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REACHABILITY AND MINIMAL TIMES FOR STATE CONSTRAINED
NONLINEAR PROBLEMS WITHOUT ANY CONTROLLABILITY

ASSUMPTION

OLIVIER BOKANOWSKI∗, NICOLAS FORCADEL† , AND HASNAA ZIDANI‡

Abstract. We consider a target problem for a nonlinear system under state constraints. We give a new
continuous level-set approach for characterizing the optimal times and the backward-reachability sets. This
approach leads to a characterization via a Hamilton-Jacobi equation, without assuming any controllability
assumption. We also treat the case of time-dependent state constraints, as well as a target problem for a
two-player game with state constraints. Our method gives a good framework for numerical approximations,
and some numerical illustrations are included in the paper.

Key words. Minimal time problem, Hamilton-Jacobi-Bellman equations, Level set method, Reacha-
bility set (Attainable set), State constraints, Two-player game.
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1. Introduction. This paper studies a simple way to characterize the reachable sets
and the optimal time to reach a target for a controlled non linear system where the state
is constrained to stay in a given domain. We are mainly interested in the case where no
“controllability” assumption is made.

More precisely, we consider a control system:

ẏ(s) = f(y(s), α(s)), for a.e. s ≥ 0, y(0) = x, (1.1)

where α : (0,+∞) → A is a measurable function, A is a given compact set in R
m (set of

admissible controls), and the dynamics f : R
d × A → R

d. In all the sequel, for any initial
position x, we denote by yα

x the solution of (1.1) associated to the control variable α.
Let C ⊂ R

d be a closed target and let K ⊂ R
d be a closed set of state constraints. For

a given time t ≥ 0, we consider the capture basin (backward reachable set) defined by:

CapC(t) := {x ∈ R
d | ∃α ∈ L∞((0, t);A), yα

x (τ) ∈ C and yα
x (θ) ∈ K, ∀θ ∈ [0, t]}. (1.2)

It is well known that the set CapC(τ) is linked to a control problem. Indeed, consider a
Lipschitz continuous function ϑ0 : R

d → R such that

ϑ0(x) ≤ 0 ⇐⇒ x ∈ C, (1.3)

and consider the control problem:

u(x, t) := inf{ϑ0(y
α
x (t)) | α ∈ L∞((0, t);A), yα

x (θ) ∈ K, ∀θ ∈ [0, t]}. (1.4)

Then it is not difficult to prove that

CapC(t) = {x ∈ R
d, u(x, t) ≤ 0}.

For the unconstrained case, several works have been devoted to the characterization
of the value function u as a continuous viscosity solution of a Hamilton-Jacobi equation
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[17, 4, 2]. In presence of state constraints, the continuity of this value function is no longer
satisfied, unless the dynamics satisfy a special controllability assumption on the boundary of
the state constraints. This assumption called “inward pointing qualification condition (IQ)”
was first introduced by Soner in [27]. It asks that at each point of K there exists a field of
the system pointing inward K. Clearly this condition ensures the viability of K (from any
initial condition in K, there exists an admissible trajectory which could stay for ever in K).
Under this assumption, the value function u is the unique continuous constrained viscosity
solution of a HJB equation with a suitable new boundary condition [26, 27, 20, 10, 23].

Unfortunately, in many control problems, the condition (IQ) is not satisfied and the
value function u could be discontinuous. In this framework, Frankowska introduced in
[18] another controllability assumption, called “outward pointing condition (OQ)”. Under
this assumption it is still possible to characterize the value function as the unique lower
semicontinuous (for short lsc) solution of an HJB equation.

In absence of any assumption of controllability, the function u is discontinuous and
its characterization becomes more complicate, see for instance [5, 29, 9] and the references
therein. In [11], the authors proved that the minimal time function for a state constrained
control problem, without any controllability assumption, is the smallest non-negative lsc
supersolution of an HJB equation. This characterization leads to a numerical algorithm
based on the viability approach [12, 25].

In this paper, we are interested in the case where no controllability assumption is as-
sumed. We show that it is possible to characterize the capture basin CapC by means of a
control problem whose value function is continuous (even Lipschitz continuous). For that,
we consider a continuous function g : [Rd × 0,+∞[→ R such that 1

g(x) ≤ 0 ⇐⇒ x ∈ K. (1.5)

Then we consider the new control problem:

ϑ(x, t) := inf{max(ϑ0(y
α
x (t)), max

θ∈[0,t]
g(yα

x (θ))) | α ∈ L∞((0, t);A)}. (1.6)

We prove that the value function ϑ is the unique continuous viscosity solution of the equation:

min
(
∂tϑ(x, t) + H(x,Dxϑ(x, t)), ϑ(x, t) − g(x))

)
= 0 for t ∈ [0,+∞[, x ∈ R

d, (1.7a)

ϑ(x, 0) = max(ϑ0(x), g(x)). (1.7b)

Moreover, the capture basin is given by CapC(t) = {x ∈ R
d | ϑ(x, t) ≤ 0}, and the

minimal time for a given x ∈ R
d to reach the target while remaining in the set of state con-

straints is obtained by: T (x) = inf{t ∈ [0,+∞[ | ϑ(x, t) ≤ 0}. This continuous setting opens
a large class of numerical schemes to be used for such problems (such as Semi-Lagrangian
or finite differences schemes).

A similar idea of introducing a control problem in the form of (1.6) is also introduced in
[21]. However, in that paper, the analysis is a little bit more complicated and did not lead
to a simple PDE for characterizing ϑ (the obstacle function is also assumed convex in [22]).
Also, control problems with maximum cost have already studied by Barron and coauthors.

The main feature of our paper is the use of (1.6) to deal easily with minimal time
problems with state constraints, and to determine the corresponding capture basins. This
idea generalizes in some sense the known level-set approach usually used for unconstrained
problems.

1By using the continuity of g we will also have g(x) = 0 if x ∈ ∂K.
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The paper is organised as follows. In Section 2, we introduce the problem and give the
main results. In this section we precise also the assumptions and fix the notations that will
be used in the sequel. The proof of the main results are given in Section 3. We then give some
extensions of the previous results. In Section 4, we shall discuss the case of time-dependent
state constraints of the form

yα
x (θ) ∈ Kθ, ∀θ ∈ [0, t],

where the sets (Kθ)θ≥0 can evolve in time (assuming some regularity of the map θ  Kθ).
The case of two-player games with state constraints will be also discussed in the appendix.
Numerical approximation is studied in Section 5, and an error estimate is derived. Finally,
we give some numerical illustrations in Section 6.

2. Main results . Let A be a nonempty compact set in R
m, for m ≥ 1. We consider

function f ∈ C(Rd ×A; Rd) satisfying the following assumptions: (throughout the paper | · |
is a given norm on R

d)
(H1) there exists Lf > 0, such that for every (x, x′, a) ∈ R

d × R
d ×A,

|f(x, a) − f(x′, a)| ≤ Lf |x − x′|, |f(x, a)| ≤ Lf .

(H2) For every y ∈ R
d, f(y,A) is a convex set of R

d.
Assumption (H2) is made just to simplify the presentation of the main ideas. All

the results of the paper can be extended to the case when (H2) does not hold. Also the
boundedness of f can be weakened, and only a linear growth property “|f(x, a)| ≤ Lf (1 +
|x|)” is needed.

Let C be a nonempty closed set of R
d (the ”target”), and let also K be a nonempty closed

set (of ”state constraints”).
Now, for t ≥ 0, we define the capture basin as the set of all initial points x from

which starts a trajectory yα
x (·) solution of (1.1), associated to an admissible control α ∈

L∞((0, t);A), and such that yα
x (t) ∈ C while yα

x (θ) belongs to the set of constraints K, for
every θ ∈ [0, t]:

CapC(t) :=

{
x ∈ R

d, ∃α ∈ L∞((0, t);A), yα
x (t) ∈ C and yα

x (θ) ∈ K, ∀θ ∈ [0, t]

}
,

In this problem, the trajectory should belongs to the (fixed) set of state-constraints K. In
all the sequel, we will use the following definition of admissible trajectory:

Definition 2.1. Let t be a fixed positive time. We will say that a solution of (1.1)
yα

x is admissible on [0, t], if it is associated to an admissible control α ∈ L∞((0,∞);A) and
yα

x (θ) belongs to K for every θ ∈ [0, t].

Remark 1. For every t ≥ 0, the set CapC(t) contains the initial positions which can
be steered to the target (exactly) at time t. Of course, we can also define the ”backward
reachable set”, which is the set of points from which one can reach the target C before time t:

R([0, t]) :=

{
x ∈ R

d, ∃τ ∈ [0, t], ∃α ∈ L∞((0, τ);A), yα
x (τ) ∈ C and yα

x (θ) ∈ K, ∀θ ∈ [0, τ ]

}
.

(R([0, t]))t≥0 is a family of increasing closed sets, with R([0, 0]) = C. If we consider the new

dynamics F : R
d × Ã → R

d by F (x, (α, β)) := βf(x, α) for (α, β) ∈ Ã = A × [0, 1]. Then,
we can remark that R([0, t]) is exactly the capture basin associated to the dynamics F (see
for instance [22]).
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In this paper, we propose to use the level set approach in order to characterize CapC(t)
as the negative region of a continuous function ϑ, i.e., we look for a continuous function such
that CapC(t) = {x, ϑ(x, t) ≤ 0} .

To do so, we first consider a Lipschitz continuous function ϑ0 : R
d → R such that

ϑ0(x) ≤ 0 ⇔ x ∈ C. (2.1)

For instance we may choose ϑ0(x) := dC(x) (where for any closed set K ⊂ R
d, dK(x)

denotes the signed distance function to K, i.e., with dK(x) := d(x,K) > 0 for x /∈ K, and

dK(x) := −d(x, Rd\K) < 0 for x ∈
◦

K), then ϑ0 is Lipschitz continuous (see for instance
[15]). In particular, we have CapC(0) = C = {x, ϑ0(x) ≤ 0}.

Consider the value function u associated to the Mayer problem with final cost ϑ0:

u(x, t) := inf{ϑ0(y
α
x (t)), α ∈ L∞((0, t);A), yα

x (θ) ∈ K, ∀θ ∈ [0, t]}. (2.2)

It is well known that the capture basin is characterized by

CapC(t) = {x, u(x, t) ≤ 0}.

However, function u is a value function of a state-constrained problem, and we are still faced
to the problem of characterizing this value function if no controllability assumption is made.
To overcome this difficulty, we consider another Lipschitz continuous function g : R

d → R

such that

g(x) ≤ 0 ⇔ x ∈ K. (2.3)

Note that such a function always exists since we can choose g(x) := dK(x).
We then consider the control problem:

ϑ(x, t) := inf

{
max

(
ϑ0(y

α
x (t)), max

θ∈[0,t]
g(yα

x (θ))

)
, α ∈ L∞((0, t);A)

}
. (2.4)

Problem (2.4) has no “explicit” state constraint. In fact, in this new setting, the term
maxθ∈[0,t] g(yα

x (θ)) plays a role of a penalization that a trajectory yα
x would pay if it violates

the state-constraints. We will see in Theorem 2, that the advantage of considering (2.4) is
that ϑ can be now characterized as the unique continuous solution of an HJB equation.

The central idea of the paper is that the function ϑ(·, t) and u(·, t) have same negative
regions and so we have the following characterisation of the capture basin:

Theorem 1 (Characterization of the capture basin). Assume (H1)-(H2). Let ϑ0 and
g be Lipschitz continuous functions defined respectively by (2.1) and (2.3). Let u and ϑ the
value functions defined respectively by (2.2) and (2.4). Then, for every t ≥ 0, we have:

(i) the capture basin is given by

CapC(t) = {x, u(x, t) ≤ 0} = {x, ϑ(x, t) ≤ 0}.

(ii) if ϑ(x, t) < 0 and
◦

K= {x, g(x) < 0}, then u(x, t) < 0, and there exists, on [0, t], an
admissible trajectory yα that does never touch the boundary ∂K.

Remark 2. Let us point out that the zero level sets of u and ϑ may not coincide. In
particular, when there is an optimal trajectory yα that touches the boundary ∂K, we can
have u(x, t) < 0 and ϑ(x, t) = 0 (hence the converse of Theorem 1(ii) is false). This is
illustrated in Example 1.
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Let us also point out that this theorem allows us to characterize the minimal time
function to reach the target from a point x ∈ R

d with an admissible trajectory yα
x solution

of (1.1) and satisfying yα
x (θ) ∈ K:

T (x) := inf{t ≥ 0, ∃α ∈ L∞((0, t);A), yα
x (t) ∈ C and yα

x (θ) ∈ K, ∀θ ∈ [0, t]}. (2.5)

Many works have been devoted to the regularity of the minimum time function T . When
K ≡ R

d, and under some local metric properties around the target, the function T is the
unique continuous viscosity solution of an HJB equation [2].

Here, without assuming any controllability assumption at the boundary of the target,
neither at the boundary of K, the function T may be discontinuous. Indeed, if, for x ∈ R

d,
no trajectory yα

x reaches the target C or if any trajectory leaves K before reaching the target,
we set T (x) = +∞. Nevertheless, the next proposition states that T is lower semicontinuous
and characterizes it by using the knowledge of the function ϑ.

Proposition 1. Assume (H1)-(H2). The minimal time function T : R
d 7−→ R

+ ∪+∞
is lsc. Moreover, we have:

T (x) = inf{t ≥ 0, x ∈ CapC(t)} = inf{t, ϑ(x, t) ≤ 0},

with ϑ the value function defined in (2.4), where ϑ0 and g are any Lipschitz functions
satisfying respectively (2.1) and (2.3).

Remark 3. The idea of using an auxiliary value function to define the minimal time
function is not new by itself. For instance, we refer to [6] when the minimal time function
for an unconstrained control problem is obtained by using a new function G(x, t) which gives
the minimum distance that an optimal trajectory, starting from x, comes to the target over
the time interval [0, t]. On the other hand, the use of a level-set approach is a standard way
to determine the minimal time function of unconstrained control problems [17].

In our work, we generalize this point of view to the case when the time control problem is
in presence of state constraints. Our formulation allows also to obtain the capture basins.

As mentioned before, the function ϑ can be characterized as the unique solution of a
Hamilton-Jacobi equation. More precisely, considering the Hamiltonian

H(x, p) := max
α∈A

(
− f(x, α) · p

)
, (2.6)

we have

Theorem 2. Assume (H1)-(H2), and that ϑ0 and g are Lipschitz continuous. Then ϑ
is the unique continuous viscosity solution (see Definition 1) of the variational inequation
(obstacle problem)

min(∂tϑ + H(x,∇ϑ), ϑ − g(x)) = 0, t ≥ 0, x ∈ R
d, (2.7a)

ϑ(x, 0) = max(ϑ0(x), g(x)), x ∈ R
d. (2.7b)

Remark 4. As function ϑ is associated to a control problem without state constraints,
the statement of the above theorem remains true if assumption (H2) is not satisfied. Here,
we assume this assumption just to simplify the proof we give in Section 3. Also, it is known
that when (H2) does not hold, lower semicontinuity of T is no-longer true. In this case, the
result of Proposition 1 is satisfied by the lower semicontinuous envelope T∗ (see [2]).
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Remark 5. In practice, the target C is a subset of K and in this case, it is always
possible to choose ϑ0 and g in such a way that ϑ0 ≥ g.

Inequalities such (2.7) appear also in the framework of exit time problems where the
obstacle g represent the exit cost that should be paid for exit. Here, g is a “fictitious cost”
that a target would pay if it leaves K.

Remark 6. From a theoretical point of view, the choice of g is not important, and g
can be any Lipschitz function satisfying (2.3). Of course, the value function ϑ is dependent
on g, while the set {x ∈ R

d, ϑ(x, t) ≤ 0} does not depend on g.
Let us also point out that the obstacle term in (2.7) comes from the presence of the

sup-norm maxθ∈[0,t] g(yα
x (θ)) in the cost function which defined ϑ (see (2.4)). We refer to

the works of Barron and Ishii [7] and the references therein for optimal control problems
with sup-norm cost functions.

3. Proofs of the main results.

Proof of Theorem 1.
(i) Assume that u(x, t) ≤ 0. Then by definition of u, there exists an admissible trajec-

tory yα
x such that

ϑ0(y
α
x (t)) ≤ 0, and yα

x (θ) ∈ K for every θ ∈ [0, t].

Hence, maxθ∈[0,t] g(yα
x (θ)) ≤ 0, and we have:

ϑ(x, t) ≤ max(ϑ0(y
α
x (t)), max

θ∈[0,t]
g(yα

x (θ))) ≤ 0.

Conversely, assume that ϑ(x, t) ≤ 0. Then there exists a trajectory yα
x such that

0 ≥ ϑ(x, t) = max(ϑ0(y
α
x (t)), max

θ∈[0,t]
g(yα

x (θ))).

Thus, for all θ ∈ [0, t], g(yα
x (θ)) ≤ 0, i.e. yα

x (θ) ∈ K, and so yα
x is an admissible

trajectory. Moreover, we have ϑ0(y
α
x (t)) ≤ 0, hence

u(x, t) ≤ ϑ0(y
α
x (t)) ≤ 0.

(ii) The proof uses similar arguments as in (i).

The following example show that the converse of Theorem 1 (ii) is false in general, i.e.
we can have ϑ(x, t) = 0 and u(x, t) < 0.

Example 1. Consider f = (1, 1)T, the target C = [1, 2]2, the constraint set K :=

R
2\(] − 1, 0[×]0, 1[), and x := (−1,−1). We assume that ϑ0 < 0 on the interior

◦

C of C.
In this example, we do not have any control variable and the only possible trajectory

starting from x is the one defined by: yx(t) = x +

(
1
1

)
t. At time t = 2.5 we have yx(t) =

(1.5, 1.5)T ∈
◦

C and then u(x, t) = ϑ0(yx(t)) < 0. On the other hand, since yx(1) = (0, 0) ∈
∂K, we have maxθ∈[0,t] g(yx(θ)) = 0, thus ϑ(x, t) = 0 (see Fig. 3.1).

We now give, for seek of completeness, the proof for Proposition 1.

Proof of Proposition 1. The lower semicontinuity of T has been already proved in [11].

Let T̃ (x) := inf{t ≥ 0, x ∈ CapC(t)}. The fact that T̃ (x) = inf{t, ϑ(x, t) ≤ 0} =
inf{t, u(x, t) ≤ 0} is a consequence of Theorem 1(i) and of the definition of CapC(t). It

remains just to prove that T (x) = T̃ (x).
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x

x2

C

x1

f

yx(1)

yx(2.5)

Kc

Fig. 3.1. The target C, the state-constraints set K, and the trajectory yx.

Let t := T (x). Since t is the minimal time, by using compacity arguments as in [25],
there exists an admissible trajectory yα

x , such that yα
x (t) ∈ C. Hence ϑ(x, t) ≤ ϑ0(y

α
x (t)) ≤ 0,

and thus T̃ (x) ≤ t = T (x).

On the other hand, let t̃ := T̃ (x). For any n ≥ 1, there exists some tn ∈ [t̃, t̃ + 1
n ] such

that ϑ(x, tn) ≤ 0. We can consider an associated optimal trajectory yn := yαn
x such that

yαn
x is admissible and yαn

x (tn) ∈ C. By using again a compacity argument, and since K and
C are closed subsets, we can extract a convergent subsequence and an admissible trajectory
y, such that yn → y uniformly on [0, t̃], and y(t̃) ∈ C. Hence T (x) ≤ t̃, which concludes the
proof.

Before giving the proof of Theorem 2, we need the following dynamic programming
principle (DPP) for ϑ

Lemma 1 (Dynamic Programming Principle). The function ϑ is characterized by

(i) for all t ≥ 0 and τ ≥ 0, for all x ∈ R
d,

ϑ(x, t + τ) = inf

{
max

(
ϑ(yα

x (τ), t), max
θ∈[0,τ ]

g(yα
x (θ))

)
, α ∈ L∞((0, τ);A)

}
,

(ii) ϑ(x, 0) = max(ϑ0(x), g(x)).

Proof. One can refer for instance to Barron and Ishii [7, Proposition 3.1].

The first consequence of the above lemma is the Lipschitz continuity of the value func-
tion ϑ:

Proposition 2. Assume (H1)-(H2). Let ϑ0 and g are Lipschitz continuous functions
satisfying (2.1) and (2.3). Let ϑ the value function defined as in (2.4). For every T > 0, ϑ
is Lipschitz continuous on R

d × [0, T ].

Proof. Let T > 0 and let x, x′ ∈ R
d and t ∈ [0,+∞[. By using the definition of ϑ and

the simple inequalities:

max(A,B)−max(C,D) ≤ max(A−C,B−D), and inf Aα−inf Bα ≤ sup(Aα−Bα) (3.1)
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we get:

|ϑ(x, t) − ϑ(x′, t)| ≤ sup
α(·)∈A

max

(∣∣∣ϑ0(y
α
x (t)) − ϑ0(y

α
x′(t))

∣∣∣, max
θ∈[0,t]

∣∣∣g(yα
x (θ)) − g(yα

x′(θ))
∣∣∣
)

,

≤ sup
α(·)∈A

(
L0‖yα

x (t) − yα
x′(t)‖, Lg max

θ∈[0,t]
‖yα

x (θ) − yα
x′(θ)‖

)

where L0 and Lg denotes respectively the Lipschitz constant of ϑ0 and g. By assumption
(H1), we know that |yα

x (θ) − yα
x′(θ)| ≤ eLf θ|x − x′|. Then we conclude that:

|ϑ(x, t) − ϑ(x′, t)| ≤ max(L0, Lg)e
Lf T |x − x′|, (3.2)

for any x, x′ ∈ R
d and any t ∈ [0, T ] for T ≥ 0. Now, let x ∈ R

d, and t, h ≥ 0. Remarking
that ϑ(x, t) ≥ g(x), we deduce from Lemma 1 that

|ϑ(x, t + h) − ϑ(x, t)| =

∣∣∣∣inf
α

max
(
ϑ(yα

x (h), t), max
θ∈[0,h]

g(yα
x (θ))

)
− max

(
ϑ(x, t), g(x)

)∣∣∣∣

≤ sup
α

max

(∣∣ϑ(yα
x (h), t) − ϑ(x, t)

∣∣,
∣∣ max

θ∈[0,h]
g(yα

x (θ)) − g(x)
∣∣
)

≤ Lf max(max(L0, Lg)e
Lf T , Lg)h

where we have used (3.2) and assumption (H1). This completes the proof.

Now, we recall the definition of viscosity solution for (2.7). Let us first recall the defi-
nition of the upper semi-continuous (usc for short) envelope and the lower semi-continuous
(lsc for short) envelope of a locally bounded function u:

u∗(x, t) = lim sup
s→t,y→x

u(y, s) and u∗(x, t) = lim inf
s→t,y→x

u(y, s).

Definition 1 (Viscosity solution). An upper semi-continuous (resp. lower semi-
continuous) function ϑ : R

d × R
+ → R is a viscosity subsolution (resp. supersolution) of

(2.7) if ϑ(x, 0) ≤ ϑ0(x) in R
d (resp. ϑ(x, 0) ≥ ϑ0(x)) and for any (x, t) ∈ R

d × (0,∞) and
any test function φ ∈ C1(Rd × R

+) such that ϑ− φ attains a maximum (resp. a minimum)
at the point (x, t) ∈ R

d × (0,+∞), then we have

min(∂tφ + H(x,∇φ), ϑ − g(t, x)) ≤ 0

(resp. min(∂tφ + H(x,∇φ), ϑ − g(t, x)) ≥ 0) .

A continuous function ϑ is a viscosity solution of (2.7) if ϑ is a viscosity subsolution and a
viscosity supersolution of (2.7).

We now give the proof of Theorem 2:

Proof of Theorem 2. The proof can be deduced from [7, Proposition 2.6]. Here, we give
the main lines of a direct proof for completeness. We first show that ϑ is a solution of (2.7).
The fact that ϑ satisfies the initial condition is a direct consequence of Lemma 1(ii).

Let us check the supersolution property of ϑ. By Lemma 1(i), we get that for any τ ≥ 0

ϑ(x, t + τ) ≥ inf
α

ϑ(yα
x (τ), t).
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Hence, with classical arguments, we can obtain

∂tϑ + H(x,∇ϑ) ≥ 0

in the viscosity sense. Moreover, by definition of ϑ, for every (x, t) ∈ R
d × R

+, we have

ϑ(x, t) ≥ inf
α

max
θ∈[0,t]

g(yα
x (θ)) ≥ g(x).

Combining this two inequalities, we get

min(∂tϑ + H(x,∇ϑ), ϑ(x, t) − g(x)) ≥ 0

in the viscosity sense, i.e., ϑ is a supersolution of (2.7).
Let us now prove that ϑ is a subsolution. Let x ∈ R

d and t > 0. If ϑ(x, t) ≤ g(x), it is
obvious that ϑ satisfies:

min(∂tϑ + H(x,∇ϑ), ϑ(x, t) − g(x)) ≤ 0.

Now, assume that ϑ(x, t) > g(x). By continuity of g and ϑ, there exists some τ > 0 such
that ϑ(yα

x (θ), t) > g(yα
x (θ)) for all θ ∈ [0, τ ] (since yα

x (θ) will stay in a neighbourhood of x
which is controlled uniformly with respect to α). Hence, by using Lemma 1(i), we get that

ϑ(x, t + h) = inf
α

ϑ(yα
x (h), t), for any 0 ≤ h ≤ τ.

We then deduce by classical arguments [2] that ∂tϑ(x, t)+H(x,∇ϑ(x, t)) ≤ 0 in the viscosity
sense. Therefore, ϑ is a viscosity subsolution of (2.7).

The fact that ϑ is the unique solution of (2.7) follows from the comparison principle for
(2.7) (which is classical, see for instance [4]), and the fact that the Hamiltonian function H
satisfies

|H(x2, p) − H(x1, p)| ≤ C(1 + |p|) |x2 − x1|, (3.3a)

|H(x, p2) − H(x, p1)| ≤ C|p2 − p1|, (3.3b)

for some constant C ≥ 0 and for all xi, pi, x and p in R
d.

4. Time-dependant state constraints. Let (Kθ)θ≥0 be a family of closed subsets of
R

d. We assume that:
(H3) the set-valued application θ  Kθ is Lipschitz continuous2 on [0,+∞[.

For x ∈ K0, we consider the trajectories solution of (1.1) and satisfying the time-
dependant constraints:

yα
x (θ) ∈ Kθ, ∀θ ∈ [0, t]. (4.1)

An example of such a situation, is the case where we want to avoid a mobile obstacle
located at every θ ≥ 0 at the open subset Oθ, while remaining in a given closed set K ⊂ R

d.
In this case, we should set Kθ := K \ Oθ.

Now, let us define the minimal time function :

T ♯(x) = min{t ≥ 0 | ∃α ∈ L∞(0, t;A), yα
x (t) ∈ C and yα

x (θ) ∈ Kθ for θ ∈ [0, t]}.

2That is, ∃C ≥ 0, ∀θ, θ′ ∈ [0, +∞[ dH(Kθ, Kθ′ ) ≤ C|θ − θ′|, where dH is the Hausdorff distance.
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In this setting, the function T ♯ can not be characterized by an HJB equation. The reason for
that comes from the time-dependency of the state-constraints. Actually, function T ♯ even
does not satisfy the dynamic programming principle (this is also the case of the minimal time
function of non-autonomous systems, see [8]). Also, here we cannot use the ideas developed
in the previous sections to determine the capture basins. Nevertheless, we shall see that a
problem similar to (2.4) can be used to determine the reachable sets.

Let D be a given nonempty closed set of R
d (D can be a singleton). For t ≥ 0, we

consider the attainable set (or, reachability region) starting from D , defined as the set of
points that can be reached at time t by a trajectory starting from D and satisfying the
time-dependant state constraint (4.1), i.e.

AttD(t) :=

{
yα

x (t) ∈ R
d, x ∈ D, ∃α ∈ L∞((0, t);A), yα

x (θ) ∈ Kθ, ∀θ ∈ [0, t]

}
.

As in Section 2, we consider a Lipschitz continuous function g♯ : [0,+∞[×R
d such that,

∀θ ≥ 0,

g♯(x, θ) ≤ 0 ⇔ x ∈ Kθ. (4.2)

Such a function always exists since we can choose g♯(x, θ) := dKθ
(x) (note that by assumption

(H3), the sign distance function to Kθ is also Lipschitz continuous in both variables (x, θ)).

We also consider ϑ♯
0 : R

d → R such that

ϑ♯
0(x) ≤ 0 ⇐⇒ x ∈ D. (4.3)

We then consider the following control problem:

ϑ♯(x, t) := inf

{
max

(
ϑ♯

0(y
α
x (t)), max

θ∈[0,t]
g♯(yα

x (θ), θ)

)
, α ∈ L∞((0, t);A)

}
. (4.4)

Similar arguments, as in Section 2, lead to:
Theorem 3. Let t ≥ 0. The attainable set is characterized by

AttD(t) =
{
x, ϑ♯(x, t) ≤ 0

}
, ∀t ≥ 0.

Theorem 4. We assume (H1)-(H3). Let ϑ♯
0 and g♯ be Lipschitz continuous functions

satisfying respectively (4.3) and (4.2). Let H♯ be defined by H♯(x, p) := maxα∈A f(x, α) · p.
Then ϑ♯ is the unique continuous viscosity solution of

min(∂tϑ + H♯(x,∇ϑ), ϑ − g♯(x, t)) = 0, t ≥ 0, x ∈ R
d, (4.5a)

ϑ(x, 0) = max(ϑ♯
0(x), g♯(x, 0)), x ∈ R

d. (4.5b)

Remark 7. It is worth to remark that the HJB inequality (4.5) (with a time-dependant
obstacle function g♯) allows to determine the reachable sets and not the capture basins.

Remark 8. For x ∈ K0, if we want to know the minimal time needed to reach the target
C, starting from x and satisfying the state-constraints (4.1), we should consider D = {x}
and set ϑ♯

0(y) := d(x, y) (this is the signed distance to the set D := {x}). Then let ϑ♯ be the
solution of (4.5) and where g♯ represents the time-dependent state constraints. In that case,
the set of points that can be reached at time t and starting from x is

Att{x}(t) := {x, ϑ♯(x, t) ≤ 0}
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(which also identical to {x, ϑ♯(x, t) = 0} in this specific case). Finally we can recover the
minimal time to reach C as

T (x) := inf
{
t ≥ 0, Att{x}(t) ∩ C 6= ∅

}
.

5. Numerical scheme and error estimates. In this section we propose a finite
difference scheme to approximate the solution u of (2.7) or (4.5). In this section H :
R

d × R
d → R is only assumed to be a given continuous function satisfying (3.3).

For given mesh sizes ∆x > 0, ∆t > 0, we define

G := {I∆x, I ∈ Z
d}

where NT is the integer part of T/∆t. The discrete running point is (xI , tn) with xI =
I∆x, tn = n∆t. The approximation of the solution ϑ at the node (xI , tn) is written
indifferently as v(xI , tn) or vn

I according to whether we view it as a function defined on the
lattice or as a sequence.

Now, given a numerical Hamiltonian H : R
d ×R

d ×R
d → R (which will be a consistent

approximation of the Hamiltonian H), we consider the following scheme





min

(
vn+1

I − vn
I

∆t
+ H(xI ,D

+vn(xI),D
−vn(xI)), vn+1

I − g(xI , tn+1)

)
= 0

v0
I = ũ0(xI)

(5.1)

where ũ0 is an approximation of ϑ0 and

D+vn(xI) = (D+
x1

vn(xI), . . . ,D
+
xd

vn(xI)), D−vn(xI) = (D−
x1

vn(xI), . . . ,D
−
xd

vn(xI))

are the discrete space gradient of the function vn at point xI defined for a general function
w by

D±
xi

w(xI) = ±w(xIi,±) − w(xI)

∆x
, (5.2)

with the notation Ik,± = (i1, . . . , ik−1, ik ± 1, ik+1, . . . , id).
We make the following assumptions on the numerical Hamiltonian H:

(H4) There exists C1 > 0 such that for all xI ∈ G, (P+, P−) ∈ R
d × R

d,

|H(xI , P
+, P−)| ≤ C1(|P+|∞ + |P−|∞)

(H5) There exists C2 > 0 such that for all xI ∈ G, P+, P−, Q+, Q− ∈ R
d,

|H(xI , P
+, P−) −H(xI , Q

+, Q−)| ≤ C2(|P+ − Q+| + |P− − Q−|).

(H6) H = H(xI , P
+
1 , . . . , P+

d , P−
1 , . . . , P−

d ) satisfies the following monotonicity condition,
a.e. (x, P+, P−) ∈ R

d × R
d × R

d

∂H
∂P+

i

(x, P+, P−) ≤ 0 and
∂H
∂P−

i

(x, P+, P−) ≥ 0.

(H7) (consistency) There exists C3 > 0 such that for all xI ∈ G, x ∈ R
d and P ∈ R

d,

|H(xI , P, P ) − H(x, P )| ≤ C3|xI − x|.
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In the next section we will give some examples of numerical schemes satisfying (H4) −
(H7).

Remark 9. It is well known that the monotony assumption (H6), together with the
following CFL condition:

∆t

∆x

d∑

i=1

(∣∣∣∣
∂H
∂P−

i

(x, P+, P−)

∣∣∣∣ +

∣∣∣∣
∂H
∂P+

i

(x, P+, P−)

∣∣∣∣
)

≤ 1, a.e. (x, P+, P−) ∈ R
d × R

d × R
d,

(5.3)

ensures that the scheme





vn+1
I − vn

I

∆t
+ H(xI ,D

+vn(xI),D
−vn(xI)) = 0

v0
I = ũ0(xI)

(5.4)

is monotone (i.e, if v is a subsolution of (5.4) and if w is a supersolution of (5.4) and such
that vn ≤ wn, then vn+1 ≤ wn+1).

Furthermore by (H5), we have | ∂H
∂P±

i

| ≤ C2 and thus the CFL condition is satisfied as

soon as ∆t
∆x ≤ 1/(2dC2).

Remark 10. Equation (5.1) implies also that

vn+1
I = max

(
vn

I − ∆tH(xI ,D
+vn(xI),D

−vn(xI)), g(xI , tn+1)

)
.

We deduce, assuming (H6) and the CFL condition (5.3), that the scheme (5.1) is monotone.
We then have the following error estimate:
Theorem 5. (Discrete-continuous error estimate) Assume (H4)-(H7) and that

ϑ0 and g are Lipschitz continuous and bounded. Let T > 0. There exists a constant K > 0
(depending only on d, C1, C2, C3 ‖Dϑ0‖∞, ‖Dg‖∞, ‖ϑ0‖∞, ‖g‖∞ and ‖∂H

∂p ‖∞) such that

if we choose ∆x and ∆t sufficiently small, such that the CFL condition (5.3) holds and

(√
T (∆x + ∆t)

1/2
+ sup

G
|ϑ0 − ũ0|

)
≤ 1

K
,

then the error between the solution ϑ of (2.7) (with a Hamiltonian satisfying (3.3)) and the
discrete solution v of the finite difference scheme (5.1) satisfies

sup
0≤n≤NT

sup
G

|ϑn − vn| ≤ K

(
max(T,

√
T ) (∆x + ∆t)

1/2
+ sup

G
|ϑ0 − ũ0|

)
.

Remark 11. The fact that ϑ0 and g are bounded is not a restriction since we can
truncate them and this will not change the set {x, ϑ(x, t) ≤ 0}.
Proof. The proof is an adaptation of the one of Crandall and Lions [14], revisited by Alvarez
et al. [1]. Nevertheless, for the reader’s convenience, we give the main steps to show how
to take into account the obstacle. The main idea of the proof is the same as the one of
comparison principles, i.e. to consider the maximum of u− v, to duplicate the variable and
to use the viscosity inequalities to get the result. We consider the case when T ≤ 1 and
assume also that ∆x + ∆t ≤ 1.
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We first assume that

ϑ0(xI) ≥ ũ0(xI), for all I ∈ Z
d. (5.5)

and we set

µ0 := sup
G

(ϑ0 − ũ0) ≥ 0. (5.6)

We denote throughout by K various constant depending only on d, C1, C2, C3 ‖Dϑ0‖∞,
‖Dg‖∞, ‖ϑ0‖∞, ‖g‖∞ and ‖∂H

∂p ‖∞. Since ϑ0 and g are bounded, we deduce that ϑ is
bounded.

The proof is splitted in three steps.
Step 1: Estimate on v. We have the following estimate for the discrete solution

−Ktn − µ0 ≤ v(xI , tn) − ϑ0(xI) ≤ Ktn + µ0. (5.7)

To show this, it suffice to consider w±(xI , tn) = ϑ0(xI)±Ktn±µ0 and to show that w− (resp.
w+) is a subsolution (resp. a supersolution) of the scheme for K large enough. The result
will then follow by the monotonicity of the scheme. Let us prove that w+ is a supersolution.
In one way, we have

w+,n+1
I − w+,n

I

∆t
+ H(xI ,D

+w+,n(xI),D
−w+,n(xI)) = K + H(xI ,D

+ϑ0(xI),D
−ϑ0(xI))

≥ K − 2C1‖Dϑ0‖∞
≥ 0

for K ≥ 2C1‖Dϑ0‖∞ and where we have used assumption (H4) for the second line.
In the other way, we also have

w+(xI , tn+1) − g(xI , tn+1) = ϑ0(xI) + Ktn+1 + µ0 − g(xI , tn+1)

≥ ϑ0(xI) − g(xI , 0) + Ktn+1 + g(0, xI) − g(xI , tn+1)

≥ tn+1(K − ‖Dg‖∞)

≥ 0

for K ≥ ‖Dg‖∞.
From the two previous inequalities, we deduce that w+ is a supersolution of the scheme.

Remarking moreover that

w(xI , 0) = ϑ0 + µ0 ≥ v0(xI)

we conclude using the monotonicity of the scheme that

vn
I ≤ wn

I for all (I, n) ∈ Z
d × {0, . . . , NT }

i.e.

v(xI , tn) ≤ ϑ0(xI) + Ktn + µ0.

To obtain the reverse inequality, we show in a similar way that

w−,n+1
I − w−,n

I

∆t
+ H(xI ,D

−w−,n(xI),D
−w−,n(xI)) ≤ 0,
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which implies that w− is a subsolution of the scheme, and obtain the desired result.

Before continuing the proof, we need a few notations. We put

µ := sup
G

(ϑ − v).

We want to bound from above µ by µ0 plus a constant. We assume that µ > 0 (otherwise
the estimate is trivial). For every 0 < α ≤ 1, 0 < ε ≤ 1 and 0 < η ≤ 1, we set

Mα,ε
η := sup

RN×G×(0,T )×{0,...,tNT
}

Ψα,ε
η (x, xI , t, tn)

with

Ψα,ε
η (x, xI , t, tn) := ϑ(x, t) − v(xI , tn) − |x − xI |2

2ε
− |t − tn|2

2ε
− ηt − α(|x|2 + |xI |2).

We shall drop the superscripts and subscripts on Ψ if there is no ambiguity. We remark that
for η and α small enough, we have Mα,ε

η ≥ µ
2 .

Since ϑ and v are bounded (using Step 1 for v), we then deduce that Ψ achieves its
maximum at some point that we denote by (x, xI , t, tn).

Step 2: Estimates for the maximum point of Ψ. Here we show that there exists
a constant K > 0 such that the following estimates hold:

α(|x|2 + |xI |2) ≤ K (5.8)

and

|x − xI | ≤ Kε and |t − tn| ≤ Kε. (5.9)

To prove (5.8), it suffices to use the inequality Ψ(x, xI , t, tn) ≥ Ψ(0, 0, 0, 0) ≥ 0. Indeed, this
implies

α(|x|2 + |xI |2) ≤ ϑ(x, t) − v(xI , tn) ≤ K.

To prove the first estimate of (5.9), we use the inequality Ψ(x, xI , t, tn) ≥ Ψ(xI , xI , t, tn)
to get

|x − xI |2
2ε

≤ ϑ(xI , t) − ϑ(x, t) + α(|xI |2 − |x|2)
≤ |x − xI |(α(|xI | + |x|) + K)

≤ K|x − xI |

which implies the result.
The last inequality is obtained in the same way by using the inequality Ψ(x, xI , t, tn) ≥

Ψ(x, xI , tn, tn).

Step 3 : Upper bound of µ. First, we claim that for η large enough, we have either
t = 0, or tn = 0 or

µ ≤ K
√

T
√

∆x + ∆t.
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We argue by contradiction. We suppose that the function (y, s) 7→ Ψ(y, xI , s, tn) achieves
its maximum at a point (x, t) of R

N × (0, T ). Then, using the fact that ϑ is a subsolution
of (2.7), we deduce that

min (pt + H(x, px + 2αx), ϑ(x, t) − g(x, t)) ≤ 0

where

pt =
t − tn

ε
and px =

x − xI

ε
.

We now distinguish two cases.

Case 1: ϑ(x, t) ≤ g(x, t). Since v is a solution of the scheme, we also have

v(xI , tn) ≥ g(xI , tn).

We then deduce that

µ

2
≤ ϑ(x, t) − v(xI , tn) ≤ K(|x − xI | + |t − tn|) ≤ Kε.

Choosing ε ≤
√

T
√

∆x + ∆t, we get a contradiction.

Case 2: pt + H(x, px + 2αx) ≤ 0. In this case, using the fact that

vn+1
I − vn

I

∆t
+ H(xI ,D

+vn(xI),D
−vn(xI)) ≥ 0,

we deduce using the classical arguments of the proof of Crandall and Lions that

pt +
∆t

2ε
≥ −H

(
xI , px − ∆x

2ε
− α(2xI + ∆x), px +

∆x

2ε
− α(2xI − ∆x)

)
. (5.10)

Subtracting (5.10) to the inequation satisfied by ϑ, we get

η ≤ ∆t

2ε
+ H

(
xI , px − ∆x

2ε
− α(2xI + ∆x), px +

∆x

2ε
− α(2xI − ∆x)

)
− H(x, px + 2αx)

≤ ∆t

2ε
+ 2Kα|x| + H(xI , px, px) − H(x, px) + 2C2

(
∆x

2ε
+ 2α|xI | + α∆x

)

≤ K
∆x + ∆t

2ε
+ K

√
α + C3|xI − x|

≤ K
∆x + ∆t

2ε
+ K

√
α + Kε

where we have used the Lipschitz continuity of H in p, assumption (H5) for the second line,
assumption (H7) and (5.8) for the third one and (5.9) for the last one.

We then deduce that for 1 ≥ η ≥ η∗ := K ∆x+∆t
2ε + K

√
α + Kε, we have either t = 0 or

tn = 0. If t = 0, then we have

Mα,ε
η = Ψ(x, xI , 0, tn) ≤ ϑ0(x) − v(xI , tn)

≤ Ktn + µ0 + K|x − xI |
≤ Kε + µ0,
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where we have used Step 1, the Lipschitz continuity of ϑ and (5.9). In the same way, if
tn = 0, we get

Mα,ε
η = Ψ(x, xI , t, 0) ≤ ϑ(x, t) − v(0, xI)

≤ K(|x − xI | + |t|) + µ0

≤ Kε + µ0.

We obtain that for all (sn, yI) ∈ {0, . . . , NT ∆t} × G, we have

ϑ(sn, yI) − v(sn, yI) − K

(
∆x + ∆t

2ε
+
√

α + ε

)
T − 2α|yI |2 ≤ Mα,ε

η ≤ Kε + µ0.

Sending α to 0, taking the supremum over (yI , sn) ∈ G × {0, . . . , NT ∆t} and choosing
ε =

√
T
√

∆x + ∆t, we finally get

sup
G×{0,...,NT ∆t}

ϑ(sn, yI) − v(sn, yI) = µ ≤ K
√

T
√

∆x + ∆t + µ0

provided that ∆x+∆t ≤ 1
K2 , T ≤ 1 and 0 ≤ µ0 ≤ 1. Using the same arguments as in Alvarez

et al. [1, Theorem 2], we easily deduce the result in the general case when −1 ≤ µ0 ≤ 1.
In order to conclude the proof in the case T ≥ 1, we remark that since ‖Dϑ‖∞ and

‖ϑ‖∞ do not depend on time, we can iterate the process and get a linear estimate in T , i.e

sup
GT

|ϑ − v| ≤ K

(
T (∆x + ∆t)

1/2
+ sup

G
|ϑ0 − ũ0|

)
.

This ends the proof of Theorem 5.

6. Numerical Simulations. We keep the notations of the previous Section. We now
apply finite difference schemes for solving equation (2.7). We consider here the case of
dimension d = 2, and the Hamiltonian defined by (2.6). We denote f = (f1, f2) the two
components of the dynamics f .

In order to ensure convergence of the scheme in the viscosity framework, we need
monotony properties (assumption (H6)). A basic standard finite difference scheme is ob-
tained with

H(x, P+, P−) :=

max
α∈A

(
max(0, f1(x, α))P−

1 + min(0, f1(x, α))P+
1 + max(0, f2(x, α))P−

2 + min(0, f2(x, α))P+
2

)
.

Then the following scheme

vn+1
I = max

(
vn

I − ∆tH(xj ,D
+vn(xI),D

−vn(xI)), g(xI)

)
, (6.1)

is consistent with (2.7) and satisfies assumptions (H4)-(H7). The CFL condition, which
ensures the monotony of the scheme, is then given by

∆t

∆x
max

x
max

α

(
|f1(x, α)| + |f2(x, α)|

)
≤ 1.

An other standard scheme is obtained by

vn+1
I = max

(
vn

I − ∆tHLF (xj ,D
+vn(xI),D

−vn(xI)), g(xI)

)
. (6.2)
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where HLF is the Lax-Friedrich (LF) Hamiltonian:

HLF (x, P+, P−) := H(x,
P+ + P−

2
) − C1(x)

2
(P+

1 − P−
1 ) − C2(x)

2
(P+

2 − P−
2 )

and where Ci(x) are chosen such that maxP | ∂H
∂Pi

(x, P )| ≤ Ci(x). Then, under the CFL

condition ∆t
∆x maxx(C1(x) + C2(x)) ≤ 1, the scheme is monotone and satisfies (H4)-(H7).

Although monotone schemes ensure convergence properties as well as error estimates,
they are at most of first order [19]. This can lead to numerical diffusion problems as time
increases. One way to diminish this diffusion problem is to use higher order ENO schemes as
proposed by Osher and Shu [24]. Instead of (6.2), the scheme can be formulated as follows:

vn+1
I = max

(
vn

I − ∆tHLF (xj , D̃v
+

n (xI), D̃v
−

n (xI)), g(xI)

)
, (6.3)

where D̃v
±

n (xI) correspond to higher order numerical approximations of the derivatives
∂v

∂xi
(this can also be coupled with a Runge-Kutta time discretization scheme). The scheme (6.3)
is not necessarily monotone, and its convergence is not proved. Its relevance is proved in
many numerical experiments (see [24] and Example 1 below).

In our illustrations, except otherwise precised, we shall use a second order ENO scheme
[24], denoted ”ENO2”.

Example 1: (Backward reachable set with obstacle.) In this example we compute the
backward reachable set for the target C which is the ball centered at (1, 1) of radius 0.5, and
with a rotation-type dynamics: f(x, y) = 2π(−y, x). We also consider an obstacle which is
the square centered in (−0.5, 0) and of length 0.8.

In Fig. 6.1, we use the first-order LF scheme, and the number of mesh points (Mx×My)
is either 1002 or 2002 We observe a numerical convergence towards the exact front, but at
a slow rate. In Fig. 6.2, we use the second-order ENO2 scheme, with 1002 mesh points. We
see that the result is greatly improved.
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1
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 Exact
 obstacle
 target

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 Scheme:LF
 Exact
 obstacle
 target

Mx = My = 100 Mx = My = 200

Fig. 6.1. (Example 1) Backward reachable set, t = 0.75, with first-order LF scheme.

Remark 12. From a numerical point of view, it is also possible to consider that the
dynamics vanishes on the obstacle, thus replacing the dynamics f by f1K and solving the
equation

ut + max
α

(−f(x, α)1K(x) · ∇u) = 0. (6.4)
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0

0.5

1
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2

Mx = My = 100 Isovalues

Fig. 6.2. (Example 1) Backward reachable set, t = 0.75, with second-order ENO2 scheme (left), and
isovalues (right).

In Fig 6.3, we have compared this approach, using the dynamics f1K instead of f , with
our approach on Example 1 and with the second order ENO2 scheme. The obstacle is now
the square centered in (−0.5, 0.3) and of length 1.0. We observe that when the backward
reachable region becomes narrow, the numerical results based on (6.4) are less accurate than
the ones obtained by solving (2.7). The problem comes from the fact that setting f = 0 on
the obstacles creates discontinuities in the corresponding solution u, and the scheme may
not behave very well in this case.
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(a) Solving Eq. (6.4) (b) Solving Eq. (2.7)

Fig. 6.3. (Example 1) Backward reachable set, t = 0.75, with second order ENO2 scheme, (a) solving
Eq. (6.4) and (b) solving Eq. (2.7), Mx = My = 100.

Example 2: In this second example we consider a simplified Zermelo problem: a swimmer
wants to reach the target C := B(0, r) which is the ball centered at the origin and of radius
r = 0.25. The dynamics, depending on a control α ∈ [0, 2π], is given by

f(x, y, α) = (c + cos(α), sin(α)),

where c := 2 is the speed of the current, the speed of the swimmer is 1 and he can move in
any direction α. We consider two fixed obstacles as represented in Fig. 6.4. Also, in order
to get the set of points that can reach the target up to time t, the Hamiltonian function
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considered here is

H(x,∇v) := max
λ∈[0,1]

max
α∈[0,2π]

λ (−c∂x1
v − cos α∂x1

v − sinα∂x2
v)

≡ max

(
0, −c ∂x1

v + ‖∇v‖
)

.

(Note that the set of points that can reach the target at time t exactly would be obtained
by using simply H(x,∇v) := −c ∂xv + ‖∇v‖.)

Results are given in Fig. 6.4. We have used the ENO2 scheme with 1002 grid points.
Computations are done up to time t = 2 and on the domain [−2, 2]2. For a given x = (x1, x2),
the obstacle function is defined by

g(x) := max

(
gmin, C1

(
ra − ‖x − a‖∞

)
, C1

(
rb − max(|x1 − b1|,

1

3
|x2 − b2|

))
(6.5)

where ra = 0.4, a = (0, 0.8) and rb = 0.2, b = (−1,−0.8), C1 := 20, and gmin := −0.2. The
initial data is defined by ϑ0(x) := C1 min(r0, ‖x‖ − r0) where r0 = 0.25.

Remark 13. As said in Remark 6, the theoretical results hold for any choice of ϑ0

and g such satisfying (2.3) and (2.1). However, the choice of ϑ0 and g seems important for
numerical purposes. Indeed when we consider ϑ0(x) := min(r0, ‖x‖ − r0) and

g(x) := max

(
ra − ‖x − a‖∞, rb − max(|x1 − b1|,

1

3
|x2 − b2|)

)
(6.6)

instead of (6.5), then the numerical results are less accurate.
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Fig. 6.4. (Example 2) Reachable set for the Zermelo problem with obstacle, at t = 0.75 (left) and at
t = 2.0 (right). The computational domain is [−2, 2]2, and Mx = My = 100.

Appendix A. Two-player games with state constraints. We present a gener-
alization of the previous approach to the case of two-player deterministic games with state
constraints, without assuming any controllability assumption. We refer to [30, 16, 2, 28] and
references therein for an introduction and some results for deterministic two-player games
with infinite horizon.

In the literature, a controllability assumption or continuity of the value function is
general supposed [3] in order to deal with state-constrained problems. Note that in the
work of Cardaliaguet, Quincampoix and Saint-Pierre [13], no controllability assumption is
assumed, and a characterization is obtained involving non-smooth analysis.
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Fig. 6.5. (Example 2) Isovalues of the minimal time function, and corresponding 3d view.

Let A and B be two nonempty compact subset of R
m and R

p respectively. For t ≥ 0,
let At := L∞((0, t);A) and Bt := L∞((0, t);B). We consider a continuous dynamics f :
R

d × A × B → R
d, and, for every x ∈ R

d and (α, β) ∈ At × Bt, its associated trajectory
y = yα,β

x solution of

ẏ(s) = f(y(s), α(s), β(s)), for a.e. s ∈ [0, t], y(0) = x. (A.1)

We consider a game involving two players. The first player wants to steer the system (initially
at point x) to the target C in minimal time, by staying in K (and using her input α), while
the second player tries to steer the system away from C or from K (with her input β). We
define the set of non-anticipative strategies for the first player, as follows:

Γt :=

{
a : Bt → At, ∀(β, β̃) ∈ Bt, and ∀s ∈ [0, t],

(
β(θ) = β̃(θ). a.e. θ ∈ [0, s]

)
⇒

(
a[β](θ) = a[β̃](θ), a.e. on [0, s]

)}
.

Then we are interested to characterize the following capture basin for the first player:

CapC(t) :=
{

x, ∃a ∈ Γt, ∀β ∈ Bt,
(
ya[β],β

x (t) ∈ C, and ya[β],β
x (θ) ∈ K, ∀θ ∈ [0, t]

)}

Now we consider a function g satisfying (2.3), and we define the following value function
for the first player:

ϑ(x, t) := inf
a∈Γt

max
β∈Bt

{
max

(
ϑ0(y

a[β],β
x (t)), max

θ∈[0,t]
g(ya[β],β

x (θ))
)}

. (A.2)

By using similar arguments as before, we have:
Theorem 6. (i) For any t ≥ 0, the capture basin for the first player is characterized by

CapC(t) = {x, ϑ(x, t) ≤ 0}.

(ii) If g and ϑ0 are Lipschitz continuous, ϑ is the unique continuous viscosity solution of:

min(∂tϑ + H(x,∇ϑ), ϑ − g(x)) = 0, t ≥ 0, x ∈ R
d, (A.3a)

ϑ(x, 0) = max(ϑ0(x), g(x)) x ∈ R
d. (A.3b)
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where H(x, p) := max
α∈A

min
β∈B

−f(x, α, β) · p.
This gives again a characterization of the capture basin with state constraints by using

a continuous viscosity approach. The corresponding minimal time function can then be
recovered as in Proposition 1.

REFERENCES

[1] O. Alvarez, E. Carlini, R. Monneau, and E. Rouy. A convergent scheme for a non local Hamilton
Jacobi equation modelling dislocation dynamics. Numerische Mathematik, 104(4):413–444, 2006.

[2] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman
equations. Systems and Control: Foundations and Applications. Birkhäuser, Boston, 1997.
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