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We present a theory of the quantum vacuum radiation that is generated by a fast modulation of the
vacuum Rabi frequency of a single two-level system strongly coupled to a single cavity mode. The
dissipative dynamics of the Jaynes-Cummings model in the presence of anti-rotating wave terms
is described by a generalized master equation including non-Markovian terms. Peculiar spectral
properties and significant extracavity quantum vacuum radiation output are predicted for state-of-
the-art circuit cavity quantum electrodynamics systems with superconducting qubits.
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Cavity quantum electrodynamics (CQED) is a very
exciting and active research field of fundamental quan-
tum physics, characterized by an unprecedented control
of light-matter interaction down to the single quantum
level [1]. A number of different systems and a wide
range of electromagnetic frequencies are presently be-
ing explored in this context, including Rydberg atoms
in superconductor microwave cavities [1], alkali atoms in
high-finesse optical cavities [2, 3], single quantum dots in
semiconductor optical nanocavities [4, 5], superconduc-
tor Cooper pair quantum boxes in microwave strip-line
resonators [6, 7, 8, 9].

Most of the research in CQED has so far concerned
systems whose properties are slowly varying in time with
respect to the inverse resonance frequency of the cavity
mode. Only very recently, experiments with semiconduc-
tor microcavities [10] have demonstrated the possibility
of modulating the vacuum Rabi coupling on a time scale
comparable to a single oscillation cycle of the field. For
this novel regime, theoretical studies have anticipated the
possibility of observing a sizeable emission of quantum
vacuum radiation [11] via a process that is closely remi-
niscent of the still elusive dynamical Casimir effect [12]:
the modulation of the Rabi coupling provides a modula-
tion of the effective optical length of the cavity, and it is
analogous to a rapid displacement of the cavity mirrors.

A recent paper [13] has applied this general scheme to
a Jaynes-Cummings (JC) model in the presence of a fast
modulation of the artificial atom resonance frequency.
However, as the theoretical model did not include dissi-
pation, the predictions were limited to short times and
were not able to realistically describe the system steady
state. In particular, no quantitative estimation of the
extracavity radiation intensity was provided.

In the present Letter, we introduce a full quantum the-
ory to describe the non-adiabatic response of a JC model
including both the anti-rotating wave terms of the light-
matter interaction and a realistic dissipative coupling to
the environment. While the former terms are responsi-

ble for the generation of photons out of the non-trivial
ground state [11, 14], radiative coupling to the exter-
nal world is essential to detect the generated photons as
emitted radiation. Our attention will be focussed on the
most significant case of harmonic temporal modulation
of the vacuum Rabi coupling of superconducting qubits
in circuit CQED systems: for fast, yet realistic [15, 16]
modulations of the vacuum Rabi coupling, the photon
emission turns out to be significant even in the presence
of a strong dissipation. Furthermore, in contrast to other
systems that have been proposed in view of observing
the dynamical Casimir effect [17, 18, 19, 20], the intrin-
sic quantum nonlinear properties of the two-level system
should allow experimentalists to isolate the vacuum ra-
diation from the parametric amplification of pre-existing
thermal photons.

In addition to its importance concerning the observa-
tion of the dynamical Casimir effect, the theory devel-
oped here appears of great interest also from the general
point of view of the quantum theory of open systems [21].
As a consequence of the anti-rotating wave terms in the
Hamiltonian, the ground state of the system contains a
finite number of photons. In order for the theory not
to predict unphysical radiation from these bound, vir-
tual photons [22], the theoretical model has to explicitly
take into account the colored nature of the dissipation
bath. This suggests circuit CQED systems as unique
candidates for the study of non-Markovian effects in the
dissipative dynamics of open quantum systems.

A sketch of the system under consideration is shown in
the left panel of Fig. 1. The theoretical description of its
dynamics is based on the Jaynes-Cummings Hamiltonian:

Ĥ(t) = ~ω0â
†â + ~ωgeĉ

†ĉ + ~g(t)(â + â†)(ĉ + ĉ†) . (1)

whose ladder of eigenstates is schematically drawn in the
right panel. Here, â† is the bosonic creation operator of
a cavity photon and ĉ† is the raising operator describing
the excitation of the two-level system (qubit), ĉ†|g〉 = |e〉,
where |g〉 and |e〉 are its ground and excited states, re-
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FIG. 1: Left panel: sketch of the system under consideration.
A single two-level system (qubit) is strongly coupled to a sin-
gle cavity mode. A possible realization of such a device con-
sists of a Cooper pair quantum box embedded in a microwave
resonator. Right panel: schematic representation of the JC
ladder of eigenstates of the isolated system in the absence of
modulation, dissipation and anti-rotating wave terms. In this
limit, the eigenstates |n,±〉 = (|n, g〉 ± |n − 1, e〉)/

√
2 have

energies En,± = nω0 ±√
ng0.

spectively; ω0 is the bare frequency of the cavity mode
and ωge is the qubit transition frequency. The term pro-
portional to g(t) describes the vacuum Rabi coupling be-
tween the two-level system and the cavity mode and fully
includes those anti-resonant, non-rotating wave processes
that are generally neglected in the so-called rotating-wave
approximation (RWA).

While the RWA has provided an accurate description
of most physical CQED systems [1, 2, 3, 4, 5, 6, 7, 8, 9],
it becomes inaccurate as soon as one enters the so-called
ultrastrong coupling regime, i.e. when the Rabi coupling,
g, is comparable to the resonance frequencies, ω0 and ωge.
This regime has been recently achieved in a solid state
device consisting of a dense two-dimensional electron gas
with an intersubband transition coupled to a microcavity
photon mode [23]. Values of the g/ωge ratio of the order
of 0.01 (approaching the so-called fine structure constant
limit) have been recently observed also in circuit CQED
systems, and even larger values have been predicted for
more recent unconventional coupling configurations [24].
Fully taking into account the anti-RWA terms is even
more crucial in the experimentally novel [10, 15] regime
where the Rabi frequency g(t) is modulated in time at
frequencies comparable or higher than the qubit transi-
tion frequency. In fact, in this regime of non-adiabatic
modulation the anti-RWA terms may lead to the emission
of quantum vacuum radiation, a phenomenon that would
be completely overlooked if these terms were neglected.
As we show in this Letter, a significant amount of quan-
tum vacuum radiation with peculiar spectral features can
be already expected for moderate values of g/ωge, i. e.
compatible with already existing circuit CQED samples.

In order to fully describe the quantum dynamics of the
system, the JC model has to be coupled to its environ-
ment. A simple description involves two thermal baths,

corresponding to the radiative and non-radiative dissipa-
tion channels. The non-Markovian nature of the baths
is taken into account by means of a so-called second or-
der time-convolutionless projection operator method [21],
which gives a master equation of the general form

dρ

dt
=

1

i~
[Ĥ, ρ]+

∑

j=cav,ge

(

ÛjρŜj + ŜjρÛ †
j − ŜjÛjρ − ρÛ †

j Ŝj

)

,

(2)
where Ŝcav = (â + â†)/~, Ŝge = (ĉ + ĉ†)/~, and Ûj are
given by integral operators as

Ûj =

∫ ∞

0

vj(τ)e−iĤτ Ŝje
iĤτdτ, (3)

vj(τ) =

∫ ∞

−∞

γj(ω)

2π
[nj(ω)eiωτ + (nj(ω) + 1)e−iωτ ]dω.(4)

The energy-dependent loss rates, γj(ω), for the cavity
(i.e. j = cav) and for the qubit transition (j = ge)
are related to the density of states at energy ~ω in the
baths, and thus they must be set to zero for ω < 0.
In the numerical simulations, we used the simple form
γj(ω) = γjΘ(ω) for the non-white loss rates, where Θ(ω)
is the Heaviside step function. In the following, the back-
ground number of thermal excitations at energy ~ω in the
corresponding bath will be set as nj(ω) = 0. The usually

employed master equation (see, e.g., Ref. [25]) can be
obtained from Eq. (2) by assuming the baths to be per-
fectly white, i.e. γj(ω) = γj . By doing so, one implicitly
introduces unphysical negative-energy radiative photon
modes, incorrectly leading to the unphysical emission of
light out of the vacuum state even in absence of any mod-
ulation [25].

In the present Letter, we shall focus on the steady state
of the system under a harmonic modulation of the form

g(t) = g0 + ∆g sin(ωmod t) , (5)

where ∆g and ωmod are the modulation amplitude and
frequency, respectively. Direct application to the present
JC model of the input-output formalism, e.g. discussed
in Ref. [22], leads to the following expression for the spec-
tral density of extracavity photons emitted per unit time

S(ω) =
γcav(ω)

2π
G(ω) (6)

in terms of the intra-cavity field spectrum, G(ω). As a
consequence of the (harmonic) modulation g(t), the spec-
trum G(ω) involves a temporal average over the modu-
lation period Tmod = 2π/ωmod,

G(ω) =
1

Tmod

∫ Tmod

0

dt

∫ ∞

−∞

dτe−iωτ Tr{â†(t + τ)â(t)ρ} .

(7)
The cavity field operators â(t) are defined here in
the Heisenberg picture. The total number of ex-
tracavity photons emitted per unit time is given by
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FIG. 2: Extracavity photon emission rate Rem(units of ω0)
as a function of the modulation frequency, ωmod, for a modu-
lation amplitude of the vacuum Rabi frequency ∆g/γ = 0.1.
Parameters: ω0 = ωge; γ = γcav = γge = 0.002ω0 ; g0 =
0.02ω0. For comparison, the dashed line shows the extra-
cavity emission rate γcavNin (where Nin is the steady-state
intracavity photon number) that would be predicted by the
Markovian approximation: note the unphysical prediction of
a finite value of the emission even far from resonance.

the spectral integral Rem =
∫ ∞

−∞
dωS(ω). This for-

mula is to be contrasted with the one giving the
time-average of the intracavity photon number, Nin =

T−1
mod

∫ Tmod

0
dt T r{â†(t)â(t)ρ}.

The master equation (2) is numerically solved by rep-
resenting â and ĉ on a basis of Fock number states. The
operators Ŝ and Û are also numerically built and all the
time evolutions are performed by a Runge-Kutta algo-
rithm. Examples of numerical results are shown in Figs. 2
and 3 for the resonant case (ω0 = ωge), but we have
checked that the qualitative features do not change when
we introduce a finite detuning. Realistic parameters for
circuit CQED systems are considered, as indicated in the
caption.

In Fig. 2 we show the steady-state rate of emitted pho-
tons as a function of the modulation frequency, ωmod, for
the case of a weak modulation amplitude, ∆g/γ ≪ 1. In
this regime, the spectra are dominated by two resonant
peaks close to ωmod ≃ ω2,± = 2ω0 ±

√
2 g0 [26]. Thanks

to the relatively small value of g0/ω0 = 0.02 considered
here, the position of the two peaks can be interpreted
within the standard RWA in terms of transitions from
the vacuum state to the doubly-excited states of the JC
ladder in the isolated system, |2,±〉; the anti-RWA terms
in the Hamiltonian that are responsible and essential for
the quantum vacuum radiation instead provide only a
minor correction to the spectral position of the peaks.

As typical of the dynamical Casimir effect, the periodic
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FIG. 3: Spectrally resolved emission per unit time for given
values of the modulation frequency: ωmod = ω2,− (top panel),
ωmod = ω2,+ (bottom panel). The modulation amplitude
is ∆g/γ = 0.1. The insets illustrate the optical transitions
responsible for the different emission lines that are visible in
the main panels. For the sake of clarity, the level spacings in
the insets are not in scale.

modulation of the system parameters is only able to cre-
ate pairs of excitations out of the vacuum state. However,
in contrast to the usual case of (almost) non-interacting
photons or bosonic polaritons [17, 18, 19], the nonlin-
ear saturation of the two-level system is crucial here to
determine the position of the peaks. This remarkable
fact provides a unique spectral signature to separate the
vacuum radiation from spurious processes such as the
parametric amplification of thermal radiation. In fact,
due to the anharmonicity of the Jaynes-Cummings spec-
trum, the resonant modulation frequency for the process
having the ground state (vacuum) as initial state is dif-
ferent from other processes having a (thermal) excited
state as initial state.
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The conceptual difference between the emission rate
Rem and in-cavity photon number Nin is illustrated in
Fig. 2: standard Markovian theories would in fact pre-
dict the emission rate to be rigorously proportional to
the intra-cavity photon number. Even though a reason-
able agreement is observed around the peaks, this ap-
proximation leads to the unphysical prediction of a finite
emission even in the absence of a modulation ∆g = 0 or
for a modulation very far from resonance. Inclusion of
the non-Markovian nature of the baths is able to elim-
inate this pathology by correctly distinguishing the vir-
tual, bound photons that exist even in the ground state
from the actual radiation [11, 22].

The emission spectra S(ω) at a fixed and resonant
value of the modulation frequencies ωmod = ω2,± are
shown in the two panels of Fig. 3. Thanks to the rel-
atively weak value ∆g/g0 = 0.01 (∆g/γ = 0.1) of the
modulation amplitude considered here, the position of
the main emission lines can be again understood in terms
of transitions between eigenstates of the JC ladder. As
shown in the insets, two spectral lines (red and blue,
full lines in the schemes) correspond to radiative decay
(emission) of the |2,±〉 states into the lower |1,±〉 states
of the JC ladder, while the other two emission peaks
(black and green, dashed lines) correspond to the ra-
diative decay of the |1,±〉 states into the ground state.
This interpretation is confirmed by the observation that
the position of the former (latter) lines depends (does
not depend) on the specific value of the modulation fre-
quency ωmod chosen. The significant difference of spec-
tral weight between the lines is due to interference effects
in the radiative matrix element between JC eigenstates,
〈1,±|â|2,±〉. Stronger modulations (not shown) lead to
distortion of the spectra as a result of significant spectral
shifts and mixing of the dressed states.

The behavior of the exact numerical results can be un-
derstood in terms of a simplified two-state model. When
the modulation frequency is close to resonance with one
of the ωmod = ω2,± peaks, the dynamics of the system is
mostly limited to the |0〉 and |2,±〉 states, all other states
in the JC ladder being far off-resonant [3]. The modu-
lation in Eq. (5) is responsible for an effective coupling
between such two states, quantified by ΩR ≃ ∆g/

√
2 [19].

As a result, the probability of being in the excited state
has the usual saturable Lorentzian shape

P|2,±〉 ≃
(∆g)2/2

Γ2 + (∆g)2 + 4δ2
2,±

. (8)

Here, Γ = [γge + 3 γcav]/2 is the total (radiative + non-
radiative)decay rate of the excited |2,±〉 state (in the
case ωcav = ωge), and δ2,± = ωmod − ω2,± is the detun-
ing of the modulation frequency. By considering all the
possible emission cascades (see insets of Fig. 3), the ra-
diative emission rate in the neighborhood of a peak is

then approximately given by

Rem ≃ P|2,±〉 γcav

3γcav + 2γge

γcav + γge

. (9)

This analytical expression is in excellent agreement with
the exact numerical results for ωmod ≃ ω2,±. It is in-
teresting to note that for typical parameters taken from
state-of-the art circuit CQED devices, such as a reso-
nance frequency ν0 = ω0/2π ∼ 7 GHz [9] and (overes-
timated) decay rates γ/2π = 14 MHz, a resonant, yet
quite small modulation amplitude ∆g/γ = 0.1 can al-
ready lead to a sizeable emission intensity, Rem ≃ 4×104

photons/second. As clearly shown by the analytical ex-
pression in Eq. (9), a further enhancement of the emis-
sion rate can be obtained for much smaller decay rates,
such as γ/2π . 1 MHz recently measured in the latest
experiments [7, 8, 9].

In conclusion, we have presented and solved a com-
plete theory of the quantum vacuum emission that is
generated from a single mode cavity with an embedded
two-level system when the vacuum Rabi frequency of the
light-matter interaction is modulated at frequencies com-
parable to the cavity (emitter) resonance frequency. Our
theory fully takes into account the anti-RWA terms of the
light matter-interaction, as well as the radiative and non-
radiative dissipation channels. This has required extend-
ing the standard master equation treatment to include
non-Markovian effects due to the necessarily colored na-
ture of any realistic dissipation bath. The sizable value
of the emission intensity that results from our numer-
ical predictions suggests the promise of superconductor
Cooper quantum boxes in microwave resonators for stud-
ies of quantum vacuum radiation phenomena.
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