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Introduction

Whereas there exists a vast amount of papers and books on the limit theory for sums S n = X 1 + • • • + X n of finite variance strictly stationary sequences (X t ), less attention has been given to the case of sums of infinite variance stationary sequences. Following classical work (for example, Gnedenko and Kolmogorov [START_REF] Gnedenko | Limit Theorems for Sums of Independent Random Variables[END_REF], Feller [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], Petrov [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF]), we know that an iid sequence (X t ) satisfies the limit relation

a -1 n (S n -b n ) d → Y α , (1.1) 
for suitable constants a n > 0, b n ∈ R and an infinite variance α-stable random variable Y α if and only if the random variable X = X 1 has a distribution with regularly varying tails with index -α ∈ (-2, 0), i.e., there exist constants p, q 0 with p + q = 1 and a slowly varying function L such that P(X > x)∼p L(x) x α and P(X -x) ∼ q L(x)

x α , x → ∞ . (1.2)
This relation is often referred to as tail balance condition. It will be convenient to refer to X and its distribution as regularly varying with index α.

The limit relation (1.1) is a benchmark result for weakly dependent stationary sequences with regularly varying marginal distribution. However, in the presence of dependence, conditions for the convergence of the partial sums towards a stable limit are in general difficult to obtain, unless some special structure is assumed. Early on, α-stable limit theory has been established for the partial sums of linear processes (X t ) with iid regularly varying noise with index α ∈ (0, 2). Then the linear process (X t ) has regularly varying marginals, each partial sum S d , d 1, is regularly varying with index α and (S n ) satisfies (1.1) for suitable (a n ) and (b n ). These results, the corresponding limit theory for the partial sums S n and the sample autocovariance function of linear processes were proved in a series of papers by Davis and Resnick (18;[START_REF] Davis | More limit theory for the sample correlation function of moving averages[END_REF][START_REF] Davis | Limit theory for the sample covariance and correlation functions of moving averages[END_REF]. They exploited the relations between regular variation and the weak convergence of the point processes N n = n t=1 ε a -1 n Xt , where ε x denotes Dirac measure at x. Starting from the convergence N n d → N , they used a continuous mapping argument acting on the points of the processes N n and N in conjunction with the series representation of infinite variance stable random variables. Their proofs heavily depend on the linear dependence structure. A different, not point process oriented, approach was chosen by Phillips and Solo [START_REF] Phillips | Asymptotics for linear processes[END_REF] who decomposed the partial sums of the linear process into an iid sum part and a negligible remainder term. Then the limit theory for the partial sums follows from the one for iid sequences with regularly varying marginal distribution. The first result on stable limits for stationary processes more general than linear models, assuming suitable conditions for non-Gaussian limits, was proved by Davis [START_REF] Davis | Stable limits for partial sums of dependent random variables[END_REF]. Davis's ideas were further developed for mixing sequences by Denker and Jakubowski [START_REF] Denker | Stable limit distributions for strongly mixing sequences[END_REF] and Jakubowski and Kobus [START_REF] Jakubowski | α-stable limit theorems for sums of dependent random vectors[END_REF]. The latter paper provides a formula for the stable limit for sums of stationary sequences which are m-dependent and admit local clusters of big values. A paper by Dabrowski and Jakubowski [START_REF] Dabrowski | Stable limits for associated random variables[END_REF] opened yet another direction of studies: stable limits for associated sequences.

Results for special non-linear time series models, exploiting the structure of the model, were proved later on. Davis and Resnick (21) and Basrak et al. (4) studied the sample autocovariances of bilinear processes with heavy-tailed and light-tailed noise, respectively. Mikosch and Straumann [START_REF] Mikosch | Stable limits of martingale transforms with application to the estimation of GARCH parameters[END_REF] proved limit results for sums of stationary martingale differences of the form X t = G t Z t , where (Z t ) is an iid sequence with regularly varying Z t 's with index α ∈ (0, 2), (G t ) is adapted to the filtration generated by (Z s ) s t and E|G t | α+δ < ∞ for some δ > 0. Stable limit theory for the sample autocovariances of solutions to stochastic recurrence equations, GARCH processes and stochastic volatility models was considered in Davis and Mikosch (13; 14), Mikosch and Stȃricȃ (43), Basrak et al. [START_REF] Basrak | Regular variation of GARCH processes[END_REF]; see the survey papers Davis and Mikosch (15;[START_REF] Davis | Extremes of stochastic volatility models[END_REF][START_REF] Davis | Probabilistic properties of stochastic volatility models[END_REF].

The last mentioned results are again based on the weak convergence of the point processes

N n = n t=1 ε a -1
n Xt in combination with continuous mapping arguments. The results make heavy use of the fact that any α-stable random variable, α ∈ (0, 2), has a series representation, involving the points of a Poisson process. A general asymptotic theory for partial sums of strictly stationary processes, exploiting the ideas of point process convergence mentioned above, was given in Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]. The conditions in Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF] are relatively straightforward to verify for various concrete models. However, the α-stable limits are expressed as infinite series of the points of a Poisson process. This fact makes it difficult to identify the parameters of the α-stable distributions: these parameters are functions of the distribution of the limiting point process.

Jakubowski (31; 33) followed an alternative approach based on classical blocking and mixing techniques for partial sums of weakly dependent random variables. A basic idea of these papers consists of approximating the distribution of the sum a -1 n S n by the sum of the iid block sums (a -1 n S mi ) i=1,...,kn such that k n = [n/m] → ∞ and S mi d = S m . Then one can use the full power of classical summation theory for row sums of iid triangular arrays. It is also possible to keep under control clustering of big values and calculate the parameters of the α-stable limit in terms of quantities depending on the finite-dimensional distributions of the underlying stationary process. Thus the direct method is in some respects advantageous over the point process approach.

At a first glance, the conditions and results in Jakubowski (31; 33) and Davis and Hsing (12) look rather different. Therefore we shortly discuss these conditions in Section 2 and argue that they are actually rather close. Our main result (Theorem 3.1) is given in Section 3. Using an argument going back to Jakubowski (31; 33), we provide an α-stable limit theorem for the partial sums of weakly dependent infinite variance stationary sequences. The proof only depends on the characteristic functions of the converging partial sums. The result and its proof are new and give insight into the dependence structure of a heavy-tailed stationary sequence. In Section 3.2 we discuss the conditions of Theorem 3.1 in detail. In particular, we show that our result is easily applicable for strongly mixing sequences. In Section 4 we explicitly calculate the parameters of the α-stable limits of the partial sums of the GARCH(1, 1) process and its squares, solutions to stochastic recurrence equations, the stochastic volatility model and symmetric α-stable processes.

2 A discussion of the conditions in α-stable limit theorems

Regular variation conditions

We explained in Section 1 that regular variation of X with index α ∈ (0, 2) in the sense of (1.2) is necessary and sufficient for the limit relation (1.1) with an α-stable limit Y α for an iid sequence (X t ). The necessity of regular variation of X with index α ∈ (0, 2) in the case of dependent X i 's is difficult to establish and, in general, incorrect; see Remark 3.2. It is, however, natural to assume such a condition as long as one takes the conditions for an iid sequence as a benchmark result. Davis and Hsing (12) assume the stronger condition that the strictly stationary sequence (X t ) is regularly varying with index α ∈ (0, 2). This means that the finite-dimensional distributions of (X t ) have a jointly regularly varying distribution in the following sense. For every d 1, there exists a non-null Radon measure µ d on the Borel σ-field of R d \{0} (this means that µ d is finite on sets bounded away from zero), R = R ∪ {±∞}, such that

n P(a -1 n (X 1 , . . . , X d ) ∈ •) v → µ d (•) , (2.1) 
where v → denotes vague convergence (see Kallenberg [START_REF] Kallenberg | Random Measures, 3rd edition[END_REF], Resnick [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF]) and (a n ) satisfies

n P(|X| > a n ) ∼ 1 . (2.
2)

The limiting measure has the property µ d (xA) = x -α µ d (A), t > 0, for Borel sets A. We refer to α as the index of regular variation of (X t ) and its finitedimensional distributions. Note that Theorem 3 in (32) provides conditions under which regular variation of the one-dimensional marginals implies joint regular variation (2.1). Jakubowski (31; 33) does not directly assume regular variation of X. However, his condition U1 requires that the normalizing sequence (a n ) in (1.1) is regularly varying with index 1/α. In [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF] he also requires the conditions T + (d) and T -(d), d 1, i.e., the existence of the limits

lim n→∞ n P(S d > a n ) = b + (d) and lim n→∞ n P(S d -a n ) = b -(d) , d 1 . (2.3) If b + (d) + b -(d) > 0,
the regular variation of (a n ) with index 1/α is equivalent to regular variation of S d with index α; see Bingham et al. [START_REF] Bingham | Regular Variation[END_REF]. Condition U2 in [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF] restricts the class of all regularly varying distributions to a subclass. The proof of Theorem 3.1 below shows that this condition can be avoided. Regular variation of a stationary sequence (X t ) is a well accepted concept in applied probability theory. One of the reasons for this fact is that some of the important time series models (ARMA with regularly varying noise, GARCH, solutions to stochastic recurrence equations, stochastic volatility models with regularly varying noise) have this property. Basrak and Segers (6) give some enlightening results about the structure of regularly varying sequences. In what follows, we will always assume: Condition (RV): The strictly stationary sequence (X t ) is regularly varying with index α ∈ (0, 2) in the sense of condition (2.1) with non-null Radon measures µ d , d 1, and (a n ) chosen in (2.2).

(d) = µ d ({x ∈ R d : ±(x 1 + • • • + x d ) > 1}) . ( 2 

Mixing conditions

Assuming condition (RV), Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF] require the mixing condition A(a n ) defined in the following way. Consider the point process N n = n t=1 ε Xt/an and assume that there exists a sequence m = m n → ∞ such that k n = [n/m n ] → ∞, where [x] denotes the integer part of x. The condition A(a n ) requires that

Ee -f dNn -Ee -f dNm kn → 0 , (2.5) 
where f belongs to a sufficiently rich class of non-negative measurable functions on R such that the convergence of the Laplace functional Ee -f dNn for all f from this class ensures weak convergence of (N n ). Relation (2.5) ensures that N n can be approximated in law by a sum of k n iid copies of N m , hence the weak limits of (N n ) must be infinitely divisible point processes.

The condition A(a n ) is difficult to be checked directly, but it follows from standard mixing conditions such as strong mixing with a suitable rate. For future use, recall that the stationary sequence (X t ) is strongly mixing with rate function (α h ) if sup A∈σ(...,X-1,X0) ,B∈σ(X h ,X h+1 ,...)

|P(A ∩ B) -P(A) P(B)| = α h → 0 , h → ∞ .
Jakubowski [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems[END_REF] showed that (1.1) with b n = 0 and regularly varying (a n ) implies the condition max

1 k,l n ,k+l n Ee ixa -1 n S k+l -Ee ixa -1 n S k Ee ixa -1 n S l → 0 , n → ∞, x ∈ R (2.6
) which is satisfied for strongly mixing (X t ). We also refer to the discussion in Sections 4-6 of (33) for alternative ways of verifying (2.6). Under assumptions on the distribution of X more restrictive than regular variation it is shown that (1.1) implies the existence of a sequence l n → ∞ such that for any k n = o(l n ) the following relation holds

Ee i x k -1/α n (a -1 n Sn) kn -Ee i x a -1 n Sn → 0 , x ∈ R . (2.7)
It is similar to condition (2.5) at the level of partial sums. We will assume a similar mixing condition in terms of the characteristic functions of the partial sums of (X t ). Write

ϕ nj (x) = Ee ixa -1 n Sj , j = 1, 2, . . . , ϕ n = ϕ nn , x ∈ R . Condition (MX). Assume that there exist m = m n → ∞ such that k n = [n/m] → 0 and ϕ n (x) -(ϕ nm (x)) kn → 0 , n → ∞ , x ∈ R. (2.8) 
This condition is satisfied for a strongly mixing sequence provided the rate function (α h ) decays sufficiently fast; see Section 3.2.4. But (2.8) is satisfied for classes of stationary processes much wider than strongly mixing ones. Condition (MX) is analogous to A(a n ). The latter condition is formulated in terms of the Laplace functionals of the underlying point processes. It is motivated by applications in extreme value theory, where the weak convergence of the point processes is crucial for proving limit results of the maxima and order statistics of the samples X 1 , . . . , X n . Condition (MX) implies that the partial sum processes (a -1 n S n ) and (a -1 n kn i=1 S mi ) have the same weak limits, where S mi , i = 1, . . . , k n , are iid copies of S m . This observation opens the door to classical limit theory for partial sums based on triangular arrays of independent random variables. Since we are dealing with the limit theory for the partial sum process (a -1 n S n ) condition (MX) is more natural than A(a n ) which is only indirectly (via a non-trivial continuous mapping argument acting on converging point processes) responsible for the convergence of the normalized partial sum process (a -1 n S n ).

Anti-clustering conditions

Assuming condition (RV), Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF] 

|X i | > x a n | |X 0 | > x a n = 0 , x > 0 , (2.9 
P (|X i | > x a n , |X 0 | > x a n ) = 0 , x > 0 . ( 2 
P(|X h | > x a n , |X 0 | > x a n ) = 0 ,
which is close to condition (2.10).

For our results we will need an anti-clustering condition as well. It is hidden in assumption (AC) in Theorem 3.1; see the discussion in Section 3.2.3.

Vanishing small values conditions

Davis, Hsing, and Jakubowski prove convergence of the normalized partial sums by showing that the limiting distribution is infinitely divisible with a Lévy triplet corresponding to an α-stable distribution. In particular, they need conditions to ensure that the sum of the small values (summands) in the sum a -1 n S n does not contribute to the limit. Such a condition for a dependent sequence (X t ) is often easily established for α ∈ (0, 1), whereas the case α ∈ [1, 2) requires some extra work.

Davis and Hsing (12) assume the condition (3.2):

lim ǫ→0 lim sup n→∞ P n t=1 X t I {|Xt| ǫan} -n EXI {|X| ǫan} > x a n = 0, x > 0 , (2.12 
) for α ∈ (0, 2). For an iid sequence (X t ) the relation

median(a -1 n S n ) -a -1 n nE[XI {|X| ǫan} ] → 0 , ǫ > 0 ,
holds. Therefore a -1 n nEXI {|X| ǫan} are the natural centering constants for a -1 n S n in stable limit theory. In the case of dependent (X t ), the choice of the latter centering constants is less straightforward; it is dictated by truncation of the points in the underlying weakly converging point processes.

The analogous condition [START_REF] Jakubowski | Large deviation probabilities for sums of heavy-tailed dependent random vectors[END_REF] in Jakubowski [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF] reads as follows: for each

x > 0 lim ǫ↓0 lim sup l→∞ lim sup n→∞ l α P n t=1 [X t I {|Xt| ǫ l an} -EXI {|X| ǫ l an} ] > x l a n = 0.
(2.13) As shown in [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF], this condition is automatically satisfied for α ∈ (0, 1).

In our approach the anti-clustering condition (AC) (see below) is imposed on the sum of "small" and "moderate" values and we do not need to verify conditions such as (2.12) and (2.13).

Main result

In this section we formulate and prove our main result. Recall the regular variation condition (RV) and the mixing condition (MX) from Sections 2.1 and 2.2. We will use the following notation for any random variable Y :

Y = (Y ∧ 2) ∨ (-2) . Notice that |Y | = |Y | ∧ 2 is subadditive. Theorem 3.1. Assume that (X t
) is a strictly stationary process satisfying the following conditions.

1. The regular variation condition (RV) holds for some α ∈ (0, 2).

The mixing condition (MX) holds.

The anti-clustering condition

lim d→∞ lim sup n→∞ n m m j=d+1 E x a -1 n (S j -S d ) x a -1 n X 1 = 0 , x ∈ R , (AC)
holds, where m = m n is the same as in (MX). 

The limits

lim d→∞ (b + (d) -b + (d -1)) = c + and lim d→∞ (b -(d) -b -(d -1)) = c -, ( 

For

α > 1 assume E(X 1 ) = 0 and for α = 1, lim d→∞ lim sup n→∞ n |E(sin(a -1 n S d ))| = 0. (CT)
Then c + and c -are non-negative and (a -1 n S n ) converges in distribution to an α-stable random variable (possibly zero) with characteristic function ψ α (x) = exp(-|x| α χ α (x, c + , c -)), where for α = 1 the function χ α (x, c + , c -), x ∈ R, is given by the formula

Γ(2 -α) 1 -α (c + + c -) cos(πα/2) -i sign(x)(c + -c -) sin(π α/2) ,
while for α = 1 one has

χ 1 (x, c + , c -) = 0.5 π(c + + c -) + i sign(x) (c + -c -) log |x|, x ∈ R.
We discuss the conditions of Theorem 3.1 in Section 3.2. In particular, we compare them with the conditions in Jakubowski (31; 33) and Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF].

If the sequence (X n ) is m 0 -dependent for some integer m 0 1, i.e., the σ-fields σ(. . . , X -1 , X 0 ) and σ(X m0+1 , X m0+2 , . . .) are independent, the conditions (MX), (AC) and (TB) of Theorem 3.1 are automatic; see Section 4.1. The surprising fact that c + and c -are non-negative is explained at the end of Section 3.2.2. Remark 3.2. Although Theorem 3.1 covers a wide range of strictly stationary sequences (see in particular Section 4) condition (RV) limits the applications to infinite variance (in particular unbounded) random variables X n . The referee of this paper pointed out the surprising fact that there exist strictly stationary Markov chains (Y n ), suitable bounded functions f and a sequence (a n ) with a n = n 1/α ℓ(n) for some slowly varying function ℓ such that the sequence of the normalized partial sums (a

-1 n S n ) of the sequence (X n ) = (f (Y n ))
converges in distribution to an infinite variance stable random variable. Then (RV) is obviously violated. Such an example is contained in Gouëzel (29), Theorem 1.

3.

Other examples of stable limits for sums of bounded stationary random variables (of different nature -non-Markov and involving long-range dependence) are given in (54), Theorems 2.1 (ii) and 2.2 (ii).

Remark 3.3. It might be instructive to realize that in limit theorems for weakly dependent sequences properties of finite dimensional distributions can be as bad as possible. For example it is very easy to build a 1-dependent sequence having no moment of any order and such that its (centered and normalized) partial sums still converge to a stable law of order α ∈ (0, 2]. Let

X n = Y n + ε n -ε n-1 ,
where (Y n ) is an iid sequence of α-stable random variables and (ε n ) is an iid sequence without any moments (that is E(|ε 0 | a ) = +∞ for any positive a) and the two sequences are independent. Then the (centered and normalized) partial sums of (X n )) have the same limit behavior (in distribution) as that of (Y n ).

Proof of Theorem 3.1

For any strictly stationary sequence (X t ) t∈Z it will be convenient to write

S 0 = 0 , S n = X 1 + • • • + X n , S -n = X -n + • • • + X -1 , n 1 .
Let S mi , i = 1, 2, . . . , be iid copies of S m . In view of (2.8) the theorem is proved if we can show that (a -1 n kn i=1 S mi ) has an α-stable limit with characteristic function ψ α . For such a triangular array, it is implied by the relation

k n (ϕ nm (x) -1) → log ψ α (x) , x ∈ R . (3.1)
Indeed, notice first that the triangular array (a -1 n S mi ) i=1,...,kn of iid random variables satisfies the infinite smallness condition. Then apply Lemma 3.5 in Petrov [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF] saying that for all x ∈ R and sufficiently large n,

log ϕ nm (x) = ϕ nm (x) -1 + θ nm (ϕ nm (x) -1) 2 ,
where |θ nm | 1. Thus

|k n (ϕ nm (x) -1) -k n log ϕ nm (x)| k n |ϕ nm (x) -1| 2 c k -1 n → 0 .
Here and in what follows, c denotes any positive constants. Our next goal is to find a suitable approximation to the left-hand side in (3.1).

Lemma 3.4. Under (RV) and (AC) the following relation holds:

lim d→∞ lim sup n→∞ k n (ϕ nm (x) -1) -n (ϕ nd (x) -ϕ n,d-1 (x)) = 0 , x ∈ R . (3.2) Moreover, if (X n ) is m 0 -dependent for some integer m 0 1, then lim n→∞ k n (ϕ nm (x)-1)-n (ϕ nd (x)-ϕ n,d-1 (x)) = 0 , x ∈ R , d > m 0 . (3.3)
The proof is given at the end of this section. By virtue of (RV) and (2.3), S d is regularly varying with index α ∈ (0, 2); see Remark 2.1. Therefore it belongs to the domain of attraction of an α-stable law. Theorem 3 in Section XVII.5 of Feller [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] yields that for every d 1 there exists an α-stable random variable

Z α (d) such that a -1 n n i=1 (S di -e nd ) d → Z α (d) where e nd = 0 α = 1, E(sin(S d /a n )) α = 1. (3.4)
The limiting variable Z α (d) has the characteristic function

ψ α,d (x) = exp(-|x| α χ α (x, b + (d), b -(d))) , x ∈ R .
Applying Theorem 1 in Section XVII.5 of Feller [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], we find the equivalent relation

n ϕ nd (x)e -ie nd x -1 → log ψ α,d (x) , x ∈ R ,
and exploiting condition (TB), for x ∈ R,

n (ϕ nd (x)e -ie nd x -ϕ n,d-1 (x)e -ie n,d-1 x ) → log ψ α,d (x) -log ψ α,d-1 (x) as n → ∞ (3.5) → log ψ α (x) as d → ∞ .
For α = 1 we have e nd = 0. Therefore (3.2) implies

k n (ϕ nm (x) -1) → log ψ α (x) , x ∈ R .
This finishes the proof in this case. For α = 1 we use the same arguments but we have to take into account that e nd does not necessarily vanish. However, we have

|ϕ nd (x) -ϕ nd (x)e -ie nd x | |1 -e -ie nd x | t |e nd | ,
and using (CT), we obtain

lim d→∞ lim sup n→∞ n |(ϕ nd (x) -ϕ n,d-1 (x)) -(ϕ nd (x)e -ie nd x -ϕ n,d-1 (x)e -ie n,d-1 x )| = 0 .
This proves the theorem. Proof of Lemma 3.4. Consider the following telescoping sum for any n, m n and d < m:

ϕ nm (x) -1 = ϕ nd (x) -1 + m-d j=1 (ϕ n,d+j (x) -ϕ n,d-1+j (x)) .
By stationarity of (X t ) we also have

m (ϕ nd (x) -ϕ n,d-1 (x)) = d (ϕ nd (x) -ϕ n,d-1 (x)) + m-d j=1 Ee ixa -1 n (S -d-j -S -j ) -Ee ixa -1 n (S -d-j+1 -S -j ) .
Taking the difference between the previous two identities, we obtain

(ϕnm(x) -1) -m (ϕ nd (x) -ϕ n,d-1 (x)) = -(d -1) (ϕ n,d (x) -1) + d (ϕ n,d-1 (x) -1) + m-d j=1 ϕ n,d+j (x) -Ee ixa -1 n (S -d-j -S -j ) -ϕ n,d-1+j (x) + Ee ixa -1 n (S -d-j+1 -S -j ) .
By stationarity, for any k 1, ϕ nk (x) = Ee ixa -1 n S -k . Therefore any summand in the latter sum can be written in the following form

E e ixa -1 n S -d-j -e ixa -1 n (S -d-j -S-j ) -e ixa -1 n S -d-j+1 + e ixa -1 n (S -d-j+1 -S-j ) = E e ixa -1 n S -d-j 1 -e -ixa -1 n S-j 1 -e -ixa -1 n X -d-j
.

Using the fact that x → exp(ix) is a 1-Lipschitz function bounded by 1, the absolute value of the expression on the right-hand side is bounded by

E (|xa -1 n S -j | ∧ 2) (|xa -1 n X -d-j | ∧ 2) .
Collecting the above identities and bounds, we finally arrive at the inequality

|k n (ϕ nm (x) -1) -n (ϕ nd (x) -ϕ n,d-1 (x))| k n (d -1) |ϕ nd (x) -1| + k n d |ϕ n,d-1 (x) -1| +k n m j=d+1 E xa -1 n (S j -S d ) xa -1 n X 1 .
The last term on the right-hand side converges to zero in view of assumption (AC) when first n → ∞ and then d → ∞. In the m 0 -dependent case, the last term on the right-hand side converges to zero whenever d > m 0 and n → ∞.

To prove that the first two terms also converge to zero, let us notice that, under

(RV), n(ϕ nd (x) -1) → χ α (x, b + (d), b -(d)) and so lim n→∞ k n (d -1)(ϕ nd (x) -1) = lim n→∞ m n -1 (d -1)n(ϕ nd (x) -1) = 0.
This proves the lemma.

Remark 3.5. Balan and Louhichi (2) have taken a similar approach to prove limit theorems for triangular arrays of stationary sequences with infinitely divisible limits. Their paper combines ideas from Jakubowski [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF], in particular condition (TB), and the point process approach in Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]. They work under a mixing condition close to A(a n ). One of their key results (Theorem 2.6) is the analog of Lemma 3.4 above. It is formulated in terms of the Laplace functionals of point processes instead of the characteristic functions of the partial sums. Then they sum the points in the converging point processes and in the limiting point process to get an infinitely divisible limit. The sum of the points of the limiting process represent an infinitely divisible random variable by virtue of the Lévy-Itô representation. As in Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF] the method of proof is indirect, i.e., one does not directly deal with the partial sums, and therefore the results are less explicit.

3.2 A discussion of the conditions of Theorem 3.1

Condition 5

It is a natural centering condition for the normalized partial sums in the cases α = 1 and α ∈ (1, 2). In the latter case, E|X| < ∞, and therefore EX = 0 can be assumed without loss of generality. As usual in stable limit theory, the case α = 1 is special and therefore we need condition (CT). It is satisfied if S d is symmetric for every d.

Condition (TB)

If c + + c -= 0 the limiting stable random variable is zero. For example, assume → 0. In the context of Theorem 3.1 in Jakubowski [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF] (although the conditions of that result are more restrictive as regards the tail of X) it is shown that (TB) is necessary for convergence of (a -1 n S n ) towards a stable limit. Condition (TB) can be verified for various standard time series models; see Section 4. The meaning of this condition is manifested in Lemma 3.4. It provides the link between the regular variation of the random variables S d for every d 1 (this is a property of the finite-dimensional distributions of the partial sum process (S d )) and the Lévy measure ν α of the α-stable limit. Indeed, notice that (TB) implies that, for every x > 0, with b + (0) = 0,

X n = Y n -Y n-
c + x -α = lim d→∞ b + (d) d x -α = lim d→∞ 1 d d i=1 (b + (i) -b + (i -1)) x -α = lim d→∞ 1 d d i=1 lim n→∞ n (P(S i > x a n ) -P(S i-1 > x a n )) ,
and a similar relation applies to c -x -α . Then

ν α (x, ∞) = c + x -α and ν α (-∞, -x) = c -x -α , x > 0 ,
determine the Lévy measure ν α of the α-stable limit distribution with the characteristic function ψ α given in Theorem 3.1. In particular, Lemma 3.4 implies that as n → ∞

k n P(S m > x a n ) → ν α (x, ∞), k n P(S m -x a n ) → ν α (-∞, -x],
x > 0 .

(3.6)

The latter relation opens the door to the limit theory for partial sums of triangular arrays of iid copies (S mi ) i=1,...,kn , of S m . Notice that the relations (3.6) are of large deviations type in the sense of [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF]. We refer to [START_REF] Jakubowski | Large deviation probabilities for sums of heavy-tailed dependent random vectors[END_REF] for their multi-dimensional counterparts.

Let us notice that although one cannot ensure that b ± (d) b ± (d -1) 0 for sufficiently large d, the constants c + , c -are non-negative. It is immediate from the observation that

c ± = lim d→∞ (b ± (d) -b ± (d -1)) = lim d→∞ 1 d d i=1 (b ± (i) -b ± (i -1)) = lim d→∞ b ± (d) d ≥ 0.
Remark 3.6. Recall the two benchmark examples of Remark 2.1. If (X t ) is an iid sequence regularly varying with index α > 0 the limits c + = p and c -= q always exist and conditions (MX), (AC) are automatically satisfied. Then, under (CT), we recover the classical limit results for partial sums with α-stable limit. On the other hand, if X i = X for all i, then c + = c -= 0 if 0 < α < 1, c + = p and c -= q if α = 1 and c + and c -are not defined otherwise. This observation is in agreement with the fact that a -1 n S n = n 1-1/α ℓ(n)X for some slowly varying function ℓ.

Sufficient conditions for (AC)

Condition (AC) is close to the anti-clustering conditions in (12; 33) discussed in Section 2. [START_REF] Bartkiewicz | Limit Theorems for Generalized Autoregressive Processes[END_REF]. In what follows, we give some sufficient conditions for (AC). These conditions are often simple to verify. Lemma 3.7. Assume the conditions of Theorem 3.1 and that (X t ) is strongly mixing with rate function (α h ). Moreover, assume that there exists a sequence r n → ∞ such that r n /m n → 0, nα rn → 0 and one of the following three conditions is satisfied. 

lim d→∞ lim sup n→∞ n rn i=d+1 P(|X i | > a n , |X 1 | > a n ) + P rn i=d+1 X i I {|Xi| an} > a n , |X 1 | > a n = 0 .
|X i | > a n /r n , |X 1 | > a n ) = 0 . (3.8) 
or lim d→∞ lim sup

n→∞ n P(|S rn -S d | > a n , |X 1 | > a n ) = 0 . (3.9)
Then (AC) holds.

Proof. Let us recall that the function y → |y| is subadditive. We decompose the sum in (AC) as follows.

k n   rn j=d+1 + m j=rn+1   E x a -1 n (S j -S d ) x a -1 n X 1 = J 1 (n) + J 2 (n) .
We will deal with the two terms J 1 (n) and J 2 (n) in different ways. For the sake of simplicity we assume x = 1. We start by bounding J 2 (n).

J 2 (n) k n m j=rn+1 E a -1 n (S j -S rn ) a -1 n X 1 + a -1 n (S rn -S d ) = k n m j=rn+1 E a -1 n (S j -S rn ) a -1 n X 1 + n E a -1 n (S rn -S d ) a -1 n X 1 = J 21 (n) + J 22 (n) .
We bound a typical summand in J 21 (n), using the strong mixing property

E a -1 n (S j -S rn ) a -1 n X 1 = cov |a -1 n (S j -S rn )|, |a -1 n X 1 | + E a -1 n S j-rn+1 E a -1 n X 1 c α rn + E a -1 n S j-rn+1 E a -1 n X 1 .
Moreover, we have for j > r n

a -1 n (S j-rn+1 ) ≤ j-rn+1 i=1 a -1 n X i , hence E a -1 n S j-rn+1 E a -1 n X 1 j E a -1 n X 1 2 .
Thus we arrive at the bound

J 21 (n) c nα rn + c n m E a -1 n X 1 2 .
Observe that

E|a -1 n X 1 | = E a -1 n |X 1 |I {a -1 n |X1| 2} ∧ 2I {a -1 n |X1|>2} 2P(|X 1 | > 2 a n ) .
Therefore, by definition of (a n ) and since nα rn → 0 by assumption,

J 21 (n) = O(nα rn ) + O(m/n) = o(1) .
We also have

J 22 (n) c n P(|S rn -S d | > 2 a n , |X 1 | > 2 a n ) c n rn i=d+1 P(|X i | > a n , |X 1 | > 2 a n ) +c n P rn i=d+1 X i I {|Xi| an} > 2 a n , |X 1 | > 2 a n .
and

J 22 (n) c P( max i=d+1,...,rn |X i | > 2 a n /r n | |X 1 | > 2 a n ) .
Thus, under any of the assumptions (3.7)-(3.9), lim d→∞ lim sup n→∞ J 22 (n) = 0. Finally,

J 1 (n) c k n rn j=d+1 P(|S j -S d | > 2a n , |X 1 | > 2a n ) r n m n P(|X 1 | > 2a n ) = o(1) .
Collecting the bounds above we proved that (AC) holds.

Condition (MX)

As we have already discussed in Sections 2.1 and 2.2, the condition (MX) is a natural one in the context of stable limit theory for dependent stationary sequences. Modifications of these conditions appear in Davis and Hsing (12), Jakubowski (31; 33). We also discuss the existence of sequencees m = m n → ∞ and r = r n → ∞ such that r/m → 0 and m/n → 0 to be used in Lemma 3.7 in the context of strong mixing.

Lemma 3.8. Assume that (X t ) is strongly mixing with rate function (α h ). In addition, assume that there exists a sequence ǫ n → 0 satisfying Proof. We start by showing that (2.8) holds for a suitable sequence (m n ). Let ϕ nmδ be the characteristic function of a -1 n kn i=1 U m-δ,i for some δ = δ n and

U ji = ij k=(i-1)j+1
X k a block sum of size j. Using that characteristic functions are Lipschitz functions bounded by 1 and writing q = k n m, for x ∈ R,

|ϕ q (x) -ϕ nmδ (x)| E x a n kn j=1 U δj ∧ 2 E xδn ma n |X 1 | ∧ 2 2 0 P(|X 1 | > ma n /(δn)s)ds .
The right-hand side approaches zero if m n a n /(δ n n) → ∞ as n → ∞. Under this condition, the same arguments yield

|(ϕ nm (x)) kn -(ϕ n,m-δ (x)) kn | → 0 and |ϕ q (x) -ϕ n (x)| → 0 ,
as soon as a n /m → ∞. Next we use a standard mixing argument to bound

|ϕ nmδ (x) -(ϕ n,m-δ (x)) [m/n] | |ϕ nmδ (x) -ϕ m-δ (x)ϕ n-m,mδ (x)| +|ϕ m-δ (x)ϕ n-m,mδ (x) -(ϕ n,m-δ (x)) [m/n] |.
The first term on the right-hand side is the covariance of bounded Lipschitz functions of S m-δ and S n -S m . Hence it is bounded by α δ . Iterative use of this argument, recursively on distinct blocks, shows that the right-hand side is of the order (n/m)α δ . Thus we proved that (2.8) is satisfied if 

n/mα δ → 0 , ma n /(δn) → ∞ and a n /m → ∞ . (3.12) Choose m n = [ √ ǫ n (a n ∧ n)], δ = [m 2 /

Examples

m 0 -dependent sequences

Consider a strictly stationary sequence (X n ) satisfying condition (RV) and which is m 0 -dependent for some integer m 0 1. In this case, α h = 0 for h > m 0 . Then, by virtue of Lemma 3.8 condition (MX) is satisfied for any choice of sequences (m n ) such that m n → ∞ and m n = o(n). Moreover, (AC) follows from Lemma 3.7 for any (r n ) such that r n → ∞ and r n = o(m n ). We verify the validity of condition (3.8). Then for (r n ) growing sufficiently slowly, n P( max i=d+1,...,rn

|X i | > a n /r n , |X 1 | > a n ) n r n P (|X 1 | > a n ) P (|X 1 | > a n /r n ) = O(r n P (|X 1 | > a n /r n )) = o(1) .
Thus, in the m 0 -dependent case we have the following special case of Theorem 3.1. Proposition 4.1. Assume that (X t ) is a strictly stationary m 0 -dependent sequence for some m 0 1 which also satisfies condition (RV) for some α ∈ (0, 2). Moreover, assume E(X 1 ) = 0 for α > 1 and X 1 is symmetric for α = 1.

Then the conclusions of Theorem 3.1 hold with c

+ = b + (m 0 + 1) -b + (m 0 ) and c -= b -(m 0 + 1) -b -(m 0 ).
Proof. We have already verified conditions (MX) and (AC) of Theorem 3.1. Following the lines of the proof of Theorem 3.1 with e nd = 0, we arrive at (3.5) for every d 1. In view of the second part of Lemma 3.4, the right-hand side of (3.5) is independent of d for d > m 0 as the limit of k n (ϕ nm (x) -1) as n → ∞. This finishes the proof by taking d = m 0 + 1.

We mention in passing that we may conclude from the proof of Proposi- 

The stochastic volatility model

The stochastic volatility model is one of the standard econometric models for financial returns of the form

X t = σ t Z t ,
where the volatility sequence (σ t ) is strictly stationary independent of the iid noise sequence (Z t ). See e.g. Andersen et al. ( 1) for a recent reference on stochastic volatility models or the collection of papers [START_REF]Stochastic Volatility: Selected Readings[END_REF].

Conditions (RV), (TB) and (CT)

We assume that Z is regularly varying with index α > 0, implying that (Z t ) is regularly varying. We also assume that Eσ p < ∞ for some p > α. Under these assumptions it is known (see Davis and Mikosch (14)) that (X t ) is regularly varying with index α, and the limit measure µ d in (2.1) is given by

µ d (dx 1 , . . . , dx d ) = d i=1 λ α (dx i ) i =j ε 0 (dx j ) , (4.1) 
where ε x is Dirac measure at x, λ α (x, ∞) = p x -α and λ α (-∞, -x] = q x -α , x > 0 , and p = lim

x→∞ P(Z > x) P(|Z| > x) and q = lim x→∞ P(Z -x) P(|Z| > x) , (4.2) 
are the tail balance parameters of Z. This means that the measures µ d are supported on the axes as if the sequence (X t ) were iid regularly varying with tail balance parameters p and q. By virtue of (4.1) and (2.4) we have b + (d) = p d and b -(d) = q d, hence c + = p and c -= q. We also assume EZ = 0 for α > 1.

Then EX = 0. If α = 1 we assume Z symmetric. Then S d is symmetric for every d 1 and (CT) is satisfied.

Conditions (MX) and (AC)

In order to meet (MX) we assume that (σ t ) is strongly mixing with rate function (α h ). It is well known (e.g. Doukhan [START_REF] Doukhan | Mixing. Properties and Examples[END_REF]) that (X t ) is then strongly mixing with rate function (4α h ).

It is common use in financial econometrics to assume that (log σ t ) is a Gaussian linear process. The mixing rates for Gaussian linear processes are well studied. For example, if (log σ t ) is a Gaussian ARMA process then (α h ) decays exponentially fast. We will assume this condition in the sequel. Then we may apply Lemma 3.8 with r n = n γ1 , m n = n γ2 , 0 < γ 1 < γ 2 < 1 for sufficiently small γ 1 and γ 2 , to conclude that (MX) holds and nα rn → 0.

Next we verify (AC). We have by Markov's inequality for small ǫ > 0, n P( max i=d+1,...,rn

|X i | > a n /r n , |X 1 | > a n ) n rn i=d+1 P(|X i | > a n /r n , |X 1 | > a n ) n rn i=d+1 P(max(σ i , σ 1 ) min(|Z i |, |Z 1 |) > a n /r n ) n (r n /a n ) α+ǫ rn i=d+1 E(max(σ α+ǫ i , σ α+ǫ 1 
))

c n r 1+α+ǫ n a -α-ǫ n .
The right-hand side converges to zero if we choose γ 1 and ǫ sufficiently small. This proves (3.8) and by Lemma 3.7 also (AC).

Proposition 4.2. Assume that (X t ) is a stochastic volatility model satisfying the following additional conditions:

(a) (Z t ) is iid regularly varying with index α ∈ (0, 2) and tail balance parameters p and q.

(b) For α ∈ (1, 2), EZ = 0, and for α = 1, Z is symmetric.

(c) (log σ t ) is a Gaussian ARMA process.

Then the stochastic volatility process (X t ) satisfies the conditions of Theorem 3.1 with parameters c + = p and c -= q defined in (4.2).

Hence a stochastic volatility model with Gaussian ARMA log-volatility sequence satisfies the same stable limit relation as an iid regularly varying sequence with index α ∈ (0, 2) and tail balance parameters p and q.

In applications it is common to study powers of the absolute values, (|X t | p ), most often for p = 1, 2. We assume the conditions of Proposition 4.2. Then the sequence (X 2 t ) is again a stochastic volatility process which is regularly varying with index α/2 ∈ (0, 1). It is not difficult to see that the conditions of Proposition 4. A similar remark applies to (|X t |) with one exception: the centering condition (CT) cannot be satisfied. This case requires special treatment. However, the cases α = 1 are similar. For α < 1, (|X t |) is a stochastic volatility model satisfying all conditions of Proposition 4.2. For α ∈ (1, 2) we observe that

a -1 n n i=1 (|X t | -E|X|) = a -1 n n t=1 σ t (|Z t | -E|Z|) + a -1 n E|Z| n t=1 (σ t -Eσ) = a -1 n n t=1 σ t (|Z t | -E|Z|) + o P (1) .
In the last step we applied the central limit theorem to (σ t ). Then the process (σ t (|Z t | -E|Z|)) is a stochastic volatility model satisfying the conditions of Proposition 4.2 with c + = 1 and c -= 0.

Solutions to stochastic recurrence equations

We consider the stochastic recurrence equation

X t = A t X t-1 + B t , t ∈ Z , (4.3) 
where ((A t , B t )) constitutes an iid sequence of non-negative random variables A t and B t . Various econometric time series models (X t ) have this form, including the squared ARCH(1) process and the volatility sequence of a GARCH(1, 1) process; see Section 4.4. The conditions E log A < 0 and E| log B| < ∞ are sufficient for the existence of a strictly stationary causal solution (X t ) to (4.3) such that (X n ) n 0 and ((A n , B n )) n 1 are independent; see Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF].

Condition (RV)

Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] and Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] showed under general conditions that X has almost precise power law tail in the sense that

P(X > x) ∼ c 0 x -α (4.4) 
for some constant c 0 > 0, where the value α is given by the unique positive solution to the equation

EA κ = 1 , κ > 0 .
We quote Theorem 4.1 in Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] to get the exact conditions for (4.4).

Theorem 4.3. Assume that A is a non-negative random variable such that the conditional law of A given A = 0 is non-arithmetic and there exists α > 0 such that 

EA α = 1, E(A α log + A) < ∞. Then -∞ E log A < 0 and E(A α log A) ∈ (0, ∞). Moreover, if EB α < ∞,
c 0 = E[(B 1 + A 1 X 0 ) α -(A 1 X 0 ) α ] α E(A α log A) . (4.5) 
The condition of non-arithmeticity of the distribution of A is satisfied if A has a Lebesgue density. In what follows, we assume that the conditions of Theorem 4.3 are satisfied.

Iterating the defining equation ( 4.3) and writing

Π t = A 1 • • • A t , t 1 , we see that (X 1 , . . . , X d ) = X 0 (Π 1 , Π 2 , . . . , Π d ) + R d , (4.6) 
where R d is independent of X 0 . Under the assumptions of Theorem 4.3, the moments EA α and EB α are finite, hence

E(R α d ) < ∞ and P(|R d | > x) = o(P(|X 0 | > x))
. By a multivariate version of a result of Breiman (8) (see Basrak et al. ( 5)) it follows that the first term on the right-hand side of (4.6) inherits the regular variation from X 0 with index α and by a standard argument (see Jessen and Mikosch (36), Lemma 3.12) it follows that (X 1 , . . . , X d ) and the first term on the right-hand side of (4.6) have the same limit measure µ d . Hence the sequence (X t ) is regularly varying with index α, i.e., condition (RV) is satisfied for α > 0 with EA α = 1.

Condition (TB)

Next we want to determine the quantities b + (d). Choose (a n ) such that n P(X > a n ) ∼ 1, i.e., a n = (c 0 n) 1/α , and write

T d = d i=1 Π i , d 1 .
We obtain for every d 1, by (4.6),

n P(S d > a n ) ∼ n P(X 0 T d > a n ) ∼ n P(X 0 > a n ) E(T α d ) ∼ E(T α d ) = b + (d) .
Here we again used Breiman's result [START_REF] Breiman | On some limit theorems similar to the arc-sin law[END_REF] for P(X 0 T d > x) ∼ E(T α d )P(X 0 > x) in a modified form. In general, this result requires that E(T α+δ d ) < ∞ for some δ > 0. However, if P(X > x) ∼ c 0 x -α , Breiman's result is applicable under the weaker condition EA α < ∞; see Jessen and Mikosch [START_REF] Jessen | Regularly varying functions[END_REF]

, Lemma 4.2(3). Of course, b -(d) = 0. We mention that the values b ± (d) do not change if S d is centered by a constant.
Our next goal is to determine c + . Since EA α = 1 we have

b + (d + 1) -b + (d) = E[(1 + T d ) α -T α d ] . (4.7) 
The condition EA α = 1 and convexity of the function g(κ) = EA κ , κ > 0, imply that E log A < 0 and therefore

T d a.s. → T ∞ = ∞ i=1 Π i < ∞ .
Therefore the question arises as to whether one may let d → ∞ in (4.7) and replace T d in the limit by T ∞ . This is indeed possible as the following dominated convergence argument shows.

If α ∈ (0, 1] concavity of the function f (x) = x α yields that (1+T d ) α -T α d 1 and then Lebesgue dominated convergence applies. If α ∈ (1, 2), the mean value theorem yields that

(1 + T d ) α -T α d = α (T d + ξ) α-1 ,
where ξ ∈ (0, 1). Hence (1+T

d ) α -T α d is dominated by the function α[T α-1 d +1]
. By convexity of g(κ), κ > 0, we have E(A α-1 ) < 1 and therefore

E(T α-1 ∞ ) ∞ i=1 E(Π α-1 i ) = ∞ i=1 (E(A α-1 )) i = E(A α-1 )(1 -E(A α-1 )) -1 < ∞ .
An application of Lebesgue dominated convergence yields for any α ∈ (0, 2) that

c + = lim d→∞ [b + (d + 1) -b + (d)] = E[(1 + T ∞ ) α -T α ∞ ] ∈ (0, ∞) . (4.8) 
Remark 4.4. The quantity T ∞ has the stationary distribution of the solution to the stochastic recurrence equation

Y t = A t Y t-1 + 1 , t ∈ Z .
This solution satisfies the conditions of Theorem 4.3 and therefore

P(Y 0 > x) = P(T ∞ > x) ∼ c 1 x -α , with constant c 1 = E[Y α 1 -(A 1 Y 0 ) α ] α E(A α log A) = E[(1 + A 1 Y 0 ) α -(A 1 Y 0 ) α ] α E(A α log A) .
In particular, E(T α ∞ ) = ∞. This is an interesting observation in view of c + ∈ (0, ∞). It is also interesting to observe that the limit relation (4.8) implies that

b + (d) d = E(T α d ) d = E[d -1/α T d ] α → E[(1 + T ∞ ) α -T α ∞ ] , although d -1/α T d a.s.
→ 0. This relation yields some information about the rate at which T d a.s. → T ∞ .

Condition (MX)

The stationary solution (X t ) to the stochastic recurrence equation (4.3) is strongly mixing with geometric rate provided that some additional conditions are satisfied. For example, Basrak et al. ( 5), Theorem 2.8, assume that the Markov chain (X t ) is µ-irreducible, allowing for the machinery for Feller chains with drift conditions as for example explained in Feigin and Tweedie [START_REF] Feigin | Random coefficient autoregressive processes: a Markov chain analysis of stationarity and finiteness of moments[END_REF] or Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF]. The drift condition can be verified if one assumes that A t has polynomial structure; see Mokkadem [START_REF] Mokkadem | Propriétés de mélange des processus autoregréssifs polynomiaux[END_REF]. The latter conditions can be calculated for GARCH and bilinear processes, assuming some positive Lebesgue density for the noise in a neighborhood of the origin; see Basrak et al. [START_REF] Basrak | Regular variation of GARCH processes[END_REF], Straumann and Mikosch (53).

In what follows, we will assume that (X t ) is strongly mixing with geometric rate. Then, by Lemma 3.8, we may assume that we can choose r n = n γ1 , m n = n γ2 for sufficiently small values 0 < γ 1 < γ 2 < 1. Then (MX) holds and nα rn → 0.

Condition (AC)

We verify condition (3.9) and apply Lemma 3.7. It suffices to bound the quantities

I n (d) = P(|S rn -S d | > a n | X 0 > a n ) .
Writing Π s,t = t i=s A i for s t and Π st = 1 for s > t, we obtain

X i = X 0 Π i + i l=1 Π l+1,i B l = X 0 Π i + C i , i 1 .
Then, using the independence of X 0 and C i , i 1, applying Markov's inequality for κ < α ∧ 1 and Karamata's theorem (see Bingham et al. [START_REF] Bingham | Regular Variation[END_REF]),

I n (d) P X 0 rn i=d+1 Π i > a n /2 | X 0 > a n + P rn i=d+1 C i > a n /2 c E(X κ 0 I {X0>an} ) a κ n P(X 0 > a n ) rn i=d+1 E(Π κ i ) + c a -κ n rn i=d+1 i l=1 (EA κ ) i-l EB κ c ∞ i=d+1 (E(A κ )) i + c r 1+κ n a -κ n (1 -EA κ ) -1 EB κ c (E(A κ )) d + r 1+κ n a -κ n ) .
Here we also used the fact that E(A κ ) < 1 by convexity of the function g(κ) = E(A κ ), κ > 0, and g(α) = 1. Choosing r n = n γ1 for γ 1 sufficiently small, we see that lim This proves (3.9).

Condition 5

Since X is non-negative, (CT) cannot be satisfied; the case α = 1 needs special treatment. We focus on the case α ∈ (1, 2). It is not difficult to see that all calculations given above remain valid if we replace X t by X t -EX, provided γ 1 in r n = n γ1 is chosen sufficiently small.

We summarize our results. In particular,

(c 0 n) -1/α (S n -b n ) d → Z α
, where b n = 0 for α ∈ (0, 1) ,

ES n = nEX for α ∈ (1, 2) ,
where the constant c 0 is given in (4.5) and the α-stable random variable Z α has characteristic function ψ α (t) = exp(-|t| α χ α (t, c + , 0)), where

c + = E[(1 + T ∞ ) α -T α ∞ ] ∈ (0, ∞) and T ∞ = ∞ i=1 A 1 • • • A i .
Remark 4.6. Analogs of of Proposition 4.5 have recently been proved in Guivarc'h and Le Page [START_REF] Guivarc'h | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF] in the one-dimensional case and in Buraczewski et al. [START_REF] Buraczewski | Convergence to stable laws for a class of multidimensional stochastic recursions[END_REF], Theorem 1.6, also in the multivariate case. The results are formulated for a non-stationary version of the process (X n ) starting at some fixed value X 0 = x. (This detail is not essential for the limit theorem.) The proofs are tailored for the situation of stochastic recurrence equations and therefore different from those in this paper where the proofs do not depend on some particular structure of the underlying stationary sequence.

ARCH(1) and GARCH(1,1) processes

In this section we consider the model

X t = σ t Z t ,
where (Z t ) is an iid sequence with EZ = 0 and var(Z) = 1 and

σ 2 t = α 0 + (α 1 Z 2 t-1 + β 1 ) σ 2 t-1 . (4.9) 
We assume that α 0 > 0 and the non-negative parameters α 1 , β 1 are chosen such that a strictly stationary solution to the stochastic recurrence equation (4.9) exists, namely,

-∞ E log(α 1 Z 2 + β 1 ) < 0 , (4.10) 
see Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF], cf. Mikosch and Stȃricȃ (43). Then the process (X t ) is strictly stationary as well. It is called a GARCH(1,1) process if α 1 β 1 > 0 and an ARCH(1) process if β 1 = 0 and α 1 > 0. Notice that condition (4.10) implies that β 1 ∈ [0, 1). As a matter of fact, these classes of processes fit nicely into the class of stochastic recurrence equations considered in Section 4.3. Indeed, the squared volatility process (σ [START_REF] Davis | Limit theory for the sample ACF of stationary process with heavy tails with applications to ARCH[END_REF] for ARCH [START_REF]The Handbook of Financial Time Series[END_REF] and in Mikosch and Stȃricȃ (43) for GARCH(1, 1) with Proposition 4.5 above yields the following. Proposition 4.7. Let (X t ) be a strictly stationary GARCH(1, 1) process. Assume that Z has a positive density on R and that there exists α > 0 such that

E[(α 1 Z 2 + β 1 ) α ] = 1 and E[(α 1 Z 2 + β 1 ) α log(α 1 Z 2 + β 1 )] < ∞ . (4.11)
Then the following statements hold.

(1) The stationary solution (σ 2 t ) to (4.9) is regularly varying with index α and strongly mixing with geometric rate. In particular, there exists a constant

c 1 > 0, given in (4.5) with A 1 = α 1 Z 2 0 + β 1 and B 1 = α 0 such that P(σ 2 > x) ∼ c 1 x -α . (4.12) 
For β 1 = 0, the squared ARCH(1) process (X 2 t ) is regularly varying with index α and strongly mixing with geometric rate. In particular, there exists a constant c 0 > 0 given in (4.5) with

A 1 = α 1 Z 2 1 and B 1 = α 0 Z 2 1 such that P(X 2 > x) ∼ c 0 x -α . (2) Assume α ∈ (0, 1) ∪ (1, 2) in the GARCH(1, 1) case. Then (c 1 n) -1/α n t=1 σ 2 t -b n d → Z α , where b n = 0 α ∈ (0, 1) n E(σ 2 ) α ∈ (1, 2) ,
and the α-stable random variable Z α has characteristic function ψ α (t) = exp(-|t| α χ α (t, c + , 0)), where

c + = E[(1 + T ∞ ) α -T α ∞ ] and T ∞ = ∞ t=1 t i=1 (α 1 Z 2 i + β 1 ) . ( 
) Assume α ∈ (0, 1) ∪ (1, 2) in the ARCH(1) case. Then (c 0 n) -1/α n t=1 X 2 t -b n d → Z α , where b n = 0 α ∈ (0, 1) n E(σ 2 ) α ∈ (1, 2) , 3 
and the α-stable random variable Z α has characteristic function ψ α (t) = exp(-|t| α χ α (t, c + , 0)), where

c + = E[(1 + T ∞ ) α -T α ∞ ] and T ∞ = ∞ t=1 α t 1 t i=1 Z 2 i .
The limit results above require that we know the constants c 1 and c 0 appearing in the tails of σ 2 and X 2 . For example, in the ARCH(1) case,

c 0 = E[(α 0 + α 1 X 2 ) α -(α 1 X 2 ) α ] E|Z| 2α α E[(α 1 Z 2 ) α log(α 1 Z 2 )] . 
Moreover, (8.66) in Embrechts et al. [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF] yields that X 2 d = (α 0 /α 1 ) T ∞ . Hence the constant c 0 can be written in the form

c 0 = α α 0 E[(1 + T ∞ ) α -T α ∞ ] E|Z| 2α α E[(α 1 Z 2 ) α log(α 1 Z 2 )] = α α 0 c + E|Z| 2α α E[(α 1 Z 2 ) α log(α 1 Z 2 )]
.

The moments of |Z| can be evaluated by numerical methods given that one assumes that Z has a tractable Lebesgue density, such as the standard normal or student densities. Using similar numerical techniques, the value α can be derived from (4.11). The evaluation of the quantity E

[(α 0 +α 1 X 2 ) α -(α 1 X 2 ) α ]
is a hard problem; Monte-Carlo simulation of the ARCH(1) process is an option.

In the general GARCH(1, 1) case, similar remarks apply to the constants c + and c 1 appearing in the stable limits of the partial sum processes of (σ 2 t ). Various other financial time series models fit into the framework of stochastic recurrence equations, such as the AGARCH and EGARCH models; see e.g. the treatment in Straumann and Mikosch [START_REF] Straumann | Quasi-maximum likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach[END_REF] and the lecture notes by Straumann [START_REF] Straumann | Estimation in Conditionally Heteroscedastic Time Series Models[END_REF].

In what follows, we consider the GARCH(1, 1) case and prove stable limits for the partial sums of (X t ) and (X 2 t ).

Conditions (RV), (MX) and (AC)

In what follows, we assume that Z is symmetric, has a positive Lebesgue density on R and there exists α > 0 such that (4.11) holds. Under these assumptions, it follows from Mikosch and Stȃricȃ (43) that (X 2 t ) is regularly varying with index α and strongly mixing with geometric rate. By Breiman's (8) result we have in particular,

P(X 2 > x) ∼ E|Z| 2α P(σ 2 > x) ∼ E|Z| 2α c 1 x -α .
By definition of multivariate regular variation, the sequence (|X t |) inherits regular variation with index 2α from (X 2 t ). By symmetry of Z the sequences (sign(Z t )) and (|Z t |), hence (sign(X t )) and (|X t |), are independent. Then an application of the multivariate Breiman result in Basrak et al. [START_REF] Basrak | Regular variation of GARCH processes[END_REF] shows that (X t ) is regularly varying with index 2α and P(X > x) = 0.5 P(|X| > x) ∼ 0.5 E|Z| 2α c 1 x -2α .

If α ∈ (1, 2) we have by the mean value theorem for some ξ ∈ (0, Z 2 0 ) and using the concavity of the function f

(x) = x α-1 , x > 0, E[(Z 2 0 + T d ) α -T α d ] = αE[(T d + ξ) α-1 ] α E(T α-1 d ) + E(|Z| 2(α-1) ) α E(|Z| 2(α-1) ) 1 + E(A α-1 ) + • • • + (E(A α-1 )) d = α E(|Z| 2(α-1) ) (1 -EA α-1 ) -1 < ∞ .
An application of Lebesgue dominated convergence yields in the general case α ∈ (0, 2) that

c + = lim d→∞ [b + (d + 1) -b + (d)] = lim d→∞ E[(Z 2 0 + T d ) α -T α d ] E|Z| 2α = E[(Z 2 0 + T ∞ ) α -T α ∞ ] E|Z| 2α
∈ (0, ∞) .

Condition (TB) for the GARCH(1, 1) process

Next we calculate the corresponding value c + for the GARCH(1, 1) sequence (X t ). By the assumed symmetry of Z, we have c + = c -. Slightly abusing notation, we use the same symbols b ± (d), (a n ), T d , etc., as for (X 2 t ). We choose (a n ) such that n P(|X| > a n ) ∼ 1. We have

S d = Z 1 σ 1 + • • • + Z d σ d .
Since E|Z| 2α < ∞ we have for any ǫ > 0,

n P( (Z 1 σ 1 , . . . , Z d σ d ) -(Z 1 σ 1 , Z 2 |A 2 | 0.5 σ 1 , . . . , Z d |A d | 0.5 σ d-1 > ǫ a n ) n P √ α 0 d i=2 Z 2 i 1/2 > ǫ a n → 0 .
Hence (see Jessen and Mikosch (36), Lemma 3.12)

n P(S d > a n ) ∼ n P(Z 1 σ 1 + Z 2 A 0.5 2 σ 1 + Z 3 A 0.5 3 σ 2 • • • + Z d A 0.5 d σ d-1 > a n ) .
Proceeding by induction, using the same argument as above and in addition Breiman's result, and writing Π s,t = t i=s A i for s t and Π st = 1 for s > t,

The right-hand side is bounded since E|Z| 2α < ∞ and, using (4.13) and E[A α-0.5 ] < 1,

E|T d | 2α-1 c ∞ i=1 E[Π α-0.5 2,i+1 ] = c ∞ i=1 (E[A α-0.5 ]) i < ∞ .
Now we may apply Lebesgue dominated convergence to conclude that the limit

c + = lim d→∞ [b + (d + 1) -b + (d)] = E[|Z ′ 1 + (A ′ 2 ) 0.5 T ∞ | 2α -|(A ′ 2 ) 0.5 T ∞ | 2α ] 2E|Z| 2α
exists and is finite.

Since T ∞ and Z ′ 1 assume positive and negative values we have to show that c + > 0. First we observe that c + = lim 

Condition 5

We assume Z symmetric. Then EX = 0 for 2α ∈ (1, 2) and (CT) holds for (X t ). For (X 2 t ), (CT) cannot be satisfied and needs special treatment. If α ∈ (1, 2) all arguments above remain valid when X 2 t is replaced by E(X 2 t ) -E(X 2 ). We summarize our results for the GARCH(1, 1) process (X t ) and its squares. Proposition 4.8. Let (X t ) be a strictly stationary GARCH(1, 1) process with symmetric iid unit variance noise (Z t ). Assume that Z has a positive density on R and that (4.11) holds for some positive α. Then the following statements hold.

(1) The sequences (X t ) and (X 2 t ) are regularly varying with indices 2α and α, respectively, and both are strongly mixing with geometric rate. In particular,

P(X > x) ∼ 1 2 E|Z| 2α c 1 x -2α ,
where c 1 is defined in (4.12).

(2) Assume 2α ∈ (0, 2). Then

(c 1 E|Z| 2α n) -1/(2α) S n d → Z 2α ,
where Z 2α is symmetric 2α-stable with characteristic function ψ 2α (t) = exp(-|t| 2α χ 2α (t, c + , c + )), where

c + = E[|Z 0 + |α 1 Z 2 0 + β 1 | 0.5 T ∞ | 2α -||α 1 Z 2 0 + β 1 | 0.5 T ∞ | 2α ] 2E|Z| 2α
, and

T ∞ = ∞ t=1 Z t t-1 i=1 (α 1 Z 2 i + β 1 ) 0.5 .
(3) Assume α ∈ (0, 1) ∪ (1, 2). Then 

c + = E[(Z 2 0 + T ∞ ) α -T α ∞ ] E|Z| 2α .
In the above relation,

T ∞ = ∞ t=1 Z 2 t+1 t i=1 (α 1 Z 2 i + β 1 ) .
Remark 4.9. For ARCH(1) processes the above technique of identification of parameters of the limiting law was developed in (3).

Stable stationary sequence

In this section we consider a strictly stationary symmetric α-stable (sαs) sequence (X t ), α ∈ (0, 2), having the integral representation

X n = E f n (x) M (dx) , n ∈ Z .
Here M is an sαs random measure with control measure µ on the σ-field E on E and (f n ) is a suitable sequence of deterministic functions f n ∈ L α (E, E, µ). We refer to Samorodnitsky and Taqqu [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for an encyclopedic treatment of stable processes and to Rosiński [START_REF] Rosiński | On the structure of stationary stable processes[END_REF] for characterizing the classes of stationary (X t ) in terms of their integral representations.

Then for some sαs random variable Y α , for some constant c + and the limit Z α is sαs, possibly zero. Since we know the distribution of a -1 n S n for every fixed n we do not need Theorem 3.1 to determine a sαs limit. In the examples considered above we are not in this fortunate situation. In the sαs case we will investigate which of the conditions in Theorem 3.1 are satisfied in order to see how restrictive they are. Since the finite-dimensional distributions of (X t ) are α-stable, (RV) is satisfied. Conditions (CT) and EX = 0 for α ∈ (1, 2) are automatic. Under (4.16), using the special form of the characteristic function of a sαs random variable, (MX) holds for any sequence m n → ∞. Condition (AC) is difficult to be checked. In particular, it does not seem to be known when (X t ) is strongly mixing. An inspection of the proof of Lemma 3.4, using the particular form of the characteristic functions of the sαs random variables, shows that (AC) can be replaced by (TB) which implies (4.16). Thus (TB) is the only additional restriction in this case. and Université de Paris-Dauphine and Olivier Wintenberger visited the Department of Mathematics at the University of Copenhagen. Both authors take pleasure in thanking their host institutions for excellent hospitality and financial support. We would like to thank the referee for bringing the paper by Gouëzel (29) to our attention. Remark 3.3 is also due to the referee.

S n = E (f 1 (x) + • • • + f n (x))M (dx) d = Y α E |f 1 (x) + • • • + f n (x)| α µ(dx)

. 4 )

 4 Since µ d is non-null for every d 1 and µ d (tA) = t -α µ(A), t > 0, we have b + (d) + b -(d) > 0, d 1. Since (a n ) is regularly varying with index 1/α it then follows that S d is regularly varying with index α for every d 1. Since (a n ) satisfies relation (2.2) it then follows that b + (1) = p and b -(1) = q with p and q defined in equation (1.2). In particular p + q = 1. The coefficients b + (d) and b -(d) for d > 1 can be considered as a measure of extremal dependence in the sequence (X t ). The two benchmarks are the iid case, b + (d) = p d and b -(d) = q d and the case X i = X for all i, b + (d) = p d α and b -(d) = q d α .

  TB) exist. Here b + (d), b -(d) are the tail balance parameters given in (2.3).

1

 1 for an iid regularly varying sequence (Y n ) with index α ∈ (0, 2). Then S d = Y d -Y 0 is symmetric and regularly varying with index α. By the definition of (a n ), b + (d) = b -(d) = 0.5, hence c + = c -= 0. Of course, a -1 n S n P

  n α [ǫn(a 2 n /n∧n)] → 0 . (3.10) Then (MX) holds for some m = m n → ∞ with k n = [n/m] → ∞. Moreover, writing r n = [ǫ n (a n ∧ n)], then r n /m n → 0 for this choice of (m n ) and n α rn → 0 . (3.11) If the tail index α 1, then (3.11) turns into nα [ǫnn] → 0 which is more restrictive than (3.10). On the other hand, if the tail index α is close to 2, (3.10) is not implied by polynomial decay of the coefficients α h . Then a subexponential decay condition of the type α n C exp(-cn b ) for some C, c, b > 0 implies (3.10), and then (3.11) follows.

  tion 4.1 that condition (TB) is satisfied since c + = b + (d + 1) -b + (d) and c -= b -(d + 1) -b -(d) for d > m 0 . This is a fact which is not easily seen by direct calculation on the tails of S d , d > m 0 .

  2 are satisfied for this sequence with b -(d) = 0 and b + (d) = d, hence c + = 1 and c -= 0.

Proposition 4 . 5 .

 45 Under the conditions of Theorem 4.3 the stochastic recurrence equation (4.3) has a strictly stationary solution (X t ) which is regularly varying with index α > 0 given by E[A α ] = 1. If α ∈ (0, 1) ∪ (1, 2) and (X t ) is strongly mixing with geometric rate the conditions of Theorem 3.1 are satisfied.

  d→∞ d -1 E[|T d | 2α ] . (4.14) Applying Khintchine's inequality (see Ledoux and Talagrand (41)) conditionally on (|Z t |), we obtain for some constant c α > 0, all d 1, E[|T d | 2α ] 4.4 and (4.14) imply that c + > 0.

(c 1

 1 E|Z| 2α n) n E(X 2 ) if α ∈ (1, 2) ,and Z α is α-stable with characteristic functionψ α (t) = exp(-|t| α χ α (t, c + , 0)),where

  Since P (Y α > x) ∼ 0.5c 0 x -α for some c 0 > 0 (see Feller (26)), we have withn P (|X| > a n ) ∼ 1, n P (S d > a n ) ∼ E |f 1 (x) + • • • + f d (x)| α µ(dx) E |f 1 (x)| α µ(dx) = b + (d) , d 1 .Moreover, it follows from (4.15) that a -1 n S n d → Z α for some Z α if and only if n -1 b + (n) → c + (4.16)

  then a unique strictly stationary causal solution (X t ) to (4.3) exists such that (4.4) holds with constant

  2 t ) satisfies the stochastic recurrence equation (4.3) with X t = σ 2 t , A t = α 1 Z 2 t-1 + β 1 and B t = α 0 . Moreover, the squared ARCH(1) process (X 2 t ) satisfies (4.3) with Y t = X 2 t , A t = α 1 Z 2 t and B t = α 0 Z 2 t . A combination of the results in Davis and Mikosch
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Thus both sequences (X t ) and (X 2 t ) are regularly varying with indices 2α and α, respectively. Moreover, (MX) is satisfied for both sequences and we may choose r n = n γ1 , m n = n γ2 for sufficiently small 0 < γ 1 < γ 2 < 1. An application of Lemma 3.7 yields (AC). We omit details. 

Recall the notation

The same arguments as for (4.6) yield

Under the assumption (4.11),

. This fact and Breiman's result (8) ensure that

In the last step we used that A 1 is independent of Z 1 , . . . , Z d and that EA α = 1. Write

Observe that

The same argument as in Section 4.3 proves that the right-hand side converges a.s. to a finite limit. Hence T d a.s.

→ T ∞ for some finite limit

we see that

In the last step we used the symmetry of the Z t 's. Writing

and

Since E[(log A) 1/2 ] = 0.5E log A < 0, the right-hand side converges a.s. to a finite limit. By a Cauchy sequence argument,

for some a.s. finite T ∞ . Let (Z ′ 1 , A ′ 2 ) be an independent copy of (Z 1 , A 2 ), independent of T d . Assume 2α ∈ (0, 1]. Then by symmetry of the Z t 's and since E[(A ′ 2 ) α ] = 1, using the concavity of the function f (x) = x 2α , x > 0,

For 2α ∈ (1, 2) we use the same decomposition as above and the mean value theorem to obtain