Z and H on a coarse mesh G0 = 100 ∗ 30 and one
refinement level for the dimensionless time Ta = 3.3. ∆t = 10−4s. The results
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obtained using the AMR method are compared with the experimental results
of (Martin, 1952) and the numerical results of (Ishii, in press).
Figure 22 left represents the evolutions of H along with Ta. We notice a very
slow fall at the beginning (Ta < 0.5). Then the speed of the H fall is intensified
and is linear for 0.5 ≤ Ta ≤ 2.2. Finally, the fall slows down to H < 0.4. We
cannot fail to note the numerical results obtained using the AMR method are
very close to those obtained by (Martin, 1952) and (Ishii, in press).
As for the evolution of Z, figure 22 right shows that the AMR approach and
the method used by (Ishii, in press) give satisfying numerical results given
the fact that the maximum error between each numerical method and the ex-
perimental results is about 6%. The only difference is that the AMR method
under-estimates Z whereas the (Ishii, in press) approach over-evaluates it.

Fig. 22. Collapse of a water column: evolution of H (left) and Z (right).

4.3 Collapse of a liquid column on a dampened horizontal plane

As for in subsection 4.2, we aim at studying the ability of the AMR approach
in treating the collapse of a water column on a dampened horizontal plane.
We consider the situation described in (Stansby, 1998), namely a 2D rec-
tangular domain Ω = [0m, 1.2m] × [0m, 0.14m]. A water column, whose base
dimension is a = 0.06m and height H0 = 0.1m, is initially present on the left of
the domain Ω. The horizontal plane is initially covered with water hf = 0.01m
high. The rest of the domain is full of air.
We compare the numerical results obtained on a coarse mesh G0 = 400 ∗ 47
with the experiment results of (Stansby, 1998) and the numerical ones of (Vin-
cent, 1999) (see figure 23).
The water column is initially at rest on the domain Ω. When it collapses, the
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fluid spreads out and the height H of the column falls on the dampened plane.
Given the fact that the plane is initially covered with water, a jet forms during
the collapse of the column (see figures 24 and 25) and breaks. A sketch of the
column collapse and break is represented in figure 24.
We note in figure 23 that our approach and that of (Vincent, 1999) give a
good estimation of the break zone around x = 0.8m, compared with the ex-
perimental result: the differences between numerical and experimental results
vary from 1% to 3%.
The numerical results concerning the estimation of the parameter H in the
break zone seems to be correct (the error between numerical and experimen-
tal results is about 16%). We assume the gap is partially due to the fact this
parameter is very difficult to evaluate experimentally (see images in (Stansby,
1998)). In fact, the presence of a lot of foam makes it difficult to locate the
free surface accurately.

Fig. 23. Collapse of a water column: Residual height H at time t = 0.24s,
hf = 0.01m, ∆t = 2.10−4s. For the AMR case G0 = 400 ∗ 47 with one refine-
ment level.

5 Conclusion

An adaptive mesh refinement method has been developed to track interfaces
in two-phase incompressible flows and species concentrations in one-phase in-
compressible flows. The main originality of this approach consists in the im-
plementation of an implicit method and in the fact that each refinement level
is made of a series of linked AMR cells. This approach turns out to be efficient
in treating this sort of problem in 2D in so far as it enables us to obtain accu-
rate solutions, second convergence order for both Navier-Stokes and transport
equations and numerical solutions close to experimental and numerical results
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Fig. 24. Evolution of the interface at times t = 0.01s, t = 0.06s, t = 0.16s and
t = 0.22s (from the top to the bottom). G0 = 400 ∗ 47 with one refinement level,
∆t = 2 10−4s and hf = 0.01m.
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Fig. 25. Forming of the jet at t = 0.06s during the collapse of a water column. Mesh
used on the left: G0 = 400∗47 with one refinement level. Velocity field on the right.

from the literature. The accuracy is likely to be improved by the development
of conservative interpolations to treat the velocity field.
The extension of the method to 3D gives good results concerning its ability
to track fronts in an imposed velocity field. Its adaptation to the 3D Navier-
Stokes equations is in progress.
The AMR approach has been optimized with respect to memory requirements
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and CPU time. It results in a memory profit superior or equal to 25% as long
as the number of nodes used with the AMR method is inferior to around
rglc = 30% of the nodes which would have been used with a similar fine
monogrid, for both 2D Navier-Stokes and transport equations. The memory
benefits are increased for 3D transport equations in so far as rglc reaches a
value of 57%.
Its efficiency in reducing CPU time has been demonstrated in 2D for both
Navier-Stokes and transport equations. In fact, CPU time profits increase
when the complexity of the equations solving increases. As it has been ex-
plained, this is due to the fact that the dynamic management of the AMR
approach becomes negligible compared with the solving of complex equations.
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