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Abstract

The aim of this paper is to provide conditions which ensure that the
affinely transformed partial sums of a strictly stationary process con-
verge in distribution to an infinite variance stable distribution. Condi-
tions for this convergence to hold are known in the literature. However,
most of these results are qualitative in the sense that the parameters
of the limit distribution are expressed in terms of some limiting point
process. In this paper we will be able to determine the parameters of
the limiting stable distribution in terms of some tail characteristics of
the underlying stationary sequence. We will apply our results to some
standard time series models, including the GARCH(1, 1) process and
its squares, the stochastic volatility models and solutions to stochastic
recurrence equations.
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1 Introduction

Whereas there exists a vast amount of papers and books on the limit theory
for sums Sn = X1 + · · ·+Xn of finite variance strictly stationary sequences
(Xt), less attention has been given to the case of sums of infinite variance
stationary sequences. Following classical work (for example, Gnedenko and
Kolmogorov [26], Feller [25], Petrov [43]), we know that an iid sequence (Xt)
satisfies the limit relation

a−1
n (Sn − bn)

d→ Yα , (1.1)

for suitable constants an > 0, bn ∈ R and an infinite variance α-stable
random variable Yα if and only if the random variable X = X1 has a distri-
bution with regularly varying tails with index −α ∈ (0, 2), i.e., there exist
constants p, q > 0 with p+ q = 1 and a slowly varying function L such that

P(X > x) = p
L(x)

xα
and P(X 6 −x) ∼ q

L(x)

xα
, x→ ∞ . (1.2)

This relation is often referred to as tail balance condition. It will be conve-
nient to refer to X and its distribution as regularly varying with index α.

The limit relation (1.1) is a benchmark result for weakly dependent sta-
tionary sequences with regularly varying marginal distribution. However,
in the presence of dependence, conditions for the convergence of the partial
sums towards a stable limit are in general difficult to obtain, unless some
special structure is assumed. Early on, α-stable limit theory has been estab-
lished for the partial sums of linear processes (Xt) with iid regularly varying
noise with index α ∈ (0, 2). Then the linear process (Xt) has regularly vary-
ing marginals, each partial sum Sd, d > 1, is regularly varying with index α
and (Sn) satisfies (1.1) for suitable (an) and (bn). These results, the corre-
sponding limit theory for the partial sums Sn and the sample autocovariance
function of linear processes were proved in a series of papers by Davis and
Resnick [17, 18, 19]. They exploited the relations between regular varia-
tion and the weak convergence of the point processes Nn =

∑n
t=1 εa−1

n Xt
.

Starting from the convergence Nn
d→ N , they used a continuous mapping

argument acting on the points of the processesNn andN in conjunction with
the series representation of infinite variance stable random variables. Their
proofs heavily depend on the linear dependence structure. A different, not
point process oriented, approach was chosen by Phillips and Solo [44] who
decomposed the partial sums of the linear process into an iid sum part and a
negligible remainder term. Then the limit theory for the partial sums follows
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from the one for iid sequences with regularly varying marginal distribution.
The first result on stable limits for stationary processes more general than
linear models, assuming suitable conditions for non-Gaussian limits, was
proved by Davis [10]. Davis’s ideas were further developed for mixing se-
quences by Denker and Jakubowski [21] and Jakubowski and Kobus [31].
The latter paper provides a formula for the stable limit for sums of station-
ary sequences which are m-dependent and admit local clusters of big values.
A paper by Dabrowski and Jakubowski [9] opened yet another direction of
studies: stable limits for associated sequences.

Results for special non-linear time series models, exploiting the struc-
ture of the model, were proved later on. Davis and Resnick [20] and Bas-
rak et al. [4] studied the sample autocovariances of bilinear processes with
heavy-tailed and light-tailed noise, respectively. Mikosch and Straumann
[41] proved limit results for sums of stationary martingale differences of the
form Xt = Gt Zt, where (Zt) is an iid sequence with regularly varying Zt’s
with index α ∈ (0, 2), (Gt) is adapted to the filtration generated by (Zs)s6t

and E|Gt|α+δ < ∞ for some δ > 0. Stable limit theory for the sample au-
tocovariances of solutions to stochastic recurrence equations, GARCH pro-
cesses and stochastic volatility models was considered in Davis and Mikosch
[12, 13], Mikosch and Stărică [40], Basrak et al. [5]; see the survey papers
Davis and Mikosch [14, 15, 16].

The last mentioned results are again based on the weak convergence of
the point processes Nn =

∑n
t=1 εa−1

n Xt
in combination with continuous map-

ping arguments. The results make heavy use of the fact that any α-stable
random variable, α ∈ (0, 2), has a series representation, involving the points
of a Poisson process. A general asymptotic theory for partial sums of strictly
stationary processes, exploiting the ideas of point process convergence men-
tioned above, was given in Davis and Hsing [11]. The conditions in Davis
and Hsing [11] are relatively straightforward to verify for various concrete
models. However, the α-stable limits are expressed as infinite series of the
points of a Poisson process. This fact makes it difficult to identify the pa-
rameters of the α-stable distributions: these parameters are functions of the
distribution of the limiting point process.

Jakubowski [28, 30] followed an alternative approach based on classi-
cal blocking and mixing techniques for partial sums of weakly dependent
random variables. A basic idea of these papers consists of approximat-
ing the distribution of the sum a−1

n Sn by the sum of the iid block sums

(a−1
n Smi)i=1,...,kn such that kn = [n/m] → ∞ and Smi

d
= Sm. Then one can

use the full power of classical summation theory for row sums of iid triangu-
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lar arrays. It is also possible to keep under control clustering of big values
and calculate the parameters of the α-stable limit in terms of quantities de-
pending on the finite-dimensional distributions of the underlying stationary
process. Thus the direct method is in some respects advantageous over the
point process approach.

At a first glance, the conditions and results in Jakubowski [28, 30] and
Davis and Hsing [11] look rather different. Therefore we shortly discuss
these conditions in Section 2 and argue that they are actually rather close.
Our main result (Theorem 3.1) is given in Section 3. Using an argument
going back to Jakubowski [28, 30], we provide an α-stable limit theorem for
the partial sums of weakly dependent stationary sequences. The proof only
depends on the characteristic functions of the converging partial sums. The
result and its proof are new and give insight into the dependence structure of
a heavy-tailed stationary sequence. In Section 3.2 we discuss the conditions
of Theorem 3.1 in detail. In particular, we show that our result is easily
applicable for strongly mixing sequences. In Section 4 we explicitly calculate
the parameters of the α-stable limits of the partial sums of the GARCH(1, 1)
process and its squares, solutions to stochastic recurrence equations, the
stochastic volatility model and symmetric α-stable processes.

2 A discussion of the conditions in α-stable limit
theorems

2.1 Regular variation conditions

We explained in Section 1 that regular variation of X with index α ∈ (0, 2)
in the sense of (1.2) is necessary and sufficient for the limit relation (1.1)
with an α-stable limit Yα for an iid sequence (Xt). The necessity of regu-
lar variation of X with index α ∈ (0, 2) in the case of dependent Xi’s is,
in general, difficult to establish. It is, however, natural to assume such a
condition.

Davis and Hsing [11] assume the stronger condition that the strictly
stationary sequence (Xt) is regularly varying with index α ∈ (0, 2). This
means that the finite-dimensional distributions of (Xt) have a jointly reg-
ularly varying distribution in the following sense. For every d > 1, there

exists a non-null Radon measure µd on the Borel σ-field of R
d\{0} (this

means that µd is finite on sets bounded away from zero), R = R ∪ {±∞},
such that

nP(a−1
n (X1, . . . ,Xd) ∈ ·) v→ µd(·) , (2.1)
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where
v→ denotes vague convergence (see Kallenberg [34], Resnick [45]) and

(an) satisfies
nP(|X| > an) ∼ 1 . (2.2)

The limiting measure has the property µd(xA) = x−αµd(A), t > 0, for Borel
sets A. We refer to α as the index of regular variation of (Xt) and its finite-
dimensional distributions. Note that Theorem 3 in [29] provides conditions
under which regular variation of the one-dimensional marginals implies joint
regular variation (2.1).

Jakubowski [28, 30] does not directly assume regular variation of X.
However, his condition U1 requires that the normalizing sequence (an) in
(1.1) is regularly varying with index 1/α. In [30] he also requires the condi-
tions T+(d) and T−(d), d > 1, i.e., the existence of the limits

lim
n→∞

nP(Sd > an) = b+(d) and lim
n→∞

nP(Sd 6 −an) = b−(d) , d > 1 .

(2.3)
If b+(d)+b−(d) > 0, the regular variation of (an) with index 1/α is equivalent
to regular variation of Sd with index α; see Bingham et al. [7]. Condition U2
in [30] restricts the class of all regularly varying distributions to a subclass.
The proof of Theorem 3.1 below shows that this condition can be avoided.

Remark 2.1. Condition (2.3) is automatically satisfied for regularly varying
(Xt), where

b±(d) = µd({x ∈ R
d

: ±(x1 + · · · + xd) > 1}) . (2.4)

Since µd is non-null for every d > 1 and µd(tA) = t−αµ(A), t > 0, we have
b+(d) + b−(d) > 0, d > 1. Since (an) is regularly varying with index 1/α it
then follows that Sd is regularly varying with index α for every d > 1. Since
(an) satisfies relation (2.2) it then follows that b+(1) = p and b−(1) = q with
p and q defined in equation (1.2). In particular p + q = 1. The coefficients
b+(d) and b−(d) for d > 1 can be considered as a measure of extremal
dependence in the sequence (Xt). The two benchmarks are the iid case,
b+(d) = p d and b−(d) = q d and the case Xi = X for all i, b+(d) = p dα and
b−(d) = q dα.

Regular variation of a stationary sequence (Xt) is a well accepted concept
in applied probability theory. One of the reasons for this fact is that some
of the important time series models (ARMA with regularly varying noise,
GARCH, solutions to stochastic recurrence equations, stochastic volatility
models with regularly varying noise) have this property. Basrak and Segers
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[6] give some enlightening results about the structure of regularly varying
sequences. In what follows, we will always assume:

Condition (RV): The strictly stationary sequence (Xt) is regularly varying
with index α ∈ (0, 2) in the sense of condition (2.1) with non-null Radon
measures µd, d > 1, and (an) chosen in (2.2).

2.2 Mixing conditions

Assuming condition (RV), Davis and Hsing [11] require the mixing con-
dition A(an) defined in the following way. Consider the point process
Nn =

∑n
t=1 εXt/an

and assume that there exists a sequence m = mn → ∞
such that kn = [n/mn] → ∞, where [x] denotes the integer part of x. The
condition A(an) requires that

Ee−
R

f dNn −
(

Ee−
R

fdNm

)kn

→ 0 , (2.5)

where f belongs to a sufficiently rich class of non-negative measurable func-
tions on R such that the convergence of the Laplace functional Ee−

R

f dNn

for all f from this class ensures weak convergence of (Nn). Relation (2.5)
ensures that Nn can be approximated in law by a sum of kn iid copies of Nm,
hence the weak limits of (Nn) must be infinitely divisible point processes.

The condition A(an) is difficult to be checked directly, but it follows from
standard mixing conditions such as strong mixing with a suitable rate. For
future use, recall that the stationary sequence (Xt) is strongly mixing with
rate function (αh) if

sup
A∈σ(...,X−1,X0) ,B∈σ(Xh,Xh+1,...)

|P(A ∩B) − P(A) P(B)| = αh → 0 , h→ ∞ .

Jakubowski [28] showed that (1.1) with bn = 0 and regularly varying
(an) implies the condition

max
16k,l6n ,k+l6n

∣∣∣Ee ixa−1
n Sk+l − Ee ixa−1

n SkEe ixa−1
n Sl

∣∣∣→ 0 , n→ ∞, x ∈ R

(2.6)
which is satisfied for strongly mixing (Xt). We also refer to the discussion
in Sections 4–6 of [30] for alternative ways of verifying (2.6). Under assump-
tions on the distribution of X more restrictive than regular variation it is
shown that (1.1) implies the existence of a sequence ln → ∞ such that for
any kn = o(ln) the following relation holds

(
Ee i x k

−1/α
n (a−1

n Sn)
)kn

− Ee i x a−1
n Sn → 0 , x ∈ R . (2.7)
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It is similar to condition (2.5) at the level of partial sums.
We will assume a similar mixing condition in terms of the characteristic

functions of the partial sums of (Xt). Write

ϕnj(x) = Ee ixa−1
n Sj , j = 1, 2, . . . , ϕn = ϕnn , x ∈ R .

Condition (MX). Assume that there exist m = mn → ∞ such that kn =
[n/m] → 0 and

∣∣∣ϕn(x) − (ϕnm(x))kn

∣∣∣→ 0 , n→ ∞ , x ∈ R. (2.8)

This condition is satisfied for a strongly mixing sequence provided the rate
function (αh) decays sufficiently fast; see Section 3.2.4. But (2.8) is satisfied
for classes of stationary processes much wider than strongly mixing ones.
Condition (MX) is analogous to A(an). The latter condition is formulated
in terms of the Laplace functionals of the underlying point processes. It
is motivated by applications in extreme value theory, where the weak con-
vergence of the point processes is crucial for proving limit results of the
maxima and order statistics of the samples X1, . . . ,Xn. Condition (MX)
implies that the partial sum processes (a−1

n Sn) and (a−1
n

∑kn
i=1 Smi) have

the same weak limits, where Smi, i = 1, . . . , kn, are iid copies of Sm. This
observation opens the door to classical limit theory for partial sums based
on triangular arrays of independent random variables. Since we are dealing
with the limit theory for the partial sum process (a−1

n Sn) condition (MX)
is more natural than A(an) which is only indirectly (via a non-trivial contin-
uous mapping argument acting on converging point processes) responsible
for the convergence of the normalized partial sum process (a−1

n Sn).

2.3 Anti-clustering conditions

Assuming condition (RV), Davis and Hsing [11] require the anti-clustering
condition

lim
d→∞

lim sup
n→∞

P

(
max

d6|i|6mn

|Xi| > xan | |X0| > xan

)
= 0 , x > 0 , (2.9)

where, as before, m = mn → ∞ is the block size used in the definition of the
mixing condition A(an). It follows from recent work by Basrak and Segers
[6] that the index set {i : d 6 |i| 6 mn} can be replaced by {i : d 6 i 6 mn},
reducing the efforts for verifying (2.9). With this modification, a sufficient
condition for (2.9) is then given by

lim
d→∞

lim sup
n→∞

n

mn∑

i=d

P (|Xi| > xan , |X0| > xan) = 0 , x > 0 . (2.10)
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Relation (2.10) is close to the anti-clustering condition D′(x an) used in
extreme value theory; see Leadbetter et al. [37], Leadbetter and Rootzén
[36] and Embrechts et al. [23], Chapter 5.

An alternative anti-clustering condition is (38) in Jakubowski [30]:

lim
d→∞

lim sup
x→∞

lim sup
n→∞

xα
n−1∑

h=d

(n− h) P(|X0| > xan , |Xh| > xan) = 0 . (2.11)

Assuming regular variation of X and defining (an) as in (2.2), we see that
(2.11) is implied by the condition

lim
d→∞

lim sup
x→∞

lim sup
n→∞

n
n−1∑

h=d

P(|Xh| > xan , |X0| > xan) = 0 ,

which is close to condition (2.10).
For our results we will need an anti-clustering condition as well. It is hid-

den in assumption (AC) in Theorem 3.1; see the discussion in Section 3.2.3.

2.4 Vanishing small values conditions

Davis, Hsing, and Jakubowski prove convergence of the normalized partial
sums by showing that the limiting distribution is infinitely divisible with a
Lévy triplet corresponding to an α-stable distribution. In particular, they
need conditions to ensure that the sum of the small values (summands) in
the sum a−1

n Sn does not contribute to the limit. Such a condition for a
dependent sequence (Xt) is often easily established for α ∈ (0, 1), whereas
the case α ∈ [1, 2) requires some extra work.

Davis and Hsing [11] assume the condition (3.2):

lim
ǫ→0

lim sup
n→∞

P

(∣∣∣∣∣

n∑

t=1

XtI{|Xt|6ǫan} −
n

an
EXI{|X|6ǫan}

∣∣∣∣∣ > xan

)
= 0, x > 0 ,

(2.12)
for α ∈ (0, 2). For an iid sequence (Xt) the relation

median(a−1
n Sn) − a−1

n nE[XI{|X|6ǫan}] → 0 , ǫ > 0 ,

holds. Therefore a−1
n nEXI{|X|6ǫan} are the natural centering constants for

a−1
n Sn in stable limit theory. In the case of dependent (Xt), the choice of the

latter centering constants is less straightforward; it is dictated by truncation
of the points in the underlying weakly converging point processes.
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The analogous condition (35) in Jakubowski [30] reads as follows: for
each x > 0

lim
ǫ↓0

lim sup
l→∞

lim sup
n→∞

lα P

(∣∣∣
n∑

t=1

[Xt I{|Xt|6ǫ l an}−EXI{|X|6ǫ l an}]
∣∣∣ > x l an

)
= 0.

(2.13)
As shown in [30], this condition is automatically satisfied for α ∈ (0, 1).

In our approach the anti-clustering condition (AC) (see below) is im-
posed on the sum of “small” and “moderate” values and we do not need to
verify conditions such as (2.12) and (2.13).

3 Main result

In this section we formulate and prove our main result. Recall the regular
variation condition (RV) and the mixing condition (MX) from Sections 2.1
and 2.2. We will use the following notation for any random variable Y :

Y = (Y ∧ 2) ∨ (−2) .

Notice that |Y | = |Y | ∧ 2 is subadditive.

Theorem 3.1. Assume that (Xt) is a strictly stationary process satisfying
the following conditions.

1. The regular variation condition (RV) holds for some α ∈ (0, 2).

2. The mixing condition (MX) holds.

3. The anti-clustering condition

lim
d→∞

lim sup
n→∞

n

m

m∑

j=d+1

E

∣∣∣x a−1
n (Sj − Sd) x a

−1
n X1

∣∣∣ = 0 , x ∈ R ,

(AC)
holds, where m = mn is the same as in (MX).

4. The limits

lim
d→∞

(b+(d) − b+(d− 1)) = c+ and lim
d→∞

(b−(d) − b−(d− 1)) = c− ,

(TB)
exist. Here b+(d), b−(d) are the tail balance parameters given in (2.3).
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5. For α > 1 assume E(X1) = 0 and for α = 1,

lim
d→∞

lim sup
n→∞

n |E(sin(a−1
n Sd))| = 0. (CT)

Then c+ and c− are non-negative and (a−1
n Sn) converges in distribution to an

α-stable random variable (possibly zero) with characteristic function ψα(x) =
exp(−|x|αχα(x, c+, c−)), where for α 6= 1 the function χα(x, c+, c−), x ∈ R,
is given by the formula

Γ(1 − α)
(
− (c+ + c−) cos(πα/2) + i sign(x)(c+ − c−) sin(π α/2)

)
,

while for α = 1 one has

χ1(x, c+, c−) = 0.5π(c+ + c−) + i sign(x) (c+ − c−) log |x|, x ∈ R.

We discuss the conditions of Theorem 3.1 in Section 3.2. In particular,
we compare them with the conditions in Jakubowski [28, 30] and Davis and
Hsing [11].

3.1 Proof of Theorem 3.1

For any strictly stationary sequence (Xt)t∈Z it will be convenient to write

S0 = 0 , Sn = X1 + · · · +Xn , S−n = X−n + · · · +X−1 , n > 1 .

Let Smi, i = 1, 2, . . . , be iid copies of Sm. In view of (2.8) the theorem
is proved if we can show that (a−1

n

∑kn
i=1 Smi) has an α-stable limit with

characteristic function ψα. For such triangular array, it is implied by the
relation

kn(ϕnm(x) − 1) → logψα(x) , x ∈ R . (3.1)

Indeed, notice first that the triangular array (a−1
n Smi)i=1,...,kn of iid random

variables satisfies the infinite smallness condition. Then apply Lemma 3.5
in Petrov [43] saying that for all x ∈ R and sufficiently large n,

logϕnm(x) = ϕnm(x) − 1 + θnm(ϕnm(x) − 1)2 ,

where |θnm| 6 1. Thus

|kn(ϕnm(x) − 1) − kn logϕnm(x)| 6 kn (ϕnm(x) − 1)2 6 c k−1
n → 0 .

Here and in what follows, c denotes any positive constants. Our next goal
is to find a suitable approximation to the left-hand side in (3.1).
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Lemma 3.2. Under the conditions of Theorem 3.1,

lim
d→∞

lim sup
n→∞

∣∣∣kn(ϕnm(x)−1)−n (ϕnd(x)−ϕn,d−1(x))
∣∣∣ = 0 , x ∈ R . (3.2)

The proof is given at the end of this section. By virtue of (RV) and (2.3),
Sd is regularly varying with index α ∈ (0, 2); see Remark 2.1. Therefore
it belongs to the domain of attraction of an α-stable law. Theorem 3 in
Section XVII.5 of Feller [25] yields that for every d > 1 there exists an
α-stable random variable Zα(d) such that

a−1
n

n∑

i=1

(Sdi − end)
d→ Zα(d) where end =

{
0 α 6= 1,

E(sin(Sd/an)) α = 1.
(3.3)

The limiting variable Zα(d) has the characteristic function

ψ̃α,d(x) = exp(−|x|αχα(x, b+(d), b−(d))).

Applying Theorem 1 in Section XVII.5 of Feller [25] we find the equivalent
relation

n
(
ϕnd(x)e

−iendx − 1
)
→ log ψ̃α,d(x) , x ∈ R ,

and exploiting condition (TB), for x ∈ R,

n (ϕnd(x)e
−iendx − ϕn,d−1(x)e

−ien,d−1x)

→ log ψ̃α,d(x) − log ψ̃α,d−1(x); as n→ ∞

→ logψα(x) as d→ ∞, .

For α 6= 1 we have end = 0. Therefore (3.2) implies

kn (ϕnm(x) − 1) → logψα(x) , x ∈ R .

This finishes the proof in this case. For α = 1 we use the same arguments but
we have to take into account that end does not necessarily vanish. However,
we have

|ϕnd(x) − ϕnd(x)e
−iendx| 6 |1 − e−iendx| 6 t |end| ,

and using (CT), we obtain

lim
d→∞

lim sup
n→∞

n |(ϕnd(x) − ϕn,d−1(x)) − (ϕnd(x)e−iendx − ϕn,d−1(x)e
−ien,d−1x)| = 0 .

This proves the theorem.
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Proof of Lemma 3.2. Consider the following telescoping sum for any n, m 6

n and d < m:

ϕnm(x) − 1 = ϕnd(x) − 1 +

m−d∑

j=1

(ϕn,d+j(x) − ϕn,d−1+j(x)) .

By stationarity of (Xt) we also have

m (ϕnd(x) − ϕn,d−1(x)) =

d (ϕnd(x) − ϕn,d−1(x)) +

m−d∑

j=1

[
Ee ixa−1

n (S
−d−j−S

−j) − Ee ixa−1
n (S

−d−j+1−S
−j)
]
.

Taking the difference between the previous two identities, we obtain

(ϕnm(x) − 1) −m (ϕnd(x) − ϕn,d−1(x)) =

−(d− 1) (ϕn,d(x) − 1) + d (ϕn,d−1(x) − 1) +

m−d∑

j=1

[
ϕn,d+j(x) − Ee ixa−1

n (S
−d−j−S

−j) − ϕn,d−1+j(x) + Ee ixa−1
n (S

−d−j+1−S
−j

]
.

By stationarity, for any k > 1, ϕnk(x) = Ee ixa−1
n S−k . Therefore any sum-

mand in the latter sum can be written in the following form

E

(
e ixa−1

n S−d−j − e ixa−1
n (S−d−j−S−j) − e ixa−1

n S−d−j+1 + e ixa−1
n (S−d−j+1−S−j)

)

= E

(
e ixa−1

n S−d−j
(
1 − e−ixa−1

n S−j
) (

1 − e−ixa−1
n X−d−j

))
.

Using the fact that x→ exp(ix) is a 1-Lipschitz function bounded by 1, the
absolute value of the expression on the right-hand side is bounded by

E
(
(|xa−1

n S−j| ∧ 2) (|xa−1
n X−d−j | ∧ 2)

)
.

Collecting the above identities and bounds, we finally arrive at the inequality

|kn (ϕnm(x) − 1) − n (ϕnd(x) − ϕn,d−1(x))|

6 kn (d− 1) |ϕnd(x) − 1| + kn d |ϕn,d−1(x) − 1|

+kn

m∑

j=d+1

E

∣∣∣xa−1
n (Sj − Sd) xa

−1
n X1

∣∣∣ .
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The last term on the right-hand side converges to zero in view of assumption
(AC). To prove that the first two terms also converge to zero, let us notice
that n(ϕnd(x) − 1) → χα(x, b+(d), b−(d)) and so

lim
n→∞

kn(d− 1)(ϕnd(x) − 1) = lim
n→∞

mn
−1(d− 1)n(ϕnd(x) − 1) = 0.

This proves the lemma.

Remark 3.3. Balan and Louhichi [2] have taken a similar approach to
prove limit theorems for triangular arrays of stationary sequences with in-
finitely divisible limits. Their paper combines ideas from Jakubowski [30],
in particular condition (TB), and the point process approach in Davis and
Hsing [11]. They work under a mixing condition close to A(an). One of
their key results (Theorem 2.6) is the analog of Lemma 3.5 above. It is
formulated in terms of the Laplace functionals of point processes instead of
the characteristic functions of the partial sums. Then they sum the points
in the converging point processes and in the limiting point process to get
an infinitely divisible limit. The sum of the points of the limiting process
represent an infinitely divisible random variable by virtue of the Lévy-Itô
representation. As in Davis and Hsing [11] the method of proof is indi-
rect, i.e., one does not directly deal with the partial sums, and therefore the
results are less explicit.

3.2 A discussion of the conditions of Theorem 3.1

3.2.1 Condition 5

It is a natural centering condition for the normalized partial sums in the
cases α = 1 and α ∈ (1, 2). In the latter case, E|X| < ∞, and therefore
EX = 0 can be assumed without loss of generality. As usual in stable limit
theory, the case α = 1 is special and therefore we need condition (CT). It
is satisfied if Sd is symmetric for every d.

3.2.2 Condition (TB)

If c+ + c− = 0 the limiting stable random variable is zero. For example,
assume Xn = Yn − Yn−1 for an iid regularly varying sequence (Yn) with
index α ∈ (0, 2). Then Sd = Yd−Y0 is symmetric and regularly varying with
index α. By the definition of (an), b+(d) = b−(d) = 0.5, hence c+ = c− = 0.

Of course, a−1
n Sn

P→ 0.
In the context of Theorem 3.1 in Jakubowski [30] (although the condi-

tions of that result are more restrictive as regards the tail of X) it is shown
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that (TB) is necessary for convergence of (a−1
n Sn) towards a stable limit.

Condition (TB) can be verified for various standard time series models; see
Section 4. The meaning of this condition is manifested in Lemma 3.2. It
provides the link between the regular variation of the random variables Sd

for every d > 1 (this is a property of the finite-dimensional distributions of
the partial sum process (Sd)) and the Lévy measure να of the α-stable limit.
Indeed, notice that (TB) implies that, for every x > 0, with b+(0) = 0,

c+ x
−α = lim

d→∞

b+(d)

d
x−α

= lim
d→∞

1

d

d∑

i=1

(b+(i) − b+(i− 1))x−α

= lim
d→∞

1

d

d∑

i=1

lim
n→∞

n (P(Si > xan) − P(Si−1 > xan)) ,

and a similar relation applies to c−x
−α. Then

να(x,∞) = c+ x
−α and να(−∞,−x) = c+ x

−α , x > 0 ,

determine the Lévy measure να of the α-stable limit distribution with the
characteristic function ψα given in Theorem 3.1. In particular, Lemma 3.2
implies that as n→ ∞

kn P(Sm > xan) → να(x,∞),
kn P(Sm > xan) → να(−∞,−x] x > 0 . (3.4)

The latter relation opens the door to the limit theory for partial sums of
triangular arrays of iid copies (Smi)i=1,...,kn , of Sm. Notice that the relations
(3.4) are of large deviations type in the sense of [30]. We refer to [32] for
their multi-dimensional counterparts.

Let us notice that although one cannot ensure that b±(d) > b±(d−1) > 0
for sufficiently large d, the constants c+, c− are non-negative. It is immediate
from the observation that

c± = lim
d→∞

(b±(d) − b±(d− 1))

= lim
d→∞

1

d

d∑

i=1

(b±(i) − b±(i− 1)) = lim
d→∞

b±(d)

d
≥ 0.
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Remark 3.4. Recall the two benchmark examples of Remark 2.1. If (Xt)
is an iid sequence regularly varying with index α > 0 the limits c+ = p
and c− = q always exist and conditions (MX), (AC) are automatically
satisfied. Then, under (CT), we recover the classical limit results for partial
sums with α-stable limit. On the other hand, if Xi = X for all i, then
c+ = c− = 0 if 0 < α < 1, c+ = p and c− = q if α = 1 and c+ and c− are
not defined otherwise. This observation is in agreement with the fact that
a−1

n Sn = n1−1/αℓ(n)X for some slowly varying function ℓ.

3.2.3 Sufficient conditions for (AC)

Condition (AC) is close to the anti-clustering conditions in [11, 30] discussed
in Section 2.3. In what follows, we give some sufficient conditions for (AC).
These conditions are often simple to verify.

Lemma 3.5. Assume the conditions of Theorem 3.1 and that (Xt) is strongly
mixing with rate function (αh). Moreover, assume that there exists a se-
quence rn → ∞ such that rn/mn → 0, nαrn → 0 and one of the following
three conditions is satisfied.

limd→∞ lim supn→∞ n
[∑rn

i=d+1 P(|Xi| > an , |X1| > an)

+ P
(∣∣∑rn

i=d+1XiI{|Xi|6an}

∣∣ > an , |X1| > an

)]
= 0 .

(3.5)

or
lim

d→∞
lim sup

n→∞
nP( max

i=d+1,...,rn

|Xi| > an/rn , |X1| > an) = 0 . (3.6)

or
lim

d→∞
lim sup

n→∞
nP(|Srn − Sd| > an , |X1| > an) = 0 . (3.7)

Then (AC) holds.

Proof. Let us recall that the function y 7→ |y| is subadditive. We decompose
the sum in (AC) as follows.

kn




rn∑

j=d+1

+

m∑

j=rn+1


E

∣∣∣x a−1
n (Sj − Sd) x a

−1
n X1

∣∣∣ = J1(n) + J2(n) .

We will deal with the two terms J1(n) and J2(n) in different ways. For the
sake of simplicity we assume x = 1.
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We start by bounding J2(n).

J2(n) 6 kn

m∑

j=rn+1

[
E

∣∣∣a−1
n (Sj − Srn) a−1

n X1

∣∣∣+
∣∣∣a−1

n (Srn − Sd)
∣∣∣
]

= kn

m∑

j=rn+1

E

∣∣∣a−1
n (Sj − Srn) a−1

n X1

∣∣∣+ nE

∣∣∣a−1
n (Srn − Sd) a

−1
n X1

∣∣∣

= J21(n) + J22(n) .

We bound a typical summand in J21(n), using the strong mixing property

E

∣∣∣a−1
n (Sj − Srn) a−1

n X1

∣∣∣

= cov
(
|a−1

n (Sj − Srn)|, |a−1
n X1|

)
+ E

∣∣∣a−1
n Sj−rn+1

∣∣∣E
∣∣∣a−1

n X1

∣∣∣

6 c αrn + E

∣∣∣a−1
n Sj−rn+1

∣∣∣E
∣∣∣a−1

n X1

∣∣∣ .

Moreover, we have for j > rn

∣∣∣a−1
n (Sj−rn+1)

∣∣∣ ≤
j−rn+1∑

i=1

∣∣∣a−1
n Xi

∣∣∣ ,

hence

E

∣∣∣a−1
n Sj−rn+1

∣∣∣E
∣∣∣a−1

n X1

∣∣∣ 6 j
(
E

∣∣∣a−1
n X1

∣∣∣
)2
.

Thus we arrive at the bound

J21(n) 6 c nαrn + c nm
(

E

∣∣∣a−1
n X1

∣∣∣
)2

.

Observe that

E|a−1
n X1| = E

(
a−1

n |X1|I{a−1
n |X1|62} ∧ 2I{a−1

n |X1|>2}

)

6 2P(|X1| > 2 an) .

Therefore, by definition of (an) and since nαrn → 0 by assumption,

J21(n) = O(nαrn) +O(m/n) = o(1) .
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We also have

J22(n) 6 c nP(|Srn − Sd| > 2 an , |X1| > 2 an)

6 c n

rn∑

i=d+1

P(|Xi| > an , |X1| > 2 an)

+c nP

(∣∣∣∣∣

rn∑

i=d+1

XiI{|Xi|6an}

∣∣∣∣∣ > 2 an , |X1| > 2 an

)
.

and

J22(n) 6 cP( max
i=d+1,...,rn

|Xi| > 2 an/rn | |X1| > 2 an) .

Thus, under any of the assumptions (3.5)–(3.7), limd→∞ lim supn→∞ J22(n) =
0. Finally,

J1(n) 6 c kn

rn∑

j=d+1

P(|Sj − Sd| > 2an , |X1| > 2an)

6
rn
m
nP(|X1| > 2an) = o(1) .

Collecting the bounds above we proved that (AC) holds.

3.2.4 Condition (MX)

As we have already discussed in Sections 2.1 and 2.2, the condition (MX) is
a natural one in the context of stable limit theory for dependent stationary
sequences. Modifications of these conditions appear in Davis and Hsing [11],
Jakubowski [28, 30]. We also discuss the existence of sequencees m = mn →
∞ and r = rn → ∞ such that r/m → 0 and m/n → 0 in the context of
strong mixing.

Lemma 3.6. Assume that (Xt) is strongly mixing with rate function (αh).
In addition, assume that there exists a sequence εn → 0 satisfying

n√
εn(an ∧ n)

αεn((a2
n/n)∧n) → 0 . (3.8)

Then (MX) holds for some m = mn → ∞ with kn = [n/m] → ∞. More-
over, writing rn = εn(an ∧ n), then rn/mn → 0 for this choice of (mn)
and

nαrn → 0 . (3.9)
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If the tail index α 6 1, (3.8) is always satisfied for a suitable sequence (εn).
Then (3.9) turns into nαεnn → 0 which is more restrictive than (3.8). On the
other hand, if the tail index α is close to 2, (3.8) is not implied by polynomial
decay of the coefficients αh. Then a subexponential decay condition of the
type αn 6 C exp(−cnb) for some C, c, b > 0 implies (3.8), and then (3.9)
follows.

Proof. We start by showing that (2.8) holds for a suitable sequence (mn).
Let ϕnmδ be the characteristic function of a−1

n

∑kn
i=1 Um−δ,i for some δ = δn

and

Uji =

ij∑

k=(i−1)j+1

Xk

a block sum of size j. Using that characteristic functions are Lipschitz
functions bounded by 1 and writing q = knm, for x ∈ R,

|ϕq(x) − ϕnmδ(x)| 6 E

(∣∣∣ x
an

kn∑

j=1

Uδj

∣∣∣ ∧ 2
)

6 E

(
xδn

man
|X1| ∧ 2

)

6

∫ 2

0
P(|X1| > man/(δn)s)ds .

The right-hand side approaches zero if mnan/(δnn) → ∞ as n→ ∞. Under
this condition, the same arguments yield

|(ϕnm(x))kn − (ϕn,m−δ(x))
kn | → 0 and |ϕq(x) − ϕn(x)| → 0 ,

as soon as an/m→ ∞. Next we use a standard mixing argument to bound

|ϕnmδ(x) − (ϕn,m−δ(x))
[m/n]|

6 |ϕnmδ(x) − ϕm−δ(x)ϕn−m,mδ | + |ϕm−δ(x)ϕ(n−m)mδ − (ϕn,m−δ(x))
[m/n]|.

The first term on the right-hand side is the covariance of bounded Lipschitz
functions of Sm−δ and Sn − Sm. Hence it is bounded by αδ. Iterative use
of this argument, recursively on distinct blocks, shows that the right-hand
side is of the order (n/m)αδ . Thus we proved that (2.8) is satisfied if

n/mαδ → 0 , man/(δn) → ∞ and an/m→ ∞ . (3.10)
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Choose mn =
√
εn(an ∧ n), δ = m2/n and assume (3.8). Then (3.10) holds,

(2.8) is satisfied and m/n = δ/n → 0.
Finally, if (3.8) is satisfied choose r = ǫn(an ∧ n). Then nαr → 0 and

r/m→ 0 are automatic.

4 Examples

4.1 The stochastic volatility model

The stochastic volatility model is one of the standard econometric models
for financial returns of the form

Xt = σt Zt ,

where the volatility sequence (σt) is strictly stationary independent of the
iid noise sequence (Zt). see e.g. Andersen et al. [1] for a recent reference on
stochastic volatility models or the collection of papers [48].

Conditions (RV), (TB) and (CT)

We assume that Z is regularly varying with index α > 0, implying that
(Zt) is regularly varying. We also assume that Eσp < ∞ for some p > α.
Under these assumptions it is known (see Davis and Mikosch [13]) that (Xt)
is regularly varying with index α, and the limit measure µd in (2.1) is given
by

µd(dx1, . . . , dxd) =
d∑

i=1

λα(dxi)
∏

i6=j

ε0(dxj) , (4.1)

where εx is Dirac measure at x,

λα(x,∞) = p̃ x−α and λα(−∞,−x] = q̃ x−α , x > 0 ,

and

p̃ = lim
x→∞

P(Z > x)

P(|Z| > x)
and q̃ = lim

x→∞

P(Z 6 −x)
P(|Z| > x)

, (4.2)

are the tail balance parameters of Z. This means that the measures µd are
supported on the axes as if the sequence (Xt) were iid regularly varying
with tail balance parameters p̃ and q̃. By virtue of (4.1) and (2.4) we have
b+(d) = p̃ d and b−(d) = q̃ d, hence c+ = p̃ and c− = q̃. We also assume
EZ = 0 for α > 1. Then EX = 0. If α = 1 we assume Z symmetric. Then
Sd is symmetric for every d > 1 and (CT) is satisfied.
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Conditions (MX) and (AC)

In order to meet (MX) we assume that (σt) is strongly mixing with rate
function (αh). It is well known (e.g. Doukhan [22]) that (Xt) is then strongly
mixing with rate function (4αh).

It is common use in financial econometrics to assume that (log σt) is a
Gaussian linear process. The mixing rates for Gaussian linear processes are
well studied. For example, if (log σt) is a Gaussian ARMA process then (αh)
decays exponentially fast. We will assume this condition in the sequel. Then
we may apply Lemma 3.6 with rn = nγ1, mn = nγ2, 0 < γ1 < γ2 < 1 for
sufficiently small γ1 and γ2, to conclude that (MX) holds and nαrn → 0.

Next we verify (AC). We have by Markov’s inequality for small ǫ > 0,

nP( max
i=d+1,...,rn

|Xi| > an/rn, |X1| > an)

6 n

rn∑

i=d+1

P(|Xi| > an/rn, |X1| > an)

6 n
rn∑

i=d+1

P(max(σi, σ1)min(|Zi|, |Z1|) > an/rn)

6 n (rn/an)2α−ǫ
rn∑

i=d+1

E(max(σ2α−ǫ
i , σ2α−ǫ

1 ))

6 c n r1+2α−ǫ
n a−2α+ǫ

n .

The right-hand side converges to zero if we choose γ1 and ǫ sufficiently small.
This proves (3.6) and by Lemma 3.5 also (AC).

Proposition 4.1. Assume that (Xt) is a stochastic volatility model satisfy-
ing the following additional conditions:

(a) (Zt) is iid regularly varying with index α ∈ (0, 2) and tail balance
parameters p̃ and q̃.

(b) For α ∈ (1, 2), EZ = 0, and for α = 1, Z is symmetric.

(c) (log σt) is a Gaussian ARMA process.

Then the stochastic volatility process (Xt) satisfies the conditions of Theo-
rem 3.1 with parameters c+ = p̃ and c− = q̃ defined in (4.2).
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Hence a stochastic volatility model with Gaussian ARMA log-volatility
sequence satisfies the same stable limit relation as an iid regularly varying
sequence with index α ∈ (0, 2) and tail balance parameters p̃ and q̃.

In applications it is common to study powers of the absolute values,
(|Xt|p), most often for p = 1, 2. We assume the conditions of Proposition 4.1.
Then the sequence (X2

t ) is again a stochastic volatility process which is
regularly varying with index α/2 ∈ (0, 1). It is not difficult to see that the
conditions of Proposition 4.1 are satisfied for this sequence with b−(d) = 0
and b+(d) = d, hence c+ = 1 and c− = 0.

A similar remark applies to (|Xt|) with one exception: the centering
condition (CT) cannot be satisfied. This case requires special treatment.
However, the cases α 6= 1 are similar. For α < 1, (|Xt|) is a stochastic
volatility model satisfying all conditions of Proposition 4.1. For α ∈ (1, 2)
we observe that

a−1
n

n∑

i=1

(|Xt| − E|X|) = a−1
n

n∑

t=1

σt (|Zt| − E|Z|) + a−1
n E|Z|

n∑

t=1

(σt − Eσ)

= a−1
n

n∑

t=1

σt (|Zt| − E|Z|) + oP(1) .

In the last step we applied the central limit theorem to (σt). Then the pro-
cess (σt(|Zt|−E|Z|) is a stochastic volatility model satisfying the conditions
of Proposition 4.1 with c+ = 1 and c− = 0.

4.2 Solutions to stochastic recurrence equations

We consider the stochastic recurrence equation

Xt = AtXt−1 +Bt , t ∈ Z , (4.3)

where ((At, Bt)) constitutes an iid sequence of non-negative random vari-
ables At and Bt. Various econometric time series models (Xt) have this
form, including the squared ARCH(1) process and the volatility sequence
of a GARCH(1, 1) process; see Section 4.3. The conditions E logA < 0 and
E| logB| <∞ are sufficient for the existence of a strictly stationary solution
(Xt) to (4.3); see Kesten [35].

Condition (RV)

Kesten [35] and Goldie [27] showed under general conditions that X has
almost precise power law tail in the sense that

P(X > x) ∼ c0 x
−α (4.4)
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for some constant c0 > 0, where the value α is given by the unique positive
solution to the equation

EAκ = 1 , κ > 0 .

We quote Theorem 4.1 in Goldie [27] to get the exact conditions for (4.4).

Theorem 4.2. Assume that A is a non-negative random variable such that
the conditional law of A given A 6= 0 is non-arithmetic and there exists
α > 0 such that EAα = 1, E(Aα log+A) < ∞. Then −∞ 6 E logA < 0
and E(Aα logA) ∈ (0,∞). Moreover, if EBα < ∞, then a unique strictly
stationary solution (Xt) to (4.3) exists such that (4.4) holds with constant

c0 =
E[(B1 +A1X0)

α − (A1X0)
α]

αE(Aα logA)
. (4.5)

The condition of non-arithmeticity of the distribution of A is satisfied if A
has a Lebesgue density. In what follows, we assume that the conditions of
Theorem 4.2 are satisfied.

Iterating the defining equation (4.3) and writing

Πt = A1 · · ·At , t > 1 ,

we see that
(X1, . . . ,Xd) = X0 (Π1,Π2, . . . ,Πd) +Rd , (4.6)

where Rd is independent of X0. Under the assumptions of Theorem 4.2,
the moments EAα and EBα are finite, hence E(Rα

d ) < ∞ and P(|Rd| >
x) = o(P(|X0| > x)). By a multivariate version of a result of Breiman
[8] (see Basrak et al. [5]) it follows that the first term on the right-hand
side of (4.6) inherits the regular variation from X0 with index α and by a
standard argument (see Jessen and Mikosch [33], Lemma 3.12) it follows
that (X1, . . . ,Xd) and the first term on the right-hand side of (4.6) have the
same limit measure µd. Hence the sequence (Xt) is regularly varying with
index α, i.e., condition (RV) is satisfied for α > 0 with EAα = 1.

Condition (TB)

Next we want to determine the quantities b+(d). Choose (an) such that
nP(X > an) ∼ 1, i.e., an = (c0 n)1/α, and write

Td =

d∑

i=1

Πi , d > 1 .
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We obtain for every d > 1, by (4.6),

nP(Sd > an) ∼ nP(X0 Td > an) ∼ nP(X0 > an) E(Tα
d ) ∼ E(Tα

d ) = b+(d) .

Here we again used Breiman’s result [8] for P(X0 Td > x) ∼ E(Tα
d )P(X0 > x)

in a modified form. In general, this result requires that E(Tα+δ
d ) < ∞ for

some δ > 0. However, if P(X > x) ∼ c0 x
−α, Breiman’s result is applicable

under the weaker condition EAα <∞; see Jessen and Mikosch [33], Lemma
4.2(3). Of course, b−(d) = 0. We mention that the values b±(d) do not
change if Sd is centered by a constant.

Our next goal is to determine c+. Since EAα = 1 we have

b+(d+ 1) − b+(d) = E[(1 + Td)
α − Tα

d ] . (4.7)

The condition EAα = 1 and convexity of the function g(κ) = EAκ, κ > 0,
imply that E logA < 0 and therefore

Td
a.s.→ T∞ =

∞∑

i=1

Πi <∞ .

Therefore the question arises as to whether one may let d → ∞ in (4.7)
and replace Td in the limit by T∞. This is indeed possible as the following
dominated convergence argument shows.

If α ∈ (0, 1] concavity of the function f(x) = xα yields that (1 + Td)
α −

Tα
d 6 1 and then Lebesgue dominated convergence applies. If α ∈ (1, 2), the

mean value theorem yields that

(1 + Td)
α − Tα

d = α (Td + ξ)α−1 ,

where ξ ∈ (0, 1). Hence (1+Td)
α−Tα

d is dominated by the function α[Tα−1
d +

1]. By convexity of g(κ), κ > 0, we have E(Aα−1) < 1 and therefore

E(Tα−1
∞ ) 6

∞∑

i=1

E(Πα−1
i ) =

∞∑

i=1

(E(Aα−1))i = E(Aα−1)(1 − E(Aα−1))−1 <∞ .

An application of Lebesgue dominated convergence yields for any α ∈
(0, 2) that

c+ = lim
d→∞

[b+(d+ 1) − b+(d)] = E[(1 + T∞)α − Tα
∞] ∈ (0,∞) . (4.8)



Infinite variance stable limits 24

Remark 4.3. The quantity T∞ has the stationary distribution of the solu-
tion to the stochastic recurrence equation

Yt = At Yt−1 + 1 , t ∈ Z .

This solution satisfies the conditions of Theorem 4.2 and therefore

P(Y0 > x) = P(T∞ > x) ∼ c1 x
−α ,

with constant

c1 =
E[Y α

1 − (A1 Y0)
α]

αE(Aα logA)
=

E[(1 +A1 Y0)
α − (A1 Y0)

α]

αE(Aα logA)
.

In particular, E(Tα
∞) = ∞. This is an interesting observation in view of

c+ ∈ (0,∞). It is also interesting to observe that the limit relation (4.8)
implies that

b+(d)

d
=

E(Tα
d )

d
= E[d−1/αTd]

α → E[(1 + T∞)α − Tα
∞] ,

although d−1/αTd
a.s.→ 0. This relation yields some information about the

rate at which Td
a.s.→ T∞.

Condition (MX)

The stationary solution (Xt) to the stochastic recurrence equation (4.3) is
strongly mixing with geometric rate provided that some additional condi-
tions are satisfied. For example, Basrak et al. [5], Theorem 2.8, assume that
the Markov chain (Xt) is µ-irreducible, allowing for the machinery for Feller
chains with drift conditions as for example explained in Feigin and Tweedie
[24] or Meyn and Tweedie [39]. The drift condition can be verified if one
assumes that At has polynomial structure; see Mokkadem [42]. The latter
conditions can be calculated for GARCH and bilinear processes, assuming
some positive Lebesgue density for the noise in a neighborhood of the origin;
see Basrak et al. [5], Straumann and Mikosch [50].

In what follows, we will assume that (Xt) is strongly mixing with geomet-
ric rate. Then, by Lemma 3.6, we may assume that we can choose rn = nγ1 ,
mn = nγ2 for sufficiently small values 0 < γ1 < γ2 < 1. Then (MX) holds
and nαrn → 0.
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Condition (AC)

We verify condition (3.7) and apply Lemma 3.5. It suffices to bound the
quantities

In(d) = P(|Srn − Sd| > an | X0 > an) .

Writing Πs,t =
∏t

i=sAi for s 6 t and Πst = 1 for s > t, we obtain

Xi = X0 Πi +

i∑

l=1

Πl+1,iBl = X0 Πi + Ci , i > 1 .

Then, using the independence of X0 and Ci, i > 1, applying Markov’s
inequality for κ < α ∧ 1 and Karamata’s theorem (see Bingham et al. [7]),

In(d) 6 P

(
X0

rn∑

i=d+1

Πi > an/2 | X0 > an

)
+ P

( rn∑

i=d+1

Ci > an/2
)

6 c
E(Xκ

0 I{X0>an})

aκ
n P(X0 > an)

rn∑

i=d+1

E(Πκ
i ) + c a−κ

n

rn∑

i=d+1

i∑

l=1

(EAκ)i−l
EBκ

6 c

∞∑

i=d+1

(E(Aκ))i + c r1+κ
n a−κ

n (1 − EAκ)−1
EBκ

6 c
(
(E(Aκ))d + r1+κ

n a−κ
n ) .

Here we also used the fact that E(Aκ) < 1 by convexity of the function
g(κ) = E(Aκ), κ > 0, and g(α) = 1. Choosing rn = nγ1 for γ1 sufficiently
small, we see that

lim
d→∞

lim sup
n→∞

In(d) = 0 .

This proves (3.7).

Condition (5)

Since X is non-negative, (CT) cannot be satisfied; the case α = 1 needs
special treatment. We focus on the case α ∈ (1, 2). It is not difficult to see
that all calculations given above remain valid if we replace Xt by Xt − EX,
provided γ1 in rn = nγ1 is chosen sufficiently small.

We summarize our results.
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Proposition 4.4. Under the conditions of Theorem 4.2 the stochastic recur-
rence equation (4.3) has a strictly stationary solution (Xt) which is regularly
varying with index α > 0 given by E[Aα] = 1. If α ∈ (0, 1) ∪ (1, 2) and (Xt)
is strongly mixing with geometric rate the conditions of Theorem 3.1 are
satisfied. In particular,

(c0n)−1/α (Sn − bn)
d→ Zα , where bn =

{
0 for α ∈ (0, 1) ,

ESn = nEX for α ∈ (1, 2) ,

where the constant c0 is given in (4.5) and the α-stable random variable Zα

has characteristic function ψα(t) = exp(−|t|αχα(t, c+, 0)), where

c+ = E[(1 + T∞)α − Tα
∞] ∈ (0,∞) and T∞ =

∞∑

i=1

A1 · · ·Ai .

4.3 ARCH(1) and GARCH(1,1) processes

In this section we consider the model

Xt = σt Zt ,

where (Zt) is an iid sequence with EZ = 0 and var(Z) = 1 and

σ2
t = α0 + (α1Z

2
t−1 + β1)σ

2
t−1 . (4.9)

We assume that α0 > 0 and the non-negative parameters α1, β1 are chosen
such that a strictly stationary solution to the stochastic recurrence equation
(4.9) exists, namely,

−∞ 6 E log(α1 Z
2 + β1) < 0 , (4.10)

see Goldie [27], cf. Mikosch and Stărică [40]. Then the process (Xt) is
strictly stationary as well. It is called a GARCH(1,1) process if α1β1 > 0
and an ARCH(1) process if β1 = 0 and α1 > 0. Notice that condition (4.10)
implies that β1 ∈ [0, 1).

As a matter of fact, these classes of processes fit nicely into the class
of stochastic recurrence equations considered in Section 4.2. Indeed, the
squared volatility process (σ2

t ) satisfies the stochastic recurrence equation
(4.3) with Xt = σ2

t , At = α1Z
2
t−1 + β1 and Bt = α0. Moreover, the squared

ARCH(1) process (X2
t ) satisfies (4.3) with Yt = X2

t , At = α1Z
2
t and Bt =

α0 Z
2
t .

A combination of the results in Davis and Mikosch [12] for ARCH(1) and
in Mikosch and Stărică [40] for GARCH(1, 1) with Proposition 4.4 above
yields the following.
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Proposition 4.5. Let (Xt) be a strictly stationary GARCH(1, 1) process.
Assume that Z has a positive density on R and that there exists α > 0 such
that

E[(α1Z
2 + β1)

α] = 1 and E[(α1Z
2 + β1)

α log(α1Z
2 + β1)] <∞ . (4.11)

Then the following statements hold.

(1) The stationary solution (σ2
t ) to (4.9) is regularly varying with index α

and strongly mixing with geometric rate. In particular, there exists a
constant c1 > 0, given in (4.5) with A1 = α1Z

2
0 +β1 and B1 = α0 such

that
P(σ2 > x) ∼ c1 x

−α . (4.12)

For β1 = 0, the squared ARCH(1) process (X2
t ) is regularly varying

with index α and strongly mixing with geometric rate. In particular,
there exists a constant c0 > 0 given in (4.5) with A1 = α1Z

2
1 and

B1 = α0Z
2
1 such that

P(X2 > x) ∼ c0 x
−α .

(2) Assume α ∈ (0, 1) ∪ (1, 2) in the GARCH(1, 1) case. Then

(c1n)−1/α
( n∑

t=1

σ2
t − bn

)
d→ Zα , where bn =

{
0 α ∈ (0, 1)

nE(σ2) α ∈ (1, 2) ,

and the α-stable random variable Zα has characteristic function ψα(t) =
exp(−|t|αχα(t, c+, 0)), where

c+ = E[(1 + T∞)α − Tα
∞] and T∞ =

∞∑

t=1

t∏

i=1

(α1 Z
2
i + β1) .

(3) Assume α ∈ (0, 1) ∪ (1, 2) in the ARCH(1) case. Then

(c0n)−1/α
( n∑

t=1

X2
t − bn

)
d→ Z̃α , where bn =

{
0 α ∈ (0, 1)

nE(σ2) α ∈ (1, 2) ,

and the α-stable random variable Z̃α has characteristic function ψα(t) =
exp(−|t|αχα(t, c+, 0)), where

c+ = E[(1 + T̃∞)α − T̃α
∞] and T̃∞ =

∞∑

t=1

αt
1

t∏

i=1

Z2
i .
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The limit results above require that we know the constants c1 and c0
appearing in the tails of σ2 and X2. For example, in the ARCH(1) case,

c0 =
E[(α0 + α1X

2)α − (α1X
2)α] E|Z|2α

α E[(α1 Z2)α log(α1Z2)]
.

Moreover, (8.66) in Embrechts et al. [23] yields that X2 d
= (α0/α1)T̃∞ .

Hence the constant c0 can be written in the form

c0 =
αα

0 E[(1 + T̃∞)α − T̃α
∞] E|Z|2α

α E[(α1 Z2)α log(α1Z2)]
=

αα
0 c+ E|Z|2α

α E[(α1 Z2)α log(α1Z2)]
.

The moments of |Z| can be evaluated by numerical methods given that one
assumes that Z has a tractable Lebesgue density, such as the standard nor-
mal or student densities. Using similar numerical techniques, the value α
can be derived from (4.11). The evaluation of the quantity E[(α0+α1X

2)α−
(α1X

2)α] is a hard problem; Monte-Carlo simulation of the ARCH(1) pro-
cess is an option. In the general GARCH(1, 1) case, similar remarks apply
to the constants c+ and c1 appearing in the stable limits of the partial sum
processes of (σ2

t ). Various other financial time series models fit into the
framework of stochastic recurrence equations, such as the AGARCH and
EGARCH models; see e.g. the treatment in Straumann and Mikosch [50]
and the lecture notes by Straumann [49].

In what follows, we consider the GARCH(1, 1) case and prove stable
limits for the partial sums of (Xt) and (X2

t ).

Conditions (RV), (MX) and (AC)

In what follows, we assume that Z is symmetric, has a positive Lebesgue
density on R and there exists α > 0 such that (4.11) holds. Under these
assumptions, it follows from Mikosch and Stărică [40] that (X2

t ) is regularly
varying with index α and strongly mixing with geometric rate. By Breiman’s
[8] result we have in particular,

P(X2 > x) ∼ E|Z|2α
P(σ2 > x) ∼ E|Z|2α c1 x

−α .

By definition of multivariate regular variation, the sequence (|Xt|) inherits
regular variation with index 2α from (X2

t ). By symmetry of Z the sequences
(sign(Zt)) and (|Zt|), hence (sign(Xt)) and (|Xt|), are independent. Then
an application of the multivariate Breiman result in Basrak et al. [5] shows
that (Xt) is regularly varying with index 2α and

P(X > x) = 0.5 P(|X| > x) ∼ 0.5 E|Z|2α c1 x
−2α .
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Thus both sequences (Xt) and (X2
t ) are regularly varying with indices 2α

and α, respectively. Moreover, (MX) is satisfied for both sequences and we
may choose rn = nγ1 , mn = nγ2 for sufficiently small 0 < γ1 < γ2 < 1. An
application of Lemma 3.5 yields (AC). We omit details.

4.3.1 Condition (TB) for the squared GARCH(1, 1) process

Recall the notation At = α1 Z
2
t−1 +β1, Bt = α0, Πt =

∏t
i=1Ai and that (an)

satisfies nP(X2 > an) ∼ 1. The same arguments as for (4.6) yield

X2
1 + · · · +X2

d = Z2
1 σ

2
1 + · · · + Z2

d σ
2
d

= σ2
0 (Z2

1 Π1 + · · · + Z2
d Πd) +Rd .

Under the assumption (4.11), E(Rα
d ) < ∞, hence P (Rd > an) = o(P (X2 >

an)). This fact and Breiman’s result [8] ensure that

nP(X2
1 + · · · +X2

d > an) ∼ nP(σ2
0 (Z2

1 Π1 + · · · + Z2
d Πd) > an)

∼ [nE|Z|2α
P(σ2

0 > an)]
E|Z2

1 Π1 + · · · + Z2
d Πd|α

E|Z|2α

∼ [nP(X2 > an)]
E|Z2

1 Π1 + · · · + Z2
d Πd|α

E|Z|2α

∼ E|Z2
1 Π1 + · · · + Z2

d Πd|α
E|Z|2α

=
E|Z2

0 + Z2
1Π1 + · · · + Z2

d−1 Πd−1|α
E|Z|2α

= b+(d) .

In the last step we used that A1 is independent of Z1, . . . , Zd and that
EAα = 1. Write

Td = Z2
1Π1 + · · · + Z2

d Πd .

Observe that

Td 6 α−1
1 [Π2 + · · · + Πd+1] .

The same argument as in Section 4.2 proves that the right-hand side con-
verges a.s. to a finite limit. Hence Td

a.s.→ T∞ for some finite limit T∞ =∑∞
t=1 Z

2
t Πt . If α ∈ (0, 1], we have by concavity of the function f(x) = xα,

x > 0,

E[Tα
d+1 − Tα

d ] = E[(Z2
0 + Td)

α − Tα
d ] 6 E|Z|2α <∞ .
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If α ∈ (1, 2) we have by the mean value theorem for some ξ ∈ (0, Z2
0 ) and

using the concavity of the function f(x) = xα−1, x > 0,

E[(Z2
0 + Td)

α − Tα
d ] = αE[(Td + ξ)α−1]

6 α
[
E(Tα−1

d ) + E(|Z|2(α−1))
]

6 αE(|Z|2(α−1))
[
1 + E(Aα−1) + · · · + (E(Aα−1))d

]

= αE(|Z|2(α−1)) (1 − EAα−1)−1 <∞ .

An application of Lebesgue dominated convergence yields in the general case
α ∈ (0, 2) that

c+ = lim
d→∞

[b+(d+ 1) − b+(d)] = lim
d→∞

E[(Z2
0 + Td)

α − Tα
d ]

E|Z|2α

=
E[(Z2

0 + T∞)α − Tα
∞]

E|Z|2α
∈ (0,∞) .

4.3.2 Condition (TB) for the GARCH(1, 1) process

Next we calculate the corresponding value c+ for the GARCH(1, 1) sequence
(Xt). By the assumed symmetry of Z, we have c+ = c−. Slightly abusing
notation, we use the same symbols b±(d), (an), Td, etc., as for (X2

t ). We
choose (an) such that nP(|X| > an) ∼ 1. We have

Sd = Z1 σ1 + · · · + Zd σd .

Since E|Z|2α <∞ we have for any ǫ > 0,

nP(‖(Z1σ1, . . . , Zdσd) − (Z1σ1, Z2|A2|0.5σ1, . . . , Zd|Ad|0.5σd−1‖ > ǫan)

6 nP

(√
α0

( d∑

i=2

Z2
i

)1/2
> ǫan

)
→ 0 .

Hence (see Jessen and Mikosch [33], Lemma 3.12)

nP(Sd > an) ∼ nP(Z1σ1 + Z2A
0.5
2 σ1 + Z3A

0.5
3 σ2 · · · + ZdA

0.5
d σd−1 > an) .

Proceeding by induction, using the same argument as above and in addition
Breiman’s result, and writing Πs,t =

∏t
i=sAi for s 6 t and Πst = 1 for s > t,
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we see that

nP(Sd > an) ∼ nP(σ1 (Z1 +A0.5
2 Z2 + · · · + Π0.5

2,d Zd) > an)

∼ [nP(σ1 > an)] E[(Z1 +A0.5
2 Z2 + · · · + Π0.5

2,dZd)
2α
+ ]

∼
E[(Z1 +A0.5

2 Z2 + · · · + Π0.5
2,dZd)

2α
+ ]

E|Z|2α

=
E[|Z1 +A0.5

2 Z2 + · · · + Π0.5
2,dZd|2α]

2 E|Z|2α
= b+(d) .

In the last step we used the symmetry of the Zt’s. Writing Td =
∑d

i=1 ZiΠ
0.5
2i ,

we have

b+(d) =
E[|Td|2α]

2E|Z|2α
,

and

|Td| 6

∞∑

i=1

|Zi|Π0.5
2,i 6 α

−1/2
1

∞∑

i=1

Π0.5
2,i+1 . (4.13)

Since E[(logA)1/2] = 0.5E logA < 0, the right-hand side converges a.s. to a
finite limit. By a Cauchy sequence argument,

Td
a.s.→ T∞ =

∞∑

i=1

Zi Π
0.5
2,i

for some a.s. finite T∞.
Let (Z ′

1, A
′
2) be an independent copy of (Z1, A2), independent of Td.

Assume 2α ∈ (0, 1]. Then by symmetry of the Zt’s and since E[(A′
2)

α] = 1,
using the concavity of the function f(x) = x2α, x > 0,

E
[∣∣|Td+1|2α − |Td|2α

∣∣]

= E
[∣∣|Z ′

1 + (A′
2)

0.5 Td|2α − |(A′
2)

0.5Td|2α
∣∣]

= E
[∣∣|Z ′

1| + (A′
2)

0.5 Td|2α − |(A′
2)

0.5Td|2α
∣∣]

= E[(|Z ′
1| + (A′

2)
0.5 (Td)+)2α − ((A′

2)
0.5(Td)+)2α] +

E
[∣∣(|Z ′

1| − (A′
2)

0.5 (Td)−)2α − ((A′
2)

0.5(Td)−)2α
∣∣I{(A′

2
)0.5(Td)−6|Z′

1
|}

]
+

E
[∣∣((A′

2)
0.5 (Td)− − |Z ′

1|)2α − ((A′
2)

0.5(Td)−)2α
∣∣I{(A′

2
)0.5(Td)−>|Z′

1
|}

]

6 E|Z|2α .
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For 2α ∈ (1, 2) we use the same decomposition as above and the mean value
theorem to obtain

E
[∣∣|Td+1|2α − |Td|2α

∣∣] 6 2αE[(A′
2)

0.5|Td| + |Z ′
1|]2α−1

6 2αE[(A′
2)

0.5|Td|]2α−1 + 2αE|Z|2α−1 .

The right-hand side is bounded since E|Z|2α < ∞ and, using (4.13) and
E[Aα−0.5] < 1,

E|Td|2α−1
6 c

∞∑

i=1

E[Πα−0.5
2,i+1 ] = c

∞∑

i=1

(E[Aα−0.5])i <∞ .

Now we may apply Lebesgue dominated convergence to conclude that the
limit

c+ = lim
d→∞

[b+(d+ 1) − b+(d)] =
E[|Z ′

1 + (A′
2)

0.5T∞|2α − |(A′
2)

0.5T∞|2α]

2E|Z|2α

exists and is finite.
Since T∞ and Z ′

1 assume positive and negative values we have to show
that c+ > 0. First we observe that

c+ = lim
d→∞

d−1
E[|Td|2α] . (4.14)

Applying Khintchine’s inequality (see Ledoux and Talagrand [38]) condi-
tionally on (|Zt|), we obtain for some constant cα > 0, all d > 1,

E[|Td|2α] > cα E

( d∑

i=1

Z2
i Π2,i

)α

= cα α
−α
1 E

( d∑

i=1

(α1Z
2
i + β1)Π2,i − β1

d∑

i=1

Π2,i

)α

> cα α
−α
1

[
E

( d∑

i=1

Π2,i+1

)α
− βα

1 E

( d∑

i=1

Π2,i

)α]

= cα α
−α
1 (1 − βα

1 )E
( d∑

i=1

Π2,i

)α
.

Now, Remark 4.3 and (4.14) imply that c+ > 0.
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4.3.3 Condition (5)

We assume Z symmetric. Then EX = 0 for 2α ∈ (1, 2) and (CT) holds
for (Xt). For (X2

t ), (CT) cannot be satisfied and needs special treatment.
If α ∈ (1, 2) all arguments above remain valid when X2

t is replaced by
E(X2

t ) − E(X2).
We summarize our results for the GARCH(1, 1) process (Xt) and its

squares.

Proposition 4.6. Let (Xt) be a strictly stationary GARCH(1, 1) process
with symmetric iid unit variance noise (Zt). Assume that Z has a positive
density on R and that (4.11) holds for some positive α. Then the following
statements hold.

(1) The sequences (Xt) and (X2
t ) are regularly varying with indices 2α and

α, respectively, and both are strongly mixing with geometric rate. In
particular,

P(X > x) ∼ 1

2
E|Z|2α c1 x

−2α ,

where c1 is defined in (4.12).

(2) Assume 2α ∈ (0, 2). Then

(c1E|Z|2α n)−1/(2α)Sn
d→ Z2α ,

where Z2α is symmetric 2α-stable with characteristic function ψ2α(t) =
exp(−|t|2αχ2α(t, c+, c+)), where

c+ =
E[|Z0 + |α1Z

2
0 + β1|0.5T∞|2α − ||α1Z

2
0 + β1|0.5T∞|2α]

2E|Z|2α
,

and

T∞ =

∞∑

t=1

Zt

t−1∏

i=1

(α1 Z
2
i + β1)

0.5 .

(3) Assume α ∈ (0, 1) ∪ (1, 2). Then

(c1E|Z|2αn)−1/α
( n∑

t=1

X2
t − bn

)
d→ Z̃α,
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where

bn =

{
0 if α ∈ (0, 1)
nE(X2) if α ∈ (1, 2) ,

and Z̃α is α-stable with characteristic function

ψα(t) = exp(−|t|αχα(t, c+, 0)),

where

c+ =
E[(Z2

0 + T̃∞)α − T̃α
∞]

E|Z|2α
.

In the above relation,

T̃∞ =
∞∑

t=1

Z2
t+1

t∏

i=1

(α1Z
2
i + β1) .

Remark 4.7. For ARCH(1) processes the above technique of identification
of parameters of the limiting law was developed in [3].

4.4 Stable stationary sequence

In this section we consider a strictly stationary symmetric α-stable (sαs)
sequence (Xt), α ∈ (0, 2), having the integral representation

Xn =

∫

E
fn(x)M(dx) , n ∈ Z .

Here M is an sαs random measure with control measure µ on the σ-field E on
E and (fn) is a suitable sequence of deterministic functions fn ∈ Lα(E, E , µ).
We refer to Samorodnitsky and Taqqu [47] for an encyclopedic treatment
of stable processes and to Rosiński [46] for characterizing the classes of
stationary (Xt) in terms of their integral representations.

Then for some sαs random variable Yα,

Sn =

∫

E
(f1(x)+· · ·+fn(x))M(dx)

d
= Yα

(∫

E
|f1(x)+· · ·+fn(x)|α µ(dx)

)1/α
.

(4.15)
Since P (Yα > x) ∼ 0.5c0x

−α for some c0 > 0 (see Feller [25]), we have with
nP (|X| > an) ∼ 1,

nP (Sd > an) ∼
∫
E |f1(x) + · · · + fd(x)|α µ(dx)∫

E |f1(x)|αµ(dx)
= b+(d) , d > 1 .
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Moreover, it follows from (4.15) that a−1
n Sn

d→ Zα for some Zα if and only
if

n−1b+(n) → c+ (4.16)

for some constant c+ and the limit Zα is sαs, possibly zero.
Since we know the distribution of a−1

n Sn for every fixed n we do not need
Theorem 3.1 to determine a sαs limit. In the examples considered above
we are not in this fortunate situation. In the sαs case we will investigate
which of the conditions in Theorem 3.1 are satisfied in order to see how
restrictive they are. Since the finite-dimensional distributions of (Xt) are
α-stable, (RV) is satisfied. Conditions (CT) and EX = 0 for α ∈ (1, 2)
are automatic. Under (4.16), using the special form of the characteristic
function of a sαs random variable, (MX) holds for any sequence mn → ∞.
Condition (AC) is difficult to be checked. In particular, it does not seem
to be known when (Xt) is strongly mixing. An inspection of the proof of
Lemma 3.2, using the particular form of the characteristic functions of the
sαs random variables, shows that (AC) can be replaced by (TB) which
implies (4.16). Thus (TB) is the only additional restriction in this case.
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