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Abstract

The aim of this paper is to provide conditions which ensure that the
affinely transformed partial sums of a strictly stationary process converge
in distribution to an infinite variance stable distribution. Conditions for
this convergence to hold are known in the literature. However, most of
these results are qualitative in the sense that the parameters of the limit
distribution are expressed in terms of some limiting point process. In this
paper we will be able to determine the parameters of the limiting stable
distribution in terms of some tail characteristics of the underlying sta-
tionary sequence. We will apply our results to some standard time series
models, including the GARCH(1, 1) process and its squares, the stochastic
volatility models and solutions to stochastic recurrence equations.
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1 Introduction

Whereas there exists a vast amount of papers and books on the limit theory for
sums Sn = X1 + · · ·+Xn of finite variance strictly stationary sequences (Xt),
less attention has been given to the case of sums of infinite variance stationary
sequences. Following classical work (for example, Gnedenko and Kolmogorov
(27), Feller (26), Petrov (46)), we know that an iid sequence (Xt) satisfies the
limit relation

a−1
n (Sn − bn)

d→ Yα , (1.1)

for suitable constants an > 0, bn ∈ R and an infinite variance α-stable random
variable Yα if and only if the random variable X = X1 has a distribution with
regularly varying tails with index −α ∈ (−2, 0), i.e., there exist constants
p, q > 0 with p+ q = 1 and a slowly varying function L such that

P(X > x)∼p L(x)
xα

and P(X 6 −x) ∼ q
L(x)

xα
, x→ ∞ . (1.2)

This relation is often referred to as tail balance condition. It will be convenient
to refer to X and its distribution as regularly varying with index α.

The limit relation (1.1) is a benchmark result for weakly dependent sta-
tionary sequences with regularly varying marginal distribution. However, in
the presence of dependence, conditions for the convergence of the partial sums
towards a stable limit are in general difficult to obtain, unless some special struc-
ture is assumed. Early on, α-stable limit theory has been established for the
partial sums of linear processes (Xt) with iid regularly varying noise with index
α ∈ (0, 2). Then the linear process (Xt) has regularly varying marginals, each
partial sum Sd, d > 1, is regularly varying with index α and (Sn) satisfies (1.1)
for suitable (an) and (bn). These results, the corresponding limit theory for the
partial sums Sn and the sample autocovariance function of linear processes were
proved in a series of papers by Davis and Resnick (18; 19; 20). They exploited
the relations between regular variation and the weak convergence of the point
processes Nn =

∑n
t=1 εa−1

n Xt
, where εx denotes Dirac measure at x. Start-

ing from the convergence Nn
d→ N , they used a continuous mapping argument

acting on the points of the processes Nn and N in conjunction with the series
representation of infinite variance stable random variables. Their proofs heav-
ily depend on the linear dependence structure. A different, not point process
oriented, approach was chosen by Phillips and Solo (47) who decomposed the
partial sums of the linear process into an iid sum part and a negligible remain-
der term. Then the limit theory for the partial sums follows from the one for
iid sequences with regularly varying marginal distribution. The first result on
stable limits for stationary processes more general than linear models, assuming
suitable conditions for non-Gaussian limits, was proved by Davis (11). Davis’s
ideas were further developed for mixing sequences by Denker and Jakubowski
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(22) and Jakubowski and Kobus (34). The latter paper provides a formula for
the stable limit for sums of stationary sequences which are m-dependent and
admit local clusters of big values. A paper by Dabrowski and Jakubowski (10)
opened yet another direction of studies: stable limits for associated sequences.

Results for special non-linear time series models, exploiting the structure
of the model, were proved later on. Davis and Resnick (21) and Basrak et al.
(4) studied the sample autocovariances of bilinear processes with heavy-tailed
and light-tailed noise, respectively. Mikosch and Straumann (44) proved limit
results for sums of stationary martingale differences of the form Xt = Gt Zt,
where (Zt) is an iid sequence with regularly varying Zt’s with index α ∈ (0, 2),
(Gt) is adapted to the filtration generated by (Zs)s6t and E|Gt|α+δ < ∞ for
some δ > 0. Stable limit theory for the sample autocovariances of solutions
to stochastic recurrence equations, GARCH processes and stochastic volatility
models was considered in Davis and Mikosch (13; 14), Mikosch and Stărică (43),
Basrak et al. (5); see the survey papers Davis and Mikosch (15; 16; 17).

The last mentioned results are again based on the weak convergence of the
point processes Nn =

∑n
t=1 εa−1

n Xt
in combination with continuous mapping

arguments. The results make heavy use of the fact that any α-stable random
variable, α ∈ (0, 2), has a series representation, involving the points of a Poisson
process. A general asymptotic theory for partial sums of strictly stationary
processes, exploiting the ideas of point process convergence mentioned above,
was given in Davis and Hsing (12). The conditions in Davis and Hsing (12)
are relatively straightforward to verify for various concrete models. However,
the α-stable limits are expressed as infinite series of the points of a Poisson
process. This fact makes it difficult to identify the parameters of the α-stable
distributions: these parameters are functions of the distribution of the limiting
point process.

Jakubowski (31; 33) followed an alternative approach based on classical
blocking and mixing techniques for partial sums of weakly dependent random
variables. A basic idea of these papers consists of approximating the distribu-
tion of the sum a−1

n Sn by the sum of the iid block sums (a−1
n Smi)i=1,...,kn such

that kn = [n/m] → ∞ and Smi
d
= Sm. Then one can use the full power of

classical summation theory for row sums of iid triangular arrays. It is also pos-
sible to keep under control clustering of big values and calculate the parameters
of the α-stable limit in terms of quantities depending on the finite-dimensional
distributions of the underlying stationary process. Thus the direct method is in
some respects advantageous over the point process approach.

At a first glance, the conditions and results in Jakubowski (31; 33) and
Davis and Hsing (12) look rather different. Therefore we shortly discuss these
conditions in Section 2 and argue that they are actually rather close. Our main
result (Theorem 3.1) is given in Section 3. Using an argument going back to
Jakubowski (31; 33), we provide an α-stable limit theorem for the partial sums
of weakly dependent infinite variance stationary sequences. The proof only
depends on the characteristic functions of the converging partial sums. The
result and its proof are new and give insight into the dependence structure of
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a heavy-tailed stationary sequence. In Section 3.2 we discuss the conditions of
Theorem 3.1 in detail. In particular, we show that our result is easily applicable
for strongly mixing sequences. In Section 4 we explicitly calculate the parame-
ters of the α-stable limits of the partial sums of the GARCH(1, 1) process and
its squares, solutions to stochastic recurrence equations, the stochastic volatility
model and symmetric α-stable processes.

2 A discussion of the conditions in α-stable limit
theorems

2.1 Regular variation conditions

We explained in Section 1 that regular variation of X with index α ∈ (0, 2) in
the sense of (1.2) is necessary and sufficient for the limit relation (1.1) with an
α-stable limit Yα for an iid sequence (Xt). The necessity of regular variation of
X with index α ∈ (0, 2) in the case of dependent Xi’s is difficult to establish
and, in general, incorrect; see Remark 3.2. It is, however, natural to assume
such a condition as long as one takes the conditions for an iid sequence as a
benchmark result.

Davis and Hsing (12) assume the stronger condition that the strictly sta-
tionary sequence (Xt) is regularly varying with index α ∈ (0, 2). This means
that the finite-dimensional distributions of (Xt) have a jointly regularly varying
distribution in the following sense. For every d > 1, there exists a non-null

Radon measure µd on the Borel σ-field of R
d\{0} (this means that µd is finite

on sets bounded away from zero), R = R ∪ {±∞}, such that

nP(a−1
n (X1, . . . , Xd) ∈ ·) v→ µd(·) , (2.1)

where
v→ denotes vague convergence (see Kallenberg (37), Resnick (48)) and

(an) satisfies
nP(|X | > an) ∼ 1 . (2.2)

The limiting measure has the property µd(xA) = x−αµd(A), t > 0, for Borel
sets A. We refer to α as the index of regular variation of (Xt) and its finite-
dimensional distributions. Note that Theorem 3 in (32) provides conditions
under which regular variation of the one-dimensional marginals implies joint
regular variation (2.1).

Jakubowski (31; 33) does not directly assume regular variation of X . How-
ever, his condition U1 requires that the normalizing sequence (an) in (1.1) is
regularly varying with index 1/α. In (33) he also requires the conditions T+(d)
and T−(d), d > 1, i.e., the existence of the limits

lim
n→∞

nP(Sd > an) = b+(d) and lim
n→∞

nP(Sd 6 −an) = b−(d) , d > 1 .

(2.3)
If b+(d) + b−(d) > 0, the regular variation of (an) with index 1/α is equivalent
to regular variation of Sd with index α; see Bingham et al. (7). Condition U2 in
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(33) restricts the class of all regularly varying distributions to a subclass. The
proof of Theorem 3.1 below shows that this condition can be avoided.

Remark 2.1. Condition (2.3) is automatically satisfied for regularly varying
(Xt), where

b±(d) = µd({x ∈ R
d
: ±(x1 + · · ·+ xd) > 1}) . (2.4)

Since µd is non-null for every d > 1 and µd(tA) = t−αµ(A), t > 0, we have
b+(d) + b−(d) > 0, d > 1. Since (an) is regularly varying with index 1/α it
then follows that Sd is regularly varying with index α for every d > 1. Since
(an) satisfies relation (2.2) it then follows that b+(1) = p and b−(1) = q with p
and q defined in equation (1.2). In particular p+ q = 1. The coefficients b+(d)
and b−(d) for d > 1 can be considered as a measure of extremal dependence
in the sequence (Xt). The two benchmarks are the iid case, b+(d) = p d and
b−(d) = q d and the case Xi = X for all i, b+(d) = p dα and b−(d) = q dα.

Regular variation of a stationary sequence (Xt) is a well accepted concept in
applied probability theory. One of the reasons for this fact is that some of the
important time series models (ARMA with regularly varying noise, GARCH,
solutions to stochastic recurrence equations, stochastic volatility models with
regularly varying noise) have this property. Basrak and Segers (6) give some
enlightening results about the structure of regularly varying sequences. In what
follows, we will always assume:

Condition (RV): The strictly stationary sequence (Xt) is regularly varying with
index α ∈ (0, 2) in the sense of condition (2.1) with non-null Radon measures
µd, d > 1, and (an) chosen in (2.2).

2.2 Mixing conditions

Assuming condition (RV), Davis and Hsing (12) require the mixing condi-
tion A(an) defined in the following way. Consider the point process Nn =∑n

t=1 εXt/an
and assume that there exists a sequence m = mn → ∞ such that

kn = [n/mn] → ∞, where [x] denotes the integer part of x. The condition
A(an) requires that

Ee−
∫
f dNn −

(
Ee−

∫
fdNm

)kn

→ 0 , (2.5)

where f belongs to a sufficiently rich class of non-negative measurable functions
on R such that the convergence of the Laplace functional Ee−

∫
f dNn for all f

from this class ensures weak convergence of (Nn). Relation (2.5) ensures that
Nn can be approximated in law by a sum of kn iid copies of Nm, hence the weak
limits of (Nn) must be infinitely divisible point processes.

The condition A(an) is difficult to be checked directly, but it follows from
standard mixing conditions such as strong mixing with a suitable rate. For
future use, recall that the stationary sequence (Xt) is strongly mixing with rate
function (αh) if

sup
A∈σ(...,X−1,X0) ,B∈σ(Xh,Xh+1,...)

|P(A ∩B)− P(A)P(B)| = αh → 0 , h→ ∞ .
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Jakubowski (31) showed that (1.1) with bn = 0 and regularly varying (an)
implies the condition

max
16k,l6n ,k+l6n

∣∣∣Ee ixa−1
n Sk+l − Ee ixa−1

n SkEe ixa−1
n Sl

∣∣∣→ 0 , n→ ∞, x ∈ R

(2.6)
which is satisfied for strongly mixing (Xt). We also refer to the discussion in
Sections 4–6 of (33) for alternative ways of verifying (2.6). Under assumptions
on the distribution of X more restrictive than regular variation it is shown that
(1.1) implies the existence of a sequence ln → ∞ such that for any kn = o(ln)
the following relation holds

(
Ee i x k−1/α

n (a−1
n Sn)

)kn

− Ee i x a−1
n Sn → 0 , x ∈ R . (2.7)

It is similar to condition (2.5) at the level of partial sums.
We will assume a similar mixing condition in terms of the characteristic

functions of the partial sums of (Xt). Write

ϕnj(x) = Ee ixa−1
n Sj , j = 1, 2, . . . , ϕn = ϕnn , x ∈ R .

Condition (MX). Assume that there exist m = mn → ∞ such that kn =
[n/m] → 0 and

∣∣ϕn(x) − (ϕnm(x))kn
∣∣→ 0 , n→ ∞ , x ∈ R. (2.8)

This condition is satisfied for a strongly mixing sequence provided the rate
function (αh) decays sufficiently fast; see Section 3.2.4. But (2.8) is satisfied for
classes of stationary processes much wider than strongly mixing ones. Condi-
tion (MX) is analogous to A(an). The latter condition is formulated in terms
of the Laplace functionals of the underlying point processes. It is motivated by
applications in extreme value theory, where the weak convergence of the point
processes is crucial for proving limit results of the maxima and order statis-
tics of the samples X1, . . . , Xn. Condition (MX) implies that the partial sum

processes (a−1
n Sn) and (a−1

n

∑kn

i=1 Smi) have the same weak limits, where Smi,
i = 1, . . . , kn, are iid copies of Sm. This observation opens the door to clas-
sical limit theory for partial sums based on triangular arrays of independent
random variables. Since we are dealing with the limit theory for the partial
sum process (a−1

n Sn) condition (MX) is more natural than A(an) which is only
indirectly (via a non-trivial continuous mapping argument acting on converging
point processes) responsible for the convergence of the normalized partial sum
process (a−1

n Sn).

2.3 Anti-clustering conditions

Assuming condition (RV), Davis and Hsing (12) require the anti-clustering
condition

lim
d→∞

lim sup
n→∞

P

(
max

d6|i|6mn

|Xi| > xan | |X0| > xan

)
= 0 , x > 0 , (2.9)
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where, as before, m = mn → ∞ is the block size used in the definition of the
mixing condition A(an). It follows from recent work by Basrak and Segers (6)
that the index set {i : d 6 |i| 6 mn} can be replaced by {i : d 6 i 6 mn},
reducing the efforts for verifying (2.9). With this modification, a sufficient
condition for (2.9) is then given by

lim
d→∞

lim sup
n→∞

n

mn∑

i=d

P (|Xi| > xan , |X0| > xan) = 0 , x > 0 . (2.10)

Relation (2.10) is close to the anti-clustering condition D′(xan) used in extreme
value theory; see Leadbetter et al. (40), Leadbetter and Rootzén (39) and
Embrechts et al. (24), Chapter 5.

An alternative anti-clustering condition is (38) in Jakubowski (33):

lim
d→∞

lim sup
x→∞

lim sup
n→∞

xα
n−1∑

h=d

(n− h)P(|X0| > xan , |Xh| > xan) = 0 . (2.11)

Assuming regular variation of X and defining (an) as in (2.2), we see that (2.11)
is implied by the condition

lim
d→∞

lim sup
x→∞

lim sup
n→∞

n

n−1∑

h=d

P(|Xh| > xan , |X0| > xan) = 0 ,

which is close to condition (2.10).
For our results we will need an anti-clustering condition as well. It is hidden

in assumption (AC) in Theorem 3.1; see the discussion in Section 3.2.3.

2.4 Vanishing small values conditions

Davis, Hsing, and Jakubowski prove convergence of the normalized partial sums
by showing that the limiting distribution is infinitely divisible with a Lévy triplet
corresponding to an α-stable distribution. In particular, they need conditions
to ensure that the sum of the small values (summands) in the sum a−1

n Sn does
not contribute to the limit. Such a condition for a dependent sequence (Xt) is
often easily established for α ∈ (0, 1), whereas the case α ∈ [1, 2) requires some
extra work.

Davis and Hsing (12) assume the condition (3.2):

lim
ǫ→0

lim sup
n→∞

P

(∣∣∣∣∣

n∑

t=1

XtI{|Xt|6ǫan} − nEXI{|X|6ǫan}

∣∣∣∣∣ > xan

)
= 0, x > 0 ,

(2.12)
for α ∈ (0, 2). For an iid sequence (Xt) the relation

median(a−1
n Sn)− a−1

n nE[XI{|X|6ǫan}] → 0 , ǫ > 0 ,

holds. Therefore a−1
n nEXI{|X|6ǫan} are the natural centering constants for

a−1
n Sn in stable limit theory. In the case of dependent (Xt), the choice of the
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latter centering constants is less straightforward; it is dictated by truncation of
the points in the underlying weakly converging point processes.

The analogous condition (35) in Jakubowski (33) reads as follows: for each
x > 0

lim
ǫ↓0

lim sup
l→∞

lim sup
n→∞

lα P

(∣∣∣
n∑

t=1

[Xt I{|Xt|6ǫ l an} − EXI{|X|6ǫ l an}]
∣∣∣ > x l an

)
= 0.

(2.13)
As shown in (33), this condition is automatically satisfied for α ∈ (0, 1).

In our approach the anti-clustering condition (AC) (see below) is imposed
on the sum of “small” and “moderate” values and we do not need to verify
conditions such as (2.12) and (2.13).

3 Main result

In this section we formulate and prove our main result. Recall the regular
variation condition (RV) and the mixing condition (MX) from Sections 2.1
and 2.2. We will use the following notation for any random variable Y :

Y = (Y ∧ 2) ∨ (−2) .

Notice that |Y | = |Y | ∧ 2 is subadditive.

Theorem 3.1. Assume that (Xt) is a strictly stationary process satisfying the
following conditions.

1. The regular variation condition (RV) holds for some α ∈ (0, 2).

2. The mixing condition (MX) holds.

3. The anti-clustering condition

lim
d→∞

lim sup
n→∞

n

m

m∑

j=d+1

E

∣∣∣xa−1
n (Sj − Sd) xa

−1
n X1

∣∣∣ = 0 , x ∈ R , (AC)

holds, where m = mn is the same as in (MX).

4. The limits

lim
d→∞

(b+(d)− b+(d− 1)) = c+ and lim
d→∞

(b−(d)− b−(d− 1)) = c− , (TB)

exist. Here b+(d), b−(d) are the tail balance parameters given in (2.3).

5. For α > 1 assume E(X1) = 0 and for α = 1,

lim
d→∞

lim sup
n→∞

n |E(sin(a−1
n Sd))| = 0. (CT)
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Then c+ and c− are non-negative and (a−1
n Sn) converges in distribution to an

α-stable random variable (possibly zero) with characteristic function ψα(x) =
exp(−|x|αχα(x, c+, c−)), where for α 6= 1 the function χα(x, c+, c−), x ∈ R, is
given by the formula

Γ(2− α)

1− α

(
(c+ + c−) cos(πα/2)− i sign(x)(c+ − c−) sin(π α/2)

)
,

while for α = 1 one has

χ1(x, c+, c−) = 0.5 π(c+ + c−) + i sign(x) (c+ − c−) log |x|, x ∈ R.

We discuss the conditions of Theorem 3.1 in Section 3.2. In particular,
we compare them with the conditions in Jakubowski (31; 33) and Davis and
Hsing (12). If the sequence (Xn) is m0-dependent for some integer m0 >

1, i.e., the σ-fields σ(. . . , X−1, X0) and σ(Xm0+1, Xm0+2, . . .) are independent,
the conditions (MX), (AC) and (TB) of Theorem 3.1 are automatic; see
Section 4.1. The surprising fact that c+ and c− are non-negative is explained
at the end of Section 3.2.2.

Remark 3.2. Although Theorem 3.1 covers a wide range of strictly stationary
sequences (see in particular Section 4) condition (RV) limits the applications
to infinite variance (in particular unbounded) random variables Xn. The referee
of this paper pointed out the surprising fact that there exist strictly stationary
Markov chains (Yn), suitable bounded functions f and a sequence (an) with
an = n1/αℓ(n) for some slowly varying function ℓ such that the sequence of
the normalized partial sums (a−1

n Sn) of the sequence (Xn) = (f(Yn)) converges
in distribution to an infinite variance stable random variable. Then (RV) is
obviously violated. Such an example is contained in Gouëzel (29), Theorem 1.3.

Other examples of stable limits for sums of bounded stationary random vari-
ables (of different nature - non-Markov and involving long-range dependence)
are given in (54), Theorems 2.1 (ii) and 2.2 (ii).

Remark 3.3. It might be instructive to realize that in limit theorems for weakly
dependent sequences properties of finite dimensional distributions can be as bad
as possible. For example it is very easy to build a 1-dependent sequence having
no moment of any order and such that its (centered and normalized) partial
sums still converge to a stable law of order α ∈ (0, 2]. Let

Xn = Yn + εn − εn−1,

where (Yn) is an iid sequence of α-stable random variables and (εn) is an iid
sequence without any moments (that is E(|ε0|a) = +∞ for any positive a) and
the two sequences are independent. Then the (centered and normalized) partial
sums of (Xn)) have the same limit behavior (in distribution) as that of (Yn).

3.1 Proof of Theorem 3.1

For any strictly stationary sequence (Xt)t∈Z it will be convenient to write

S0 = 0 , Sn = X1 + · · ·+Xn , S−n = X−n + · · ·+X−1 , n > 1 .
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Let Smi, i = 1, 2, . . . , be iid copies of Sm. In view of (2.8) the theorem is proved

if we can show that (a−1
n

∑kn

i=1 Smi) has an α-stable limit with characteristic
function ψα. For such a triangular array, it is implied by the relation

kn(ϕnm(x) − 1) → logψα(x) , x ∈ R . (3.1)

Indeed, notice first that the triangular array (a−1
n Smi)i=1,...,kn of iid random

variables satisfies the infinite smallness condition. Then apply Lemma 3.5 in
Petrov (46) saying that for all x ∈ R and sufficiently large n,

logϕnm(x) = ϕnm(x) − 1 + θnm(ϕnm(x)− 1)2 ,

where |θnm| 6 1. Thus

|kn(ϕnm(x)− 1)− kn logϕnm(x)| 6 kn |ϕnm(x)− 1|2 6 c k−1
n → 0 .

Here and in what follows, c denotes any positive constants. Our next goal is to
find a suitable approximation to the left-hand side in (3.1).

Lemma 3.4. Under (RV) and (AC) the following relation holds:

lim
d→∞

lim sup
n→∞

∣∣∣kn(ϕnm(x)− 1)− n (ϕnd(x)− ϕn,d−1(x))
∣∣∣ = 0 , x ∈ R . (3.2)

Moreover, if (Xn) is m0-dependent for some integer m0 > 1, then

lim
n→∞

∣∣∣kn(ϕnm(x)−1)−n (ϕnd(x)−ϕn,d−1(x))
∣∣∣ = 0 , x ∈ R , d > m0 . (3.3)

The proof is given at the end of this section. By virtue of (RV) and (2.3), Sd

is regularly varying with index α ∈ (0, 2); see Remark 2.1. Therefore it belongs
to the domain of attraction of an α-stable law. Theorem 3 in Section XVII.5 of
Feller (26) yields that for every d > 1 there exists an α-stable random variable
Zα(d) such that

a−1
n

n∑

i=1

(Sdi − end)
d→ Zα(d) where end =

{
0 α 6= 1,

E(sin(Sd/an)) α = 1.
(3.4)

The limiting variable Zα(d) has the characteristic function

ψ̃α,d(x) = exp(−|x|αχα(x, b+(d), b−(d))) , x ∈ R .

Applying Theorem 1 in Section XVII.5 of Feller (26), we find the equivalent
relation

n
(
ϕnd(x)e

−iendx − 1
)
→ log ψ̃α,d(x) , x ∈ R ,

and exploiting condition (TB), for x ∈ R,

n (ϕnd(x)e
−iendx − ϕn,d−1(x)e

−ien,d−1x)

→ log ψ̃α,d(x)− log ψ̃α,d−1(x) as n→ ∞ (3.5)

→ logψα(x) as d→ ∞ .

10



For α 6= 1 we have end = 0. Therefore (3.2) implies

kn (ϕnm(x) − 1) → logψα(x) , x ∈ R .

This finishes the proof in this case. For α = 1 we use the same arguments but
we have to take into account that end does not necessarily vanish. However, we
have

|ϕnd(x) − ϕnd(x)e
−iendx| 6 |1− e−iendx| 6 t |end| ,

and using (CT), we obtain

lim
d→∞

lim sup
n→∞

n |(ϕnd(x)− ϕn,d−1(x))− (ϕnd(x)e
−iendx − ϕn,d−1(x)e

−ien,d−1x)| = 0 .

This proves the theorem. Proof of Lemma 3.4. Consider the following
telescoping sum for any n, m 6 n and d < m:

ϕnm(x)− 1 = ϕnd(x) − 1 +

m−d∑

j=1

(ϕn,d+j(x) − ϕn,d−1+j(x)) .

By stationarity of (Xt) we also have

m (ϕnd(x)− ϕn,d−1(x)) =

d (ϕnd(x)− ϕn,d−1(x)) +
m−d
∑

j=1

[

Ee ixa−1
n (S

−d−j−S−j) − Ee ixa−1
n (S

−d−j+1−S−j)
]

.

Taking the difference between the previous two identities, we obtain

(ϕnm(x)− 1)−m (ϕnd(x)− ϕn,d−1(x)) =

−(d− 1) (ϕn,d(x)− 1) + d (ϕn,d−1(x)− 1) +

m−d
∑

j=1

[

ϕn,d+j(x)− Ee ixa−1
n (S

−d−j−S−j) − ϕn,d−1+j(x) + Ee ixa−1
n (S

−d−j+1−S−j)
]

.

By stationarity, for any k > 1, ϕnk(x) = Ee ixa−1
n S−k . Therefore any summand

in the latter sum can be written in the following form

E

(
e ixa−1

n S−d−j − e ixa−1
n (S−d−j−S−j) − e ixa−1

n S−d−j+1 + e ixa−1
n (S−d−j+1−S−j)

)

= E

(
e ixa−1

n S−d−j
(
1− e−ixa−1

n S−j
) (

1− e−ixa−1
n X−d−j

))
.

Using the fact that x → exp(ix) is a 1-Lipschitz function bounded by 1, the
absolute value of the expression on the right-hand side is bounded by

E
(
(|xa−1

n S−j | ∧ 2) (|xa−1
n X−d−j| ∧ 2)

)
.

11



Collecting the above identities and bounds, we finally arrive at the inequality

|kn (ϕnm(x) − 1)− n (ϕnd(x)− ϕn,d−1(x))|

6 kn (d− 1) |ϕnd(x)− 1|+ kn d |ϕn,d−1(x) − 1|

+kn

m∑

j=d+1

E

∣∣∣xa−1
n (Sj − Sd) xa

−1
n X1

∣∣∣ .

The last term on the right-hand side converges to zero in view of assumption
(AC) when first n → ∞ and then d → ∞. In the m0-dependent case, the last
term on the right-hand side converges to zero whenever d > m0 and n → ∞.
To prove that the first two terms also converge to zero, let us notice that, under
(RV), n(ϕnd(x) − 1) → χα(x, b+(d), b−(d)) and so

lim
n→∞

kn(d− 1)(ϕnd(x) − 1) = lim
n→∞

mn
−1(d− 1)n(ϕnd(x)− 1) = 0.

This proves the lemma.

Remark 3.5. Balan and Louhichi (2) have taken a similar approach to prove
limit theorems for triangular arrays of stationary sequences with infinitely di-
visible limits. Their paper combines ideas from Jakubowski (33), in particular
condition (TB), and the point process approach in Davis and Hsing (12). They
work under a mixing condition close to A(an). One of their key results (The-
orem 2.6) is the analog of Lemma 3.4 above. It is formulated in terms of the
Laplace functionals of point processes instead of the characteristic functions of
the partial sums. Then they sum the points in the converging point processes
and in the limiting point process to get an infinitely divisible limit. The sum
of the points of the limiting process represent an infinitely divisible random
variable by virtue of the Lévy-Itô representation. As in Davis and Hsing (12)
the method of proof is indirect, i.e., one does not directly deal with the partial
sums, and therefore the results are less explicit.

3.2 A discussion of the conditions of Theorem 3.1

3.2.1 Condition 5

It is a natural centering condition for the normalized partial sums in the cases
α = 1 and α ∈ (1, 2). In the latter case, E|X | < ∞, and therefore EX = 0 can
be assumed without loss of generality. As usual in stable limit theory, the case
α = 1 is special and therefore we need condition (CT). It is satisfied if Sd is
symmetric for every d.

3.2.2 Condition (TB)

If c++ c− = 0 the limiting stable random variable is zero. For example, assume
Xn = Yn−Yn−1 for an iid regularly varying sequence (Yn) with index α ∈ (0, 2).

12



Then Sd = Yd − Y0 is symmetric and regularly varying with index α. By
the definition of (an), b+(d) = b−(d) = 0.5, hence c+ = c− = 0. Of course,

a−1
n Sn

P→ 0.
In the context of Theorem 3.1 in Jakubowski (33) (although the conditions

of that result are more restrictive as regards the tail of X) it is shown that
(TB) is necessary for convergence of (a−1

n Sn) towards a stable limit. Condition
(TB) can be verified for various standard time series models; see Section 4.
The meaning of this condition is manifested in Lemma 3.4. It provides the link
between the regular variation of the random variables Sd for every d > 1 (this
is a property of the finite-dimensional distributions of the partial sum process
(Sd)) and the Lévy measure να of the α-stable limit. Indeed, notice that (TB)
implies that, for every x > 0, with b+(0) = 0,

c+ x
−α = lim

d→∞

b+(d)

d
x−α

= lim
d→∞

1

d

d∑

i=1

(b+(i)− b+(i− 1))x−α

= lim
d→∞

1

d

d∑

i=1

lim
n→∞

n (P(Si > xan)− P(Si−1 > xan)) ,

and a similar relation applies to c−x
−α. Then

να(x,∞) = c+ x
−α and να(−∞,−x) = c− x

−α , x > 0 ,

determine the Lévy measure να of the α-stable limit distribution with the char-
acteristic function ψα given in Theorem 3.1. In particular, Lemma 3.4 implies
that as n→ ∞

kn P(Sm > xan) → να(x,∞),
kn P(Sm 6 −xan) → να(−∞,−x], x > 0 . (3.6)

The latter relation opens the door to the limit theory for partial sums of trian-
gular arrays of iid copies (Smi)i=1,...,kn , of Sm. Notice that the relations (3.6)
are of large deviations type in the sense of (33). We refer to (35) for their
multi-dimensional counterparts.

Let us notice that although one cannot ensure that b±(d) > b±(d − 1) > 0
for sufficiently large d, the constants c+, c− are non-negative. It is immediate
from the observation that

c± = lim
d→∞

(b±(d)− b±(d− 1))

= lim
d→∞

1

d

d∑

i=1

(b±(i)− b±(i− 1)) = lim
d→∞

b±(d)

d
≥ 0.
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Remark 3.6. Recall the two benchmark examples of Remark 2.1. If (Xt) is an
iid sequence regularly varying with index α > 0 the limits c+ = p and c− = q
always exist and conditions (MX), (AC) are automatically satisfied. Then,
under (CT), we recover the classical limit results for partial sums with α-stable
limit. On the other hand, if Xi = X for all i, then c+ = c− = 0 if 0 < α < 1,
c+ = p and c− = q if α = 1 and c+ and c− are not defined otherwise. This
observation is in agreement with the fact that a−1

n Sn = n1−1/αℓ(n)X for some
slowly varying function ℓ.

3.2.3 Sufficient conditions for (AC)

Condition (AC) is close to the anti-clustering conditions in (12; 33) discussed
in Section 2.3. In what follows, we give some sufficient conditions for (AC).
These conditions are often simple to verify.

Lemma 3.7. Assume the conditions of Theorem 3.1 and that (Xt) is strongly
mixing with rate function (αh). Moreover, assume that there exists a sequence
rn → ∞ such that rn/mn → 0, nαrn → 0 and one of the following three
conditions is satisfied.

limd→∞ lim supn→∞ n
[∑rn

i=d+1 P(|Xi| > an , |X1| > an)
+ P

(∣∣∑rn
i=d+1XiI{|Xi|6an}

∣∣ > an , |X1| > an
)]

= 0 .
(3.7)

or
lim
d→∞

lim sup
n→∞

nP( max
i=d+1,...,rn

|Xi| > an/rn , |X1| > an) = 0 . (3.8)

or
lim
d→∞

lim sup
n→∞

nP(|Srn − Sd| > an , |X1| > an) = 0 . (3.9)

Then (AC) holds.

Proof. Let us recall that the function y 7→ |y| is subadditive. We decompose
the sum in (AC) as follows.

kn




rn∑

j=d+1

+

m∑

j=rn+1



E

∣∣∣xa−1
n (Sj − Sd) xa

−1
n X1

∣∣∣ = J1(n) + J2(n) .

We will deal with the two terms J1(n) and J2(n) in different ways. For the sake
of simplicity we assume x = 1.

We start by bounding J2(n).

J2(n) 6 kn

m∑

j=rn+1

[
E

∣∣∣a−1
n (Sj − Srn) a

−1
n X1

∣∣∣+
∣∣∣a−1

n (Srn − Sd)
∣∣∣
]

= kn

m∑

j=rn+1

E

∣∣∣a−1
n (Sj − Srn) a

−1
n X1

∣∣∣+ nE
∣∣∣a−1

n (Srn − Sd) a
−1
n X1

∣∣∣

= J21(n) + J22(n) .
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We bound a typical summand in J21(n), using the strong mixing property

E

∣∣∣a−1
n (Sj − Srn) a

−1
n X1

∣∣∣

= cov
(
|a−1

n (Sj − Srn)|, |a−1
n X1|

)
+ E

∣∣∣a−1
n Sj−rn+1

∣∣∣E
∣∣∣a−1

n X1

∣∣∣

6 c αrn + E

∣∣∣a−1
n Sj−rn+1

∣∣∣E
∣∣∣a−1

n X1

∣∣∣ .

Moreover, we have for j > rn

∣∣∣a−1
n (Sj−rn+1)

∣∣∣ ≤
j−rn+1∑

i=1

∣∣∣a−1
n Xi

∣∣∣ ,

hence

E

∣∣∣a−1
n Sj−rn+1

∣∣∣E
∣∣∣a−1

n X1

∣∣∣ 6 j
(
E

∣∣∣a−1
n X1

∣∣∣
)2
.

Thus we arrive at the bound

J21(n) 6 c nαrn + c nm
(
E

∣∣∣a−1
n X1

∣∣∣
)2

.

Observe that

E|a−1
n X1| = E

(
a−1
n |X1|I{a−1

n |X1|62} ∧ 2I{a−1
n |X1|>2}

)

6 2P(|X1| > 2 an) .

Therefore, by definition of (an) and since nαrn → 0 by assumption,

J21(n) = O(nαrn) +O(m/n) = o(1) .

We also have

J22(n) 6 c nP(|Srn − Sd| > 2 an , |X1| > 2 an)

6 c n

rn∑

i=d+1

P(|Xi| > an , |X1| > 2 an)

+c nP

(∣∣∣∣∣

rn∑

i=d+1

XiI{|Xi|6an}

∣∣∣∣∣ > 2 an , |X1| > 2 an

)
.

and

J22(n) 6 cP( max
i=d+1,...,rn

|Xi| > 2 an/rn | |X1| > 2 an) .

Thus, under any of the assumptions (3.7)–(3.9), limd→∞ lim supn→∞ J22(n) = 0.
Finally,

J1(n) 6 c kn

rn∑

j=d+1

P(|Sj − Sd| > 2an , |X1| > 2an)

6
rn
m
nP(|X1| > 2an) = o(1) .
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Collecting the bounds above we proved that (AC) holds.

3.2.4 Condition (MX)

As we have already discussed in Sections 2.1 and 2.2, the condition (MX) is
a natural one in the context of stable limit theory for dependent stationary
sequences. Modifications of these conditions appear in Davis and Hsing (12),
Jakubowski (31; 33). We also discuss the existence of sequencees m = mn → ∞
and r = rn → ∞ such that r/m→ 0 and m/n→ 0 to be used in Lemma 3.7 in
the context of strong mixing.

Lemma 3.8. Assume that (Xt) is strongly mixing with rate function (αh). In
addition, assume that there exists a sequence ǫn → 0 satisfying

nα[ǫn(a2
n/n∧n)] → 0 . (3.10)

Then (MX) holds for some m = mn → ∞ with kn = [n/m] → ∞. Moreover,
writing rn = [ǫn(an ∧ n)], then rn/mn → 0 for this choice of (mn) and

nαrn → 0 . (3.11)

If the tail index α 6 1, then (3.11) turns into nα[ǫnn] → 0 which is more
restrictive than (3.10). On the other hand, if the tail index α is close to 2, (3.10)
is not implied by polynomial decay of the coefficients αh. Then a subexponential
decay condition of the type αn 6 C exp(−cnb) for some C, c, b > 0 implies (3.10),
and then (3.11) follows.

Proof. We start by showing that (2.8) holds for a suitable sequence (mn). Let

ϕnmδ be the characteristic function of a−1
n

∑kn

i=1 Um−δ,i for some δ = δn and

Uji =

ij∑

k=(i−1)j+1

Xk

a block sum of size j. Using that characteristic functions are Lipschitz functions
bounded by 1 and writing q = knm, for x ∈ R,

|ϕq(x)− ϕnmδ(x)| 6 E

(∣∣∣
x

an

kn∑

j=1

Uδj

∣∣∣ ∧ 2
)

6 E

(
xδn

man
|X1| ∧ 2

)

6

∫ 2

0

P(|X1| > man/(δn)s)ds .

The right-hand side approaches zero if mnan/(δnn) → ∞ as n → ∞. Under
this condition, the same arguments yield

|(ϕnm(x))kn − (ϕn,m−δ(x))
kn | → 0 and |ϕq(x) − ϕn(x)| → 0 ,
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as soon as an/m→ ∞. Next we use a standard mixing argument to bound

|ϕnmδ(x)− (ϕn,m−δ(x))
[m/n]|

6 |ϕnmδ(x)− ϕm−δ(x)ϕn−m,mδ(x)|
+|ϕm−δ(x)ϕn−m,mδ(x) − (ϕn,m−δ(x))

[m/n]|.

The first term on the right-hand side is the covariance of bounded Lipschitz
functions of Sm−δ and Sn − Sm. Hence it is bounded by αδ. Iterative use of
this argument, recursively on distinct blocks, shows that the right-hand side is
of the order (n/m)αδ. Thus we proved that (2.8) is satisfied if

n/mαδ → 0 , man/(δn) → ∞ and an/m→ ∞ . (3.12)

Choose mn = [
√
ǫn(an ∧ n)], δ = [m2/n] and assume (3.10). Then (3.12) holds,

(2.8) is satisfied and m/n ∼
√
δ/n→ 0.

Finally, if (3.10) is satisfied choose rn = [ǫn(an ∧ n)]. Then nαrn → 0 and
rn/m→ 0 are automatic.

4 Examples

4.1 m0-dependent sequences

Consider a strictly stationary sequence (Xn) satisfying condition (RV) and
which is m0-dependent for some integer m0 > 1. In this case, αh = 0 for
h > m0. Then, by virtue of Lemma 3.8 condition (MX) is satisfied for any
choice of sequences (mn) such that mn → ∞ and mn = o(n). Moreover, (AC)
follows from Lemma 3.7 for any (rn) such that rn → ∞ and rn = o(mn). We
verify the validity of condition (3.8). Then for (rn) growing sufficiently slowly,

nP( max
i=d+1,...,rn

|Xi| > an/rn , |X1| > an)

6 n rn P (|X1| > an)P (|X1| > an/rn)

= O(rn P (|X1| > an/rn)) = o(1) .

Thus, in the m0-dependent case we have the following special case of Theo-
rem 3.1.

Proposition 4.1. Assume that (Xt) is a strictly stationary m0-dependent se-
quence for some m0 > 1 which also satisfies condition (RV) for some α ∈ (0, 2).
Moreover, assume E(X1) = 0 for α > 1 and X1 is symmetric for α = 1.
Then the conclusions of Theorem 3.1 hold with c+ = b+(m0 + 1)− b+(m0) and
c− = b−(m0 + 1)− b−(m0).

Proof. We have already verified conditions (MX) and (AC) of Theorem 3.1.
Following the lines of the proof of Theorem 3.1 with end = 0, we arrive at (3.5)
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for every d > 1. In view of the second part of Lemma 3.4, the right-hand side of
(3.5) is independent of d for d > m0 as the limit of kn(ϕnm(x) − 1) as n→ ∞.
This finishes the proof by taking d = m0 + 1.

We mention in passing that we may conclude from the proof of Proposi-
tion 4.1 that condition (TB) is satisfied since c+ = b+(d + 1) − b+(d) and
c− = b−(d + 1) − b−(d) for d > m0. This is a fact which is not easily seen by
direct calculation on the tails of Sd, d > m0.

4.2 The stochastic volatility model

The stochastic volatility model is one of the standard econometric models for
financial returns of the form

Xt = σt Zt ,

where the volatility sequence (σt) is strictly stationary independent of the iid
noise sequence (Zt). See e.g. Andersen et al. (1) for a recent reference on
stochastic volatility models or the collection of papers (51).

Conditions (RV), (TB) and (CT)

We assume that Z is regularly varying with index α > 0, implying that (Zt) is
regularly varying. We also assume that Eσp < ∞ for some p > α. Under these
assumptions it is known (see Davis and Mikosch (14)) that (Xt) is regularly
varying with index α, and the limit measure µd in (2.1) is given by

µd(dx1, . . . , dxd) =
d∑

i=1

λα(dxi)
∏

i6=j

ε0(dxj) , (4.1)

where εx is Dirac measure at x,

λα(x,∞) = p̃ x−α and λα(−∞,−x] = q̃ x−α , x > 0 ,

and

p̃ = lim
x→∞

P(Z > x)

P(|Z| > x)
and q̃ = lim

x→∞

P(Z 6 −x)
P(|Z| > x)

, (4.2)

are the tail balance parameters of Z. This means that the measures µd are
supported on the axes as if the sequence (Xt) were iid regularly varying with
tail balance parameters p̃ and q̃. By virtue of (4.1) and (2.4) we have b+(d) = p̃ d
and b−(d) = q̃ d, hence c+ = p̃ and c− = q̃. We also assume EZ = 0 for α > 1.
Then EX = 0. If α = 1 we assume Z symmetric. Then Sd is symmetric for
every d > 1 and (CT) is satisfied.
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Conditions (MX) and (AC)

In order to meet (MX) we assume that (σt) is strongly mixing with rate function
(αh). It is well known (e.g. Doukhan (23)) that (Xt) is then strongly mixing
with rate function (4αh).

It is common use in financial econometrics to assume that (log σt) is a Gaus-
sian linear process. The mixing rates for Gaussian linear processes are well
studied. For example, if (log σt) is a Gaussian ARMA process then (αh) decays
exponentially fast. We will assume this condition in the sequel. Then we may
apply Lemma 3.8 with rn = nγ1 , mn = nγ2 , 0 < γ1 < γ2 < 1 for sufficiently
small γ1 and γ2, to conclude that (MX) holds and nαrn → 0.

Next we verify (AC). We have by Markov’s inequality for small ǫ > 0,

nP( max
i=d+1,...,rn

|Xi| > an/rn, |X1| > an)

6 n

rn∑

i=d+1

P(|Xi| > an/rn, |X1| > an)

6 n

rn∑

i=d+1

P(max(σi, σ1)min(|Zi|, |Z1|) > an/rn)

6 n (rn/an)
α+ǫ

rn∑

i=d+1

E(max(σα+ǫ
i , σα+ǫ

1 ))

6 c n r1+α+ǫ
n a−α−ǫ

n .

The right-hand side converges to zero if we choose γ1 and ǫ sufficiently small.
This proves (3.8) and by Lemma 3.7 also (AC).

Proposition 4.2. Assume that (Xt) is a stochastic volatility model satisfying
the following additional conditions:

(a) (Zt) is iid regularly varying with index α ∈ (0, 2) and tail balance param-
eters p̃ and q̃.

(b) For α ∈ (1, 2), EZ = 0, and for α = 1, Z is symmetric.

(c) (log σt) is a Gaussian ARMA process.

Then the stochastic volatility process (Xt) satisfies the conditions of Theorem 3.1
with parameters c+ = p̃ and c− = q̃ defined in (4.2).

Hence a stochastic volatility model with Gaussian ARMA log-volatility se-
quence satisfies the same stable limit relation as an iid regularly varying sequence
with index α ∈ (0, 2) and tail balance parameters p̃ and q̃.

In applications it is common to study powers of the absolute values, (|Xt|p),
most often for p = 1, 2. We assume the conditions of Proposition 4.2. Then
the sequence (X2

t ) is again a stochastic volatility process which is regularly
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varying with index α/2 ∈ (0, 1). It is not difficult to see that the conditions of
Proposition 4.2 are satisfied for this sequence with b−(d) = 0 and b+(d) = d,
hence c+ = 1 and c− = 0.

A similar remark applies to (|Xt|) with one exception: the centering condi-
tion (CT) cannot be satisfied. This case requires special treatment. However,
the cases α 6= 1 are similar. For α < 1, (|Xt|) is a stochastic volatility model
satisfying all conditions of Proposition 4.2. For α ∈ (1, 2) we observe that

a−1
n

n∑

i=1

(|Xt| − E|X |) = a−1
n

n∑

t=1

σt (|Zt| − E|Z|) + a−1
n E|Z|

n∑

t=1

(σt − Eσ)

= a−1
n

n∑

t=1

σt (|Zt| − E|Z|) + oP(1) .

In the last step we applied the central limit theorem to (σt). Then the process
(σt(|Zt| − E|Z|)) is a stochastic volatility model satisfying the conditions of
Proposition 4.2 with c+ = 1 and c− = 0.

4.3 Solutions to stochastic recurrence equations

We consider the stochastic recurrence equation

Xt = AtXt−1 +Bt , t ∈ Z , (4.3)

where ((At, Bt)) constitutes an iid sequence of non-negative random variablesAt

and Bt. Various econometric time series models (Xt) have this form, including
the squared ARCH(1) process and the volatility sequence of a GARCH(1, 1)
process; see Section 4.4. The conditions E logA < 0 and E| logB| < ∞ are
sufficient for the existence of a strictly stationary causal solution (Xt) to (4.3)
such that (Xn)n60 and ((An, Bn))n>1 are independent; see Kesten (38).

Condition (RV)

Kesten (38) and Goldie (28) showed under general conditions that X has almost
precise power law tail in the sense that

P(X > x) ∼ c0 x
−α (4.4)

for some constant c0 > 0, where the value α is given by the unique positive
solution to the equation

EAκ = 1 , κ > 0 .

We quote Theorem 4.1 in Goldie (28) to get the exact conditions for (4.4).

Theorem 4.3. Assume that A is a non-negative random variable such that the
conditional law of A given A 6= 0 is non-arithmetic and there exists α > 0 such
that EAα = 1, E(Aα log+A) <∞. Then −∞ 6 E logA < 0 and E(Aα logA) ∈
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(0,∞). Moreover, if EBα <∞, then a unique strictly stationary causal solution
(Xt) to (4.3) exists such that (4.4) holds with constant

c0 =
E[(B1 +A1X0)

α − (A1X0)
α]

αE(Aα logA)
. (4.5)

The condition of non-arithmeticity of the distribution of A is satisfied if A has a
Lebesgue density. In what follows, we assume that the conditions of Theorem 4.3
are satisfied.

Iterating the defining equation (4.3) and writing

Πt = A1 · · ·At , t > 1 ,

we see that
(X1, . . . , Xd) = X0 (Π1,Π2, . . . ,Πd) +Rd , (4.6)

where Rd is independent of X0. Under the assumptions of Theorem 4.3, the
moments EAα and EBα are finite, hence E(Rα

d ) < ∞ and P(|Rd| > x) =
o(P(|X0| > x)). By a multivariate version of a result of Breiman (8) (see Basrak
et al. (5)) it follows that the first term on the right-hand side of (4.6) inherits
the regular variation from X0 with index α and by a standard argument (see
Jessen and Mikosch (36), Lemma 3.12) it follows that (X1, . . . , Xd) and the first
term on the right-hand side of (4.6) have the same limit measure µd. Hence the
sequence (Xt) is regularly varying with index α, i.e., condition (RV) is satisfied
for α > 0 with EAα = 1.

Condition (TB)

Next we want to determine the quantities b+(d). Choose (an) such that nP(X >
an) ∼ 1, i.e., an = (c0 n)

1/α, and write

Td =
d∑

i=1

Πi , d > 1 .

We obtain for every d > 1, by (4.6),

nP(Sd > an) ∼ nP(X0 Td > an) ∼ nP(X0 > an)E(T
α
d ) ∼ E(Tα

d ) = b+(d) .

Here we again used Breiman’s result (8) for P(X0 Td > x) ∼ E(Tα
d )P(X0 > x)

in a modified form. In general, this result requires that E(Tα+δ
d ) <∞ for some

δ > 0. However, if P(X > x) ∼ c0 x
−α, Breiman’s result is applicable under

the weaker condition EAα < ∞; see Jessen and Mikosch (36), Lemma 4.2(3).
Of course, b−(d) = 0. We mention that the values b±(d) do not change if Sd is
centered by a constant.

Our next goal is to determine c+. Since EAα = 1 we have

b+(d+ 1)− b+(d) = E[(1 + Td)
α − Tα

d ] . (4.7)

21



The condition EAα = 1 and convexity of the function g(κ) = EAκ, κ > 0, imply
that E logA < 0 and therefore

Td
a.s.→ T∞ =

∞∑

i=1

Πi <∞ .

Therefore the question arises as to whether one may let d → ∞ in (4.7) and
replace Td in the limit by T∞. This is indeed possible as the following dominated
convergence argument shows.

If α ∈ (0, 1] concavity of the function f(x) = xα yields that (1+Td)
α−Tα

d 6 1
and then Lebesgue dominated convergence applies. If α ∈ (1, 2), the mean value
theorem yields that

(1 + Td)
α − Tα

d = α (Td + ξ)α−1 ,

where ξ ∈ (0, 1). Hence (1+Td)
α−Tα

d is dominated by the function α[Tα−1
d +1].

By convexity of g(κ), κ > 0, we have E(Aα−1) < 1 and therefore

E(Tα−1
∞ ) 6

∞∑

i=1

E(Πα−1
i ) =

∞∑

i=1

(E(Aα−1))i = E(Aα−1)(1 − E(Aα−1))−1 <∞ .

An application of Lebesgue dominated convergence yields for any α ∈ (0, 2)
that

c+ = lim
d→∞

[b+(d+ 1)− b+(d)] = E[(1 + T∞)α − Tα
∞] ∈ (0,∞) . (4.8)

Remark 4.4. The quantity T∞ has the stationary distribution of the solution
to the stochastic recurrence equation

Yt = At Yt−1 + 1 , t ∈ Z .

This solution satisfies the conditions of Theorem 4.3 and therefore

P(Y0 > x) = P(T∞ > x) ∼ c1 x
−α ,

with constant

c1 =
E[Y α

1 − (A1 Y0)
α]

αE(Aα logA)
=

E[(1 +A1 Y0)
α − (A1 Y0)

α]

αE(Aα logA)
.

In particular, E(Tα
∞) = ∞. This is an interesting observation in view of c+ ∈

(0,∞). It is also interesting to observe that the limit relation (4.8) implies that

b+(d)

d
=

E(Tα
d )

d
= E[d−1/αTd]

α → E[(1 + T∞)α − Tα
∞] ,

although d−1/αTd
a.s.→ 0. This relation yields some information about the rate

at which Td
a.s.→ T∞.
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Condition (MX)

The stationary solution (Xt) to the stochastic recurrence equation (4.3) is
strongly mixing with geometric rate provided that some additional conditions
are satisfied. For example, Basrak et al. (5), Theorem 2.8, assume that the
Markov chain (Xt) is µ-irreducible, allowing for the machinery for Feller chains
with drift conditions as for example explained in Feigin and Tweedie (25) or
Meyn and Tweedie (42). The drift condition can be verified if one assumes
that At has polynomial structure; see Mokkadem (45). The latter conditions
can be calculated for GARCH and bilinear processes, assuming some positive
Lebesgue density for the noise in a neighborhood of the origin; see Basrak et al.
(5), Straumann and Mikosch (53).

In what follows, we will assume that (Xt) is strongly mixing with geometric
rate. Then, by Lemma 3.8, we may assume that we can choose rn = nγ1 ,
mn = nγ2 for sufficiently small values 0 < γ1 < γ2 < 1. Then (MX) holds and
nαrn → 0.

Condition (AC)

We verify condition (3.9) and apply Lemma 3.7. It suffices to bound the quan-
tities

In(d) = P(|Srn − Sd| > an | X0 > an) .

Writing Πs,t =
∏t

i=sAi for s 6 t and Πst = 1 for s > t, we obtain

Xi = X0 Πi +
i∑

l=1

Πl+1,iBl = X0 Πi + Ci , i > 1 .

Then, using the independence of X0 and Ci, i > 1, applying Markov’s inequality
for κ < α ∧ 1 and Karamata’s theorem (see Bingham et al. (7)),

In(d) 6 P

(
X0

rn∑

i=d+1

Πi > an/2 | X0 > an

)
+ P

( rn∑

i=d+1

Ci > an/2
)

6 c
E(Xκ

0 I{X0>an})

aκn P(X0 > an)

rn∑

i=d+1

E(Πκ
i ) + c a−κ

n

rn∑

i=d+1

i∑

l=1

(EAκ)i−l
EBκ

6 c

∞∑

i=d+1

(E(Aκ))i + c r1+κ
n a−κ

n (1− EAκ)−1
EBκ

6 c
(
(E(Aκ))d + r1+κ

n a−κ
n ) .

Here we also used the fact that E(Aκ) < 1 by convexity of the function g(κ) =
E(Aκ), κ > 0, and g(α) = 1. Choosing rn = nγ1 for γ1 sufficiently small, we see
that

lim
d→∞

lim sup
n→∞

In(d) = 0 .
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This proves (3.9).

Condition 5

Since X is non-negative, (CT) cannot be satisfied; the case α = 1 needs special
treatment. We focus on the case α ∈ (1, 2). It is not difficult to see that all
calculations given above remain valid if we replace Xt by Xt−EX , provided γ1
in rn = nγ1 is chosen sufficiently small.

We summarize our results.

Proposition 4.5. Under the conditions of Theorem 4.3 the stochastic recur-
rence equation (4.3) has a strictly stationary solution (Xt) which is regularly
varying with index α > 0 given by E[Aα] = 1. If α ∈ (0, 1) ∪ (1, 2) and (Xt) is
strongly mixing with geometric rate the conditions of Theorem 3.1 are satisfied.
In particular,

(c0n)
−1/α (Sn − bn)

d→ Zα , where bn =

{
0 for α ∈ (0, 1) ,

ESn = nEX for α ∈ (1, 2) ,

where the constant c0 is given in (4.5) and the α-stable random variable Zα has
characteristic function ψα(t) = exp(−|t|αχα(t, c+, 0)), where

c+ = E[(1 + T∞)α − Tα
∞] ∈ (0,∞) and T∞ =

∞∑

i=1

A1 · · ·Ai .

Remark 4.6. Analogs of of Proposition 4.5 have recently been proved in Guiv-
arc’h and Le Page (30) in the one-dimensional case and in Buraczewski et al.
(9), Theorem 1.6, also in the multivariate case. The results are formulated for a
non-stationary version of the process (Xn) starting at some fixed value X0 = x.
(This detail is not essential for the limit theorem.) The proofs are tailored
for the situation of stochastic recurrence equations and therefore different from
those in this paper where the proofs do not depend on some particular structure
of the underlying stationary sequence.

4.4 ARCH(1) and GARCH(1,1) processes

In this section we consider the model

Xt = σt Zt ,

where (Zt) is an iid sequence with EZ = 0 and var(Z) = 1 and

σ2
t = α0 + (α1Z

2
t−1 + β1)σ

2
t−1 . (4.9)

We assume that α0 > 0 and the non-negative parameters α1, β1 are chosen such
that a strictly stationary solution to the stochastic recurrence equation (4.9)
exists, namely,

−∞ 6 E log(α1 Z
2 + β1) < 0 , (4.10)
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see Goldie (28), cf. Mikosch and Stărică (43). Then the process (Xt) is strictly
stationary as well. It is called a GARCH(1,1) process if α1β1 > 0 and an
ARCH(1) process if β1 = 0 and α1 > 0. Notice that condition (4.10) implies
that β1 ∈ [0, 1).

As a matter of fact, these classes of processes fit nicely into the class of
stochastic recurrence equations considered in Section 4.3. Indeed, the squared
volatility process (σ2

t ) satisfies the stochastic recurrence equation (4.3) with
Xt = σ2

t , At = α1Z
2
t−1 + β1 and Bt = α0. Moreover, the squared ARCH(1)

process (X2
t ) satisfies (4.3) with Yt = X2

t , At = α1Z
2
t and Bt = α0 Z

2
t .

A combination of the results in Davis and Mikosch (13) for ARCH(1) and
in Mikosch and Stărică (43) for GARCH(1, 1) with Proposition 4.5 above yields
the following.

Proposition 4.7. Let (Xt) be a strictly stationary GARCH(1, 1) process. As-
sume that Z has a positive density on R and that there exists α > 0 such that

E[(α1Z
2 + β1)

α] = 1 and E[(α1Z
2 + β1)

α log(α1Z
2 + β1)] <∞ . (4.11)

Then the following statements hold.

(1) The stationary solution (σ2
t ) to (4.9) is regularly varying with index α and

strongly mixing with geometric rate. In particular, there exists a constant
c1 > 0, given in (4.5) with A1 = α1Z

2
0 + β1 and B1 = α0 such that

P(σ2 > x) ∼ c1 x
−α . (4.12)

For β1 = 0, the squared ARCH(1) process (X2
t ) is regularly varying with

index α and strongly mixing with geometric rate. In particular, there exists
a constant c0 > 0 given in (4.5) with A1 = α1Z

2
1 and B1 = α0Z

2
1 such

that

P(X2 > x) ∼ c0 x
−α .

(2) Assume α ∈ (0, 1) ∪ (1, 2) in the GARCH(1, 1) case. Then

(c1n)
−1/α

( n∑

t=1

σ2
t − bn

)
d→ Zα , where bn =

{
0 α ∈ (0, 1)

nE(σ2) α ∈ (1, 2) ,

and the α-stable random variable Zα has characteristic function ψα(t) =
exp(−|t|αχα(t, c+, 0)), where

c+ = E[(1 + T∞)α − Tα
∞] and T∞ =

∞∑

t=1

t∏

i=1

(α1 Z
2
i + β1) .

(3) Assume α ∈ (0, 1) ∪ (1, 2) in the ARCH(1) case. Then

(c0n)
−1/α

( n∑

t=1

X2
t − bn

)
d→ Z̃α , where bn =

{
0 α ∈ (0, 1)

nE(σ2) α ∈ (1, 2) ,
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and the α-stable random variable Z̃α has characteristic function ψα(t) =
exp(−|t|αχα(t, c+, 0)), where

c+ = E[(1 + T̃∞)α − T̃α
∞] and T̃∞ =

∞∑

t=1

αt
1

t∏

i=1

Z2
i .

The limit results above require that we know the constants c1 and c0 ap-
pearing in the tails of σ2 and X2. For example, in the ARCH(1) case,

c0 =
E[(α0 + α1X

2)α − (α1X
2)α]E|Z|2α

α E[(α1 Z2)α log(α1Z2)]
.

Moreover, (8.66) in Embrechts et al. (24) yields that X2 d
= (α0/α1)T̃∞ . Hence

the constant c0 can be written in the form

c0 =
αα
0 E[(1 + T̃∞)α − T̃α

∞] E|Z|2α
α E[(α1 Z2)α log(α1Z2)]

=
αα
0 c+ E|Z|2α

α E[(α1 Z2)α log(α1Z2)]
.

The moments of |Z| can be evaluated by numerical methods given that one
assumes that Z has a tractable Lebesgue density, such as the standard normal
or student densities. Using similar numerical techniques, the value α can be
derived from (4.11). The evaluation of the quantity E[(α0+α1X

2)α−(α1X
2)α]

is a hard problem; Monte-Carlo simulation of the ARCH(1) process is an option.
In the general GARCH(1, 1) case, similar remarks apply to the constants c+ and
c1 appearing in the stable limits of the partial sum processes of (σ2

t ). Various
other financial time series models fit into the framework of stochastic recurrence
equations, such as the AGARCH and EGARCH models; see e.g. the treatment
in Straumann and Mikosch (53) and the lecture notes by Straumann (52).

In what follows, we consider the GARCH(1, 1) case and prove stable limits
for the partial sums of (Xt) and (X2

t ).

Conditions (RV), (MX) and (AC)

In what follows, we assume that Z is symmetric, has a positive Lebesgue density
on R and there exists α > 0 such that (4.11) holds. Under these assumptions, it
follows from Mikosch and Stărică (43) that (X2

t ) is regularly varying with index
α and strongly mixing with geometric rate. By Breiman’s (8) result we have in
particular,

P(X2 > x) ∼ E|Z|2α P(σ2 > x) ∼ E|Z|2α c1 x−α .

By definition of multivariate regular variation, the sequence (|Xt|) inherits reg-
ular variation with index 2α from (X2

t ). By symmetry of Z the sequences
(sign(Zt)) and (|Zt|), hence (sign(Xt)) and (|Xt|), are independent. Then an
application of the multivariate Breiman result in Basrak et al. (5) shows that
(Xt) is regularly varying with index 2α and

P(X > x) = 0.5P(|X | > x) ∼ 0.5E|Z|2α c1 x−2α .
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Thus both sequences (Xt) and (X2
t ) are regularly varying with indices 2α and α,

respectively. Moreover, (MX) is satisfied for both sequences and we may choose
rn = nγ1 , mn = nγ2 for sufficiently small 0 < γ1 < γ2 < 1. An application of
Lemma 3.7 yields (AC). We omit details.

4.4.1 Condition (TB) for the squared GARCH(1, 1) process

Recall the notation At = α1 Z
2
t−1 + β1, Bt = α0, Πt =

∏t
i=1 Ai and that (an)

satisfies nP(X2 > an) ∼ 1. The same arguments as for (4.6) yield

X2
1 + · · ·+X2

d = Z2
1 σ

2
1 + · · ·+ Z2

d σ
2
d

= σ2
0 (Z

2
1 Π1 + · · ·+ Z2

d Πd) +Rd .

Under the assumption (4.11), E(Rα
d ) <∞, hence P (Rd > an) = o(P (X2 > an)).

This fact and Breiman’s result (8) ensure that

nP(X2
1 + · · ·+X2

d > an) ∼ nP(σ2
0 (Z

2
1 Π1 + · · ·+ Z2

d Πd) > an)

∼ [nE|Z|2α P(σ2
0 > an)]

E|Z2
1 Π1 + · · ·+ Z2

d Πd|α
E|Z|2α

∼ [nP(X2 > an)]
E|Z2

1 Π1 + · · ·+ Z2
d Πd|α

E|Z|2α

∼ E|Z2
1 Π1 + · · ·+ Z2

d Πd|α
E|Z|2α

=
E|Z2

0 + Z2
1Π1 + · · ·+ Z2

d−1 Πd−1|α
E|Z|2α = b+(d) .

In the last step we used that A1 is independent of Z1, . . . , Zd and that EAα = 1.
Write

Td = Z2
1Π1 + · · ·+ Z2

d Πd .

Observe that

Td 6 α−1
1 [Π2 + · · ·+Πd+1] .

The same argument as in Section 4.3 proves that the right-hand side converges
a.s. to a finite limit. Hence Td

a.s.→ T∞ for some finite limit T∞ =
∑∞

t=1 Z
2
t Πt .

If α ∈ (0, 1], we have by concavity of the function f(x) = xα, x > 0,

E[Tα
d+1 − Tα

d ] = E[(Z2
0 + Td)

α − Tα
d ] 6 E|Z|2α <∞ .
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If α ∈ (1, 2) we have by the mean value theorem for some ξ ∈ (0, Z2
0) and using

the concavity of the function f(x) = xα−1, x > 0,

E[(Z2
0 + Td)

α − Tα
d ] = αE[(Td + ξ)α−1]

6 α
[
E(Tα−1

d ) + E(|Z|2(α−1))
]

6 αE(|Z|2(α−1))
[
1 + E(Aα−1) + · · ·+ (E(Aα−1))d

]

= αE(|Z|2(α−1)) (1− EAα−1)−1 <∞ .

An application of Lebesgue dominated convergence yields in the general case
α ∈ (0, 2) that

c+ = lim
d→∞

[b+(d+ 1)− b+(d)] = lim
d→∞

E[(Z2
0 + Td)

α − Tα
d ]

E|Z|2α

=
E[(Z2

0 + T∞)α − Tα
∞]

E|Z|2α ∈ (0,∞) .

4.4.2 Condition (TB) for the GARCH(1, 1) process

Next we calculate the corresponding value c+ for the GARCH(1, 1) sequence
(Xt). By the assumed symmetry of Z, we have c+ = c−. Slightly abusing
notation, we use the same symbols b±(d), (an), Td, etc., as for (X

2
t ). We choose

(an) such that nP(|X | > an) ∼ 1. We have

Sd = Z1 σ1 + · · ·+ Zd σd .

Since E|Z|2α <∞ we have for any ǫ > 0,

nP(‖(Z1σ1, . . . , Zdσd)− (Z1σ1, Z2|A2|0.5σ1, . . . , Zd|Ad|0.5σd−1‖ > ǫ an)

6 nP
(√

α0

( d∑

i=2

Z2
i

)1/2
> ǫ an

)
→ 0 .

Hence (see Jessen and Mikosch (36), Lemma 3.12)

nP(Sd > an) ∼ nP(Z1σ1 + Z2A
0.5
2 σ1 + Z3A

0.5
3 σ2 · · ·+ ZdA

0.5
d σd−1 > an) .

Proceeding by induction, using the same argument as above and in addition
Breiman’s result, and writing Πs,t =

∏t
i=sAi for s 6 t and Πst = 1 for s > t,
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we see that

nP(Sd > an) ∼ nP(σ1 (Z1 +A0.5
2 Z2 + · · ·+Π0.5

2,d Zd) > an)

∼ [nP(σ1 > an)]E[(Z1 +A0.5
2 Z2 + · · ·+Π0.5

2,dZd)
2α
+ ]

∼
E[(Z1 +A0.5

2 Z2 + · · ·+Π0.5
2,dZd)

2α
+ ]

E|Z|2α

=
E[|Z1 +A0.5

2 Z2 + · · ·+Π0.5
2,dZd|2α]

2E|Z|2α = b+(d) .

In the last step we used the symmetry of the Zt’s. Writing Td =
∑d

i=1 ZiΠ
0.5
2i ,

we have

b+(d) =
E[|Td|2α]
2E|Z|2α ,

and

|Td| 6
∞∑

i=1

|Zi|Π0.5
2,i 6 α

−1/2
1

∞∑

i=1

Π0.5
2,i+1 . (4.13)

Since E[(logA)1/2] = 0.5E logA < 0, the right-hand side converges a.s. to a
finite limit. By a Cauchy sequence argument,

Td
a.s.→ T∞ =

∞∑

i=1

Zi Π
0.5
2,i

for some a.s. finite T∞.
Let (Z ′

1, A
′
2) be an independent copy of (Z1, A2), independent of Td. Assume

2α ∈ (0, 1]. Then by symmetry of the Zt’s and since E[(A′
2)

α] = 1, using the
concavity of the function f(x) = x2α, x > 0,

E
[∣∣|Td+1|2α − |Td|2α

∣∣]

= E
[∣∣|Z ′

1 + (A′
2)

0.5 Td|2α − |(A′
2)

0.5Td|2α
∣∣]

= E
[∣∣|Z ′

1|+ (A′
2)

0.5 Td|2α − |(A′
2)

0.5Td|2α
∣∣]

= E[(|Z ′
1|+ (A′

2)
0.5 (Td)+)

2α − ((A′
2)

0.5(Td)+)
2α] +

E
[∣∣(|Z ′

1| − (A′
2)

0.5 (Td)−)
2α − ((A′

2)
0.5(Td)−)

2α
∣∣I{(A′

2
)0.5(Td)−6|Z′

1
|}

]
+

E
[∣∣((A′

2)
0.5 (Td)− − |Z ′

1|)2α − ((A′
2)

0.5(Td)−)
2α
∣∣I{(A′

2
)0.5(Td)−>|Z′

1
|}

]

6 E|Z|2α .
For 2α ∈ (1, 2) we use the same decomposition as above and the mean value
theorem to obtain

E
[∣∣|Td+1|2α − |Td|2α

∣∣] 6 2αE[(A′
2)

0.5|Td|+ |Z ′
1|]2α−1

6 2αE[(A′
2)

0.5|Td|]2α−1 + 2αE|Z|2α−1 .
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The right-hand side is bounded since E|Z|2α <∞ and, using (4.13) and E[Aα−0.5] <
1,

E|Td|2α−1
6 c

∞∑

i=1

E[Πα−0.5
2,i+1 ] = c

∞∑

i=1

(E[Aα−0.5])i <∞ .

Now we may apply Lebesgue dominated convergence to conclude that the limit

c+ = lim
d→∞

[b+(d+ 1)− b+(d)] =
E[|Z ′

1 + (A′
2)

0.5T∞|2α − |(A′
2)

0.5T∞|2α]
2E|Z|2α

exists and is finite.
Since T∞ and Z ′

1 assume positive and negative values we have to show that
c+ > 0. First we observe that

c+ = lim
d→∞

d−1
E[|Td|2α] . (4.14)

Applying Khintchine’s inequality (see Ledoux and Talagrand (41)) conditionally
on (|Zt|), we obtain for some constant cα > 0, all d > 1,

E[|Td|2α] > cα E

( d∑

i=1

Z2
i Π2,i

)α

= cα α
−α
1 E

( d∑

i=1

(α1Z
2
i + β1)Π2,i − β1

d∑

i=1

Π2,i

)α

> cα α
−α
1

[
E

( d∑

i=1

Π2,i+1

)α
− βα

1 E

( d∑

i=1

Π2,i

)α]

= cα α
−α
1 (1 − βα

1 )E
( d∑

i=1

Π2,i

)α
.

Now, Remark 4.4 and (4.14) imply that c+ > 0.

4.4.3 Condition 5

We assume Z symmetric. Then EX = 0 for 2α ∈ (1, 2) and (CT) holds for (Xt).
For (X2

t ), (CT) cannot be satisfied and needs special treatment. If α ∈ (1, 2)
all arguments above remain valid when X2

t is replaced by E(X2
t )− E(X2).

We summarize our results for the GARCH(1, 1) process (Xt) and its squares.

Proposition 4.8. Let (Xt) be a strictly stationary GARCH(1, 1) process with
symmetric iid unit variance noise (Zt). Assume that Z has a positive density
on R and that (4.11) holds for some positive α. Then the following statements
hold.
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(1) The sequences (Xt) and (X2
t ) are regularly varying with indices 2α and α,

respectively, and both are strongly mixing with geometric rate. In particu-
lar,

P(X > x) ∼ 1

2
E|Z|2α c1 x−2α ,

where c1 is defined in (4.12).

(2) Assume 2α ∈ (0, 2). Then

(c1E|Z|2α n)−1/(2α)Sn
d→ Z2α ,

where Z2α is symmetric 2α-stable with characteristic function ψ2α(t) =
exp(−|t|2αχ2α(t, c+, c+)), where

c+ =
E[|Z0 + |α1Z

2
0 + β1|0.5T∞|2α − ||α1Z

2
0 + β1|0.5T∞|2α]

2E|Z|2α ,

and

T∞ =

∞∑

t=1

Zt

t−1∏

i=1

(α1 Z
2
i + β1)

0.5 .

(3) Assume α ∈ (0, 1) ∪ (1, 2). Then

(c1 E|Z|2αn)−1/α
( n∑

t=1

X2
t − bn

)
d→ Z̃α,

where

bn =

{
0 if α ∈ (0, 1)
nE(X2) if α ∈ (1, 2) ,

and Z̃α is α-stable with characteristic function

ψα(t) = exp(−|t|αχα(t, c+, 0)),

where

c+ =
E[(Z2

0 + T̃∞)α − T̃α
∞]

E|Z|2α .

In the above relation,

T̃∞ =

∞∑

t=1

Z2
t+1

t∏

i=1

(α1Z
2
i + β1) .

Remark 4.9. For ARCH(1) processes the above technique of identification of
parameters of the limiting law was developed in (3).
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4.5 Stable stationary sequence

In this section we consider a strictly stationary symmetric α-stable (sαs) se-
quence (Xt), α ∈ (0, 2), having the integral representation

Xn =

∫

E

fn(x)M(dx) , n ∈ Z .

HereM is an sαs random measure with control measure µ on the σ-field E on E
and (fn) is a suitable sequence of deterministic functions fn ∈ Lα(E, E , µ). We
refer to Samorodnitsky and Taqqu (50) for an encyclopedic treatment of stable
processes and to Rosiński (49) for characterizing the classes of stationary (Xt)
in terms of their integral representations.

Then for some sαs random variable Yα,

Sn =

∫

E

(f1(x)+ · · ·+ fn(x))M(dx)
d
= Yα

(∫

E

|f1(x)+ · · ·+ fn(x)|α µ(dx)
)1/α

.

(4.15)
Since P (Yα > x) ∼ 0.5c0x

−α for some c0 > 0 (see Feller (26)), we have with
nP (|X | > an) ∼ 1,

nP (Sd > an) ∼
∫
E
|f1(x) + · · ·+ fd(x)|α µ(dx)∫

E |f1(x)|αµ(dx)
= b+(d) , d > 1 .

Moreover, it follows from (4.15) that a−1
n Sn

d→ Zα for some Zα if and only if

n−1b+(n) → c+ (4.16)

for some constant c+ and the limit Zα is sαs, possibly zero.
Since we know the distribution of a−1

n Sn for every fixed n we do not need
Theorem 3.1 to determine a sαs limit. In the examples considered above we
are not in this fortunate situation. In the sαs case we will investigate which
of the conditions in Theorem 3.1 are satisfied in order to see how restrictive
they are. Since the finite-dimensional distributions of (Xt) are α-stable, (RV)
is satisfied. Conditions (CT) and EX = 0 for α ∈ (1, 2) are automatic. Under
(4.16), using the special form of the characteristic function of a sαs random
variable, (MX) holds for any sequence mn → ∞. Condition (AC) is difficult
to be checked. In particular, it does not seem to be known when (Xt) is strongly
mixing. An inspection of the proof of Lemma 3.4, using the particular form of
the characteristic functions of the sαs random variables, shows that (AC) can
be replaced by (TB) which implies (4.16). Thus (TB) is the only additional
restriction in this case.
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[43] Mikosch, T. and Stărică, C. (2000) Limit theory for the sample au-
tocorrelations and extremes of a GARCH(1,1) process. Ann. Statist. 28,
1427–1451.

35



[44] Mikosch, T. and Straumann, D. (2006) Stable limits of martingale
transforms with application to the estimation of GARCH parameters. Ann.
Statist. 34, 493–522.

[45] Mokkadem, A. (1990) Propriétés de mélange des processus autoregréssifs
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