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We report on acoustic wave propagation in a regular array of nominally identical beads under isotropic static
stress. The weak polydispersity of the beads makes the contact lattice random. Time-frequency analysis of the
acoustic signal is performed and allows measurement of the full lattice dispersion relation. Comparison with
the theoretical prediction for a perfect triangular lattice gives an indication of the level of randomness in the
contact lattice. The results extend, in a consistent way, a previous study restricted to long wavelength propa-
gation [B. Gilles and C. Coste, Phys. Rev. Lett. 90, 174302 (2003)]: The contact lattice is ordered by increas-
ing the stress, and the smaller the wavelength, the higher the stress required to get regular lattice behavior.
Measurements involving ballistic propagation of the coherent wave, whatever its frequency, evidence revers-
ible lattice behavior under compression and/or decompression. Nevertheless, correlations of short wavelength
incoherent waves are a sensitive probe of disorder, and allow us to exhibit a small irreversible evolution of the

lattice.

DOI: 10.1103/PhysRevE.77.021302

I. INTRODUCTION

Static granular media exhibit solidlike behavior since they
resist their own weight, may hold external loading, and carry
acoustical waves, but in a very peculiar way: Even under
symmetrical loads, their internal stresses exhibit very large
inhomogeneities, evidenced by the large fluctuations of inter-
grain forces [1]. Since the contacts between adjacent grains
are pointlike, even a very small amount of disorder in the
size distribution of the particles leads to a completely ran-
dom lattice of active contacts [2-4]. A second intricacy arises
from the fact that the elastic contact law between grains is
nonlinear, because of the local curvature at the contact. It has
been calculated by Hertz for elastic spheres [5], and may be
generalized to particles of any regular shape using the local
radius of curvature.

Acoustic waves may propagate in granular media, and
have been studied for a long time [6—14]. Since sound waves
are necessarily carried from one grain to another by actual
contacts, the intergrain contact law has a strong influence on
the propagation. Indeed, the Hertz law implies that the stiff-
ness of an intergrain contact depends on the normal force
between the two grains. As a consequence, the sound veloc-
ity ¢, should vary as p'/% if p is the isotropic pressure applied
on the granular material [7].

Experimentally, at low pressure the sound velocity rather
follows a ¢, p'* non-Hertzian power law [15,16]. This be-
havior is observed even for model systems such as regular
lattices of nominally identical beads [7,13], the Hertzian
power law being recovered at high pressure only. The Hert-
zian interaction law might be put into doubt, since actual
beads are quite far from ideal elastic spheres. Experiments
performed on one-dimensional (1D) chains of identical
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beads, a geometry where all contacts are obviously activated,
have demonstrated that the Hertz law accurately describes
the properties of linear [17] and nonlinear [17,18] wave
propagation.

Non-Hertzian behaviors have also been observed numeri-
cally, and have been attributed to the disorder of the contact
lattice [19-24]. Actual beads always display some scatter in
their radius, and for two-dimensional or three-dimensional
pilings the contact lattice is inevitably disordered. The defor-
mations induced by pressure increments progressively close
initially open contacts. This picture is at the core of a recent
theory [25], in which an effective medium approach leads to
the calculation of the static compressibility of a two-
dimensional (2D) triangular lattice of almost identical
spheres. The reference state is the high-pressure limit, when
all contacts are closed and the lattice is perfectly ordered.
The effective medium approximation should be correct for
small values of the relative fluctuations of the forces between
the grains. The theory is indeed in very good agreement with
simulations of the same system by Roux [20], at moderate or
high pressure. In the simulations, the pressure may be de-
creased down to the rigidity threshold of the lattice, and dis-
crepancy is observed at the lowest available pressures. The
calculations are also in very good agreement with experi-
ments [13] on low-frequency acoustic wave propagation in a
triangular lattice of beads. The only fitting parameter is the
uncertainty on the bead diameter, which is set to =2 um in
the calculations, to be compared to the nominal value of
*4 um in the experiments, for 8§ mm beads. It is also shown
in [25] that the Hertzian p'® power law is valid at high
pressures, while no simple functional form can describe the
dependency of the compressibility on the pressure at lower
pressures.

©2008 The American Physical Society
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We thus have a fully consistent picture of the lattice be-
havior at low frequency. The aim of the present work is to
study high-frequency wave propagation, when dispersion oc-
curs. Appendix B is devoted to a presentation of some as-
pects of the dispersion in a triangular lattice. For a discrete
lattice, quite significant dispersive behavior should be ex-
pected when the difference between the sound velocity c,
and the group velocity v, is more than 10%. Using the dis-
persion relation (B1), and the expressions (B2) and (B3) for
cy and v, it means that the wavelength below which propa-
gation is considered as clearly dispersive is Ag;p = Sd, where
d is one bead diameter. In our previous study [13], the wave-
length was between 8 and 16 bead diameters, which may
consistently be called a low-frequency regime. In what fol-
lows, wavelengths less than 3 bead diameters are used (see
Table II of Appendix B), for which dispersive effects are
expected to occur. The focus will be on using such high-
frequency waves to determine the level of contact disorder in
the regime identified as Hertzian according to low-frequency
measurements.

The paper is organized as follows. We describe the experi-
mental setup in Sec. II A, the experimental protocol in Sec.
II B, and the wide-band acoustic emitter, specially designed
to send well-defined Gaussian bursts of high-frequency
waves, in Sec. II C. In Sec. III, we briefly recall the notion of
coherent wave propagation in random media. Section IV
deals with cross correlation analysis of the received wave
forms. In Sec. IV A, we give an experimentally consistent
definition of the coherent part of our signals. Then we report
on time-of-flight measurements for a low-frequency coherent
wave in Sec. IV B. Cross correlations for a low-frequency
incoherent wave are provided in Sec. IV C. Considering sev-
eral different initial configurations of the lattice, we empha-
size the behaviors that are configuration dependent, and
those common to every configuration. The last paragraph in
Sec. IV D is concerned with cross correlations for a high-
frequency incoherent wave. Section V is focused on time-
frequency data analysis. The dispersion relation is briefly
mentioned in Sec. V A. Then, Sec. V B summarizes the basis
of time-frequency analysis. In Sec. V C, we represent the
coherent wave in the time-frequency domain. Then we cal-
culate the group delay as a function of the frequency, and
compare it to the theoretical prediction in Sec. V D. The
reversibility of a granular medium behavior during compres-
sion and decompression is a subject of fundamental interest
[15,20]. We review and discuss all relevant experimental evi-
dence provided in the present work in Sec. VI. Section VII
sums up our conclusions. In Appendix A we recall the defi-
nitions of correlations used throughout the paper, and in Ap-
pendix B we gather relevant information about the perfect
triangular lattice dispersion relation.

II. EXPERIMENTAL SETUP
A. Bead lattice

The experimental setup is sketched in Fig. 1 (a more de-
tailed description can be found in [13]). Stainless steel beads
of diameter d=8 mm=4 um are held between two hori-
zontal plates of polytetrafluoroethylene, in order to get low
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FIG. 1. Left-hand side: Sketch of the experimental setup. See
Sec. II C and Fig. 2 for details about the emitter. Right-hand side:
Details of the coupling between the emitter and the lattice. The gray
slab is a piezoceramic sandwiched between two one-half steel
beads. It constitutes a sensor which allows in situ measurement of
the emitted acoustical signal during the experiments.

friction and poor impedance matching between the beads and
the framework [17]. They are disposed so that they form a
triangular lattice, contained in a hexagonal cell. The hexagon
sides are 31d in length. The scatter in bead dimensions is so
small that the arrangement looks like a perfect lattice, but
nevertheless ensures that most beads are not actually in con-
tact with all their neighbors. The lattice of effective contacts
is thus disordered, as shown below.

The three bottom sides, in the figure, of the hexagon are
fixed, while the others may move independently along their
normal directions. The motion of each side is ensured by a
computer controlled stepping motor, and the force exerted on
the lattice is measured by a static force sensor. A feedback
loop allows us to apply a given force to the lattice, which is
held constant during an acoustic measurement. In what fol-
lows, each moving side exerts the same force on the lattice
(within an experimental uncertainty of =2%), in order to
apply the stress isotropically.

An important feature of our experiment is that both the
acoustic transmitter and the sensor are in contact with only
one bead. This configuration favors the observation of disor-
der effects on the wave propagation [12]. The emitter (see
Sec. I C) is specially designed in this way. The receiver is a
small piezoelectric pressure sensor (Pinducer Valpey-Fisher
VP-1093) of cylindrical shape, 2.5 mm in diameter. This
sensor is placed exactly in front of the emitter, so that their
relative distance is 31d\s“'3, i.e., 42.95 cm.

B. Measurement protocol

Each experimental run proceeds in the same way: first, we
arrange the beads so that they form a triangular lattice. Then
we apply the static force on the lattice, increasing it without
making any measurement: since the lattice can support the
stress, the contact network is established. At the end of this
first compression, we get a specific contact lattice that de-
pends on the unknown initial distribution of bead diameters.
This peculiar lattice will be further referred to as a configu-
ration. Then, we proceed to the measurements by slowly de-
creasing the stress, dividing the force by a constant factor of
1.14 at each step. A state of the lattice will be given by its
initial configuration, the current static force, and possibly the
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history of decompression and compression of the lattice. In a
given state, we send several acoustic burst waves of a Gauss-
ian envelope (see Fig. 3), with different center frequencies.
The deformation due to the acoustic wave is very small and
does not disturb the lattice state, so that, for a given applied
force, low- and high-frequency waves propagate in the same
state of the same configuration. When all waves are re-
corded, we change the force and resume the process. Having
reached the minimum measurable force, above the rigidity
threshold, we may increase it again, keeping the same con-
figuration. Experiments on a new configuration can be done
by opening the setup, taking off the beads, mixing them, and
then starting up again the whole process.

The lattice behaves as a static random medium, described
by characteristic length scales rather than time scales. This
motivates the use of constant wavelength waves. In this sys-
tem, the sound velocity changes with the applied force and
keeping the wavelength constant requires frequency adjust-
ment. Since the positions of the emitter and sensor are fixed,
the wavelength cannot be measured but may be estimated
from frequency measurements. To obtain waves of (roughly)
3 c¢m (i.e., about 4 bead diameters) constant wavelength, we
adjust the emitted-wave center frequency using the velocity
measured in low-frequency experiments for each static force.
Those frequencies are indicated in the relevant figure cap-
tions. In Table I we give the characteristics of the different
emitted waves. The shortest wavelength available in the ex-
periments is provided in Table II, where it is shown that it is
about 3 bead diameters. This should be compared to the cut-
off wavelength which is \3d.

C. Acoustic emitter

The emitter is sketched on the left-hand side of Fig. 2. It
consists of two piezoceramic elements, sandwiched between
two duralumin parts that act as loads to lower the available
frequency range [26,27]. The oscillations of the piezocer-
amic elements are longitudinal and result in the emission of
compressional waves. The duralumin parts are screwed in
order to prestress the piezoceramic elements, which ensures
a good electrical contact. Moreover, the force exerted on the
lattice, being small in comparison with the emitter’s pre-
stress, does not modify its acoustical response. The reduction
of the diameter of the front duralumin load is intended to
concentrate acoustic energy [28] in the pointlike region of
contact between the emitter and the bead. This design allows
us to send burst waves of limited duration, with a Gaussian
envelope. To avoid distortion, we work quite far from the
emitter resonances: Its spectral response is shown in Fig. 2,
and is indeed quite flat.

We show in Fig. 3 the electric excitation that drives the
emitter, and the acoustic response. Each burst has a duration
of roughly four oscillations. The coupling between the emit-
ter and the lattice takes place on the very small Hertz contact
between the flat extremity of the emitter and a bead. The
emitted signal is thus recorded with an ad hoc sensor, made
of a piezoelectric slab sandwiched between two one-half
steel beads, shown in Fig. 1. The slab resonance frequency is
very high (typically 2 MHz), and its frequency response in
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TABLE 1. Characteristics of the emitted acoustic waves (in pa-
rentheses, wavelength in bead diameters is given). The first three
lines are for constant frequency experiments, and the last line is for
constant wavelength.

Force range Velocity range Frequency range Wavelength range

(daN) (m/s) (kHz) (cm)
3—150 400 — 800 6.5 6—12 (8d— 16d)
3—150 400 — 800 15.2 3.5—7 (4d—9d)
3—150 400 — 800 19.5 2.5—5 (3d—7d)
3—150 400— 800 13.6—26 3 (4d)

our operational range is basically flat. This sensor is in con-
tact with one bead in the lattice, so that the signal in Fig. 3 is
recorded in actual experimental conditions. The acoustic re-
sponse is very similar to the electrical excitation for all fre-
quencies. The Gaussian envelope ensures a slow rise time of
the electrical excitation, avoiding high-frequency resonances
of the emitter. A finite duration signal allows time-of-flight
measurements, as in [13] and Sec. IV B. The signal band-
width is rather large, which enables time-frequency analysis,
performed in Sec. V.

III. COHERENT AND INCOHERENT WAVES:
A HEURISTIC DEFINITION

Wave propagation occurs in the contact lattice, built upon
the beads actually in contact. Although the bead center lattice
is perfectly regular, the contact lattice is disordered. The in-
crease of the applied stress induces deformation of the beads,
compensating their radius inhomogeneities [13], and pro-
gressively ordering the contact lattice. This evolution is what
we want to characterize.

The acoustic waves are recorded when the lattice is under
a constant pressure. This stationary state will not change un-
less we vary the applied pressure. We thus must contend with
a problem of wave propagation in a static random medium.
By static, we mean that all characteristics of the random
medium are constant in time, in such a way that a peculiar
wave form is perfectly reproducible if we do not change the
lattice state. When the state is changed, either by changing
the static pressure applied to a given configuration, or by
changing the configuration itself, the wave amplitude and
phase fluctuate randomly. Those fluctuations are of statistical

5 15 - 10°
7 12 107

I

%[ 6.5kHz
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7204,
4 (/\i m ?uralumin'

FIG. 2. Left-hand side: Sketch of the emitter, with all dimen-
sions in mm. Right-hand side: Emitter spectral response (in loga-
rithm scale). We indicate the frequencies used in our experiments.
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FIG. 3. From top to bottom, electrical (upper curve) and acous-
tic (lower curve) signal for Gaussian bursts of center frequencies
6.5, 15.2, and 19.5 kHz. The acoustic signal is recorded next to the
emitter during the experiments, with the help of an ad hoc sensor
held between the emitter and the lattice (see Fig. 1). The acoustic
emitter preserves burst shape.

nature only, and do not depend on time. The signal may be
decomposed into the sum of a coherent wave, which is its
ensemble average on many statistically independent realiza-
tions of the random medium, and of an incoherent wave
which is its fluctuating part [29]. The problem being static,
only ensemble averages make sense. Recent simulations of
Somfai er al. illustrate well those concepts [21]: Averaging
wave forms on 1000 realizations, those authors exhibit most
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clearly coherent wave propagation in a 2D random packing
of spheres.

Experimentally, such a number of different realizations is
out of reach. We show in Fig. 4 two series of four signals
recorded after propagation in four different initial configura-
tions, together with their ensemble average. Despite the in-
sufficient statistics, much of the tail is indeed suppressed
after averaging, while the very beginning of the signal re-
mains almost unchanged. The first oscillations may thus be
identified with the coherent signal and their time of arrival is
used to define a time of flight and a velocity which is the
group velocity of the coherent wave [12]. Another difficulty
comes from the fact that our system is confined, and wave
reflection on the boundaries cannot be avoided. In this re-
spect, a part of the tail is not incoherent, but corresponds to
coherent propagation after reflection on the boundaries.
Thus, the incoherent wave cannot be simply identified with
the tail of the signal.

In what follows, rather than averaging the very small
number of experimental runs at our disposal, we have chosen
to explicitly confront those configurations. We exhibit behav-
iors that do depend on the configuration, and behaviors that
are observed whatever the configuration. It means that we
must identify the coherent wave without resorting to en-
semble averaging. This is done in the next section.

IV. CROSS CORRELATION ANALYSIS
A. Correlations: A better insight into the coherent signal

We may define the coherent signal in an approximate way,
using cross correlations that are an efficient and sensitive
tool to compare the shape of two signals. Since our signals
are deterministic, the correlations defined in Appendix A do
not imply time averaging [30]. Strictly speaking, they just
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FIG. 4. Amplitude (arbitrary unit) of the acoustic signal, as a function of time (in us), for a static force of (a) 154 N, (b) 1030 N. Center

frequency is 6.5 kHz. Upper plots correspond to different initial lattice

configurations, and the bottom curve is their average.
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FIG. 5. Wave forms recorded in two statistically independent
configurations (left-hand ordinate, arbitrary unit), for a static force
of 200 N and a center frequency of 6.5 kHz, and their local cross
correlation (right-hand ordinate) as a function of time (in us). It is
almost 1 for the first four oscillations, and significantly less after
eight oscillations.

quantify the likeness of two deterministic signals.

In Fig. 5, we show two signals from different initial con-
figurations, under the same static force. We calculate local
cross correlations, restricting the signal duration to one
(pseudo) period around each maximum. This gives the dots
indexed by the position of the relevant maximum in Fig. 5.
This correlation is almost one for the first four maxima, then
decreases quickly. Those four oscillations thus constitute the
purely coherent part of the signal, corresponding to the direct
ballistic propagation of the emitted burst. We restrict the cal-
culation of the coherent correlation C,,, (see Appendix A) to
this purely coherent part even if it does not include the entire
coherent signal. Whatever the experimental situation, this co-
herent correlation is always very large (see Fig. 6, Fig. 7, and
Ref. [13]), which confirms the consistency of this choice.

B. Time-of-flight measurements with low-frequency
waves

Cross correlation calculations provide a precise measure-
ment of the time of flight (TOF) (see Appendix A). This
method is valid for nondispersive waves, and we consider
here low-frequency waves only (6.5 kHz, thus a wavelength
of 10 bead diameters at least). We show in Fig. 6 the TOF as
a function of the static force, for three different initial con-
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figurations. In [13], the reader may find data for another ini-
tial configuration [31]. According to the Hertz law, the sound
velocity in a perfectly regular lattice of elastic spheres under
a static force F scales as F"® [Ref. [7], and Eqgs. (B2) and
(B5) of Appendix B]. It has become customary to plot sound
velocity as a function of the confining force in logarithm-
logarithm scale, in order to test this Hertzian 1/6 power law.
At low force, experimental [6-10,12,13] or numerical
[19,20] data may rather be described by a non-Hertzian 1/4
power law (see [16]).

From Fig. 6 and [13], we see that the main features of the
lattice behavior at large and small static forces does not de-
pend on the initial configuration. The Hertzian behavior is
always recovered at large force, whereas the non-Hertzian
exponent describes the small force behavior quite well. High
force behavior confirms the relevance of the Hertz interac-
tion law for our beads, as previously shown in a 1D system
[17]. Low force behavior evidences that the randomness in
diameter and sphericity of our beads induces disorder of the
contact lattice. The tolerance level of the beads (=4 um) is
consistent with their deformation on our force range: For a
force F on each moving side, a contact is submitted to
\V3F/31 and the deformation of our steel beads is <1 pum,
~3 um, and =4.5 um at respective forces of 100, 500, and
1000 N.

The force beyond which the behavior can be considered
as Hertzian is quite sensitive to the initial configuration. It
may be estimated to occur, from left to right of Fig. 6, at 200
N, 200 N, and 300 N. In the configuration of [13], it occurred
at 450 N. Those values are directly linked to structural modi-
fications of the contact lattice and thus depend on the initial
configuration.

C. Cross correlation for a unique configuration
(low-frequency waves)

To describe the lattice evolution with the force, we calcu-
late the cross correlation between the waves recorded at
force F and F+AF, respectively, for a small increment AF
[see Eq. (A2)]. This is done for each force, following the
evolution of a single initial configuration. As seen in Fig. 6,
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FIG. 7. Correlations versus the force (in N) for compression
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ferent initial configurations C* (O). Center frequency is 19.5 kHz.
Upper (respectively, lower) curves for coherent (respectively, inco-
herent) waves, with a common scale. For the sake of comparison
with low-frequency waves, see Fig. 5 of [13].

the data are recorded at forces equally spaced on a logarith-
mic scale, hence in geometric proportion. The force incre-
ment is such that AF/F=1.14.

We calculate either the coherent correlation CSF, re-
stricted to the coherent part of the wave (see Sec. III), or the
total correlation including the signal tail. Those data are dis-
played in Fig. 6. The correlation CCA‘}L1 is always very high,
whatever the initial configuration. As mentioned in Sec.
IV A, this confirms the coherent nature of the first signal
periods: From its very definition, the coherent wave should
not depend on the lattice initial configuration, as observed.

On the contrary, the total correlation is configuration de-
pendent. The only common feature observed in the three
experiments of Fig. 6 is high total correlations (roughly 0.8)
with small fluctuations at the highest available forces. But
there are strong differences for the three data sets. The total
correlation may still exhibit huge fluctuations, showing that
strong modifications in the contact network still occur, while
TOF measurements are consistent with an ordered lattice be-
havior (see center and right-hand plots of Fig. 6, and [13]).
In theoretical studies [25] and numerical simulations
[20,21,32], it is indeed shown that, at forces for which the
velocity seems to exhibit the Hertzian power law, the contact
lattice is actually far from being completely ordered, if one
looks, e.g., for the mean number of effective contacts per
grain. Cross correlations including the tail of the signal, and
hence its incoherent part, are thus much more sensitive to the
disorder than the velocity measurements.

D. Cross correlation between independent configurations
(high-frequency waves)

In this section, we study cross correlations between sig-
nals received at the same force for two different initial con-
figurations (see Appendix A). Such measurements have al-
ready been discussed for low-frequency waves in [13].
Extending this study to high-frequency waves, we show in
Fig. 7 the correlations as a function of the static force, for a
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19.5 kHz wave. The correlation restricted to the coherent
part of the wave (the first four periods at both center frequen-
cies) is always very high, even at low force. This extends the
consistency of our coherent wave definition to the high-
frequency and/or short wavelength case.

The correlation restricted to the incoherent signal is very
low, even at high force. It is interesting to compare those
high-frequency results with previous low-frequency ones,
Fig. 5 of [13]. At low frequency, the system exhibits strong
evidence of ordering at high force, as seen in Secs. IV B and
IV C. Above 500 N, the low-frequency correlation C,. .,
ranges between 0.6 and 0.75, whereas it is always less than
0.3 at high frequency. At low frequency, such a low correla-
tion is observed only at very low force, when the behavior of
the lattice is clearly non-Hertzian (see [13] and Sec. IV B).
The high-frequency and/or short wavelength waves empha-
size the effects of disorder and show that even in the Hert-
zian regime, the contact lattice is not perfectly ordered, as
mentioned in Sec. IV C.

The randomness of the contact lattice is due to the inho-
mogeneities of the force distribution carried by the contacts,
and obviously decreases when the overall applied force in-
creases. The length scale of those force fluctuations can be
estimated from photoelasticity observations [33,34] to a few
grain diameters. The scattering cross section of such inhomo-
geneities should thus be small for long wavelength, but in-
creases for high-frequency waves. The incoherent wave thus
corresponds to a greater fraction of the wave energy at high
frequency, which is evidenced here by the smallness of the
correlation between the tails of high-frequency signals that
propagated in different lattices.

V. TIME-FREQUENCY ANALYSIS
A. Dispersion relation

In previous 1D experiments, we studied the propagation
of linear and nonlinear waves in a chain of identical steel
beads [17,18]. For the same range of static force as in the
present study, we showed that the chain may be modeled by
point masses connected by Hertzian springs. The present sys-
tem is different because the 2D contact lattice may be ran-
dom, whereas all contacts are obviously active in a chain. A
way to estimate the randomness of the lattice is a comparison
between actual wave propagation and theoretical predictions
for the regular lattice.

The latter are recalled in Appendix B. We just mention
here the fact that the dispersion relation (B1), the group ve-
locity (B3) as well as the group delay (B4) depend on the
force F isotropically applied on the beads through the cutoff
frequency v.(F) only,

v.~ 11.04F"% kHz (with F in N). (1)

This formula gives the theoretical predictions for the disper-
sion relation and the group delay of a perfect lattice that we
will use afterwards. The numerical coefficient is provided by
former independent experiments [17], with no free parameter
left. Group delay measurements require time-frequency
analysis of the experimental data, since we must know the
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FIG. 8. (Color online) Upper left-hand side: Electric input (left-hand side) and received signal (right-hand side) versus time in ms.
Time-frequency analysis is done on the thick line signal. Lower left-hand side: Input (thin line) and selected received signal (thick line)
power spectra versus frequency in kHz. Right-hand side: Group delay (in ms) versus frequency (in kHz). Solid line is Eq. (B4). The data are
taken under a static force of 938 N, at a center frequency of 22.4 kHz. The corresponding lattice configuration is that of the left-hand plot

of Fig. 6.

time of arrival of each frequency component. The next sec-
tion describes the method used for this analysis.

B. Wigner-Ville transform

A thorough review of time-frequency methods may be
found in [35], and in Ref. [36] Yen has considered the appli-
cation of such methods to acoustical problems. Several ex-
perimental studies have demonstrated their relevance for
problems involving dispersive waves in homogeneous
[38,39] or random media [40].

We will expose here very briefly the relevant basic ideas.
Assuming a time-dependent signal described by a complex
function s(r), with amplitude and phase information, its
Wigner-Ville transform (WVT) is defined as

© T\ , T
W (t,w) = e"‘"s(t+—)s ([——)dT
o 2 2

= %T eiffs(m §>S*(w— §>d§, (2)

—o0

where the superscript asterisk means complex conjugation
and S(w) is the Fourier transform of s(¢). The WVT may be
thought of as an instantaneous power spectrum [36]. Con-
firming this picture is the property of time and frequency
covariance,

s(t) — s(t+ty) = W(t,w) — Wt + 1y, w),

s(t) — e 's(1) = W (t,0) — W (t, 0+ w),

A3)

showing that a translation in time or frequency of the signal
induces the same translation for its WVT. When applied to
the received signal, this transform allows us to calculate the
time of arrival of each frequency component, that is, its
group delay (B4).

Being quadratic, the transform (2) has the very unpleasant
feature that it may produce spurious interferences between
different frequency components. A convenient way to get rid
of those interferences is windowing the signal, defining a
pseudo-Wigner-Ville transform (PWVT),

o

PWY(L (,!)) = H(T_ tsg_ w)W&‘(T’ g)deg (4)

—o0
For a Gaussian window function

o= o] - () - () | @
Ao Pl \ar) T\aa) |

it may be shown that spurious interference terms are sup-
pressed in the PWVT if ATAQ > 1, recovering in the time-
frequency context the classical Heisenberg’s uncertainty re-
lation [36].

In what follows, the signal analysis is undertaken with the
MATLAB toolbox provided by Flandrin and co-workers [37].

C. Time-frequency analysis: Experimental results

The analysis is restricted to the purely coherent part of the
signal, as defined above (see Sec. IV A). This is illustrated in
Fig. 8. Because of dispersion, the burst wave broadens, and
its power spectrum shrinks. We also see that the maximum of
the power spectrum is not at the same frequency for the
electrical excitation and the received signal. The lattice be-
haves like a low-pass mechanical filter, so that the received
signal is centered on a somewhat lower frequency than the
emitted one.

We show in Fig. 9 the analysis of signals received after
propagation in the same lattice, at four static forces, during
its decompression. We plot the amplitude of the normalized
PWYVT in the time-frequency plane. The time origin is taken
at the beginning of the emitted (acoustic) signal. Thus the
color of a pixel (increasing from light yellow for null energy,
toward dark blue) at a position (7, v) in the time-frequency
plane describes the amount of acoustic energy at a frequency
vy that arrived on the sensor at time #,. It is seen in Fig. 9 that
the signal is correctly localized in the time-frequency plane,
as it should, and that windowing has suppressed spurious
interference terms. The analysis is done on high-frequency
waves. The initial lattice configuration was that of the center
plot in Fig. 6.
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FIG. 9. Normalized amplitude of the Wigner-Ville transform (2) (gray scale, decreasing from black to white) in the time-frequency plane
(time in ms, frequency in kHz), for a single configuration (that corresponds to the center plot of Fig. 6). The solid lines are the theoretical
prediction (B4) and the cutoff frequency. The relevant forces are indicated in the upper left-hand corners. The center frequencies of the
Gaussian burst waves are, from left to right and top to bottom, 13.6, 17.8, 21.5, and 24.3 kHz.

At the highest forces, the density plot in Fig. 9 indicates
that for short wavelength waves the lattice is well ordered:
Each frequency component arrives at the expected theoreti-
cal group delay deduced from (B3), (B4), and (1). We remind
the reader that there is no adjustable parameter. Under a
force of 154 N, for which time-of-flight measurements ex-
hibit slightly non-Hertzian behavior, there is a clear discrep-
ancy, mostly noticeable for the highest frequency compo-
nents. At the lowest force, this discrepancy is also clearly
observable for low-frequency components. Although such
representations are quite illustrative, we will rather discuss
group delay measurements that allow a more quantitative
analysis.

D. Group delay measurements
1. Group delay as a function of the applied force

From its very definition (B4), the group delay calculations
require time-frequency analysis of both the received and
emitted signals. Experimentally, the emission and reception
times of a frequency component v are defined as the position
of the maximum of the relevant PWVT on the time axis, at

frequency v. To improve accuracy, we restrict the analysis to
frequency components with high enough amplitude, drop-
ping the data corresponding to less than 25% of the fre-
quency spectrum maximum. We display in Fig. 10 the results
for waves of center frequencies 6.5 and 19.5 kHz, and waves
of constant wavelength A=3 cm. The lattice configuration is
the same as in Fig. 9.

At low frequency, there is no dispersion, the group veloc-
ity is equal to the sound velocity, and the group delay should
be equal to the TOF. This is indeed observed for the three
forces corresponding to the Hertzian regime. As for the non-
Hertzian behavior seen in Fig. 6, we observe at 46 N a low-
frequency group delay in the [990,1150] us range, in fair
agreement with the TOF measured at the same force
(980 ws). It is not a surprise, but it confirms the results of
Sec. IV B and our previous work [13] with completely dif-
ferent data analysis.

For high-frequency data, there is an excellent agreement
between the experimental high-frequency group delay, and
theoretical predictions at 817 N. At 412 N some discrepancy
is evidenced at high frequency, which was hardly seen in Fig.
9: The lattice cannot be considered as ordered at length
scales as low as 2.5d (see Table II). This may be understood
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FIG. 10. (Color online) Experimental group delay, calculated
from time-frequency analysis, and theoretical prediction for a per-
fectly ordered lattice, Eq. (B4). Same configuration as in Fig. 9,
under the same static forces, for Gaussian burst waves of the same
center frequencies (crosses). Also shown are group delay data for
Gaussian burst waves of center frequencies 19.2 kHz (open squares;
no available data at 46 N) and 6.5 kHz (open circles).

from the analysis of Thorpe ef al. [41-43]. In a model of
identical point masses and linear springs, initially arranged in
a perfect triangular lattice, they study the evolution of the
vibrational density of state when springs are progressively
cut. In our experiments, when the confining force is de-
creased, the active contacts rather exhibit an increasing ran-
domness in their elastic properties than a net decrease of
their number. However, both systems are quite similar and
may adopt the same qualitative behavior. Randomness is
quantified by the fraction p of unbroken springs [41]. For a
triangular lattice, the rigidity threshold is about p=0.65
[44,45]. With p=0.85, the peaks in the histograms of a pho-
non density of states of a regular lattice almost disappeared
(see Fig. 4 of [41]). Those peaks are called van Hove singu-
larities, and trace back to the zeros of the group velocity.
Their disappearing indicates that the variations of group ve-
locity, if not suppressed, are greatly reduced by even a small
amount of randomness. This is what we observe in Fig. 10 at
412 N, and in Fig. 11 at somewhat smaller forces, where it is
shown that the experimental group delay variation is less
than the theoretical prediction.

At 154 N, the high-frequency waves are strongly filtered;
the received signal spectra extends up to 20 kHz, whereas the
emitted signal contains frequencies up to 28 kHz. This effect
is reinforced at 46 N, where the highest frequency waves are
almost completely filtered.

2. Group delay versus correlations

In [13] and in Sec. IV C, we argue that the correlations
Cap(7) are more sensitive to disorder than velocity measure-
ments. It is clearly seen in the Hertzian regime, in which
there is still an evolution of the correlation (see Fig. 6, center
and right-hand plots). From its very definition, Eq. (A2),
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FIG. 11. (Color online) Same as Fig. 10 (open squares and open
circles), for configurations showing very high (left-hand side) and
very low (right-hand side) cross correlation at low frequency (indi-
cated by the arrows in the center plot of Fig. 6). The relevant forces
are indicated in the upper left-hand corners. The crosses correspond
to Gaussian burst waves of respective center frequencies 19.4 kHz
(left-hand side) and 21.0 kHz (right-hand side).

Cap(7y) measures the likeness of the contact lattices at two
forces that differ by a small increment AF. It is thus not a
measurement of the absolute level of randomness of the con-
tact lattice. Group delay measurements at a frequency v, on
the contrary, provide an absolute test of the level of random-
ness at the scale of wavelength A(v).

To demonstrate that, we compare two different initial con-
figurations at (roughly) the same static force. We first con-
sider the configuration of the center plot of Fig. 6, for two
states that differ greatly in the low-frequency correlation val-
ues (indicated by arrows). At a static force of 231 =1 N the
correlation is 0.8, and at 3101 N it is less than 0.2. There
has been a great structure modification of the contact lattice
between those two measurements. The group delay plots for
those two forces shown in Fig. 11 exhibit similar discrepancy
at high frequency, which means that none of them corre-
spond to an ordered state of the contact lattice. Then we
consider the configuration of the left-hand plot of Fig. 6, at
typically the same forces (2311 and 328 =1 N). The cor-
relation is almost constant and very high (about 0.8), which
means that the contact lattice does not evolve much. We may
thus expect that, for this peculiar configuration of the lattice,
the contact lattice is ordered at much lower forces than in the
two other cases of Fig. 6. This is indeed the case if we look
at the group delay measurements for those data, shown in
Fig. 12. The agreement with the theoretical prediction is very
good at high frequency. We can notice that, in this configu-
ration, the agreement is even better than in the configuration
of Fig. 10, at a force of 412 N.

The only way to estimate the level of randomness from
correlation Cap(7) is to consider their variations rather than
their absolute value. Since they exhibit large fluctuations,
this is very difficult. Hence group delay measurements are a
much more reliable tool to this end. However, from the per-
spective of nondestructive testing, correlations can be an in-
teresting and very precise tool to detect slight modifications
of the structure of a granular medium under high load. On a
fundamental point of view, disorder may be evidenced by the
behavior of either incoherent long waves, which are involved
in our correlation measurements, or coherent short waves
analyzed with time-frequency methods. Physically, one must
compare the travel distance of the wave to its wavelength.
Incoherent waves are multiply scattered, in such a way that
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FIG. 12. (Color online) Same as Fig. 10 (open squares and open
circles), for the lattice configuration corresponding to the left-hand
plot of Fig. 6, which shows almost constant cross correlation at low
frequency. The relevant forces are indicated in the upper left-hand
corners. The crosses correspond to Gaussian burst waves of respec-
tive center frequencies 19.6 kHz (left-hand side) and 20.5 kHz
(right-hand side). This figure is to be compared to Fig. 11: The
applied force is (roughly) the same, but the agreement with the
regular lattice dispersion curve is much better.

their total travel length may become large in comparison to
the wavelength. The emitter-receiver distance is sufficient for
shorter coherent waves to probe the lattice disorder on their
ballistic flight distance only.

VI. REVERSIBILITY OF LATTICE EVOLUTION

Up to now, we have consistent evidence of the progres-
sive lattice ordering when the applied force increases. A
question of interest is the physical process leading to this
ordering. A first possible mechanism is the failure of the
force network at some static forces and its rearranging into
more ramified structures; an example of such a process is the
particle chain buckling proposed by Goddard [15]. Another
type of mechanism, proposed by Roux [20,32], is progres-
sive closing of opened contacts through elastic deformation
of the beads. The latter, at the difference of the other one, is
reversible. Hence the question of the reversibility of the lat-
tice behavior is of fundamental importance.

The time-of-flight measurements characterize coherent
wave propagation, hence ballistic flight between the emitter
and the receiver, of low-frequency waves (wavelength about
10 bead diameters d). They are thus our less sensitive probe.
The right-hand plot of Fig. 6 shows data obtained during
both compression and decompression of the same lattice
configuration. The same experiment, done on another initial
configuration of the lattice, is shown in [13], and reveals
similar features: At a given force, there is good agreement
between time-of-flight measurements done during either
compression or decompression, and no irreversibility is ob-
served on coherent propagation at length scales of about 10
bead diameters.

Time-frequency analysis gives information on the group
delay for high-frequency coherent waves. We plot in Fig. 13
group delay data for the same initial configuration as in the
preceding section (right-hand plot of Fig. 6). We consider
three forces, high enough for low-frequency time-of-flight
measurements to follow Hertzian behavior. The group delay
is measured during either compression or decompression of
the lattice, for waves of central frequency 19.5 kHz. It is
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FIG. 13. (Color online) Same as Fig. 10, for compression (open
squares) or decompression (open circles) of the same lattice con-
figuration (corresponding to the right-hand plot of Fig. 6). Static
forces in the upper left-hand corner. The center frequencies of the
Gaussian burst waves are 19.5 kHz in each case.

shown in Table II that the wavelength goes down to 2.5 bead
diameters. When the static force increases, the agreement
between experimental group delay and theoretical expecta-
tions for a regular lattice is better at high frequency, as al-
ready observed in Fig. 10. The important point here is that
even for the lowest force and highest frequency, there is very
good matching between data recorded during compression
and decompression. Thus ballistic propagation of coherent
waves does not show any irreversible behavior of the contact
lattice even for wavelength down to 2.5d.

Those results seem to rule out any mechanism linked to
irreversible rearranging of the network such as particle chain
buckling. This result is in good agreement with recent simu-
lations of frictional grain packings [24], in which the system
response is quite sensitive to the symmetry of the loading:
For isotropic compression as the one we use, the simulations
are consistent with reversibility of the piling behavior, at
forces which are of the same order of magnitude as in our
experiments. This is not true when deviatoric stress exists.

However, correlation measurements based on the incoher-
ent part of high-frequency waves reveal some irreversible
behavior of the lattice: For low-frequency waves, we showed
in Fig. 5 of [13] that the correlation based on the incoherent
part of the signals was greater than 0.6 between waves re-
corded at the same static force, during either compression or
decompression of the lattice. The same measurement done
with high-frequency waves (typical wavelength about three
bead diameters) never gives correlations higher than 0.3, as
shown in Fig. 7. This brings to the fore a small irreversibility
in the evolution of the contact lattice, which can only be seen
using an incoherent part of high-frequency waves, which is
much more sensitive to small changes in the lattice, even at
very short length scales. Unavoidable changes in mobiliza-
tion states of grain-grain contact friction between compres-
sion and decompression of the same lattice, which takes
place at short length scales, could explain low correlations
between incoherent parts of short wavelength signals, and
would have only a weak influence on group delay measure-
ments.

VII. CONCLUSIONS

In this paper, we report on what may be the simplest
nontrivial example of a granular medium: An array of nomi-
nally identical spheres, placed at the nodes of a regular tri-
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angular lattice, under isotropic stress. Because of unavoid-
able scattering in the bead dimensions, the lattice of actually
active contacts displays some stress-dependent randomness.
This is evidenced by the observation of both a low stress
non-Hertzian regime, where the velocity roughly scales as a
power 1/4 of the stress, and a high stress Hertzian regime,
with exponent 1/6. One of the main objectives of this paper
was to go further than this classical picture, and to charac-
terize the level of randomness that persists in the Hertzian
regime.

In addition to our previous study [13], we provide results
for several different initial configurations, and exhibit typical
behaviors, such as Hertzian scaling at high stress, and non-
Hertzian scaling at lower ones. On the contrary, the cross-
over between the two regimes takes place at configuration-
dependent forces, ranging from 200 to 450 N. The
correlation Cyz(7)) [see (A2)] measures the likeness of the
contact lattice after a =10% force increment AF. When it
involves the incoherent signal, it evidences lattice ordering
[Cap(79)>0.85] at the highest forces only (more than 800
N). Even in the Hertzian regime, it fluctuates in the [0.2,0.9]
range at lower forces, in a manner that greatly depends on
the initial lattice configuration. Cross correlation of high-
frequency waves (A=2.5d, to be compared to the cutoff
wavelength of y3d in units of bead diameter d) for two dif-
ferent initial lattice configurations is very low, which shows
significant randomness at short length scales.

Using time-frequency analysis, we access the lattice dis-
persion relation. At low frequency, it is fully consistent with
previous measurements. For high-frequency waves, at the
highest forces (greater than 800 N), there is excellent agree-
ment with the theoretical dispersion relation without any free
parameter. This evidences lattice ordering at the wavelength
scale (2.5d). Decreasing the force, while staying in the Hert-
zian regime for long waves, we exhibit more and more dis-
crepancy at high frequency. The actual lattice is less disper-
sive than a regular one. Such behavior was already observed
in numerical simulations of a closely related problem, that of
rigidity percolation in a triangular lattice [41].

Measurements for high-frequency coherent waves are
consistent with correlation calculations of low-frequency in-
coherent waves. High and constant (respectively, low and
fluctuating) correlation corresponds to good (respectively,
poor) agreement with the theoretical dispersion relation. The
contact lattice becomes more and more ordered when the
applied force is increased, and the less the wavelength, the
higher the force required to recover the regular lattice behav-
ior. The force range that allows observation of both random-
ness at low force, and ordering at higher force, is fully con-
sistent with the width of the diameter distribution of our
beads.

Measurements were also done during compression and
decompression of the same lattice. For the dispersion relation
analysis, we see a good agreement between both data sets.
On the contrary, correlations between high-frequency inco-
herent waves recorded during compression and decompres-
sion of the same lattice are very small, which evidences
some irreversibility in the lattice evolution under stress
modifications. The typical length scale involved here (a few
beads) leads us to attribute it to frictional effects, which are
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presumably moderate since the applied stress is isotropic.
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APPENDIX A: CORRELATIONS

For two signals s,(¢), i=1,2, recorded with the same sam-
pling period at instants 7,,n € [1,N], we define the cross cor-
relation as

N
2 sit,)so(t, + 7)

C(n)=— - (A1)
EIs%un) Els%on)

In this calculation, time averaging is not performed. Such a
process is well suited for deterministic signals [30] that do
not include a stochastic component. This is the case of the
signals that are recorded during our experiments, since the
randomness of the lattice is static, and does not evolve dur-
ing sound propagation.

When 7 is the delay between signals s; and s,, C(7) is a
measure of the likeness of the received wave forms. This tool
is used to compare either two signals received at the same
static force for different realizations of the experiment, or
two signals obtained before and after a small increment of
the static force during the same realization of the experiment
(see below).

In the first case, the delay is almost zero, and C(0) is
taken to compare wave forms. We may define C,.,(0) and
Cincon(0), respectively, restricted to the coherent and incoher-
ent parts of the received signal in the sense of Secs. III and
IV A. We also define C7, if both signals correspond to two
different initial configurations, and C~ if they correspond to
the same lattice under compression and decompression.
Those definitions make sense if the two signals are recorded
at the same static force.

Another use we make of cross correlations is to follow the
evolution of a given lattice when the static force is modified.
If AF is the increment between two successive measure-
ments at forces F and F+AF, we set

N
2 sp(t,)Spear(t, + )
n=1
Carlm) = = ~ (A2)
E s?«‘(tn) E s%“.{.AF(tn)

n=1 n=1

Here 7 is the time difference for the arrival of the two sig-
nals. Here again, Cyp(7,) is a quantitative measure of the
likeness of wave forms received at forces F' and F+AF.
Moreover, this provides a very precise way to measure 7:
We first calculate the correlation CS(7) restricted to the
coherent wave, taking 7, as a fitting parameter. 7, is then
chosen to maximize the coherent correlation. The time-of-
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FIG. 14. Sketch of the triangular lattice, showing axes
orientation.

flight data of Sec. IV B and [13] are obtained in this way.
This method relies on the assumption of no dispersion, and
since the incident wave is not monochromatic, it may be
applied to low-frequency waves only. For high-frequency
waves, we use time-frequency analysis that gives a direct
estimate of the group delay (see Sec. V D).

APPENDIX B: TRIANGULAR LATTICE

In a perfect triangular lattice under isotropic stress, all
contacts between the beads are effective and bear the same
force F,,. The distance d between adjacent bead centers be-
comes under compression d—dd, where according to Hertz
[5] the distance of approach &d depends as a power law on
the force: 8do FZ”. The sound wave sent in the lattice in-
duces a very small perturbation of the confining pressure, so
that the contacts respond like linear springs. Their stiffness
depends on the confining pressure, a=(déd/dF)'=F}?
[see (B6)]. In this simple picture, the lattice may be modeled
by point masses m:wpd3/6, where p is the volume mass,
linked by springs of stiffness a and length d.

A sketch of the triangular lattice in Fig. 14 defines the
axes orientation. We are concerned with compressional
waves, with polarization along the y axis. According to Fig.
1, the direction of propagation from the emitter to the re-
ceiver is also along the y axis. In that case, the dispersion
relation can be obtained from the one provided by Garboczi
and Thorpe [41] for a perfectly ordered central-force elastic
network, and takes the simple form

-
6 B

0 = 62 kd.
m 4

(B1)

where w is the pulsation and k is the wave number norm.
It is convenient to introduce the cutoff frequency v,
=(6a/m)"?/(2m). The compressional sound velocity c;
reads as

¢, = lim— = 7(\3/2)dv,, (B2)
k—0k
and the group velocity v,,
v,(v) = ¢, cos[arcsin(v/v,)]. (B3)

We will also use the group delay T, (v), which is the time of
arrival of a frequency component v after propagation along a
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TABLE II. Estimates of the shortest wavelength available in the
experiments reported in Figs. 8 and 10-13.

Force (N) Figure Vmax (kHZ) NVma) /d
938 8 29.4 2.7
46 10 15.7 32
154 10 19.5 3.1
412 10 25.6 2.7
817 10 27.3 2.9
231 11 233 2.7
310 11 23.6 2.8
231 12 21.5 3
328 12 234 2.9
329 13 25.6 2.5
588 13 25.6 2.9
1050 13 25.6 33

distance L. It is thus the difference between the reception
time T,(v) of frequency component v, and its emission time
T,(v), and is given by

Td(V) = Tr(v) - Te(v) = L/Ug(v)' (B4)

All dependency on the confining pressure is contained in the
cutoff frequency, which depends on the force F|, between
adjacent beads through the spring constant «. The latter may
be derived from the Hertz law [5], and the cutoff frequency
reads as

1 fea 1 (27\"* 16\2E " .
27 N'm 4w\ 7p 3(1 - ad)d

(B5)

Here E is the Young modulus, and o the Poisson ratio of the
bead material (here stainless steel). Let F be the force ap-
plied on each moving piston. Then F is given by

F =
Fo=2—cos—,

N 6 (B6)

where N=31 is the number of beads along one side of the
hexagonal cell (see Fig. 1). We obtain from a 1D experiment
a precise measurement of the sound velocity in a chain of
beads [17], which gives the numerical value (1).

From (B1), we obtain an estimate of the shortest measur-
able wavelength in a given experiment. Let v,,,, be the high-
est frequency sent in the lattice. In units of the bead diameter
d, the corresponding wavelength \(v,,,,) is

)\(Vmax) 77\}”3 { . ( Vmax ) :| -
—— — =—_—| arcsin ,
d 2 v,

(B7)

showing that the cutoff wavelength is V3d. The relevant nu-
merical values are provided for all experiments in Table II.
We insist on the fact that they are just rough estimates, since
the calculation assumes perfect agreement with the disper-
sion relation (B1), which is not correct except at the highest
confining pressures.
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