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Abstract

Let M be a compact, connected surface, possibly with a finite set of points re-

moved from its interior. Let d, n P N, and let �M be a d-fold covering space of M. We
show that the covering map induces an embedding of the nth braid group BnpMq of

M in the dnth braid group Bdnp�Mq of �M, and give several applications of this result.
First, we classify the finite subgroups of the nth braid group of the real projective
plane, from which we deduce an alternative proof of the classification of the finite
subgroups of the mapping class group of the n-punctured real projective plane due
to Bujalance, Cirre and Gamboa. Secondly, using the linearity of Bn due to Bigelow
and Krammer, we show that the braid groups of compact, connected surfaces of
low genus are linear.

2000 AMS Subject Classification: 20F36 (primary); 20E28, 20F50, 57M10, 20H20 (secondary).
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1 Introduction

The braid groups Bn of the plane were introduced by E. Artin in 1925 [A1, A2]. Braid
groups of surfaces were studied by Zariski [Z]. They were later generalised by Fox
to braid groups of arbitrary topological spaces via the following definition [FoN]. Let
M be a compact, connected surface, and let n P N. We denote the set of all ordered
n-tuples of distinct points of M, known as the nth configuration space of M, by:

FnpMq �  pp1, . . . , pnq ∣

∣ pi P M and pi � pj if i � j
(

.

Configuration spaces play an important rôle in several branches of mathematics and
have been extensively studied, see [CG, FH] for example.

The symmetric group Sn on n letters acts freely on FnpMq by permuting coordi-
nates. The corresponding quotient will be denoted by DnpMq, and will be termed the
nth permuted configuration space of M. The nth pure braid group PnpMq (respectively the
nth braid group BnpMq) is defined to be the fundamental group of FnpMq (respectively of
DnpMq). If N is a subsurface of M and m ¥ 0, Paris and Rolfsen study the homomor-
phism BnpNq ÝÑ Bn�mpMq of braid groups induced by inclusion of N in M, and give
necessary and sufficient conditions for it to be injective [PR]. In this paper, we study
the relationship between the braid groups of covering spaces. In Section 2, we prove
the following result which we hope will be useful in the understanding of various as-
pects of surface braid groups, especially the relationship between the braid groups of
a non-orientable surface and those of its orientable double covering.

THEOREM 1. Let M be a compact, connected surface, possibly with a finite set of points re-

moved from its interior. Let d, n P N, and let �M be a d-fold covering space of M. Then the
covering map induces an embedding of the nth braid group BnpMq of M in the dnth braid group

Bdnp�Mq of �M.

We have the following immediate consequence of Theorem 1:

COROLLARY 2. Let n P N. The nth braid group of a non-orientable surface embeds in the 2nth

braid group of its orientable double cover. In particular, BnpRP2q embeds in B2npS2q.
Note however that if n ¥ 2, such an embedding does not restrict to an embedding

of the corresponding pure braid subgroups since PnpRP2q has torsion 4 (see Proposi-
tion 3(d)) and P2npS2q has torsion 2.

Together with the 2-sphere S2, the braid groups of the real projective plane RP2

are of particular interest, notably because they have non-trivial centre [VB, GG2], and
torsion elements [VB, Mu]. Indeed, Van Buskirk showed that S2 and RP2 are the only
surfaces whose braid groups have torsion [VB]. Let us recall briefly some properties of
BnpRP2q.

If D 2 � RP2 is a topological disc, there is a group homomorphism ι : Bn ÝÑ BnpRP2q
induced by the inclusion. If β P Bn then we shall denote its image ιpβq simply by β. In
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Proposition 13, we recall a presentation of BnpRP2q due to Van Buskirk [VB]. In [GG3],
a presentation of PnpRP2qwas given, and the splitting problem for the Fadell-Neuwirth
short exact sequence of its pure braid groups was solved. The first two braid groups
of RP2 are finite: B1pRP2q � P1pRP2q � Z2, P2pRP2q is isomorphic to the quaternion
group Q8 of order 8, and B2pRP2q is isomorphic to the generalised quaternion group of
order 16. For n ¥ 3, BnpRP2q is infinite. The pure braid group P3pRP2q is isomorphic to
a semi-direct product of a free group of rank 2 by Q8 [VB]; an explicit action was given
in [GG2].

The so-called ‘full twist’ braid of BnpRP2q is defined by ∆
2
n � pσ1 � � � σn�1qn, where

σ1, . . . , σn�1 are the standard generators of Bn, and is the square of the ‘half twist’ braid
∆n defined by

∆n � pσ1 � � � σn�1qpσ1 � � � σn�2q � � � pσ1σ2qσ1. (1)

For n ¥ 2, Murasugi showed that ∆
2
n generates the centre of BnpRP2q, and he charac-

terised the finite order elements of BnpRP2q [Mu], although their orders are not clear,
even for elements of PnpRP2q. In [GG2, GG7], we proved the following results that
include the classification of the finite subgroups of PnpRP2q:
PROPOSITION 3 ([GG2, GG7]). Let n ¥ 2. Then:

(a) BnpRP2q has an element of order ℓ if and only if ℓ divides either 4n or 4pn� 1q.
(b) the (non-trivial) torsion of PnpRP2q is precisely 2 and 4.
(c) the full twist ∆

2
n is the unique element of BnpRP2q of order 2.

(d) up to isomorphism, the maximal finite subgroups of PnpRP2q are Q8 if n � 2, 3, and Z4 if
n ¥ 4.
(e) if n ¥ 3, then up to isomorphism, the infinite virtually cyclic subgroups of PnpRP2q are Z,
Z2 �Z and Z4 �Z2

Z4.

For m ¥ 2, let Dic4m denote the dicyclic group of order 4m. It has the following
presentation:

Dic4m � A
x, y

∣

∣

∣
xm � y2, yxy�1 � x�1

E
.

The classification of the finite subgroups of BnpS2q and BnpRP2q is an interesting prob-
lem, and helps us to better understand their group structure. In the case of S2, this was
undertaken in [GG4, GG5]:

THEOREM 4 ([GG5]). Let n ¥ 3. The maximal finite subgroups of BnpS2q are:

(a) Z2pn�1q if n ¥ 5.
(b) Dic4n.
(c) Dic4pn�2q if n � 5 or n ¥ 7.
(d) the binary tetrahedral group, denoted by T�, if n � 4 pmod 6q.
(e) the binary octahedral group, denoted by O�, if n � 0, 2 pmod 6q.
(f) the binary icosahedral group, denoted by I�, if n � 0, 2, 12, 20 pmod 30q.
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More information concerning the binary polyhedral groups T�, O� and I� may be
found in [AM]. The result of Theorem 4 leads us to ask which finite groups are realised
as subgroups of BnpRP2q. As in the case of BnpS2q, one common property of such sub-
groups is that they are finite periodic groups of cohomological period 2 or 4. Indeed,
by [GG2, Proposition 6], for all n ¥ 2, the universal covering X of FnpRP2q is a finite-
dimensional complex which has the homotopy type of S3. Thus any finite subgroup of
BnpRP2q acts freely on X, and so has period 2 or 4 by [Br, Proposition 10.2, Section 10,
Chapter VII]. Since ∆

2
n is the unique element of order 2 of BnpRP2q, and it generates

the centre of BnpRP2q, the Milnor property must be satisfied for any finite subgroup of
BnpRP2q. As an application of Corollary 2, we classifiy the finite subgroups of BnpRP2q.
THEOREM 5. Let n ¥ 2. The maximal finite subgroups of BnpRP2q are isomorphic to the
following groups:

(a) Dic8n.
(b) Dic8pn�1q if n ¥ 3.
(c) O� if n � 0, 1 pmod 3q.
(d) I� if n � 0, 1, 6, 10 pmod 15q.

The proof of Theorem 5 is given in Section 3, and is obtained by combining Corol-
lary 2 with Theorem 4. In this way, we obtain a list of possible finite subgroups of
BnpRP2q in Section 3.1. Some of these possibilities are not realised (notably T� is not
realised if n � 2 pmod 3q, despite apparently being compatible with the embedding).
The final step is to prove that the subgroups given in the statement of Theorem 5 are
indeed realised for the given values of n. This is achieved in Section 3.2 using the geo-
metric constructions of [GG5] of the finite subgroups of BnpS2q, as well as Corollary 2
and the following short exact sequence due to Scott [Sc], which exists if n ¥ 2:

1 ÝÑ A
∆

2
n

E ÝÑ BnpRP2q ÝÑ MCGpRP2, nq ÝÑ 1, (2)

where MCGpRP2, nq denotes the mapping class group of the projective plane relative to
the n-point subset X that consists of the basepoints of the strands of BnpRP2q, that is, the
set of isotopy classes of homeomorphisms of RP2 that leave X invariant (we allow the
points of X to be permuted). In Section 4, we give explicit algebraic realisations of the
dicyclic subgroups of BnpRP2q in terms of Van Buskirk’s presentation of BnpRP2q [VB].

The finite subgroups of MCGpRP2, nq were classified by Bujalance, Cirre and Gam-
boa [BCG]. In Section 3.3, we use Theorem 5 and equation (2) to obtain an alternative
proof of their result.

THEOREM 6 ([BCG]). Let n ¥ 2. The maximal finite subgroups of MCGpRP2, nq are isomor-
phic to the following groups:

(a) the dihedral group Dih4n of order 4n.
(b) the dihedral group Dih4pn�1q if n ¥ 3.
(c) S4 if n � 0, 1 pmod 3q.
(d) A5 if n � 0, 1, 6, 10 pmod 15q.
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Another application of Theorem 1 concerns the linearity of certain surface braid
groups. Recall that a group is said to be linear if it admits a faithful representation in a
multiplicative group of matrices over some field. Krammer [Kr1, Kr2] and Bigelow [Bi]
showed that Bn is linear. The linearity of MCGpS2, nq was proved in [Ba, BB, Ko], and
that of BnpS2q was obtained in [Ba, BB]. If n ¤ 2 then BnpRP2q is linear because it is
finite, while B3pRP2q is known to be isomorphic to a subgroup of GLp96, Zq [Ba]. To
the best of our knowledge, nothing is known about the linearity of nth braid groups,
n ¥ 2, for other surfaces (in the case n � 1, surface groups are known to be linear). In
Section 5 we give a short alternative proof in Proposition 17 of the linearity of BnpS2q,
and with the aid of Corollary 2, we deduce the following results.

THEOREM 7. Let n P N.

(a) Let M be a compact, connected surface, possibly with boundary, of genus zero if M is
orientable, and of genus one if M is non-orientable. Then BnpMq is linear.
(b) Let T2 denote the 2-torus, and let x P T2. Then Bn�1pT2q is linear if and only if BnpT2z txuq
is linear. Consequently, B2pT2q is linear.

In particular, the braid groups of RP2 and the Möbius band are linear.
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sabáticas vinculadas al fortalecimiento de la calidad del posgrado nacional’, and the
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2 Embeddings of the braid groups of coverings

Let N be a compact, connected surface, let X be an r-point subset in the interior of N,

where r ¥ 0, and let M � NzX. Let d, n P N, and let p : �M ÝÑ M be a d-fold covering
map of M. The aim of this section is to prove Theorem 1. We use the covering map

p to construct a map ψn : DnpMq ÝÑ Ddnp�Mq of configuration spaces, and then go on
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to show that ψn induces an injective homomorphism ψn# : BnpMq ÝÑ Bdnp�Mq. This

homomorphism may be used to compare the braid groups of M with those of �M, and
its existence seems like an interesting fact in its own right.

Let z1, . . . , zn be n base points lying in a small disc in the interior of M. Given a
subset A of n distinct unordered points in M (an element of DnpMq in other words),

p�1pAq is a subset of �M consisting of dn distinct unordered points, and so is an ele-

ment of Ddnp�Mq. The correspondence A ÞÝÑ p�1pAq thus defines a continuous map

ψn : DnpMq ÝÑ Ddnp�Mq of permuted configuration spaces whose base points are the
sets tz1, . . . , znu and

 
p�1pz1q, . . . , p�1pznq( respectively. So the map ψn induces a ho-

momorphism ψn# : BnpMq ÝÑ Bdnp�Mq on the level of the fundamental groups (with
the given base points).

We now prove that ψn# is injective by induction on n. We first deal with the case
n � 1.

LEMMA 8. The homomorphism ψ1# : B1pMq ÝÑ Bdp�Mq is injective. Furthermore, for all q ¥
2, the induced homomorphisms πqpMq ÝÑ πq

�
Ddp�Mq� of the higher homotopy groups of M

and Ddp�Mq are isomorphisms.

Proof. Let rz1 P p�1pz1q, let Γ be the group of covering transformations of the cover-

ing map p : �M ÝÑ M, and let γ1 � Id, γ2, . . . , γd denote the elements of Γ. We thus

have a map �ψ1 : �M ÝÑ Fdp�Mq given by rx ÞÝÑ pγ1prxq, γ2prxq, . . . , γdprxqq that makes the
following diagram commute: �M�ψ1

��

p
// M

ψ1

��

Fdp�Mq α
// Ddp�Mq,

where α : Fdp�Mq ÝÑ Ddp�Mq is the usual quotient map. From this diagram, we obtain
the following commutative diagram of short exact sequences:

1 // π1p�M, rz1q p#
//�ψ1#

��

π1pM, z1q q1
//

ψ1#
��

Γ //

ρ

��

1

1 // Pdp�Mq α#
// Bdp�Mq q2

// Sd
// 1,

where q1, q2 are the canonical quotient homomorphisms, and the homomorphism ρ is

that induced by the rest of the diagram. The homomorphism �ψ1# is injective since its

composition with the homomorphism p1# : Pdp�Mq ÝÑ π1p�Mq induced by the projec-

tion p1 : Fdp�Mq ÝÑ �M onto the first coordinate is the identity.

6



We claim that ρ is injective. To see this, let γ P Kerpρq, and let c be a loop in M
based at z1 such that q1pxcyq � γ. Let rc be the lift of c based at rz1. We have that

q2 � ψ1#pxcyq � ρ � q1pxcyq � Id, so ψ1#pxcyq P Kerpq2q � Pdp�Mq. Further, ψ1pcq �
p�1pcq � tγ1prcq, γ2prcq, . . . , γdprcqu. For each i � 1, . . . , d, γiprcq is an arc between γiprz1q
and γjprz1q for some j P t1, . . . , du. But ψ1#pxcyq P Pdp�Mq, so j � i, and thus each

γiprcq is a loop based at γiprz1q. In particular xrcy P π1p�M, rz1q, and xcy � p#pxrcyq, so
γ � q1pxcyq � q1 � p#pxrcyq � Id. Hence ρ is injective, as claimed. The first part of the
lemma then follows from the Short 5-Lemma [Mac, Lemma 3.1, page 14].

For the second part, if M is different from RP2 and S2 then it and its configura-
tion spaces are finite-dimensional CW-complexes that are Eilenberg-MacLane spaces
of type Kpπ, 1q, and so the result is clearly true. If M � S2 then since p is a covering

map, d � 1, �M � S2, and again the result follows directly.
So suppose that M � RP2. By the Riemann-Hurwitz formula, we either have d � 1

and �M � RP2, in which case the result is again clear, or else d � 2 and �M � S2.
From the first part, the homomorphism ψ1# : π1pRP2q ÝÑ B2pS2q is injective, and since
π1pRP2q � B2pS2q � Z2, it is an isomorphism. The projection p1 : F2pS2q ÝÑ S2 onto
the first coordinate is a fibration whose fibre over a point x0 P S2 is S2z tx0u which is
contractible, and hence it induces isomorphisms of the homotopy groups of F2pS2q and

S2. Moreover, it is a homotopy equivalence: the map �ψ1 : S2 ÝÑ F2pS2q is a homotopy
inverse of p1. It remains to show that D2pS2q has the homotopy type of RP2. Observe

that �ψ1 is a Z2-equivariant map with respect to the free action on S2 given by the an-
tipodal map and the free action on F2pS2q ÝÑ F2pS2q given by the map that exchanges

coordinates. The induced map on the quotient is ψ1 : RP2 ÝÑ D2pS2q, and since �ψ1

induces isomorphisms of the homotopy groups of S2 and F2pS2q and the stated actions
are free, ψ1 induces isomorphisms of the homotopy groups of RP2 and D2pS2q. This
completes the proof of the lemma.

Let
Dd,...,dp�Mq � Fdnp�Mq{pSd � � � � � Sdq,

where for i � 1, . . . , n, the ith copy of Sd is the symmetric group on the letters i, i �
n, . . . , i � pd � 1qn, and let

Bd,...,dp�Mq � π1

�
Dd,...,dp�Mq�.

Define the map �ψn : FnpMq ÝÑ Dd,...,dp�Mq by�ψn

�px1, . . . , xnq� � �
p�1ptx1uq, . . . , p�1ptxnuq�. (3)

In a similar manner to ψn, �ψn induces a homomorphism �ψn# : PnpMq ÝÑ Bd,...,dp�Mq
which is the restriction of ψn# to PnpMq.
PROPOSITION 9. Let n ¥ 1. The homomorphism �ψn# : PnpMq ÝÑ Bd,...,dp�Mq is injective.
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Proof. If d � 1 there is nothing to prove. So suppose that d ¥ 2, in which case M � S2.

The proof is by induction on n. For n � 1, �ψ1 � ψ1, and the result follows from
Lemma 8. The case n � 2 is special and will be treated separately at the end of the
proof. Suppose then that the result is true for some integer n ¥ 2. Consider the com-
mutative diagram of fibrations:

F1pMz tx1, . . . , xnuq�ψn�1

∣

∣

∣Mztx1,...,xnu
��

// Fn�1pMq�ψn�1
��

p
// FnpMq�ψn

��

Dd

��Mzp�1ptx1, . . . , xnuq� // Dd,...,d,dp�Mq rp
// Dd,...,dp�Mq, (4)

where p : Fn�1pMq ÝÑ FnpMq is the map that forgets the last point,rp : Dd,...,d,dpMq ÝÑ Dd,...,dpMq
is the map that forgets the last d points. The long exact sequences in homotopy of these
fibrations yield the following commutative diagram:

1 // π1 pMz tx1, . . . , xnuq //�ψn�1#

∣

∣

∣π1pMztx1,...,xnuq
��

Pn�1pMq p#
//�ψn�1#

��

PnpMq //�ψn#
��

1

1 // Bd

��Mzp�1 ptx1, . . . , xnuq� // Bd,...,d,dp�Mq rp#
// Bd,...,dp�Mq // 1.

The fact that M � S2 implies the exactness of the first row. Noting that the d-fold

covering p : �M ÝÑ M induces a d-fold covering mappp : �Mz  p�1 ptx1, . . . , xnuq( ÝÑ Mz tx1, . . . , xnu,
and that �ψn�1

∣

∣

π1pMztx1,...,xnuq is equal to the map

ψ1 : F1pMz tx1, . . . , xnuq ÝÑ Dd

��Mzp�1ptx1, . . . , xnuq�
for the space F1pMz tx1, . . . , xnuq, it follows by applying Lemma 8 that the homomor-

phism �ψn�1#

∣

∣

π1pMztx1,...,xnuq is injective. The injectivity of �ψn�1# is then a consequence
of the 5-Lemma and the induction hypothesis.

It remains to prove the result in the case n � 2. Since d ¥ 2, observe that M is not
simply connected. So if M � RP2, π2pMq � π2pF1pMqq � t1u, and the proof for the
case n � 2 follows from the case n � 1 using exactly the same induction argument as
in the previous paragraph. So suppose that M � RP2. In this case, we have the same
commutative diagram (4), but the long exact sequence in homotopy of the fibrations
yields the following commutative diagram:

π2pRP2q � Z //

��

π1pRP2ztx1uq � Z //�ψ1#
��

P2pRP2q � Q8
//�ψ2#

��

P1pRP2q � Z2
//�ψ1#

��

1

π2pD2pS2qq � Z // B2pS2ztp�1px1quq // B2,2pS2q // B2pS2q � Z2
// 1.
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The first vertical arrow is the homomorphism induced on the π2-level by the map �ψ1.
The first (resp. second) vertical homomorphism is an isomorphism (resp. is injective)
by Lemma 8. The fourth vertical homomorphism is an isomorphism using the injec-

tivity of �ψ1# � ψ1# given by Lemma 8 and the fact that P1pRP2q � B2pS2q � Z2. It

follows from the strong 4-Lemma [Mac, Lemma 3.2, page 14] that �ψ2# is injective, and
the result follows.

Now we come to the main result of this section which immediately implies Theo-
rem 1.

THEOREM 10. The homomorphism ψn# : BnpMq ÝÑ Bdnp�Mq is injective.

Proof. Let x P Kerpψn#q. We take the base points z1, . . . , zn of the braid strings to be
contained within a small disc D lying in the interior of M. The inclusion of D in
M induces a homomorphism BnpDq ÝÑ BnpMq. Let π : BnpMq ÝÑ Sn denote the
natural braid permutation homomorphism. A generating set of BnpMq may be ob-
tained by adding a set of ‘surface generators’ (whose representatives are loops based
at z1) to a set of standard generators σ1, . . . , σn�1 of BnpDq via the short exact sequence

1 ÝÑ PnpMq ÝÑ BnpMq πÝÑ Sn ÝÑ 1. Let C be a set of n! permutation braids, in
other words a set of coset representatives of BnpMq modulo PnpMq. The elements of C
may be chosen to belong to BnpDq, and we may take the representative of the identity
permutation to be the identity braid. Thus there exist y P PnpMq and w P C such that
x � y. w. Now x P Kerpψn#q, and we have that ψn#pyq � ψn#pw�1q. But w P BnpDq,
so the permutation πpψn#pw�1qq of ψn#pw�1q permutes the elements jn � 1, . . . , jn � n
for each j � 0, . . . , d � 1, while the permutation πpψn#pyqq of ψn#pyq permutes the ele-
ments i, i� n, . . . , i�pd� 1qn for each i � 1, . . . , n by equation (3). Since πpψn#pw�1qq �
πpψn#pyqq, it follows that this permutation must be the identity, hence w � Id, and thus

x � y P PnpMq. By Proposition 9, the restriction �ψn# of ψn# to PnpMq is injective, and
we conclude that x � Id, hence ψn# is injective.

3 The classification of the finite subgroups of BnpRP2q
and MCGpRP2, nq

In this section, we prove Theorems 5 and 6. Since BnpRP2q and MCGpRP2, nq are finite
for n P t1, 2u, we shall suppose in what follows that n ¥ 3. The proof of Theorem 5 is
divided into two parts:

(a) in Section 3.1, using Theorem 1 in the case M � RP2, and applying Theorem 4, we
obtain necessary conditions for a finite group to be realised as a subgroup of BnpRP2q.
This enables us to establish a list in Proposition 11 of the finite groups that are candi-
dates to be subgroups of BnpRP2q.

9



(b) in Section 3.2, we show in Proposition 12 that the candidates of Proposition 11 are
indeed realised as subgroups of BnpRP2q using equation (2) and geometric construc-
tions similar to those of [GG5] for BnpS2q.
The proof of Theorem 6 is given in Section 3.3.

3.1 Necessary conditions for a finite group to be a subgroup of BnpRP2q
In this section, we prove the following necessary condition for a finite subgroup H to
be realised as a subgroup of BnpRP2q.
PROPOSITION 11. Let n ¥ 3, and let H be a finite subgroup of BnpRP2q. Then H is isomorphic
to a subgroup of one of the following groups: Dic8n, Dic8pn�1q, O� if n � 0, 1 pmod 3q, or I�
if n � 0, 1, 6, 10 pmod 15q.
Proof. Take M � RP2, �M � S2 and d � 2 in the statement of Theorem 1. Let m
denote the order of H. With the notation of Section 2, ψn#pHq is a subgroup of B2npS2q
isomorphic to H. In particular, ψn#pHq is of order m. Applying Theorem 4, it follows
that H is isomorphic to a subgroup of one of the following maximal finite groups of
B2npS2q:
(a) Z2p2n�1q.
(b) Dic8n.
(c) Dic8pn�1q.
(d) T� if 2n � 4 pmod 6q, i.e. n � 2 pmod 3q.
(e) O� if 2n � 0, 2 pmod 6q, i.e. n � 0, 1 pmod 3q.
(f) I� if 2n � 0, 2, 12, 20 pmod 30q, i.e. n � 0, 1, 6, 10 pmod 15q.
The fact that n ¥ 3 implies that Z2p2n�1q and Dic8pn�1q are maximal in B2npS2q.

Case (a) may be deleted from the list. To see this, note that if ψn#pHq is a subgroup
of Z2p2n�1q then H is cyclic of order a divisor of 2p2n� 1q. On the other hand, its order

m must divide the torsion of BnpRP2q, which is 4n and 4pn� 1q by Proposition 3(a). But
gcdp2n� 1, 2nq � gcdp2n� 1, 2pn� 1qq � 1, and so m � 1 or 2. Hence H is either trivial
or equal to

�
∆

2
n

D
(by Proposition 3(c)), and both are contained in Dic8n, for example.

Case (d) may be also be deleted from the list. To see this, assume that n � 2pmod 3q. Suppose that H is a subgroup of T� � Q8 �Z3 not contained in the Q8-factor.
Then H contains elements of order 3, and hence 3 divides the torsion of BnpRP2q. Once
more, by Proposition 3(a), 3 divides n or n � 1, which contradicts the fact that n � 2pmod 3q. Hence H is isomorphic to a subgroup of Q8, which is realised as a subgroup
of Dic8n, for example. This completes the proof of the proposition.

3.2 The realisation of the finite subgroups of BnpRP2q
In this section, we prove that the groups listed in Proposition 11 are indeed realised as
subgroups of BnpRP2q.
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PROPOSITION 12. Let n ¥ 3, and let H be one of the following groups: Dic8n; Dic8pn�1q; O�
if n � 0, 1 pmod 3q; or I� if n � 0, 1, 6, 10 pmod 15q. Then BnpRP2q contains an isomorphic
copy of H.

Proof. Let X � RP2 be an n-point subset, let

#
p : S

2 ÝÑ RP2

x ÞÝÑ rxs denote the natural pro-

jection, and let rX � p�1pXq. Let HpRP2, Xq (resp. HpS2, rXq) denote the group of home-

omorphisms of RP2 (resp. S2) that leave X (resp. rX) invariant, and let H�pS2, rXq) de-

note the index 2 subgroup of HpS2, rXq consisting of orientation-preserving homeomor-
phisms. Given H as in the statement of the proposition, let G be the quotient of H by
its (normal) subgroup of order 2. Then

G � $'&'%Dih4pn�iq if H � Dic8pn�iq, where i � 0, 1

S4 if H � O�
A5 if H � I�.

(5)

Note that G consists of rotations and may be realised as a subgroup of H�pS2, rXq (cf.
the solution of the Nielsen realisation problem [Ke]). We may assume that the points ofrX are symmetrically arranged with respect to the regular polyhedron associated with
G.

The antipodal map τ : S2 ÝÑ S2, defined by τprxq � �rx for all rx P S2, belongs to

HpS2, rXqzH�pS2, rXq, and commutes with any rotation. In particular, τ commutes with
all of the elements of G, and so G is a subgroup of

Γ � !
γ P H�pS2, rXq ∣∣

∣
γ � τ � τ � γ

)
.

For each γ P Γ, the map pγ defined by pγpyq � ppγpxqq, where y P RP2 and x P p�1ptyuq,
is a well-defined homeomorphism of RP2 that leaves X invariant. The correspondence
γ ÞÝÑ pγ defines an injective group homomorphism ψ : Γ ÝÑ HpRP2, Xq. The injec-
tivity of ψ follows from that fact that there are exactly two elements, IdS2 and τ, of

HpS2, rXq that cover IdRP2 , but τ R H�pS2, rXq.
It follows that ψpGq � G, and thus HpRP2, Xq contains an isomorphic copy of G.

Let MCGpRP2, nq denote the mapping class group of the projective plane relative to
X. There is a natural homomorphism ϕ : HpRP2, Xq ÝÑ MCGpRP2, nq given by asso-
ciating the isotopy class of the homeomorphism relative to X. The restriction of this
homomorphism to ψpGq is injective. To see this, let f P ψpGq be such that ϕp f q is the
trivial mapping class, and let g P G be such that ψpgq � f . Then there exists an isotopyt ftutPr0,1s from IdRP2 to f relative to X. This isotopy lifts to an isotopy

!rft

)
tPr0,1s from

IdS2 to some lift rf P H�pS2, rXq of f relative to rX. By construction, rf P Γ, and since rf
and g are both sent to f by ψ, the injectivity of ψ implies that rf � g. Now the isotopy
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!rft

)
tPr0,1s is relative to rX, so g is a finite-order homeomorphism that fixes the points

of rX (of which there are at least 6), and thus g � IdS2 by [E, vK], and f � IdRP2 . This

proves the injectivity of ϕ
∣

∣

∣ψpGq .

It follows that MCGpRP2, nq contains an isomorphic copy of G. Finally, the short
exact sequence (2) is the analogue for RP2 of the short exact sequence (1-1) of [GG5,
page 760]. It is derived as for S2 (see equation (1-2) of [GG5, page 760]), by taking
the long exact sequence in homotopy of the fibration HpRP2q ÝÑ DnpRP2q defined
by f ÞÝÑ f pXq, and whose fibre over X is HpRP2, Xq. As in equation (1-2), the ho-
momorphism BnpRP2q ÝÑ MCGpRP2, nq of (2) is a boundary operator. Following the
proof of [GG5, Theorem 1.3, pages 764–765], we see that G lifts to an isomorphic copy
of H lying in BnpRP2q. This completes the proof of the proposition, and together with
Proposition 11, that of Theorem 5.

3.3 The classification of the finite subgroups of MCGpRP2, nq
We close Section 3 by proving Theorem 6.

Proof of Theorem 6. As in the case of S2 [GG5, Remarks 2.1], the short exact sequence (2)
induces a bijection between the maximal finite subgroups of BnpRP2q and those of
MCGpRP2, nq. The result then follows from Theorem 5 and equation (5).

4 The algebraic realisation of the finite dicyclic subgroups

of BnpRP2q
In this section, we show in Proposition 15 that Dic8n and Dic8pn�1q are realised as sub-

groups of BnpRP2q for all n ¥ 2 by giving explicit algebraic realisations. We first recall
Van Buskirk’s presentation of BnpRP2q.
PROPOSITION 13 (Van Buskirk [VB]). The following constitutes a presentation of the group
BnpRP2q:
generators: σ1, . . . , σn�1, ρ1, . . . , ρn.
relations:

σiσj � σjσi if |i � j| ¥ 2,

σiσi�1σi � σi�1σiσi�1 for 1 ¤ i ¤ n� 2,

σiρj � ρjσi for j � i, i � 1, (6)

ρi�1 � σ�1
i ρiσ

�1
i for 1 ¤ i ¤ n� 1, (7)

ρ�1
i�1ρ�1

i ρi�1ρi � σ2
i for 1 ¤ i ¤ n� 1,

ρ2
1 � σ1σ2 � � � σn�2σ2

n�1σn�2 � � � σ2σ1.
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In terms of this presentation, by [GG2, equations (4) and (7), pages 770–771], we
have the following useful identities:

ρj � σ�1
j�1 � � � σ�1

1 ρ1σ�1
1 � � � σ�1

j�1 for j � 1, . . . , n (8)

ρ�2
n � σn�1 � � � σ2σ2

1 σ2 � � � σn�1, (9)

as well as elements of BnpRP2q of order 4n and of order 4pn � 1q respectively [GG2,
Proposition 26]:

a � σ�1
n�1 � � � σ�1

1 � ρ1

b � σ�1
n�2 � � � σ�1

1 � ρ1

that by [GG2, Remark 27] satisfy

an � ρn � � � ρ1 and bn�1 � ρn�1 � � � ρ1. (10)

REMARK 14. From [GG2, pages 777–778], we have:

(a) conjugation by a�1 permutes cyclically the following elements:

σ1, . . . , σn�1, a�1σn�1a, σ�1
1 , . . . , σ�1

n�1, a�1σ�1
n�1a.

(b) conjugation by a�1 permutes cyclically the following elements:

ρ1, . . . ρn, ρ�1
1 , . . . , ρ�1

n .

(c) conjugation by b�1 permutes cyclically the following elements:

σ1, . . . , σn�2, b�1σn�2b, σ�1
1 , . . . , σ�1

n�2, b�1σ�1
n�1b.

Note that there is a typographical error in line 16 of [GG2, page 778]: it should read

‘. . . shows that b�2σn�2b2 � σ�1
1 . . . ’, and not ‘. . . shows that b�2σn�1b2 � σ�1

1 . . . ’.

Let n ¥ 2. From Proposition 3(a), the maximal finite cyclic subgroups of BnpRP2q
are Z4n and Z4pn�1q. Considered as an element of Bn, the half twist braid ∆n satisfies
the relation:

∆
�1
n σi∆n � σn�i for all i � 1, . . . , n� 1, (11)

and since there is a group homomorphism Bn ÝÑ BnpRP2q induced by inclusion of a
topological disc in RP2, the same relation holds in BnpRP2q. We then have the following
algebraic realisations of the dicyclic subgroups given by Theorem 5:

PROPOSITION 15. Let n ¥ 2. Then:

(a) xa, ∆ny � Dic8n.
(b)

�
b, ∆na�1

D � Dic8pn�1q.
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Before proving Proposition 15, let us state and prove the following useful lemma.

LEMMA 16. For all 1 ¤ i ¤ n, ∆
�1
n ρi∆n � ρ�1

n�1�i.

Proof of Lemma 16. We prove the result by induction on i. First let i � 1. Using equa-
tion (1), we have

∆
�1
n ρ1∆n �pσ1q�1pσ1σ2q�1 � � � pσ1 � � � σn�2q�1σ�1

n�1 � � � σ�1
1 � ρ1 � σ�1

1 � � � σ�1
n�1 � σn�1 � � � σ1�pσ1 � � � σn�1qpσ1 � � � σn�2q � � � pσ1σ2qpσ1q�pσ1q�1pσ1σ2q�1 � � � pσ1 � � � σn�2q�1ρn � ρ�2

n �pσ1 � � � σn�2q � � � pσ1σ2qpσ1q by equations (8) and (9)�ρ�1
n by equation (6).

Now suppose that the result is true for 1 ¤ i ¤ n� 1. By equation (7) we have

ρ�1
i � σ�1

i ρ�1
i�1σ�1

i . (12)

So

∆
�1
n ρi�1∆n � ∆

�1
n σ�1

i ρiσ
�1
i ∆n by equation (7)� σ�1

n�iρ
�1pn�iq�1σ�1

n�i by induction and equation (11)� ρ�1
n�i by equation (12).

The result follows by induction.

Proof of Proposition 15.

(a) We know that a is of order 4n, ∆n is of order 4, and that a2n � ∆
2
n � ∆

2
n by Proposi-

tion 3(c). By Lemma 16, we obtain

∆na∆
�1
n � ∆nσ�1

n�1 � � � σ�1
1 ρ1∆

�1
n� σ�1

1 � � � σ�1
n�1ρ�1

n � pρnσn�1 � � � σ1q�1 � a�1 by equation (8).

This proves that the subgroup xa, ∆ny of BnpRP2q is isomorphic to a quotient of Dic8n.
Now ∆n is a non-pure braid of order 4, and the elements of xay of order 4 are a�n which
are pure braids by equation (10). This implies that xayX x∆ny � ∅, thus xa, ∆ny contains
at least 4n� 1 distinct elements, and so is isomorphic to Dic8n.
(b) We know that b is of order 4pn� 1q. Moreover, since xa, ∆ny � Dic8n and a generates
its subgroup of order 4n, it follows from standard properties of the dicyclic group that
∆na�1 is of order 4. Again by Proposition 3(c), b2pn�1q � p∆na�1q2 � ∆

2
n. Further,

∆na�1 � b � a∆
�1
n � ∆na�1 � σ�1

n�2 � � � σ�1
1 � ρ1 � a∆

�1
n� ∆nσ�1

n�1 � � � σ�1
2 ρ2∆

�1
n by Remarks 14(a) and (b)� σ�1

1 � � � σ�1
n�2ρ�1

n�1 by Lemma 16� pρn�1σn�2 � � � σ1q�1 � b�1 by equation (8).
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This proves that the subgroup of BnpRP2q generated by b and ∆na�1 is isomorphic to
a quotient of the dicyclic group of order 8pn � 1q. An argument similar to that of (a)
above shows that

�
b, ∆na�1

D
contains at least 4pn � 1q � 1 distinct elements, and so is

isomorphic to Dic8pn�1q.
5 The linearity of braid groups of low-genus surfaces

In this section, we prove Theorem 7. Using the theorem due to Malcev [Mal, W] that a
group is linear if it contains a finite-index linear subgroup, we first give a short proof
of the linearity of BnpS2q different from those in [Ba, BB].

PROPOSITION 17 ([Ba, BB]). Let n P N. Then BnpS2q is linear.

Proof. If n ¤ 3 then BnpS2q is finite, and so is linear. Assume then that n ¥ 4. Since
PnpS2q � Pn�3pS2z tx1, x2, x3uq�Z2 by [GG1, Theorem 4] and PnpS2q is of finite index in
BnpS2q, it suffices to prove the linearity of Pn�3pS2z tx1, x2, x3uq. Now by [GG6, Propo-
sition 2.5], Pn�3pS2z tx1, x2, x3uq is isomorphic to Pn�3pD 2z tx1, x2uq, which in turn is iso-
morphic to a subgroup of Pn�1. The linearity of Bn�1 implies that of Pn�3pS2z tx1, x2, x3uq
as required.

Proof of Theorem 7.

(a) Let n P N, and let M be a compact, connected surface. First, suppose that M is
orientable of genus zero. Then M is homeomorphic to S2 with a finite number, r ¥ 0
say, of disjoint open discs removed. If r � 0 then we are in the case of S2 which
follows from [Ba, BB] or from Proposition 17, while if r ¥ 1, BnpMq is isomorphic to
the nth braid group of the disc with pr � 1q discs removed. By [GG6], it is isomorphic
a subgroup of Bn�r�1, so is linear. Now suppose that M is non-orientable of genus 1.
Then it is homeomorphic to RP2 with a finite number of disjoint open discs removed.

By Corollary 2, BnpMq embeds in B2np�Mq, where �M is the orientable double covering

of M. But �M is of genus zero, and the result follows from the previous case.
(b) Let x P T2 and let n P N. By [BGG, Lemma 17], Pn�1pT2q is isomorphic to the direct
product of Z2 with PnpT2z txuq. The linearity of Z2, the fact that the nth pure braid
group is of finite index in the corresponding nth braid group and Malcev’s theorem
then imply the first statement. The second statement is a consequence of the first,
noting that P1pT2z txuq is a free group of rank 2.
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