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Hook lengths and shifted parts of partitions

Guo-Niu HAN

Dedicated to George Andrews,
on the occasion of his seventieth birthday.

ABSTRACT. — Some conjectures on partition hook lengths, recently
stated by the author, have been proved and generalized by Stanley, who
also needed a formula by Andrews, Goulden and Jackson on symmetric
functions to complete his derivation. Another identity on symmetric func-
tions can be used instead. The purpose of this note is to prove it.

1. Introduction

The hook lengths of partitions are widely studied in the Theory of
Partitions, in Algebraic Combinatorics and Group Representation Theory.
The basic notions needed here can be found in [St99, p.287; La01, p.1]. A
partition λ is a sequence of positive integers λ = (λ1, λ2, · · · , λℓ) such that
λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0. The integers (λi)i=1,2,...,ℓ are called the parts

of λ, the number ℓ of parts being the length of λ denoted by ℓ(λ). The
sum of its parts λ1 +λ2 + · · ·+λℓ is denoted by |λ|. Let n be an integer, a
partition λ is said to be a partition of n if |λ| = n. We write λ ⊢ n. Each
partition can be represented by its Ferrers diagram. For each box v in the
Ferrers diagram of a partition λ, or for each box v in λ, for short, define
the hook length of v, denoted by hv(λ) or hv, to be the number of boxes u
such that u = v, or u lies in the same column as v and above v, or in the
same row as v and to the right of v. The product of all hook lengths of λ
is denoted by Hλ.

The hook length plays an important role in Algebraic Combinatorics
thanks to the famous hook formula due to Frame, Robinson and Thrall
[FRT54]

(1.1) fλ =
n!

Hλ

,

where fλ is the number of standard Young tableaux of shape λ.
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For each partition λ let λ\1 be the set of all partitions µ obtained from
λ by erasing one corner of λ. By the very construction of the standard
Young tableaux and (1.1) we have

(1.2) fλ =
∑

µ∈λ\1

fµ

and then

(1.3)
n

Hλ

=
∑

µ∈λ\1

1

Hµ

.

In this note we establish the following perturbation of formula (1.3).
Define the g-function of a partition λ of n to be

(1.4) gλ(x) =
n

∏

i=1

(x + λi − i),

where λi = 0 for i ≥ ℓ(λ) + 1.

Theorem 1.1. Let x be a formal parameter. For each partition λ we
have

(1.5)
gλ(x + 1) − gλ(x)

Hλ

=
∑

µ∈λ\1

gµ(x)

Hµ

.

Theorem 1.1 is proved in Section 2. Some equivalent forms of Theorem
1.1 and remarks are given in Section 4. As an application we prove (see
Section 3) the following result due to Stanley [St08].

Theorem 1.2. Let p, e and s be the usual symmetric functions [Ma95,
Chap.I]. Then

(1.6)
n

∑

k=0

(

x + k − 1

k

)

pk
1en−k =

∑

λ⊢n

H−1

λ gλ(x + n)sλ.

Recently, the author stated some conjectures on partition hook lengths
[Ha08a], which were suggested by hook length expansion techniques (see
[Ha08b]). Later, Conjecture 3.1 in [Ha08a] was proved by Stanley [St08].
One step of his proof is formula (1.6), based on a result by Andrews,
Goulden and Jackson [AGJ88]. In this paper we provide a simple and
direct proof of formula (1.6).

Remark. Let D be the difference operator defined by

D(f(x)) = f(x + 1) − f(x).

By iterating formula (1.5) we obtain

Dn gλ(x)

Hλ

= fλ,

which is precisely the hook length formula (1.1).
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2. Proof of Theorem 1.1

Let

(2.1) ǫ(x) =
gλ(x + 1) − gλ(x)

Hλ

−
∑

µ∈λ\1

gµ(x)

Hµ

.

We see that ǫ(x) is a polynomial in x whose degree is less than or equal
to n. Moreover

[xn]ǫ(x) = [xn]
gλ(x + 1) − gλ(x)

Hλ

= 0.

Furthermore,

[xn−1]gλ(x + 1) =
n

∑

i=1

(λi − i + 1) = n +
n

∑

i=1

(λi − i) = n + [xn−1]gλ(x)

and

[xn−1]ǫ(x) = [xn−1]
gλ(x + 1) − gλ(x)

Hλ

−
∑

µ∈λ\1

1

Hµ

=
n

Hλ

−
∑

µ∈λ\1

1

Hµ

= 0.

The last equality is guaranteed by (1.3), so that ǫ(x) is a polynomial in x
whose degree is less than and equal to n−2. To prove that ǫ(x) is actually
zero, it suffices to find n − 1 distinct values for x such that ǫ(x) = 0. In
the following we prove that ǫ(i − λi) = 0 for i − λi for i = 1, 2, . . . , n − 1.

If λi = λi+1, or if the i-th row has no corner, the factor x+λi− i lies in
gλ(x) and also in gµ(x) for all µ ∈ λ\1 . The factor (x+1)+λi+1−(i+1) =
x + λi − i is furthermore in gλ(x + 1), so that ǫ(i − λi) = 0.

Next, if λi ≥ λi+1+1, or if the i-th row has a corner, the factor x+λi−i
lies in gλ(x) and gµ(x) for all µ ∈ λ \ 1, except for µ = λ′, which is the
partition obtained from λ by erasing the corner from the i-th row. In this
case equality (2.1) becomes

ǫ(i − λi) =
gλ(i − λi + 1)

Hλ

−
gλ′(i − λi)

Hλ′

.

For proving Theorem 1.1, it remains to prove ǫ(i − λi) = 0 or

(2.2)
Hλ

Hλ′

=
gλ(i − λi + 1)

gλ′(i − λi)
.
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Consider the following product

(2.3)
gλ(x + 1)

gλ′(x)
=

∏n
j=1

(x + λj − j + 1)
∏n−1

j=1
(x + λ′

j − j)
.

The set of all 1 ≤ j ≤ n − 1 such that λj > λj+1 is denoted by T . For
1 ≤ j ≤ n − 1 and j 6∈ T (which implies that j 6= i and λ′

j = λj = λj+1),
the numerator contains x + λj+1 − (j + 1) + 1 = x + λj − j and the
denominator also contains x + λ′

j − j = x + λj − j. After cancellation of
those common factors, (2.3) becomes

(2.4)
gλ(x + 1)

gλ′(x)
=

∏

j∈B
(x + λj − j + 1)

∏

j∈T
(x + λ′

j − j)

where B = {1} ∪ {i + 1 | i ∈ T }. Letting x = i − λi in (2.4) yields

(2.5)
gλ(i − λi + 1)

gλ′(i − λi)
=

∏

j∈B
(i − λi + λj − j + 1)

∏

j∈T
(i − λi + λ′

j − j)
.

We distinguish the factors in the right-hand side of (2.5) as follows.
(C1) For j ∈ B and j > i, i−λi + λj − j + 1 = −(λi −λj + j − i− 1) =

−hv(λ), where v is the box (i, λj + 1) in λ.
(C2) For j ∈ B and j ≤ i, i − λi + λj − j + 1 = hv(λ), where v is the

box (j, λi) in λ.
(C3) For j ∈ T and j > i, i−λi +λj −j = −(λi−λj +j− i) = −hu(λ′),

where u is the box (i, λj) in λ′.
(C4) For j ∈ T and j < i, i − λi + λj − j = hu(λ′), where u is the box

(j, λi) in λ′.
(C5) For j ∈ T and j = i, i − λi + λ′

j − j = i − λi + λ′
i − i = −1. See

Fig. 2.3 and 2.4 for an example.
Since each j ∈ B such that j > i is associated with j − 1 ∈ T and

j − 1 ≥ i, the right-hand side of (2.5) is positive and can be re-written

(2.6)
gλ(i − λi + 1)

gλ′(i − λi)
=

∏

v hv(λ)
∏

u hu(λ′)
,

where v, u range over the boxes described in (C1)-(C4). Finally Hλ/Hλ′

is equal to the right-hand side of (2.6), since the hook lengths of all other
boxes cancel. We have completed the proof of (2.2).
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For example, consider the partition λ = 55331 and i = 4. We have
λ′ = 55321 and

Hλ

Hλ′

=
4 · 2 · 1 · 2 · 5 · 6

3 · 1 · 1 · 4 · 5
. =

4 · 2 · 2 · 6

3 · 4
.

4 2 1
2
5
6

Fig. 2.1. Hook lengths of λ

3 1
1
4
5

Fig. 2.2. Hook lengths of λ′

On the other hand, T = {2, 4, 5}, B = {1, 3, 5, 6} and

gλ(x + 1)

gλ′(x)
=

(x + 5)(x + 1)(x − 3)(x − 5)

(x + 3)(x − 2)(x − 4)
.

Letting x = i − λi = 4 − 3 = 1 yields

gλ(2)

gλ′(1)
=

(6)(2)(−2)(−4)

(4)(−1)(−3)
=

6 · 2 · 2 · 4

4 · 3
.

v v 1
v

X
v

Fig. 2.3. The boxes v in λ

u 1
1
u

X

Fig. 2.4. The boxes u in λ′

3. Proof of Theorem 1.2

Let Rn(x) be the right-hand side of (1.6). By Theorem 1.1

Rn(x) =
∑

λ⊢n

(gλ(x + n − 1)

Hλ

+
∑

µ∈λ\1

gµ(x + n − 1)

Hµ

)

sλ

= Rn(x − 1) +
∑

λ⊢n

∑

µ∈λ\1

gµ(x + n − 1)

Hµ

sλ

= Rn(x − 1) +
∑

µ⊢n−1

∑

λ : µ∈λ\1

gµ(x + n − 1)

Hµ

sλ

= Rn(x − 1) +
∑

µ⊢n−1

gµ(x + n − 1)

Hµ

p1sµ,
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where the next to last equality is

∑

λ : µ∈λ\1

sλ = p1sµ

by using Pieri’s rule [Ma95, p.73]. We obtain the following recurrence for
Rn(x).

(3.1) Rn(x) = Rn(x − 1) + p1Rn−1(x).

Let Ln(x) be the left-hand side of (1.6). Using elementary properties
of binomial coefficients

Ln(x) =

n
∑

k=0

(

x + k − 1

k

)

pk
1en−k

= en +
n

∑

k=1

(

(

x + k − 2

k

)

+

(

x + k − 2

k − 1

)

)pk
1en−k

= Ln(x − 1) + p1

n
∑

k=1

(

x + k − 2

k − 1

)

pk−1

1 en−k

= Ln(x − 1) + p1Ln−1(x).(3.2)

We verify that L1(x) = R1(x) and Ln(0) = Rn(0), so that Ln(x) = Rn(x)
by (3.1) and (3.2).

4. Equivalent forms and further remarks

Let λ = λ1λ2 · · ·λℓ be a partition of n. The set of all 1 ≤ j ≤ n
such that λj > λj+1 is denoted by T and let B = {1} ∪ {i + 1 | i ∈ T }.
Those two sets can be viewed as the in-corner and out-corner index sets,
respectively. Notice that #B = # T +1. For each i ∈ T we define λi− to
be the partition of n − 1 obtained form λ by erasing the right-most box
from the i-th row. Hence

(4.1) λ \ 1 = {λi− | i ∈ T }.

We verify that

(4.2) gλi−(x) =
gλ(x)(x + λi − i − 1)

(x + λi − i)(x − n)
.

From Theorem 1.1

gλ(x + 1) − gλ(x)

Hλ

=
∑

i∈T

gλ(x)(x + λi − i − 1)

(x + λi − i)(x − n)

1

Hi−
λ
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or

(4.3)
∑

i∈T

Hλ

Hλi−

× (1 −
1

x + λi − i
) = n − x +

(x − n)gλ(x + 1)

gλ(x)
.

Let us re-write (1.3)

(4.4)
∑

µ∈λ\1

Hλ

Hµ

= n.

By subtracting (4.3) from (4.4) we obtain the following equivalent form of
Theorem 1.1.

Theorem 4.1. We have

(4.5)
∑

i∈T

Hλ

Hλi−

×
1

x + λi − i
= x −

(x − n)gλ(x + 1)

gλ(x)
.

By the definitions of T and B we have

(4.6)
(x − n)gλ(x + 1)

gλ(x)
=

∏

i∈B
(x + λi − i + 1)

∏

i∈T
(x + λi − i)

,

so that Theorem 1.1 is also equivalent to the following result.

Theorem 4.2. We have

(4.7)
∑

i∈T

Hλ

Hλi−

×
1

x + λi − i
= x −

∏

i∈B
(x + λi − i + 1)

∏

i∈T
(x + λi − i)

.

For example, take λ = 55331. Then T = 2, 4, 5 and B = 1, 3, 5, 6 =
{1, 2 + 1, 4 + 1, 5 + 1}.

A
B

C

Fig. 4.1. in-corner

a
b

c

d

Fig. 4.2. out-corner

Hence λ2− = 54331, λ4− = 55321 and λ5− = 55330. Equality (4.7)
becomes

Hλ

Hλ5−

×
1

x − 4
+

Hλ

Hλ4−

×
1

x − 1
+

Hλ

Hλ2−

×
1

x + 3

= x −
(x − 5)(x − 3)(x + 1)(x + 5)

(x − 4)(x − 1)(x + 3)
.

=
17x2 − 38x − 75

(x − 4)(x − 1)(x + 3)
.

7



Theorems 4.1 and 4.2 can be proved directly using the method used in
the proof of Theorem 1.1. First, we must verify that the numerator in the
right-hand side of (4.5) is a polynomial in x whose degree is less than (≤)
# T −1. By the partial fraction expansion technique it suffices to verify
that (4.7) is true for all x = i− λi (i ∈ T ). This direct proof contains the
main part of the proof of Theorem 1.1. However it does not make use of
the fundamental relation (1.3) or (4.4). Thus, the following corollary of
Theorem 4.2 makes sense.

Corollary 4.4. We have

(4.8)
∑

µ∈λ\1

Hλ

Hµ

= n.

Proof. Let # T = k. The right-hand side of (4.7) has the following
form

Cxk−1 + · · ·

xk + · · ·
.

We now evaluate the coefficient C. By (4.6) we can write C = A−B with

A = [xn−1]x
n

∏

i=1

(x + λi − i) =
∑

1≤i<j≤n

(λi − i)(λj − j)

and

B = [xn−1](x − n)
n

∏

i=1

(x + λi − i + 1)

=
∑

1≤i<j≤n

(λi − i + 1)(λj − j + 1) − n
∑

1≤i≤n

(λi − i + 1).

= B1 − n
∑

1≤i≤n

(λi − i + 1),

where

B1 =
∑

1≤i<j≤n

(λi − i + 1)(λj − j + 1)

=
∑

1≤i<j≤n

(

(λi − i)(λj − j) + (λi − i) + (λj − j) + 1
)

= A +
∑

1≤i<j≤n

(λi − i) +
∑

1≤i<j≤n

(λj − j) +

(

n

2

)

= A +
∑

1≤i≤n

(n − i)(λi − i) +
∑

1≤j≤n

(j − 1)(λj − j) +

(

n

2

)

= A +
∑

1≤i≤n

(n − 1)(λi − i) +

(

n

2

)

.
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Finally

C = A − B

= −
∑

1≤i≤n

(n − 1)(λi − i) −

(

n

2

)

+ n
∑

1≤i≤n

(λi − i + 1)

= −
∑

1≤i≤n

n(λi − i) +
∑

1≤i≤n

(λi − i) −

(

n

2

)

+ n
∑

1≤i≤n

(λi − i) + n2

=
∑

1≤i≤n

(λi − i) −

(

n

2

)

+ n2

= n −

(

n + 1

2

)

−

(

n

2

)

+ n2 = n.
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