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MULTIVARIABLE IDENTIFICATION OF CONTINUOUS-TIME FRACTIONAL SYSTEM

This paper presents two subspace-based methods, from the MOESP (MIMO output-error state space) family, for state-space identification of continuous-time fractional commensurate models from sampled input-output data. The methodology used in this paper involves a continuous-time fractional operator allowing to reformulate the problem so that the state-space matrices can be estimated with conventional discrete-time subspace techniques based on QR and singular value decompositions. The first method is a deterministic one whereas the second approach takes place in a stochastic context. The performance of both methods is demonstrated using Monte Carlo simulations at various signalto-noise ratios. The deterministic method leads, as expected, to biased estimates. This bias is removed in the stochastic method by the use of an instrumental variable. As compared to rational systems, the commensurate differentiation order must be estimated besides the state-space matrices which is done using nonlinear programming. This is the first work developed for multiinput multi-output system identification using fractional models.

INTRODUCTION

.

. They are based on the minimization of an output error criterion by nonlinear programming techniques. These methods are well suited for single-input singleoutput (SISO) systems, and are generally difficult to apply in the multi-input multi-output (MIMO) case because the number of parameters to estimate becomes large. Here, subspace methods are proposed to estimate the matrices of the continuous-time 1

fractional state-space representation. It is an extension of the methods presented in the literature for rational (thus non fractional) systems [START_REF] Haverkamp | Identification of continuous-time MIMO state space models from sampled data, in the presence of process and measurement noise[END_REF][START_REF] Johansson | Stochastic theory of continuous-time state-space identification[END_REF][START_REF] Johansson | Stochastic theory of continuous-time state-space identification[END_REF] to the fractional case. Other subspace techniques for identifying continuous-time rational models can be found in [START_REF] Bastogne | A PMFbased subspace method for continuous-time model identification. Application to a multivariable winding process[END_REF][START_REF] Ohsumi | Subspace identification for continuous-time stochastic systems via distribution-based approach[END_REF][START_REF] Li | Subspace identification of continuous time models for process fault detection and isolation[END_REF][START_REF] Mercère | Subspace-based methods for continuous-time model identification of MIMO systems from filtered sampled data[END_REF]. So, the proposed method inherits the advantages of subspace methods which stem from the reliability of numerical algorithms using the QR and the singular value decompositions [START_REF] Katayama | Subspace methods for system identification[END_REF]. Thus, it does not involve nonlinear optimization to obtain state-space matrices. In addition, no canonical form (such as modal or companion realizations) of the statespace representation is required. Finally, the proposed subspace algorithms can be applied to the identification of both SISO and MIMO fractional systems. As will be seen later, the state-space representation of a fractional commensurate system involves an additional parameter which is the commensurate order. It is the only parameter computed by minimizing an output error criterion with a nonlinear optimization technique.

In section 2, some recalls about fractional systems are presented. Section 3 presents the methods proposed to estimate the matrices of the continuous-time fractional state-space representation, followed by section 4 devoted to the estimation of the fractional commensurate order using a nonlinear optimization technique. Finally, simulation examples are given in section 5. Monte Carlo simulations are made to show the estimator statistical properties.

FRACTIONAL SYSTEMS

A SISO fractional system is governed by a fractional differential equation:

y (t) + a 1 D α 1 y (t) + • • • + a m A D α m A y (t) = b 0 D β 0 u (t) + b 1 D β 1 u (t) + • • • + b m B D β m B u (t)
where (a j , b i ) ∈ R 2 , and the differentiation orders α 1 < α 2 < . . . < α m A , β 0 < β 1 < . . . < β m B are allowed to be non-integer positive numbers. State space representation was extended by [START_REF] Matignon | Some results on controllability and observability of finitedimensional fractional differential systems[END_REF] to commensurate fractional systems, where all the differentiation orders are multiple integers of α. The extension was done by allowing the differentiation order of the state vector to be any commensurate order α ∈ R + * . The fractional state space representation is presented in a MIMO case as:

D α x(t) = Ax(t) + Bu(t), (1) 
y(t) = Cx(t) + Du(t) (2)
where x ∈ R n is the state vector, u ∈ R m the input vector, y ∈ R p the output vector,

A ∈ R n×n , B ∈ R n×m , C ∈ R p×n , D ∈ R p×m
are constant matrices. Here, zero initial conditions are considered: x(t) = 0 for t ≤ 0. Matignon [START_REF] Matignon | Stability properties for generalized fractional differential systems[END_REF] proved that the fractional system (1)-( 2) is stable if:

0 < α < 2 and | arg(λ k )| > α π 2 ∀k = 1, . . . , n
where λ k is the k th -eigenvalue of A and -π < arg(λ k ) ≤ π.

The conversion of ( 1)-( 2) to the MIMO transfer function form is obtained as for the rational systems by:

G(s) = C(s α I -A) -1 B + D
where s is the Laplace variable.

In the following, the pair (A, B) is assumed to be reachable and the pair (C, A) is assumed to be observable. The controllability and the observability conditions of a state space representation of a commensurate fractional system are the same as for rational systems [START_REF] Matignon | Some results on controllability and observability of finitedimensional fractional differential systems[END_REF].

One of the main difficulties with fractional models is the time-domain simulation. This problem has been extensively studied and an overview of the principal methods can be found in [START_REF] Aoun | Numerical simulations of fractional systems: an overview of existing methods and improvements[END_REF]. The most commonly used approximation of fractional operators is the recursive distribution of zeros and poles, proposed in [START_REF] Oustaloup | La dérivation non entière. Théorie, synthèse et applications[END_REF], which approximates the frequency behavior of s α in the frequency range [ω A , ω B ]. Nevertheless, this approximation has null asymptotic behaviors at low and high frequencies, which can introduce a static error between the fractional model and its approximation. To avoid this drawback, Trigeassou et al. [START_REF] Trigeassou | Modeling and identification of a non integer order system[END_REF] suggested to use the conventional integrator outside the frequency range [ω A , ω B ]:

s -α [ω A ,ω B ] = G α s N c ∏ k=1 1 + s/ω ′ k 1 + s/ω k (3) 
where:

• N c is the number of cells (directly related to the quality of the approximation), • G α is fixed so that s -α has the same gain as

s -α [ω A ,ω B ] in the middle of the interval [ω A , ω B ],
• ω ′ k and ω k are respectively zeros and poles recursively distributed in the frequency range

[ω b , ω h ] = [σ -1 ω A , σω B ]
where σ is generally set to 10 to minimize border effects. They are defined by the following relations:

ω ′ k = γω k , ω k+1 = ηω ′ k , α = 1 - log γ log γη .
This approximation is used to simulate the fractional systems presented in this paper (section 5) with the parameters: N c = 20, ω A = 10 -5 and ω B = 10 5 .

SUBSPACE ALGORITHMS FOR FRACTIONAL STATE-SPACE IDENTIFICATION

Consider the linear continuous-time fractional state-space representation (1)-(2) corrupted by additive noise:

D α x(t) = Ax(t) + Bu(t) + v(t), (4) 
y(t) = Cx(t) + Du(t) + w(t) (5) 
where v ∈ R n and w ∈ R p are zero-mean processes. Under some mild conditions on v and v (uniform spectrum, uncorrelation) [START_REF] Johansson | Stochastic theory of continuous-time state-space identification[END_REF], the state-space representation (4)-( 5) can be replaced by the innovations model:

D α x(t) = Ax(t) + Bu(t) + Ke(t), (6) 
y(t) = Cx(t) + Du(t) + e(t). (7) 
The problem in this section is to estimate the system matrices A, B, C, D from sampled input-output data1 {u k } N-1 k=0 and {y k } N-1 k=0 . The commensurate order α is assumed to be known. The case where α is unknown is discussed in section 4.

To introduce the difficulty of the continuous-time fractional state-space model identification, let us consider firstly the deterministic case (e(t) = 0). Then, by computing the successive α-order fractional derivatives of [START_REF] Aoun | Synthesis of fractional Laguerre basis for system approximation[END_REF] and by substitution, the following extended linear model is obtained:

ȳ(t) = Γ * i x(t) + Φ * i ū(t) (8) 
with input and output variables:

ū(t) = [u(t) T D α u(t) T . . . D iα u(t) T ] T ȳ(t) = [y(t) T D α y(t) T . . . D iα y(t) T ] T
and

Γ * i =      C CA . . . CA i-1      ∈ R ip×n , Φ * i =       D 0 • • • 0 CB D . . . . . . . . . . . . . . . 0 CA i-2 B • • • CB D       ∈ R ip×im .
The structure of ( 8) is the same than the extended linear model used in classical discrete-time subspace identification methods [START_REF] Katayama | Subspace methods for system identification[END_REF]. Unfortunately, (8) contains the successive α-order fractional derivatives of the input-ouput data which are not measured in most practical cases and which are difficult to estimate particularly in a noisy framework [START_REF]Identification of Continuous-Time Models from Sampled Data[END_REF].

To avoid this difficulty, the following operator (fractional low-pass filter) is introduced:

Λ(s) = 1 1 + s ω f α = 1 1 + τs α with τ = (1/ω f ) α . ( 9 
)
Let us consider the Laplace transform of ( 6)-( 7):

s α X(s) = AX(s) + BU(s) + KE(s) ( 10 
)
Y (s) = CX(s) + DU(s) + E(s). ( 11 
)
Then, ( 10) can be expressed as:

X(s) = (I + τA)[Λ(s)X(s)] + τB[Λ(s)U(s)] + τK[Λ(s)E(s)] = A λ [Λ(s)X(s)] + B λ [Λ(s)U(s)] + K λ [Λ(s)E(s)]
with A λ = I + τA, B λ = τB and K λ = τK. Application of the inverse Laplace transform leads to the following system of linear equations:

x(t) = A λ [λx(t)] + B λ [λu(t)] + K λ [λe(t)] (12) y(t) = Cx(t) + Du(t) + e(t) (13) 
where λx(t), λu(t) and λe(t) correspond to the states, the inputs and the noise prefiltered by Λ in [START_REF] Malti | Advances in system identification using fractional models[END_REF]. Then, from [START_REF] Johansson | Stochastic theory of continuous-time state-space identification[END_REF], it is found by recursion that:

y(t) = Cx(t) + Du(t) + e(t) = CA λ [λx(t)] + CB λ [λu(t)] + Du(t) + CK λ [λe(t)] + e(t) . . . = CA k λ [λ k x(t)] + k ∑ j=1 CA k-j λ B λ [λ k-j+1 u(t)] + Du(t) + k ∑ j=1 CA k-j λ K λ [λ k-j+1 e(t)] + e(t)
for k ∈ N * , where λ k x(t) denotes the signals obtained from x(t) by filtering through a series of k low-pass filters Λ. In the same way, it is found for l ∈ N * :

λ l y(t) = C[λ l x(t)] + D[λ l u(t)] + [λ l e(t)] = CA λ [λ l+1 x(t)] + CB λ [λ l+1 u(t)] + D[λ l u(t)] + CK λ [λ l+1 e(t)] + [λ l e(t)] . . . = CA k-l λ [λ k x(t)] + k-l ∑ j=1 CA k-j-l λ B λ [λ k-j+1 u(t)] + D[λ l u(t)] + k-l ∑ j=1 CA k-j-l λ K λ [λ k-j+1 e(t)] + [λ l e(t)]
with k ≥ l. As a consequence, the input-output data can be formulated as the following extended linear model (with no time derivatives of the data):

Y (t) = Γ i X (t) + Φ i U (t) + Ψ i E (t) (14) 
with state, input-output and noise variables:

X (t) = λ i-1 x(t) Y (t) =       λ i-1 y(t) λ i-2 y(t) . . . λ 1 y(t) y(t)       , U (t) =       λ i-1 u(t) λ i-2 u(t) . . . λ 1 u(t) u(t)       , E (t) =       λ i-1 e(t) λ i-2 e(t) . . . λ 1 e(t) e(t)      
and:

Γ i =      C CA λ . . . CA i-1 λ      , Φ i =       D 0 • • • 0 CB λ D . . . . . . . . . . . . . . . 0 CA i-2 λ B λ • • • CB λ D       , Ψ i =       I 0 • • • 0 CK λ I . . . . . . . . . . . . . . . 0 CA i-2 λ K λ • • • CK λ I      
where Γ i ∈ R ip×n is the extended observability matrix and Φ i ∈ R ip×im , Ψ i ∈ R ip×im are block Toeplitz matrices. Now, from N available input-output samples observed at discrete times t k = kT s for k = 0, . . . , N -1, the extended linear model ( 14) can be rewritten as:

Y N = Γ i X N + Φ i U N + Ψ i E N ( 15 
)
where

U N =        [λ i-1 u] 0 [λ i-1 u] 1 • • • [λ i-1 u] N-1 [λ i-2 u] 0 [λ i-2 u] 1 • • • [λ i-2 u] N-1 . . . . . . . . . [λu] 0 [λu] 1 • • • [λu] N-1 u 0 u 1 • • • u N-1        ∈ R mi×N and [λ j u] k = λ j u(t k ) denotes the sampled filtered data. The matrices Y N ∈ R pi×N , X N ∈ R n×N and E N ∈ R mi×N are con-
structed in a similar way. The formulation given in [START_REF] Ohsumi | Subspace identification for continuous-time stochastic systems via distribution-based approach[END_REF] enables to use subspace identification algorithms as in their original nonfactional discrete-time version. The difference is the addition of a step in which the data are filtered (what is a classical step in continuous-time identification [START_REF]Identification of Continuous-Time Models from Sampled Data[END_REF]). This lowpass filtering induces the tuning of an additional parameter ω f whose the sensibility has been studied in [START_REF] Thomassin | Subspace method for continuous-time fractional system identification[END_REF].

Deterministic framework : MOESP algorithm First, let us start by using the most popular subspace identification method called MOESP (MIMO output-error state space) algorithm [START_REF] Katayama | Subspace methods for system identification[END_REF][START_REF] Viberg | Subspace-based methods for the identification of linear time-invariant systems[END_REF]. This is a deterministic approach based on the properties of the noiseless version of (15):

Y N = Γ i X N + Φ i U N . ( 16 
)
The principle of this algorithm is as follows:

1. Compute the LQ decomposition of the data matrix:

U N Y N = L 11 0 L 21 L 22 Q T 1 Q T 2 ( 17 
)
where

L 11 ∈ R im×im , L 21 ∈ R ip×im , L 22 ∈ R ip×ip with L 11 ,
L 22 lower triangular, and

Q 1 ∈ R N×im , Q 2 ∈ R N×ip are or- thogonal. 2.
Compute the singular value decomposition (SVD) of the L 22 matrix approximating the column space of Γ i :

L 22 = U 1 U 2 Σ 1 0 0 0 V T 1 V T 2 ( 18 
)
where 

U 1 ∈ R ip×n , U 2 ∈ R ip×(ip-n) and Σ 1 ∈ R n×n
6. Estimate the B λ and D matrices. For that purpose, it can be shown that:

U T 2 Ψ i = U T 2 L 21 L -1 11 ( 20 
)
which is a linear equation with respect to B λ and D. Define:

U T 2 L 1 L 2 • • • L i (21) U T 2 L 21 L -1 11 M 1 M 2 • • • M i (22) with L k ∈ R (ip-n)×p and M k ∈ R (ip-n)×m for k = 1, . . . , i.
Thus, from (20):

L 1 D + L 2 ĈD + • • • + L i Ĉ Âi-2 λ B λ = M 1 L 2 D + L 3 ĈD + • • • + L i Ĉ Âi-3 λ B λ = M 3 . . . L i-1 D + L i ĈD = M i-1 L i D = M i . Define L k = [L k . . . L i ] ∈ R (ip-n)×(i+1-k)p , k = 2, .
. . , i, and get the following overdetermined system of linear equations:

       L 1 L 2 Γi-1 L 2 L 3 Γi-2 . . . . . . L i-1 L i Γ1 L i 0        D B λ =        M 1 M 2 . . . M i-1 M i        (23) 
where the block coefficient matrix in the left-hand side is

i(ip -n) × (p + n)-dimensional.
Estimates of B λ and D are obtained by finding the least-squares solution of [START_REF]Identification of Continuous-Time Models from Sampled Data[END_REF].

The matrices of the fractional continuous-time state-space representation ( 10)-( 11) are then deduced as follows: Â = 1 τ ( Âλ -I), B = 1 τ Bλ . The Ĉ and D matrices do not change. This method is consistent in its discrete-time version if the output noise (w) is white and if there is no process noise (v = 0). In our framework, the filtering of the input-output data calls the consistency into question.

Stochastic framework: PO-MOESP algorithm

In a stochastic framework, instrumental variables can be used to remove the noise effect. The most popular method in this context is the PO-MOESP (Past Output MIMO Output-Error State Space) algorithm [START_REF] Viberg | Subspace-based methods for the identification of linear time-invariant systems[END_REF][START_REF] Verhaegen | Identification of the deterministic part of MIMO state space models given in innovations form from input-output data[END_REF]. First, the input and output data and the noise matrices are partitioned into two parts:

U N = U p U f , Y N = Y p Y f , E N = E p E f . ( 24 
)
The number of block rows in U p , Y p and E p is denoted by β. The number of block rows in U f , Y f and E f is then γ = i -β. These numbers can be chosen arbitrary, but it is generally preferred to set β = γ. By considering only the second part of these matrices, [START_REF] Ohsumi | Subspace identification for continuous-time stochastic systems via distribution-based approach[END_REF] becomes:

Y f = Γ γ X f + Φ γ U f + Ψ γ E f . ( 25 
)
The instrumental variable introduced to remove the effects of the

noise is Z = [U T p Y T p ] T .
Hence, the principle of the PO-MOESP algorithm is as follows:

1. Compute the LQ decomposition of the data matrix:

    U f U p Y p Y f     =     L 11 0 0 0 L 21 L 22 0 0 L 31 L 32 L 33 0 L 41 L 42 L 43 L 44         Q T 1 Q T 2 Q T 3 Q T 4     (26)
where all the matrices L j j are lower triangular and all the matrices Q j are orthogonal (for j = 1, 2, 3, 4). 2. Compute the SVD of [L 42 L 43 ] which approximates the column space of Γ γ :

L 42 L 43 = U 1 U 2 Σ 1 0 0 0 V T 1 V T 2 ( 27 
)
where

U 1 ∈ R ip×n , U 2 ∈ R ip×(ip-n) and Σ 1 ∈ R n×n .
As for the MOESP algorithm, the state-space order n can be estimated by calculating the number of significant singular values of L 42 L 43 .

The following steps 3, 4, 5 and 6 are the same as for the MOESP algorithm.

FRACTIONAL ORDER ESTIMATION

In this section, we assume that the fractional derivative order α ∈ (0, 2) is unknown and has to be estimated by minimizing a 

1 2 ŷc (α) -y c 2 2 , (28) 
where y c is the vector (of length pN) obtained by concatenating the p system outputs and ŷc (α) is the vector obtained by concatenating the p outputs of the state-space representation estimated with one of the subspace methods (MOESP or PO-MOESP) for a given α. The value of α in ( 28) is obtained by a nonlinear optimization technique. The iterative algorithm used is based on a subspace trust-region method and on the interior-reflective Newton method described in [START_REF] Coleman | An interior, trust region approach for nonlinear minimization subject to bounds[END_REF]. Consequently, the proposed subspace algorithm is executed at each iteration of the optimization technique. The number of state variables n is assumed to be known. However, it may be estimated by using order estimation criteria presented in [START_REF] Bauer | Order estimation for subspace methods[END_REF] .

SIMULATION EXAMPLES

The algorithms are applied to input-output data of length N = 1023 generated by simulating the linear system (1)-( 2) with α = 0.9,

A = 0 -0.1 1 -0.2 , B = 1 0 ,C = 0 0.1 0.5 -0.1 , D = 0 0 ,
and zero initial conditions (x(t) = 0 for t ≤ 0). The input signal is a pseudo-random binary sequence (PRBS) with maximum length. The sampling period is T s = 0.05s. The outputs (Fig. 1) are corrupted by white noise with a signal-to-noise ratio (SNR) of 20 dB. The influence of the method parameters (the number of block rows i and the filter frequency ω f ) has been studied in [START_REF] Thomassin | Subspace method for continuous-time fractional system identification[END_REF]. It was shown that ω f can be chosen in a suitable range over one decade, between 1 and 10 and that the choice of i influences more the results: acceptable results are obtained starting from i = 6. For this example, the algorithm parameters are fixed to i = 8 and ω f = 6.

Using the MOESP algorithm

The estimation results with the MOESP algorithm are: To analyze the statistical properties of the estimator, three Monte Carlo simulations are carried out for SNR of 20, 15 and 10 dB. Each simulation is done with 500 runs with different realizations of noise. The means of the normalized error norms, obtained with i = 8 and ω f = 6, are given in Tab. 1. Figure 2 shows the estimated poles. The normalized mean squared error (MSE) of the poles are indicated in Tab. 2. It can be seen that the pole estimator is biased. Moreover, as shown in the histograms of the estimated order α in Fig. 3, the order estimate is also biased, and the bias increases with the noise level. These biases are obviously introduced by the MOESP algorithm. Indeed, in order to guarantee the consistency of the estimates using this algorithm, the input must satisfy the persistent excitation condition (verified with a PRBS for example) and the output noise have to be white [START_REF] Bauer | Analysis of the asymptotic properties of the MOESP type of subspace algorithms[END_REF]. In fact, the latter condition is not satisfied because of the data filtering.

α = 0.8894, Â = 0 -0.1008 1 -0.1757 , B = 1 0 , Ĉ = 0.

Using the PO-MOESP algorithm

The PO-MOESP algorithm applied to the same input-output data gives the following estimates: The normalized prediction error norm equals 0.0983 (-20.15 dB) for the first output and 0.0989 (-20.09 dB) for the second one. So the results are improved with the PO-MOESP algorithm. The same Monte Carlo simulations are performed as previously. Table 1 gives the means of the normalized error norms. Figure 4 shows the estimated poles. Their normalized MSE are indicated in Tab. 2. The estimates are unbiased but a slight increase of the variance is observed as compared to the results obtained with the MOESP algorithm. However, the normalized MSE is smaller, especially for a low SNR.

As shown in the histograms of the estimated order α in Fig. 5, the estimation is now unbiased. Moreover, the variance on the estimated parameter α is improved.

CONCLUSION

This paper focuses on the identification of continuous-time fractional state-space representation. Thanks to an adapted data filtering, we have shown that subspace-based algorithms can be used to estimate the state-space matrices. Results on the identification of a multivariable system with the well-known MOESP and PO-MOESP algorithms are given. The commensurate dif- ferentiation order is estimated by using nonlinear programming. Simulation examples have shown that the estimators are biased with the MOESP algorithm. However, the PO-MOESP algorithm eliminates this bias by using an instrumental variable. The limitation of this approach is that the design of the instruments requires an increased number of block rows i, i.e. an increase of the series of fractional low-pass filters Λ(s), which leads to an excessive computational cost. So, a future work could be to consider another instruments to solve this problem. 
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 1 Figure 1. OUTPUT DATA y AND OUTPUT OF THE ESTIMATED MODEL ŷ WITH MOESP (SNR=20 dB, i = 8 AND ω f = 6).
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 5 Figure 5. HISTOGRAMS OF THE ESTIMATED COMMENSURATE ORDER α WITH PO-MOESP.

  The normalized prediction error norm ŷy 2 / y 2 equals 0.1050 (-19.57 dB) for the first output and 0.1008 (-19.93 dB) for the second one.

	0012 0.1012 0.4997 -0.0923	, D =	1.3782 10 -3 -0.6763 10 -3 .

Table 1 .

 1 MEANS OF THE NORMALIZED ERROR NORMS.

		output SNR=20 dB SNR=15 dB SNR=10 dB
	MOESP	1 2	0.1026 (-19.78 dB) (-14.73 dB) (-9.56 dB) 0.1834 0.3327 0.1005 0.1797 0.3282
			(-19.95 dB) (-14.91 dB) (-9.68 dB)
	PO-MOESP	1 2	0.1000 (-20.00 dB) (-15.09 dB) (-10.35 dB) 0.1760 0.3038 0.0991 0.1745 0.3010 (-20.08 dB) (-15.16 dB) (-10.43 dB)

Table 2 .

 2 NORMALIZED MSE OF THE POLES.

SNR

MOESP PO-MOESP 20 dB (-0.4952 ± i 0.8875).10 -4 (0.4661 ± i 0.5006).10 -4

15 dB (-0.2530 ± i 0.6315).10 -3 (0.1634 ± i 0.1976).10 -3 10 dB (-0.1208 ± i 0.5740).10 -2 (0.4651 ± i 0.7347).10 -3

  Figure 3. HISTOGRAMS OF THE ESTIMATED COMMENSURATE ORDER α WITH MOESP.
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The discrete-time variables are denoted by x k and correspond to the time sampling with a constant sampling period T s of the continuous-time variable x(t): x k = x(kT s ).
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