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Abstract: In the steel industry, the determination of the control system set-points of batch
processes is a common problem. It consists in adjusting the set-points in order to reach the
given product specifications thanks to a process model. Small changes in operating conditions
may impact final product quality. This is particularly true for the Basic Oxygen Furnace (BOF)
where the information collected during a specific batch serves to adjust the set-points of the
next batch. For being able to control that type of process, measurements must be made coherent
and it may be convenient to use data reconciliation procedure. The proposed paper describes a
method allowing simultaneous data reconciliation and model parameter estimation. Parameter
estimation results can either be used to update the process model or to detect abnormal
parameter variations due, e.g. to fouling, corrosion, degradation of parts of the process.

Keywords: Data reconciliation; Parameter estimation; Set-point control; Batch Process;
Estimation techniques.

1. INTRODUCTION

1.1 Context

In the steel industry, the determination of the control
system set-points of batch processes is a common problem.
It consists in adjusting the set-points in order to reach the
given product specifications thanks to a process model.
Batch processes are characterized by prescribed processing
of raw materials into refined products. The objective
is to produce products of the desired quality. However,
small changes in operating conditions may impact final
product quality. Moreover, batch processes with the same
trajectory generally exhibit some degree of batch-to-batch
variation. This is particularly true for the Basic Oxygen
Furnace (BOF) where the information collected during a
specific batch serves to adjust the set-points of the next
batch. Usually measurements collected from an industrial
process contain random errors, systematic biases or gross
errors due to the quality of the instrumentation chain and
its environment. Based on first principles (mass and energy
balances, chemical equilibrium relationships, etc), model-
filtering approach, commonly called data reconciliation
may be used to provide coherent data. However, the main
hypothesis underlying these methods is that the model
describing the system is perfectly known which is not
the case in real world. The proposed paper describes a
method allowing simultaneous robust data reconciliation
and model parameter estimation.

1.2 The Basic Oxygen Furnace

Basic oxygen furnace is a method of primary steelmaking
in which carbon-rich molten iron is made into refined steel.
The vast majority of steel manufactured in the world is
produced using the basic oxygen furnace. Modern furnaces
will take a charge of iron of up to 350 tons and convert it
into steel in less than 40 minutes.

By blowing oxygen through molten pig iron, the carbon
content of the alloy is lowered and changes the material
into low-carbon steel. The basic oxygen furnace actions
are scheduled as follows: molten iron from a blast furnace
is poured into a large refractory-lined container. Then
the container is filled with the required ingredients which
quantities are computed thanks to a setup charge balance
model. As the required thermal energy is produced during
the process, it is relevant to maintain a proper charge
balance. A water-cooled lance is so lowered down into the
vessel to blow pure oxygen onto the steel and iron, igniting
the carbon dissolved in the steel and burning it to form
carbon oxide, causing the temperature to rise to about
1700◦C. This melts the scrap, lowers the carbon content
of the molten iron and helps remove unwanted chemical
elements. Other fluid components are added to form slag
which absorbs impurities of the steelmaking process and
emulsifies to make easier the refining process. At the end
of the blowing cycle, the temperature is measured and
samples are taken to give a chemical analysis.



For the BOF, the setup problem consists to determine
the quantity of iron ore to add and the oxygen volume
to blow to reaching the target of Carbon rate in steel
and the temperature defined for each heat (batch) by
the given product specification. This task is done by a
static charge computation based on a model formed by
comprehensive heat and mass balances. Notice that for
each heat, the system state variables may have a different
operating point.

1.3 Main objectives and proposed method

Data reconciliation and parameter estimation are funda-
mental components to real time optimization of industrial
processes. Great efforts have been made to develop models
for various processes. However, as mentioned by Rolandi
et al. (2006), physical and chemical process phenomena are
complex and difficult to model conceptually and math-
ematically. Indeed, thermodynamic and transport prop-
erties and reaction rates are difficult to characterize ex-
perimentally and are subject to parametric uncertainties.
Moreover, even when measurements are sufficiently numer-
ous, raw process-instrumentation data are also corrupted
by different errors. Indeed, data sets taken at a certain
operation point are not model-consistent. Online optimiza-
tion provides a mean to run a process near its optimum
operating condition by providing real-time computed op-
timal set-points to the control system (Faber et al., 2007).
However, the implemented algorithms need to be fed by
coherent data. The more classical way to deal with that
problem consists to reconcile process data based on the
minimization of measurement errors subject to satisfying
the model constraints and next estimate the model pa-
rameters from these reconciled values. An alternative to
this two-step approach consists to develop simultaneous
strategies for data reconciliation and parameter estimation
(Rod et al., 1980; Tjoa et al., 1991; Joe et al., 2004). The
proposed paper is dedicated to the presentation of such
method.

On a mathematical point of view, data reconciliation is
generally based on the assumption that the measurement
errors have Gaussian probability density function (pdf)
with zero mean. As some model parameters are uncer-
tain, they are also modeled as random Gaussian variables.
Simultaneous state variable and parameter estimates are
obtained using a maximum likelihood estimation approach
applied on a sliding time window of observation data. To
make less sensitive the parameter estimation to measure-
ment uncertainties, the parameters are considered as con-
stant value on a given time window. Parameter estimation
results can either be used to update process model or to
detect abnormal variation due, e.g. to fouling, corrosion,
degradation of parts of the process.

2. SIMULTANEOUS DATA RECONCILIATION AND
PARAMETER ESTIMATION

The proposed paper describes a method allowing simul-
taneous data reconciliation and model parameter estima-
tion in order to provide model-consistent data. In real
process, model parameters are subjected to smooth evolu-
tion/degradation, that’s why simultaneous state variable
and parameter estimates will be extracted from a sliding

time window of observation data. For each observation
data window, parameters are assumed to be constant
whereas state variables evolve around different operating
points. This computation artifice will make less sensitive
the parameter estimates to measurement uncertainties.
The method of simultaneous data reconciliation and pa-
rameter estimation on a given window of length N is firstly
presented and the corresponding algorithm is outlined.
Next, the practical implementation using a sliding window
is described

2.1 The process model

Consider the system described by:

• a set of nonlinear equations in relation to a vector of
state variables x∗

i and a parameter vector with true
value a∗.

F (x∗

i , a
∗) = 0, i ∈ [1, N ] (1)

x∗

i ∈ IRv, a∗ ∈ IRp, F : IRv+p → IRn

• observation equations

xi = x∗

i + εxi, i ∈ [1, N ] (2)

• a priori knowledge of the parameters

a = a∗ + εa (3)

The batch process dynamics are managed as a sequence of
static constraints F , without any time correlation between
the different state variable xi. The xi measurements of the
true values x∗

i are available for the N observations. For the
parameter a∗, the a priori knowledge is formulated as a
kind of “observation equation”. The parameter is defined
on the basis of a nominal value and a “pseudo-noise”.
This form allows to express in the same manner, the state
variable and parameters probability density functions,
given as follows:

pxi =
1

(2π)v/2 |V |1/2
exp

(

−
1

2
(x∗

i − xi)
T V −1(x∗

i − xi)

)

(4)

pa =
1

(2π)p/2 |W |1/2
exp

(

−
1

2
(a∗ − a)T W−1(a∗ − a)

)

(5)

with V and W the variance matrices of the state variables
and parameters respectively, |.| is used for the determinant
of the matrix. The measurement and parameter error
distributions are assumed independent random variables.

2.2 State and parameter estimation method

The problem issue concerns the estimation of the true
value of the state variables and the model parameters
based on the knowledge of the measurements (2) on the
given horizon [1, N ], the a priori knowledge (3) of the
parameter and the process model (1). The estimation can
be performed by the maximum likelihood principle. Taking
into account that measurement errors are independent,
the likelihood function V is the product of the probability
density functions:

V =

N
∏

i=1

pxipa (6)

Estimations x̂i, â of the true values maximize the likeli-
hood function V in relation to x∗

i and a∗ with respect to
the constraint (1) satisfaction.



Let Φ be the Lagrange function relative to the log-
likelihood function and the constraint that have to be
satisfied:

Φ = lnV +
N

∑

i=1

λT
i F (x∗

i , a
∗) (7)

where λi ∈ IRn are the Lagrange parameters.

Generally, this nonlinear optimisation problem must be
solved using an iterative algorithm solution. In this case,
instead of a global system linearization arised from La-
grange regularity conditions, it is advisable to previously
linearize the constraint equations.

For all the observations i ∈ [1, N ], at the iteration j, we
assume that a solution pair {x̂i,j , âj} is available. From
this solution pair, estimates can be improved based on
a first order Taylor series expansion in the neighborhood
of this solution pair. Assuming the convergence of the
estimation process, the successive solution pairs constitute
a convergent series toward the problem solution.

At the iteration j +1, for a solution pair {x̂i,j+1, âj+1}, in
the neighborhood of {x̂i,j , âj}, the constraint first order
Taylor series is:

F (x̂i,j+1, âj+1) =F (x̂i,j , âj) + Gx(x̂i,j , âj)(x̂i,j+1 − x̂i,j)

+ Ga(x̂i,j , âj)(âj+1 − âj) (8)

with the constraint Jacobians as follows:

Gx(x̂i,j , âj) =
∂F (x∗

i , a
∗)

∂x∗T
i

∣

∣

∣

∣

x∗

i
=x̂i,j ,a∗=âj

(9a)

Ga(x̂i,j , âj) =
∂F (x∗

i , a
∗)

∂a∗T

∣

∣

∣

∣

x∗

i
=x̂i,j ,a∗=âj

(9b)

For more readability, these last expressions will be denoted
Fi, Gix, Gia omitting the dependancy with regard to
the quantities at iteration index j. At iteration j + 1,
estimation problem reduces to the search of the Φj+1

Lagrange function extremum in relation to x∗

i,j+1, a∗

j+1,
and λi:

Φj+1 = Φ0 −
1

2
(a∗

j+1 − a)T W−1(a∗

j+1 − a)

−
1

2

N
∑

i=1

(x∗

i,j+1 − xi)
T V −1(x∗

i,j+1 − xi) (10)

+

N
∑

i=1

λT
i

(

Fi + Gix(x∗

i,j+1 − x̂i,j) + Gia(a∗

j+1 − âj)
)

where Φ0 is the constant component of Lagrange function.

This Lagrange function presents an extremum for x∗

i,j+1 =
x̂i,j+1 and a∗

j+1 = âj+1 if:

∂Φj+1

∂x∗

i,j+1

= 0,
∂Φj+1

∂a∗

j+1

= 0
∂Φj+1

∂λi
= 0 (11)

Equation (11) can be transformed into the following sys-
tem:

−V −1(x̂i,j+1 − xi) + GT
ixλi = 0 (12)

−W−1(âj+1 − a) +

N
∑

i=1

GT
iaλi = 0 (13)

Fi + Gix(x̂i,j+1 − x̂i,j) + Gia(âj+1 − âj) = 0 (14)

From (12), (13) and (14), one can deduce:

x̂i,j+1 = xi + V GT
ixλi (15)

âj+1 = a + W

N
∑

i=1

GT
iaλi (16)

Gixx̂i,j+1 = Gixx̂i,j − Fi − Gia(âj+1 − âj) (17)

The Lagrange parameters can be deduced from (15) and
(17):

λi = (GixV GT
ix)−1(Gix(x̂i,j − xi) − Fi − Gia(âj+1 − âj))

(18)

Substituting (18) in (16) gives:

âj+1 = a + W

N
∑

i=1

Si(Gix(x̂i,j − xi)− Fi −Gia(âj+1 − âj))

(19)
with Si defined by:

Si = GT
ia(GixV GT

ix)−1 (20)

Let us define R as follows:

R = I + W

N
∑

i=1

SiGia (21)

Assuming that the matrix R is regular,

âj+1 = R−1W

N
∑

i=1

Si(Gix(x̂i,j − xi) − Fi + Giaâj) + R−1a

(22)

Finally the expression of the state estimation is obtained
from (15) and (18):

x̂i,j+1 = xi + V GT
ix(GixV GT

ix)−1
(

Gix(x̂i,j − xi)

−Fi − Gia(âj+1 − âj)
)

(23)

The estimations x̂i and â reliant to xi and a are obtained
using successive iterations provided algorithm convergence
(the analysis of this latter can be based on the norms of
the Jacobian matrices Gix and Gia).

2.3 Algorithm

For an observation data window of length N , an algorithm
based on the method developped in the previous section
could be formulated in the following way:

• Initialization
j = 0, ∀i ∈ [1; N ], x̂i,j = xi and âj = a

• Repeat
Compute Fi, Gix and Gia using (8), (9a) and (9b).
Compute âj+1 using (22)
Compute x̂i,j+1 using (23)
j = j + 1

until norms of Gix and Gia are below a given thresh-
old.

• Update the parameter and variable estimates
â = âj+1

x̂i = x̂i,j+1, ∀i ∈ [1; N ]

This algorithm gives coherent parameter and state esti-
mates for a given observation data window of length N .
Let us now examine the practical implementation of this
algorithm.



3. PRACTICAL IMPLEMENTATION

3.1 Estimation on a sliding window

In order to be able to monitor the time evolution of the
model parameters, the proposed algorithm is implemented
using a sliding window. Let us consider a first observation
window of length N . Let us denote a(N) the a priori
nominal value of the parameter vector (given by the
user) for this observation window. From the knowledge of
x1, . . . , xN and a(N), the proposed algorithm provides the
estimates x̂1, . . . , x̂N and â(N). The observation window is
then slid from one observation. Based on the knowledge
of the measurements x2, . . . , xN+1 and the previously
estimated value of parameter vector â(N) which serves as
the nominal value for this new observation data window,
the algorithm is used to provide the estimates x̂2, . . . , x̂N+1

and â(N+1). However, in a real-time context, only the last
state variable estimate x̂N+1 is exploited. This process,
which is depicted on figure 1 is re-iterated based on the
availability of new sets of measurements along the time.

!"#$

% !

& !'%

( !'&

x2, . . . , xN+1, â
(N)
→ x̂N+1, â

(N+1)

x1, . . . , xN , a
(N)
→ x̂1, . . . , x̂N , â

(N)

x3, . . . , xN+2, â
(N+1)

→ x̂N+2, â
(N+2)

Fig. 1. Principle of estimation on a sliding window

As previously said, the determination of the control sys-
tem set-points of batch processes in the steel industry is
difficult to solve. Indeed, small changes in the operating
conditions may impact final product quality and some
degree of batch-to-batch variation exists. Therefore, model
adaptation algorithm are frequently implemented for that
kind of processes. Clearly, the performances of the existing
model adaptation algorithm will be enhanced when fed by
the coherent estimated values provided by the proposed
method.

3.2 Variable scaling

In many industrial process, instrumentation chains provide
access to a wide variety of different scaled process data
measurements. Applications for on-line data reconciliation
and optimization methods must be efficient and numeri-
cally robust. To avoid numerical difficulties and make this
type of application robust, a suitable scaling method is
required before any efficient estimation methods.

Indeed, the performance in term of time and convergence
of algorithms based on estimation methods depends cru-
cially on how the problem is formulated. As mentioned by
Lid (2007), a proper scaling ensures an important issue to
this problem. Note that the scaling is a preliminary step
and can be performed off-line. Thus, the computational
complexity of the scaling itself is not important. Rather,
the objective of the scaling is to minimize the computation
time in improving the convergence speed and precision

of the algorithms required by estimation or optimization
methods.

An unconstrained optimization problem is said to be
poorly scaled if a change in xi (resp. a) in one direction
produces a much larger change in F = F (xi, a) than in
another direction (Nocedal et al., 1999). The measure of
poor scaling is not so clear in constrained optimization,
but a poorly scaled model is likely to generate larger
rounding errors which may degrade the performance of
the algorithm (Lid, 2007).

The scaled process model for the proposed method of data
reconciliation and parameter estimation is written as:

F̃ (x̃i, ã) = 0 (24)

with the scaled variable x̃i = S−1
vx xi and the scaled

parameter ã = S−1
va a. The scaled model can be written

as F̃ (x̃, ã) = SnF (Svxx̃i, Svaã) where Svx, Sva and Sn are
fixed diagonal scaling matrices.

The equation scaling factors are the reciprocal of an integer
power of 10 of the value of a given term or group of
terms, normally related to the scale factors of the relevant
variable and parameter:

Svx(j, j) = 10−kj , kj = int(log10 |(x̄)j |), j = 1, ..., v (25)

where x̄ is a mean value of a set of measurement vectors
xi, ( )j , the jth component of a vector, and:

Sva(j, j) = 10−kj , kj = int(log10 |(a)j |), j = 1, ..., p (26)

For the Sn scaling factor, we have chosen to use an integer
power of 2, because residual values are already close to
each other.

Sn(j, j) = 2−kj , kj = int(log2 |(f(x̄, a))j |), j = 1, ..., n
(27)

This scaling method have notable impact on Jacobian
matrices:

G̃ix = SnGixSvx, G̃ia = SnGiaSva (28)

and variance-covariance matrices:

Ṽ = S−1
vx V S−1

vx , W̃ = S−1
va WS−1

va (29)

3.3 Gross error rejection

The proposed method is well adapted for filtering ran-
dom measurement errors. However, measurements are fre-
quently subject to systematic errors also named “gross er-
rors”. These errors may be due to instrument malfunction,
miscalibration or drift, leakage or even poor sampling. If
some measurements have gross errors, precautions have to
be taken to avoid biased measurement adjustments or es-
timates. Generally, gross errors are detected and identified
using statistical tests (Romagnoli et al., 1981) or by the
use of robust objective functions (Tjoa et al., 1991; Alhaj-
Dibo et al., 2008).

For the concerned application, we have just implemented
an empirical approach consisting to modify dynamically
the variance of the measurement suspected to contain a
gross error. Indeed, the influence of each measurement
in the optimization criteria is weighted by its variance.
It is then possible to adjust this variance in order to
minimize the influence of abnormal data. Let us consider
a given observation data window which comprises the N
measurement vectors xj−N+1, ..., xj . First, a correction



ratio vector rj is calculated. Each component (rj)k is
defined by:

(rj)k =
(|xj − x̂j |)k
√

V (k, k)
, k = 1, ..., v (30)

The components (rj)k are then compared to a given
threshold T . When one or several components exceed the
threshold, let us denote by m the index corresponding to
the greater correction:

(rj)m = max
k

(rj)k, k = 1, ..., v (31)

In that case, the variance of the corresponding measure-
ment (xj)m is set to a bigger value (let say ten times
its original value) in order to simulate the lack of that
measurement for the next sliding windows.

4. APPLICATION TO A SIMPLIFIED BOF PROCESS

The proposed simultaneous state and parameter estima-
tion method has been applied to a simplified nonlinear
process model of a basic oxygen furnace (BOF).

4.1 The process model

Due to the random nature of chemical reaction in the non
homogeneous slag or to the wear-out refractory-lined con-
tainer or other many causes, the process cannot accurately
be described with equilibrium balances. Therefore some of
the model parameters need to be estimated simultaneously
with state variables.

The model is a set of mass and heat balances. Let the
nonlinear equation system be a simplified model of basic
oxygen furnace described as next:

(c1 + x∗

3)x
∗

2 + (c2 − x∗

6)x
∗

5 + a∗

1 = 0
c3x

∗

1 + (c4 + c5x
∗

3)x
∗

2 + (c6 − a∗

2x
∗

6)x
∗

5 + c7 = 0
(c8x

∗

3x
∗

4 + a∗

3x
∗

3 + c9x
∗

4 + c10)x
∗

2
+(c11x

∗

6x
∗

7 + c12x
∗

6 + c13x
∗

7 + c14)x
∗

5 + c15 = 0

The first equation represents the iron mass balance where
x2, x5 are material quantities, x3 and x6 are iron mass
percentage and a1 is a parameter corresponding to the
iron loss (projection due to the oxygen blowing and to
the deformation of the converter) which evolves along the
time. In the same manner, the second equation describes
an oxygen volume balance and the third a heat balance.

The variable measurement ranges and the measurement
accuracies (assumed constant) are given in the table 1.

Variable x1 x2 x3 x4

Min value 63593 3.76 4.7 4000

Max value 96750 4.79 5.74 5232

Standard deviation 3339 0.19 0.24 202

Variable x5 x6 x7

Min value 3.71 7.27 1.04

Max value 4.68 12.96 2, 02

Standard deviation 0.19 0.48 0.052

Table 1. Measurement ranges and accuracies

For that example, it is desired to monitor the values of the
three parameters a∗

1, a∗

2 and a∗

3, the other parameters ci

being assumed constant (see table 3). A priori knowledge
on a1, a2 and a3 parameters are gathered in table 2.

Parameter a1 a2 a3

Nominal value 17.85 0.4 16

Standard deviation 0.893 0.02 0.8

Table 2. “A priori” parameter knowledge

Constant c1 c2 c3 c4 c5

Value −0.99 0.95 0.001 −0.007 −3

Constant c6 c7 c8 c9 c10

Value −0.024 1.19 −0.004 −2 ∗ 10−6 0.003

Constant c11 c12 c13 c14 c15

Value −10−4
−0.12 −2 ∗ 10−6

−0.002 −0.256

Table 3. Parameter constant values

4.2 Results

To validate the proposed method, a data base composed of
measurement data and true values of evolving parameters
has been created for 200 measurement sets. The simulta-
neous state and parameter estimation algorithm described
above was performed based on the measurement data, the
knowledge of the model, and the parameter nominal values
given in table 2. Because data come from simulated data
base, we can easily observe the performance of the param-
eter estimation by matching parameter estimates with the
true values. For the two parameters a1 and a2, results are
given in figure 2 and 3 when the observation data window
length is fixed to N = 10, parameter estimates are near to
the true value.
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Fig. 2. a1 parameter estimation

The filtering capacity of the proposed estimator is pointed
out. The more the window length is bigger, the more the
parameter estimation filters the noise measurement, but,
in the same time, the more the estimation is delayed.
Figures 4 and 5 show the measurements of the two state
variables x1 and x6 and their estimations. As the mea-
surements are unbiased, the estimations are closed to the
measurements.

Figure 6 shows the measurements and the state estimation
of the variable x1 as well as the normalized corrective
term in the presence of a gross error. Between instants
30 and 40, and between 110 and 120 the magnitude of the
measurement has been multiplied by 1.3 (this situation
can correspond to an error on the sensor gain). The
proposed algorithm together with the gross error rejection
explained in section 3.3 allow a good estimation of the
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Fig. 3. a2 parameter estimation
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Fig. 4. x1 state estimation and measurement
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Fig. 5. x2 state estimation and measurement

state variable x2. As this rejection is correct, the estimates
of the different parameters ai are little affected by the
presence of this bias.

5. CONCLUSION

In this paper, a general methodology for simultaneous ro-
bust data reconciliation and parameter estimation for non-
linear model has been proposed. Data reconciliation based
on balances was performed to obtain model-consistent
measurement data and simultaneously parameter esti-
mates. The use of a sliding window on which parame-
ters are considered as constant values allows the desen-
sitization of their estimations with regard measurement
uncertainties. It is interesting to note that the knowledge
of parameter distribution errors is not a limiting factor,
indeed it would be easy to modify the algorithm in order
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Fig. 6. x1 state estimation in the presence of a gross error

to run without any parameter knowledge. The robustness
property with regard gross measurement errors has been
introduced. Another approach using a so-called contami-
nated distribution in the maximum likelihood estimation
(Arora et al., 2001; Alhaj-Dibo et al., 2008) is being de-
veloped. Finally the proposed method must be evaluated
on real process model with real data in terms of process
model adjustment along the successive heat to observe
the impact of the set-points adjustment on the successive
batch processes.
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