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Hook lengths and shifted parts of partitions

Some conjectures on partition hook lengths, recently stated by the author, have been proved and generalized by Stanley, who also needed a formula by Andrews, Goulden and Jackson on symmetric functions to complete his derivation. Another identity on symmetric

Introduction

The hook lengths of partitions are widely studied in the Theory of Partitions, in Algebraic Combinatorics and Group Representation Theory. The basic notions needed here can be found in [St99, p.287; La01, p.1]. A partition λ is a sequence of positive integers λ = (λ 1 , λ 2 , • • • , λ ℓ ) such that λ 1 ≥ λ 2 ≥ • • • ≥ λ ℓ > 0. The integers (λ i ) i=1,2,...,ℓ are called the parts of λ, the number ℓ of parts being the length of λ denoted by ℓ(λ). The sum of its parts λ 1 + λ 2 + • • • + λ ℓ is denoted by |λ|. Let n be an integer, a partition λ is said to be a partition of n if |λ| = n. We write λ ⊢ n. Each partition can be represented by its Ferrers diagram. For each box v in the Ferrers diagram of a partition λ, or for each box v in λ, for short, define the hook length of v, denoted by h v (λ) or h v , to be the number of boxes u such that u = v, or u lies in the same column as v and above v, or in the same row as v and to the right of v. The product of all hook lengths of λ is denoted by H λ .

The hook length plays an important role in Algebraic Combinatorics thanks to the famous hook formula due to Frame, Robinson and Thrall [START_REF] Frame | The hook graphs of the symmetric groups[END_REF] (1.1)

f λ = n! H λ ,
where f λ is the number of standard Young tableaux of shape λ.
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Mathematics Subject Classifications. 05A15, 05A17, 05A19, 05E05, 11P81 1 For each partition λ let λ \ 1 be the set of all partitions µ obtained from λ by erasing one corner of λ. By the very construction of the standard Young tableaux and (1.1) we have

(1.2) f λ = µ∈λ\1 f µ and then (1.3) n H λ = µ∈λ\1 1 H µ .
In this note we establish the following perturbation of formula (1.3). Define the g-function of a partition λ of n to be

(1.4) g λ (x) = n i=1 (x + λ i -i),
where λ i = 0 for i ≥ ℓ(λ) + 1.

Theorem 1.1. Let x be a formal parameter. For each partition λ we have

(1.5) g λ (x + 1) -g λ (x) H λ = µ∈λ\1 g µ (x) H µ .
Theorem 1.1 is proved in Section 2. Some equivalent forms of Theorem 1.1 and remarks are given in Section 4. As an application we prove (see Section 3) the following result due to Stanley [START_REF] Stanley | Some combinatorial properties of hook lengths, contents, and parts of partitions[END_REF].

Theorem 1.2. Let p, e and s be the usual symmetric functions [Ma95, Chap.I]. Then

(1.6) n k=0 x + k -1 k p k 1 e n-k = λ⊢n H -1 λ g λ (x + n)s λ .
Recently, the author stated some conjectures on partition hook lengths [START_REF] Han | Some conjectures and open problems about partition hook length[END_REF], which were suggested by hook length expansion techniques (see [START_REF] Han | Discovering hook length formulas by an expansion technique[END_REF]). Later, Conjecture 3.1 in [START_REF] Han | Some conjectures and open problems about partition hook length[END_REF] was proved by Stanley [START_REF] Stanley | Some combinatorial properties of hook lengths, contents, and parts of partitions[END_REF]. One step of his proof is formula (1.6), based on a result by Andrews, Goulden and Jackson [START_REF] Andrews | Generalizations of Cauchy's summation formula for Schur functions[END_REF]. In this paper we provide a simple and direct proof of formula (1.6).

Remark. Let D be the difference operator defined by

D(f (x)) = f (x + 1) -f (x).
By iterating formula (1.5) we obtain

D n g λ (x) H λ = f λ ,
which is precisely the hook length formula (1.1).

Proof of Theorem

1.1 Let (2.1) ǫ(x) = g λ (x + 1) -g λ (x) H λ - µ∈λ\1 g µ (x) H µ .
We see that ǫ(x) is a polynomial in x whose degree is less than or equal to n. Moreover

[x n ]ǫ(x) = [x n ] g λ (x + 1) -g λ (x) H λ = 0.
Furthermore,

[x n-1 ]g λ (x + 1) = n i=1 (λ i -i + 1) = n + n i=1 (λ i -i) = n + [x n-1 ]g λ (x)
and

[x n-1 ]ǫ(x) = [x n-1 ] g λ (x + 1) -g λ (x) H λ - µ∈λ\1 1 H µ = n H λ - µ∈λ\1 1 H µ = 0.
The last equality is guaranteed by (1.3), so that ǫ(x) is a polynomial in x whose degree is less than and equal to n -2. To prove that ǫ(x) is actually zero, it suffices to find n -1 distinct values for x such that ǫ(x) = 0. In the following we prove that ǫ(i

-λ i ) = 0 for i -λ i for i = 1, 2, . . . , n -1.
If λ i = λ i+1 , or if the i-th row has no corner, the factor x + λ i -i lies in g λ (x) and also in g µ (x) for all µ ∈ λ\1 . The factor (x+1)+λ i+1 -(i+1) = x + λ i -i is furthermore in g λ (x + 1), so that ǫ(i -λ i ) = 0.

Next, if λ i ≥ λ i+1 +1, or if the i-th row has a corner, the factor x+λ i -i lies in g λ (x) and g µ (x) for all µ ∈ λ \ 1, except for µ = λ ′ , which is the partition obtained from λ by erasing the corner from the i-th row. In this case equality (2.1) becomes

ǫ(i -λ i ) = g λ (i -λ i + 1) H λ - g λ ′ (i -λ i ) H λ ′ .
For proving Theorem 1.1, it remains to prove ǫ(i

-λ i ) = 0 or (2.2) H λ H λ ′ = g λ (i -λ i + 1) g λ ′ (i -λ i ) .
Consider the following product

(2.3) g λ (x + 1) g λ ′ (x) = n j=1 (x + λ j -j + 1) n-1 j=1 (x + λ ′ j -j)
.

The set of all 1 ≤ j ≤ n -1 such that λ j > λ j+1 is denoted by T . For 1 ≤ j ≤ n -1 and j ∈ T (which implies that j = i and λ ′ j = λ j = λ j+1 ), the numerator contains x + λ j+1 -(j + 1) + 1 = x + λ j -j and the denominator also contains x + λ ′ j -j = x + λ j -j. After cancellation of those common factors, (2.3) becomes (2.4)

g λ (x + 1) g λ ′ (x) = j∈B (x + λ j -j + 1) j∈T (x + λ ′ j -j)
where

B = {1} ∪ {i + 1 | i ∈ T }. Letting x = i -λ i in (2.4) yields (2.5) g λ (i -λ i + 1) g λ ′ (i -λ i ) = j∈B (i -λ i + λ j -j + 1) j∈T (i -λ i + λ ′ j -j)
.

We distinguish the factors in the right-hand side of (2.5) as follows.

(C1) For j ∈ B and j > i, i -

λ i + λ j -j + 1 = -(λ i -λ j + j -i -1) = -h v (λ)
, where v is the box (i, λ j + 1) in λ.

(C2) For j ∈ B and j ≤ i, i -

λ i + λ j -j + 1 = h v (λ)
, where v is the box (j, λ i ) in λ.

(C3) For j ∈ T and j > i, i -λ i + λ j -j = -(λ i -λ j + j -i) = -h u (λ ′ ), where u is the box (i, λ j ) in λ ′ .

(C4) For j ∈ T and j < i, i -λ i + λ j -j = h u (λ ′ ), where u is the box (j, λ i ) in λ ′ .

(C5) For j ∈ T and j = i, i -λ i + λ ′ j -j = i -λ i + λ ′ i -i = -1. See Fig. 2.3 and 2.4 for an example.

Since each j ∈ B such that j > i is associated with j -1 ∈ T and j -1 ≥ i, the right-hand side of (2.5) is positive and can be re-written

(2.6) g λ (i -λ i + 1) g λ ′ (i -λ i ) = v h v (λ) u h u (λ ′ )
, where v, u range over the boxes described in (C1)-(C4). Finally H λ /H λ ′ is equal to the right-hand side of (2.6), since the hook lengths of all other boxes cancel. We have completed the proof of (2.2).

For example, consider the partition λ = 55331 and i = 4. We have λ ′ = 55321 and On the other hand, T = {2, 4, 5}, B = {1, 3, 5, 6} and g λ (x + 1)

H λ H λ ′ = 4 • 2 • 1 • 2 • 5 • 6 3 • 1 • 1 • 4 • 5 . = 4 • 2 • 2 • 6 3 • 4 .
g λ ′ (x) = (x + 5)(x + 1)(x -3)(x -5) (x + 3)(x -2)(x -4) . Letting x = i -λ i = 4 -3 = 1 yields g λ (2) g λ ′ (1) = (6)(2)(-2)(-4) (4)(-1)(-3) = 6 • 2 • 2 • 4 4 • 3 . v v 1 v X v Fig. 2.3. The boxes v in λ u 1 1 u X Fig. 2.4. The boxes u in λ ′
3. Proof of Theorem 1.2 Let R n (x) be the right-hand side of (1.6). By Theorem 1.1

R n (x) = λ⊢n g λ (x + n -1) H λ + µ∈λ\1 g µ (x + n -1) H µ s λ = R n (x -1) + λ⊢n µ∈λ\1 g µ (x + n -1) H µ s λ = R n (x -1) + µ⊢n-1 λ : µ∈λ\1 g µ (x + n -1) H µ s λ = R n (x -1) + µ⊢n-1 g µ (x + n -1) H µ p 1 s µ ,
where the next to last equality is λ : µ∈λ\1 s λ = p 1 s µ by using Pieri's rule [START_REF] Macdonald | Symmetric Functions and Hall Polynomials, Second Edition[END_REF]p.73]. We obtain the following recurrence for R n (x).

(3.1)

R n (x) = R n (x -1) + p 1 R n-1 (x).
Let L n (x) be the left-hand side of (1.6). Using elementary properties of binomial coefficients

L n (x) = n k=0 x + k -1 k p k 1 e n-k = e n + n k=1 ( x + k -2 k + x + k -2 k -1 )p k 1 e n-k = L n (x -1) + p 1 n k=1 x + k -2 k -1 p k-1 1 e n-k = L n (x -1) + p 1 L n-1 (x). (3.2) We verify that L 1 (x) = R 1 (x) and L n (0) = R n (0), so that L n (x) = R n (x) by (3.1) and (3.2).

Equivalent forms and further remarks

Let λ = λ 1 λ 2 • • • λ ℓ be a partition of n. The set of all 1 ≤ j ≤ n such that λ j > λ j+1 is denoted by T and let B = {1} ∪ {i + 1 | i ∈ T }.
Those two sets can be viewed as the in-corner and out-corner index sets, respectively. Notice that # B = # T +1. For each i ∈ T we define λ i-to be the partition of n -1 obtained form λ by erasing the right-most box from the i-th row. Hence (4.1)

λ \ 1 = {λ i-| i ∈ T }.
We verify that (4.2)

g λ i-(x) = g λ (x)(x + λ i -i -1) (x + λ i -i)(x -n) .
From Theorem 1.1

g λ (x + 1) -g λ (x) H λ = i∈T g λ (x)(x + λ i -i -1) (x + λ i -i)(x -n) 1 H i- λ or (4.3) i∈T H λ H λ i- × (1 - 1 x + λ i -i ) = n -x + (x -n)g λ (x + 1) g λ (x) .
Let us re-write (1.3)

(4.4) µ∈λ\1 H λ H µ = n.
By subtracting (4.3) from (4.4) we obtain the following equivalent form of Theorem 1.1.

Theorem 4.1. We have

(4.5) i∈T H λ H λ i- × 1 x + λ i -i = x - (x -n)g λ (x + 1) g λ (x)
.

By the definitions of T and B we have

(4.6) (x -n)g λ (x + 1) g λ (x) = i∈B (x + λ i -i + 1) i∈T (x + λ i -i)
, so that Theorem 1.1 is also equivalent to the following result.

Theorem 4.2. We have

(4.7) i∈T H λ H λ i- × 1 x + λ i -i = x -i∈B (x + λ i -i + 1) i∈T (x + λ i -i) .
For example, take λ = 55331. Then T = 2, 4, 5 and B = 1, 3, 5, 6 = {1, 2 + 1, 4 + 1, 5 + 1}. 

) becomes H λ H λ 5- × 1 x -4 + H λ H λ 4- × 1 x -1 + H λ H λ 2- × 1 x + 3 = x - (x -5)(x -3)(x + 1)(x + 5) (x -4)(x -1)(x + 3) . = 17x 2 -38x -75 (x -4)(x -1)(x + 3) .
Theorems 4.1 and 4.2 can be proved directly using the method used in the proof of Theorem 1.1. First, we must verify that the numerator in the right-hand side of (4.5) is a polynomial in x whose degree is less than (≤) # T -1. By the partial fraction expansion technique it suffices to verify that (4.7) is true for all x = i -λ i (i ∈ T ). This direct proof contains the main part of the proof of Theorem 1.1. However it does not make use of the fundamental relation (1.3) or (4.4). Thus, the following corollary of Theorem 4.2 makes sense. 

  Fig. 2.1. Hook lengths of λ
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  Let # T = k. The right-hand side of (4.7) has the following formCx k-1 + • • • x k + • • • .We now evaluate the coefficient C. By (4.6) we can write C = A -B withA = [x n-1 ]x n i=1 (x + λ i -i) = 1≤i<j≤n (λ i -i)(λ j -j) and B = [x n-1 ](x -n) n i=1 (x + λ i -i + 1) = 1≤i<j≤n (λ i -i + 1)(λ j -j + 1) -n 1≤i≤n (λ i -i + 1). = B 1 -n 1≤i≤n (λ i -i + 1),whereB 1 = 1≤i<j≤n (λ i -i + 1)(λ j -j + 1) = 1≤i<j≤n (λ i -i)(λ j -j) + (λ i -i) + (λ j -j) + 1 = A + 1≤i<j≤n (λ i -i) + 1≤i<j≤n (λ j -j) + n 2 = A + 1≤i≤n (n -i)(λ i -i) + 1≤j≤n (j -1)(λ j -j) + n 2 = A + 1≤i≤n (n -1)(λ i -i) + n 2 .