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NEW PERMUTATION CODING AND EQUIDISTRIBUTION OF SET-VALUED STATISTICS

A new coding for permutations is explicitly constructed and its association with the classical Lehmer coding provides a bijection of the symmetric group onto itself serving to show that six bivariable set-valued statistics are equidistributed on that group. This extends a recent result due to Cori valid for integer-valued statistics.

Introduction

In a recent paper Cori [START_REF] Cori | Indecomposable permutations, hypermaps and labeled Dyck paths[END_REF] updates a classical algorithm constructed by Ossona de Mendez and Rosenstiehl [START_REF] Ossona De Mendez | Transitivity and connectivity of permutations[END_REF] that provides a oneto-one correspondence between rooted hypermaps and indecomposable permutations. He further constructs a bijection of the symmetric group S n onto itself that maps each permutation having p cycles and q left-to-right maxima onto another one having q cycles and p left-to-right maxima. Moreover, by using an encoding of permutations by Dyck paths due to Roblet and Viennot [START_REF] Roblet | Théorie combinatoire des T-fractions et approximants de Padé en deux points[END_REF] he also shows that three bivariable integervalued statistics, introduced in the next paragraph, are equidistributed on S n . The purpose of this paper is to show that all those results can be extended to set-valued statistics and that the construction of the underlying bijection is very simple; it involves two permutation codings called the A-code and the B-code.

The first one, classically referred to as the Lehmer code [START_REF] Lehmer | Teaching combinatorial tricks to a computer[END_REF] or the inversion table, goes back, in fact, to more ancient authors (Rothe, Rodrigues, Netto), as knowledgeably stated by Knuth ([Kn98], Ex. 5.1.1-7, p. 14). The second one is a new coding that takes the cycle decomposition of permutations into account. Although the motivation of the paper was to prove the equidistribution of several set-valued statistics, its novelty is to fully describe that B-code and exploit its basic properties.

The set-valued statistics in question are introduced as follows. Let w = x 1 x 2 • • • x n be a word of length n, whose letters are positive integers. The Left to right maximum place set, Lmap w, of w is defined to be the set of all places i such that x j < x i for all j < i, while the Right to left minimum letter set, Rmil w, of w is the set of all letters x i such that x j > x i for all j > i.

When the word w is a permutation of 12 • • • n that we shall preferably denote by

σ = σ(1)σ(2) • • • σ(n) and the bijection i → σ(i) (1 ≤ i ≤ n) has
r disjoint cylces, whose minimum elements are c 1 , c 2 , . . . , c r , respectively, define Cyc σ to be the set

Cyc σ := {c 1 , c 2 , . . . , c r }.
When σ is a permutation, the cardinalities of Lmap σ, Rmil σ and Cyc σ are denoted by lmap σ, rmil σ and cyc σ, respectively, and classically referred to as the number of left-to-right maxima, number of right-to-left minima, number of cycles.

In Fig. 1 the graphs of the permutation σ = 5, 7, 1, 4, 9, 2, 6, 3, 8 and its inverse σ -1 = 3, 6, 8, 4, 1, 7, 2, 9, 5 have been drawn. The set Lmap σ (resp. Lmap σ -1 ) is the set of the abscissas of the "bullets," while Rmil σ (resp. Rmil σ -1 ) is the set of the ordinates of the "crosses." The set-valued statistics "Leh," "Rmil Leh" and "Max Leh" will be further introduced. Notice that lmap σ = rmil σ -1 = 3, rmil σ = lmap σ -1 = 4. As σ is the product of the disjoint cycles (1 5 9 8 3)(4)(2 7 6), we have Cyc

σ = Cyc σ -1 = {1, 2, 4} and cyc σ = cyc σ -1 = 3. σ • × • • • • × × × σ = 5 7 1 4 9 2 6 3 8 Lmap 1 2 5 Rmil 1 2 3 8 Leh 1 2 1 2 5 2 5 3 8 Rmil Leh 1 2 3 8 Max Leh 1 2 5 σ -1 σ -1 = • • • • × • • × × 3 6 8 4 1 7 2 9 5 1 2 3 8 1 2 5 1 2 3 2 1 5 2 8 5 1 2 5 1 2 3 8
Fig. 1. Graphs of σ and of its inverse σ -1

First, recall Cori's result [START_REF] Cori | Indecomposable permutations, hypermaps and labeled Dyck paths[END_REF].

The three pairs of integer-valued statistics (rmil, cyc), (cyc, rmil) and (lmap, rmil) are equidistributed on S n .

The equidistribution of the first two pairs (resp. of the last two ones) is proved by updating the Ossona-de-Mendez-Rosenstiehl algorithm [START_REF] Ossona De Mendez | Transitivity and connectivity of permutations[END_REF] on hypermaps (resp. by using the Roblet-Viennot Dyck path encoding [START_REF] Roblet | Théorie combinatoire des T-fractions et approximants de Padé en deux points[END_REF]). Second, the set-valued statistics "Cyc" and "Rmil" (or "Lmap") are known to be equidistributed on S n . This is one of the properties of the first fundamental transformation [Lo83, chap. 10]. Our main result is the following theorem.

Theorem 1.

The six bivariable set-valued statistics (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Rmil, Cyc), (Lmap, Rmil), (Lmap, Cyc) are all equidistributed on S n .

Based on two permutation codings, the A-code and B-code, introduced in Sections 2 and 3, respectively, we construct a bijection φ of S n onto itself (see (4.1)) having the following property:

(1.1) (Lmap, Rmil) σ = (Lmap, Cyc) φ(σ) (σ ∈ S n ). Let i : σ → σ -1 . As Cyc i σ = Cyc σ; (1.2) Rmil i σ = Lmap σ;
(1.3) (see Fig. 1 for the second relation), it follows from (1.1) that the chain Let A = (I 1 , I 2 , . . . , I h ) be an ordered partition of the set [n] := {1, 2, . . . , n} into disjoint non-empty intervals, such that max I j + 1 = min I j+1 for j = 1, 2, . . . , h -1. A permutation σ from S n is said to be A-decomposable, if each I j is the smallest interval such that σ(I j ) = I j (see [START_REF] Comtet | Advanced Combinatorics[END_REF], p. 261, exercise 14). For instance, σ = 1 2 3 4 5 2 1 5 4 3 is A- Theorem 2. Let A be an ordered partition of the set [n] into disjoint consecutive non-empty intervals. Then, (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Rmil, Cyc), (Lmap, Rmil), (Lmap, Cyc) are equidistributed on the set of all A-decomposable permutations from S n .

(1.4) S n i -→ S n φ -1 -→ S n i -→ S n φ -→ S n i -→ S n
decomposable, with A = ({1, 2}, {3, 4, 5}). It is convenient to write Decomp σ = A, if σ is A-decomposable. A permutation is said to be indecomposable, if it is A-decomposable, with A = ([n]).
The next corollary is relevant to the study of hypermaps, as the set of rooted hypermaps with darts 1, 2, . . . , n is in one-to-one correspondence with the subset of indecomposable permutations from S n+1 (see [START_REF] Cori | Indecomposable permutations, hypermaps and labeled Dyck paths[END_REF][START_REF] Cori | Maps, hypermaps and their automorphisms, a survey[END_REF]).

Corollary 3.

The statistics (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Rmil, Cyc), (Lmap, Rmil), (Lmap, Cyc) are equidistributed on the set of all indecomposable permutations from S n .

The construction of the bijection φ together with the proofs of Theorem 2, and Corollary 3 are given in Section 4. It is followed by the algorithmic definitions of both A-code and B-code in Section 5. Tables and concluding remarks are reproduced in Section 6.

The A-code

The Lehmer code [Le60] of a permutation σ = σ(1)σ(2) • • • σ(n) of 12 • • • n is defined to be the sequence Leh w = (a 1 , a 2 , . . . , a n ), where for each i = 1, 2, . . . , n a i := #{j : 1 ≤ j ≤ i, σ(j) ≤ σ(i)}.
The sequence Leh w belongs to SE n of all sequences a = (a 1 , a 2 , . . . , a n ), called subexcedant, such that 1 ≤ a i ≤ i for each i = 1, 2, . . . , n. For such a sequence it makes sense to define the set, denoted by Max a, of all letters (or places!) a i such that a i = i.

Under the graphs drawn in Fig. 1 the Lehmer codes Leh σ and Leh σ -1 have been calculated, as well as the four sets Rmil Leh σ, Rmil Leh σ -1 , Max Leh σ and Max Leh σ -1 . The next Proposition is geometrically evident and given without proof. It shows that the set-valued statistics "Lmap" and "Rmip" can be directly read from the Lehmer code.

Proposition 4. For each permutation σ we have:

Rmil Leh σ = Rmil σ; (2.1) Max Leh σ = Lmap σ. (2.2)
We then define the A-code of a permutation σ to be

(2.3) A-code σ := Leh i σ. Hence, Max A-code σ = Max Leh i σ = Lmap i σ = Rmil σ. Furthermore, Rmil A-code σ = Rmil Leh iσ = Rmil i σ = Lmap σ.
As Leh is a bijection of the symmetric group S n onto SE n , we obtain the following result.

Theorem 5. The A-code is a bijection of S n onto SE n having the property:

(2.4) (Rmil, Lmap) σ = (Max, Rmil) A-code σ (σ ∈ S n ).
An algorithmic definition of the A-code will be given in Section 5.

The B-code

The B-code is based on the decomposition of each permutation as product of disjoint cycles. For a permutation σ = σ(1)σ(2)

• • • σ(n) and each i = 1, 2, . . . , n let k := k(i) be the smallest integer k ≥ 1 such that σ -k (i) ≤ i. Then, define B-code σ = (b 1 , b 2 , . . . , b n ) with b i := σ -k(i) (i) (1 ≤ i ≤ n).
For example, with the permutation σ = 1 2 3 4 5 6 3 4 5 2 6 1 we have:

σ -1 (1) = 6, σ -2 (1) = 5, σ -3 (1) = 3, σ -4 (1) = 1, so that b 1 = 1; σ -1 (2) = 4, σ -2 (2) = 2, so that b 2 = 2; σ -1 (3) = 1, so that b 3 = 1; σ -1 (4) = 2, so that b 4 = 2; σ -1 (5) = 3, so that b 5 = 3; σ -1 (6) = 5, so that b 6 = 5. Thus, B-code σ = (1, 2, 1, 2, 3, 5).
An alternate definition is the following. First, the B-code of the unique permutation from S 1 is defined to be the sequence (1) ∈ SE 1 . Let n ≥ 2. When writing each permutation σ ∈ S n of order n ≥ 2 as a product of its disjoint cycles, the removal of n yields a permutation σ ′ of order (n -1).

Let b ′ = (b ′ 1 , b ′ 2 , . . . , b ′ n-1
) be the B-code of σ ′ . We define the B-code of σ to be b :

= (b ′ 1 , b ′ 2 , . . . , b ′ n-1 , σ -1 (n))
. By induction on n, we immediately see that the B-code is a bijection of S n onto SE n .

The following Theorem shows that the set-valued statistics "Lmap" and "Cyc" can be directly read from the B-code.

Theorem 6. The B-code is a bijection of S n onto SE n having the property:

(3.1) (Cyc, Lmap) σ = (Max, Rmil) B-code σ (σ ∈ S n ).
Proof. By induction, suppose that Lmap

σ ′ = Rmil b ′ and Cyc σ ′ = Max b ′ . If n is a fixed point of σ, so that σ -1 (n) = n and b = (b ′ 1 , • • • , b ′ n-1 , n), then Lmap σ = Lmap σ ′ ∪ {n} = Rmil b ′ ∪ {n} = Rmil σ. Also, Cyc σ = Cyc σ ′ ∪ {n} = Max b ′ ∪ {n} = Max b.
When n is not a fixed point of σ, then σ is a product of the form

σ = • • • (• • • σ -1 (n)nσ(n) • • •) • • • while σ ′ may be expressed as σ ′ = • • • (• • • σ -1 (n)σ(n) • • •) • • • In particular, σ -1 (n) < n, σ(n) < n and σ ′ (σ -1 (n)) = σ(n). We have Cyc σ = Cyc σ ′ = Max b ′ = Max b since σ -1 (n) < n.
To prove Lmap σ = Rmil b, three cases are to be considered, (i)

σ(n) = n-1; (ii) σ(n) = n-1 and σ -1 (n-1) < σ -1 (n); (iii) σ(n) = n-1 and σ -1 (n-1) > σ -1 (n),
each of them materialized by the following three tableaux:

(i) Id = 1 • • • σ -1 (n) • • • n-1 n σ = σ(1) • • • n • • • σ(n-1) σ(n) = n-1 σ ′ = σ(1) • • • σ(n) = n-1 • • • σ(n-1) * (ii) Id = 1 • • • σ -1 (n-1) • • • σ -1 (n) • • • n-1 n σ = σ(1) • • • n-1 • • • n • • • σ(n-1) σ(n) σ ′ = σ(1) • • • n-1 • • • σ(n) • • • σ(n-1) * (iii) Id = 1 • • • σ -1 (n) • • • σ -1 (n-1) • • • n-1 n σ = σ(1) • • • n • • • n-1 • • • σ(n-1) σ(n) σ ′ = σ(1) • • • σ(n) • • • n-1 • • • σ(n-1) * In case (i) we get Lmap σ = Lmap σ ′ , b ′ = (. . . , σ -1 (n)) and b = (. . . , σ -1 (n), σ -1 (n)), then Rmil b = Rmil b ′ .
In case (ii) we clearly have:

Lmap σ = Lmap σ ′ ∪ {σ -1 (n)}. Also, b ′ = (. . . , σ -1 (n -1)) and b = (. . . , σ -1 (n -1), σ -1 (n)). Hence, Lmap σ = Lmap σ ′ ∪ {σ -1 (n)} = Rmil b ′ ∪ {σ -1 (n)} = Rmil b.
Finally, comes case (iii), which is the hardest one. We have Lmap σ = (Lmap

σ ′ ∩ [1, σ -1 (n) -1]) ∪ {σ -1 (n)}, also b ′ = (. . . , b ′ n-2 , σ -1 (n -1)), b = (. . . , b ′ n-2 , σ -1 (n -1), σ -1 (n)). But as σ -1 (n) < σ -1 (n -1), we have Rmil b = (Rmil b ′ ∩ [1, σ -1 (n) -1]) ∪ {σ -1 (n)} = (Lmap σ ′ ∩ [1, σ -1 (n) - 1]) ∪ {σ -1 (n)} = Lmap σ.

The bijection φ

The bijection φ, which is the main ingredient in the chain displayed in (1.4), is simply defined as This proves relation (1.1) and consequently Theorem 1. It also follows from Theorem 5 and/or 6 that the distribution of each pair of statistics stated in Theorem 1 is also equal to the distribution of (Max, Rmil) on SE n .

It remains to prove identity (1.5) to achieve the proofs of Theorem 2 and its Corollary. Let A = ([p 1 , q 1 ], [p 2 , q 2 ], . . . , [p h , q h ]) be an ordered partition of [n] into disjoint non-empty intervals, such that p j + 1 = q j+1 for j = 1, 2, . . . , h-1 and p 1 = 1, q h = n. Let G(σ) = {(i, σ(i)) : 1 ≤ i ≤ n} be the graph of a permutation σ from S n . Referring to Fig. 2, where the square [p j , q j ] × [p j , q j ] has been materialized by the four points B, B ′′ , D ′′ , D, we see that σ is A-indecomposable, if for every j = 1, 2, . . . , h (i) the square [BB ′′ D ′′ D] contains the subgraph {(i, σ(i)) : p j ≤ i ≤ q j };

(ii) for every l such that p j + 1 ≤ l ≤ q j the rectangle [B ′ B ′′ C ′′ C ′ ] contains at least one element from G(σ).

1 A p j A ′ l A ′′ q j p j B B ′ B ′′ l C C ′ C ′′ q j D D ′ D ′′

Fig. 2. Graphs of σ and c

We are then led to the following definition.

Definition. Each subexcedant sequence c = (c 1 , c 2 , . . . , c n ) from SE n is said to be A-decomposable, if for every j = 1, 2, . . . , h (i) the triangle [BB ′′ D ′′ ] contains the subgraph {(i, c i ) : p j ≤ i ≤ q j };

(ii) for every l such that p j + 1 ≤ l ≤ q j the rectangle [B ′ B ′′ C ′′ C ′ ] contains at least one element (i, c i ) (l ≤ i ≤ q j ). Proposition 6. A permutation σ from S n is A-decomposable, if and only if its A-code (resp. B-code) is A-decomposable.

Proof. Let a = (a 1 , a 2 , . . . , a n ) be the A-code of a permutation σ. If σ is A-decomposable, then for every j = 1, 2, . . . , h and l = p j , p j + 1, . . . , q j the point (σ -1 (l), l) belongs to the square [BB ′′ D ′′ D]. As a l is equal to 1 plus the number of points (i, σ(i)) such that 1 ≤ i < σ -1 (l) and σ(i) < l, we have a l ≥ p j , so that the point (l, a l ) belongs to the triangle [

BB ′′ D ′′ ]. Conversely, if (l, a l ) ∈ [BB ′′ D ′′ ], then (σ -1 (l), l) ∈ [BB ′′ D ′′ D].
Now, the rectangle [B ′ B ′′ C ′′ C ′ ] contains no element from G(σ) if and only if all the points (σ -1 (l), l), . . . , (σ -1 (q j ), q j ) are in the square [C ′ C ′′ D ′′ D ′ ]. This is equivalent to saying that all the quantities σ -1 (l), l, . . . , σ -1 (q j ), q j lie between l and q j , which is also equivalent to the fact that a l , . . . , a q j lie between l and q j , that is, the rectangle

[B ′ B ′′ C ′′ C ′ ] has no element (i, a i ) (l ≤ i ≤ q j ).
Next, let b = (b 1 , b 2 , . . . , b n ) be the B-code of σ. If σ is A-decomposable, the restriction of σ to the interval [p j , q j ] is a product of cycles all elements of which lie between p j and q j . By definition of the B-code all the terms b p j , . . . , b q j also lie between p j and q j and conversely, if it is the case, all the points (p j , σ(p j )), . . . , (q j , σ(q j )) belong to the square [BB ′′ D ′′ D]. The same argument can be applied when all the points (l, σ(l)), . . . , (q j , σ(q j )) belong to the square [C ′ C ′′ D ′′ D ′ ]. All terms b l , . . . , b q j are greater than or equal to l and the rectangle [

B ′ B ′′ C ′′ C ′ ] contains no element of the form (i, b i ) with l ≤ i ≤ q j .
Thus, if σ is A-decomposable, so are A-code σ and the composition product (B-code) -1 A-code(σ) = φ(σ). This proves identity (1.5) and then Theorem 2 and its corollary.

Algorithmic definitions and examples

Although the A-code has been greatly described in various forms (see, e.g., [START_REF] Knuth | The Art of Computer Programming[END_REF], p. 14), we give a full algorithmic definition, which is to be compared with the analogous definition for the B-code.

Algorithmic definition of

A-code. Let σ = σ(1)σ(2) • • • σ(n) be a permutation of 12 • • • n.
By definition the A-code of σ is the sequence a = (a 1 , a 2 , . . . , a n ) where for each i = 1, 2, . . . , n a i := #{j : 1 ≤ j ≤ i, σ -1 (j) ≤ σ -1 (i)}, or still

a i := #{σ(k) : 1 ≤ σ(k) ≤ i, k ≤ σ -1 (i)}. (5.1)
Thus, a i is equal to 1 plus the number of letters less than i, to the left of i,

in the word σ = σ(1)σ(2) • • • σ(n).
For instance, with σ = 4, 6, 1, 2, 3, 5 the A-code of σ is equal to a = (1, 2, 3, 1, 5, 2): a 1 = 1, a 2 = 2 as 1 is to the left of 2, a 3 = 3 as 1 and 2 are to the left of 3, a 4 = 1, as 4 is the leftmost letter of σ, etc. Thus, (5.2) A-code(4, 6, 1, 2, 3, 5) = (1, 2, 3, 1, 5, 2).

Algorithmic definition of A-code -1 . Given a = (a 1 , a 2 , . . . , a n ) ∈ SE n write a word with n empty places numbered 1 to n from left to right. First, move the letter n to the a n -th leftmost place; let σ n be the resulting word (having one non-empty letter!). Next, move (n -1) to the place having a n-1 -1 empty letters to its left. Let σ n-2 be the resulting word (having two non-empty letters). Move (n -2) to the place having a n-2 -1 empty letters to its left, etc. Thus, A-code -1 (a) is the final permutation σ 1 .

For instance, start with a = (1, 2, 1, 2, 3, 5). We For example, starting with b = (1, 2, 3, 1, 5, 2). We successively form: (5.5) B-code -1 (1, 2, 3, 1, 5, 2) = 4, 6, 3, 1, 5, 2.

σ 1 = 1 2 3 4 5 6 b 1 = 1 σ 2 = 1 2 3 4 5 6 b 2 = 2 σ 3 =
Let Φ := i φ i φ -1 i be the product of the bijections occurring in (1.4). With σ = 6, 4, 1, 2, 3, 5 the computation of Φ(σ) can be made as follows. Id = 1 2 3 4 5 6 σ = 6 4 1 2 3 5 i σ = 3 4 5 2 6 1 B-code i σ = 1 2 1 2 3 5 (by (5.4)) A-code -1 B-code i σ = φ -1 i σ = 3 4 5 1 6 2 (by (5.3))

i φ -1 i σ = 4 6 1 2 3 5 A-code i φ -1 i σ = 1 2 3 1 5 2 (by (5.2)) B-code -1 A-code i φ -1 i σ = φ i φ -1 i σ = 4 6 3 1 5 2 (by (5.5)) Φ(σ) = i φ i φ -1 i σ = 4 6 3 1 5 2.

We verify that (Cyc, Rmil) σ = (Rmil, Cyc) Φ(σ) = ({1, 2}, {1, 2, 3, 5}).

Concluding remarks and Tables

The bijection constructed by Cori [START_REF] Cori | Indecomposable permutations, hypermaps and labeled Dyck paths[END_REF] only preserves the cardinalities "cyc" and "lmap", but not the sets "Cyc" and "Lmap." With the example used in his paper, the permutation θ = 6, 5, 7, 4, 2, 10, 3, 8, 9 = (1, 6, 10)(2, 5)(3, 7)(4)(8)(9) is mapped onto θ ′ = 4, 6, 5, 7, 3, 8, 1, 9, 10, 2 = (1, 4, 7)(2, 6, 8, 9, 10)(3, 5), so that (Lmap, Cyc) θ ′ = ({1, 2, 4, 6, 8, 9}, {1, 2, 3}) = ({1, 2, 3, 4, 8, 9}, {1, 3, 6}) = (Cyc, Lmap) θ. However, (cyc, lmap) θ = (lmap, cyc) θ ′ = (6, 3).

In our case, we take the bijection φ i φ -1 that satisfies (see (1.4)) (Cyc, Lmap) θ = (Lmap, Cyc)φ i φ -1 (θ).

The calculation of φ i φ -1 (θ) is made for the same θ, together with the relevant set-valued statistics. We successively get: θ = 6, 5, 7, 4, 2, 10, 3, 8, 9

= (1, 6, 10)(2, 5)(3, 7)(4)(8)(9) B-code θ = 1, 2, 3, 4, 2, 1, 3, 8, 9, 6 A-code -1 B-code θ = φ -1 (θ) = 6, 1, 7, 5, 2, 10, 3, 4, 8, 9 i φ -1 (θ) = 2, 5, 7, 8, 4, 1, 3, 9, 10, 6 A-code i φ -1 (θ) = 1, 1, 3, 2, 2, 6, 3, 4, 8, 9 φ i φ -1 (θ) = 2, 5, 7, 8, 4, 6, 3, 9, 10, 1 = (1, 2, 5, 4, 8, 9, 10)(3, 7)(6) Thus (Cyc, Lmap)θ = (Lmap, Cyc)φ i φ -1 (θ) = ({1, 2, 3, 4, 8, 9}, {1, 3, 6}).

In Fig. 3 the common distribution over S n of each bivariable statistic (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Rmil, Cyc), (Lmap, Rmil), (Lmap, Cyc)has been reproduced for n = 1, 2, 3, 4. On each cell (A, B), where A, B ⊂ [n], is written the number of permutations σ from S n such that (Cyc, Rmil) σ = (A, B). In the table for n = 4 the total sums occurring at the bottom and on the right are the numbers #{σ ∈ S 4 : cyc σ = k} for k = 4, 3, 2, 1, which are the coefficients of the polynomial x(x + 1)(x + 2)(x + 3) ([Ri58], chap. 4, § 3). It will be noticed that all those tables are symmetric with respect to the main diagonal. There exist other bijections σ → a such that the sum i (a i -1) is equal to a statistic different from the inversion number "inv," but having interesting properties. Let us quote the Tompkins-Paige method ([To56, Le60, We61]) for generating permutations on a computer. That method was further used in [START_REF] Han | Une courte démonstration d'un résultat sur la Z-statistique[END_REF][START_REF] Han | Une transformation fondamentale sur les réarrangements de mots[END_REF] to show that the corresponding sum i (a i -1) is equal to the major index "maj". Let us also mention the Denert coding [START_REF] Foata | Denert's Permutation Statistic Is Indeed Euler-Mahonian[END_REF][START_REF] Han | Une transformation fondamentale sur les réarrangements de mots[END_REF], whose sum i (a i -1) is equal to the Denert statistic "den". Those codings serve to prove that the statistics "inv," "maj" and "den" are equidistributed on S n , their common distribution being called Mahonian.

Let b = (b 1 , b 2 , . . . , b n ) be the B-code of a permutation σ ∈ S n . In its turn the sum env σ := i (b i -1) becomes a new Mahonian statistic. Moreover, it follows from the properties of the bijection φ defined in (4.1) that the two three-variable statistics (env, Cyc, Lmap) and (inv, Rmil, Lmap) are equidistributed on S n .

  The bijection φ defined in (4.1) has the further property Decomp φ(σ) = Decomp σ (σ ∈ S n ). (1.5) As we evidently have Decomp i σ = Decomp σ, (1.6) the following result holds.

  (4.1) φ := (B-code) -1 • A-code . It follows from Theorems 6 and 5 that (Cyc, Lmap) φ(σ) = (Max, Rmil) B-code φ(σ) = (Max, Rmil) A-code σ = (Rmil, Lmap) σ.

  successively get: * * * * * * σ 6 = * * * * 6 * a 6 = 5 σ 5 = * * 5 * 6 * a 5 = 3 σ 4 = * 4 5 * 6 * a 4 = 2σ 3 = 3 4 5 * 6 * a 3 -1 (1, 2, 1, 2, 3, 5) = 3, 4, 5, 1, 6, 2. Algorithmic definition of B-code. Let σ = σ(1)σ(2) • • • σ(n) ∈ S n . Its B-code b = (b 1 , b 2 , . . . , b n ) is calculated as follows.First, b n is the place occupied by n in σ n := σ. Permute the two letters n and σ(n) in the word σ. Let σ n-1 be the resulting word. Then, b n-1 is the place occupied by (n -1) in σ n-1 . Next, permute the two letters (n -2) and σ(n -2) in σ n-1 and let σ n-2 be the resulting word. Let b n-2 is the place occupied by (n -2) in σ n-2 . Permute (n -3) and σ(n -3) in σ n-2 , etc. The B-code of σ is (b 1 , b 2 , • • • , b n ).Start with σ = 3, 4, 5, 2, 6, 1. We successively get:Algorithmic definition of B-code -1 . Let b = (b 1 , b 2 , . . . , b n ) ∈ SE n .Start with the identity permutation σ 1 = 1, 2, . . . , n. In σ 1 exchange 2 and the letter at the b 2 -th place. Let σ 2 be the resulting word. In σ 2 permute 3 and the letter at the b 3 -th place. Let σ 3 be the resulting word. In σ 3 permute 4 and the letter at the b 4 -th place, etc. The permutation σ = B-code -1 b is the permutation σ n .
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