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The Hasegawa-Mima equation is an infinite-dimensional Hamiltonian system with dynamics gen-
erated by a noncanonical Poisson bracket. Here we give a first principles Hamiltonian derivation of
this system beginning with the ion fluid dynamics and its known Hamiltonian form.

I. INTRODUCTION

When dissipative terms are dropped, all of the important models of plasma physics are described by partial differ-
ential equations that possess Hamiltonian form in terms of noncanonical Poisson brackets. For example, this is the
case for ideal magnetohydrodynamics , E, E], the Vlasov-Maxwell equations [E, ﬁ, EL and other systems (see [ﬂ, , E]
for review). Among these, there exist several reduced fluid models whose Hamiltonian structure has been derived a
posteriori. These include the four-field model for tokamak dynamics of Hazeltine et al. ]; models for collisionless
magnetic reconnection derived and investigated by Schep et al. [@], Kuvshinov et al. [@], and Tassi et al. [E}, and the
recent gyrofluid model of Waelbroeck et al. [@] The noncanonical Hamiltonian formulation has also been adopted to
investigate the electron temperature gradient driven mode [@] and convective-cell formation in plasma fluid systems
(6. In addition to these fluid models, the Hamiltonian structure of kinetic and reduced kinetic equations has also
been highlighted, for example, in guiding-center theory and gyrokinetics (see Refs. [[[7, [[§, [[d] and Refs. [d, 1] for
review).

This Hamiltonian form originates from the Hamiltonian and action principle forms of the basic electromagnetic
interation, i.e., the Hamiltonian form possessed by the equations that describe a system of charged particles coupled
to Maxwell’s equations (see e.g. [H] for discussion). It is now well established that there exist numerous advantages of
such a Hamiltonian formulation, among which are the identification of conserved quantities (that are important for the
verification of numerical codes), the study of stability, the use of techniques for Hamiltonian systems like averaging and
perturbation theory, etc. Here we perform a perturbative derivation within the noncanonical Hamiltonian context,
which means the Poisson bracket as well as the Hamiltonian must be expanded.

In a nutshell, a Hamiltonian system is a system whose dynamics of any observable F' (depending on a finite or



infinite number of variables) can be written using a Hamiltonian (scalar) function H and a Poisson bracket {-, -} as

OF
E_{FvH}v

where the Poisson bracket satisfies the following properties: bilinearity, antisymmetry, Leibniz rule, and Jacobi
identity. Given a reduced model whose dynamics is given by a partial differential equation, it is in general difficult to
guess whether or not the model is a Hamiltonian system, and if it is, finding the Hamiltonian and the Poisson bracket
may be similarly difficult. There are basically two methods for finding Hamiltonian structure: the first method is to
use physical intuition to obtain the Hamiltonian (energy) and to construct a general class of antisymmetric operators
which, when acting on the gradient of the Hamiltonian, produces the equations of motion. Then, the Jacobi identity is
used to select from the class the desired operator that is the essence of the noncanonical Poisson bracket. This method
has been used to obtain a large number of basic and approximate Poisson brackets for fluid and plasma dynamics,
examples being the reduced fluid models cited above. The second method begins from a known or postulated action
principle, in the latter case obtained by using physical intuition to obtain the ‘energies’ of the Lagrangian. Usually
associated with the action principle is a canonical Hamiltonian description, which can be written by means of the
chain rule in terms of physical variables of interest (e.g. [ﬂ, E]) resulting in a noncanonical Poisson bracket.

If one begins from some Hamiltonian parent model, some basic starting point in the derivation, and introduces crude
approximations suggested, e.g., by physical considerations of some experimental set-up, then the Hamiltonian structure
can be easily destroyed. The Hamiltonian form of the resulting system must therefore be verified, in particular, the
Jacobi identity for the Poisson bracket. Given this verification, the reduced model is naturally equipped with a
Hamiltonian structure since the Poisson bracket and the Hamiltonian function are provided by the derivation process
(for an example of this derivation process, see [@])

In this paper we consider the derivation of the Hasegawa-Mima equation [@], which describes the dynamics of drift
waves in inhomogeneous plasmas (see, e.g. @]) In particular we show how a Hamiltonian structure is preserved
in the derivation of the Hasegawa-Mima equation starting from a fluid parent model. In the present approach the
Hamiltonian structure is provided by the derivation process, and the Jacobi identity need not be checked.

We consider a plasma under the influence of a constant and uniform magnetic field B = BZ. The relevant dynamics
occurs in the (two-dimensional) transverse plane whose coordinates in a given basis are denoted by = and y. Under

some assumptions, the Hasegawa-Mima equation gives the following evolution of the electrostatic potential ¢(x,y,t)



generated by the plasma:

0
where the bracket [, -] is given by
050y 050y _,

and A is any function of x and y (related to the equilibrium configuration). The infinite-dimensional phase space
is composed of the variables ¢(z,y) for any point (z,y) in the transverse plane. The space of observables, F, for
this system is composed of functionals of ¢. It has been shown in Ref. [@] that this equation possesses an infinite-

dimensional Hamiltonian structure where the Hamiltonian is

H(g) = / @2z (8 + Vo) |

and the noncanonical Poisson bracket is

{F,G} = — /d%(qs —Ad—N) [(1=A)"Fy, (1-A)'Gy], (2)

where Fy denotes the functional derivative of the functional F' with respect to the variable ¢. This Hamiltonian
structure was found ad hoc in Ref. [@] by an educated guess in analogy with the vorticity equation for two-dimensional
incompressible flow (see e.g. [E]) This analogy is straightforward if we consider the dynamics for the field g = ¢—Ap—A

which is given by the Hamiltonian
1 2 —1
H= 3 d*z(g+ N1 —A) g+ N,
and the Lie-Poisson bracket
{Fv G} = _/dQIQ[F%Gq]v

which is of the same form as that for the Vlasov-Poisson system [E] and a quite general class of systems @] In what
follows, we start by considering a Hamiltonian formulation for the fluid equations for the ions (in Sec. D) and derive

the above Hamiltonian and Poisson bracket from this formulation (in Sec. [I).



II. ION FLUID EQUATIONS AS A HAMILTONIAN SYSTEM

We start the derivation of the Hasegawa-Mima equation from two dynamical equations: one describing the transverse

dynamics of the ion velocity field v(z,y,t) and the other describing the dynamics of the ion density field n(z,y,t):
M+ (v -V)v)=—-eVop+evxB, (3)

n=-V-(nv), (4)

where the dot indicates the partial derivative with respect to time t. The electrostatic potential ¢ is obtained from

the dynamics of the electrons: by neglecting their inertia, the electron density obeys the Boltzmann law

ne = ng exp (e¢/T), (5)

where T is the electron temperature and ng = ng(x, y) is the electron density at equilibrium. From the quasi-neutrality
condition, we obtain that n = n.. The total energy of the ions, given by the sum of their kinetic energy plus the
potential energy provided by the electric field, is a conserved quantity that is also a good candidate for the Hamiltonian

of the system of Eqgs. (). This Hamiltonian is written as

Hmmﬁi/fx%%i+%m<M(%)—lﬂ. (6)

The dynamics is determined by the Poisson bracket

VXv  we

+_%4Rxmﬂ, (7)

n n

Uﬂﬂz—/foMVQfGVVﬂ—<

where w. = eB/M. The bracket of (]) is identical to a portion of that of [fl] with the inclusion of an additional
‘vorticity’ term, w.Z/n; consequently, it is known to satisfy the Jacobi identity. It is easy to verify that the ion
momentum equation is obtained from the bracket of the velocity field with the Hamiltonian (H)

n

V:{V,H}——(V~V)v—%vm< )—I—wcvxé,

no
and, similarly, the ion continuity equation is given by

n={n,H}=-V-(nv).

III. HASEGAWA-MIMA EQUATION

Without loss of generality we write the vector field v(z,y,t) in terms of two scalar fields ¢ and T as

v=2xVé+VT, (8)



where one function is related to V - v and the other to V x v by the relations: A¢p =2-V xvand AY =V -v. In

fact, we find it more convenient to consider a related change of variables (n,v) — (71, q, D) defined by

n=n,

2-VXV+we

9= """
n

D=V.v.

The above equations are incomplete because they do not possess a unique inverse. However, a unique inverse is defined
by the following;:

n=n,

v=2x VA (¢h —w.)+VATID,

where

1
AT'F = —2—/d2x'ln|\x—x'||F(x').
T

In terms of the new variables (7, ¢, D), the Hamiltonian (E) becomes

2
+M) + %n <ln <n£0) - 1>} , (9)

since |2 x V|2 = |V f|? for any function f of z and y, and the bracket ([f) becomes

H(fi,q,D) = /d% [n ('VAl(qﬁ_“’C)'Q +[A " (gh — w.), A"1D]

F,
{F,G} = —/d2$ <—VFD'VGﬁ+VGD'VFﬁ+ %VFD'V(]— #VGD'VL]

It should be noted that Casimir invariants of such a bracket, which are the functionals that Poisson commute with

all the other functionals ({C,G} = 0 for all functionals G), are given by

C= /dzxﬁ]—'(q),

where F is any function of gq.

We first assume that the variables evolve slowly with time, which is equivalent to adding a factor of 1/¢ in front of



the Hamiltonian,

“Lgh — we)[?
H(ﬁ,q,D):%/d% [ﬁ(|VA (QZ o)l + A7 (gh — we), AT D]

n IVA~1DJ? n T _ ! n ]
= ~ “alm( =)=
2 M no ’
then we introduce an e-ordering for the dynamical variables. The hypothesis is that the system of interest is near an

equilibrium state whose spatial variations are of order e:
n(x, t) ="no (EX) + Enl(xa t)v
v(x,t) = evy(x,t),

which translates into an assumption on the new variables (7, ¢, D) and, in particular, on the definition of new dynamical

variables (711, q1, D1),
n= ’fLO + €ﬁ17
q=qo +€q,

DZEDl,

where gy = w/Mo and 7y = np(0,0) are constant (the spatial variations of ng are included in 71). Notice that the

potential energy can be rewritten as

with the following expansion:

=~ =2
p (m (_) _ 1) C o™ 4 2 im0 4 o),
no o 2”0 no

The term —efiq In(ng /7o) is of order €2, due to the spatial variations of ng, which can be seen by writing ng = fig+€dno:

~ no ’le(STLO
—€ny In -— = —62~— + 0(63).
o o

Next, we expand the Hamiltonian and the Poisson bracket: the Hamiltonian is

e [IVAT @0 +genn)]? | [VATIDI? T #f — 2010n0 2
H—e/dwno[ 5 + 5 LTV +0(e?),

since [ d?zno[A™ (q170 + o), A"t D1] = 0, and the Poisson bracket is

1
{FuG} = 6_2/d2x(VFD1 'VGﬁl _VFfu 'VGDl)

1

G F
+—/d2x (ﬁ—?VFD1 -Vql -1

F, G
! VGD1 : v(11 —q1 |:~_lh7 ~_¢11:| —q1 [FD17GD1]) + 0(60)'
0 no no

€ n,



Thus the dynamics emerges to leading order at e~* (which gives the dynamics on a time-scale of order €) and to next
order at € (whose influence happens on a time-scale of order one).
First we study the dynamics given by the leading order. It should be noticed that ¢; is constant, since the leading

order Poisson bracket does not contain any functional derivatives with respect to g1, and that

- 1 q . _ . . . _
Ny = 5_2AHD1 +0(e) = _%Dl + [fin, A" qufio + qofin)] — V - (i VAT Dy) + O(e),

€2 €

. 1 1 H 1
Dl = __AH’fll - =V < ~q1 VQ1) - _[HDl)ql] + O(E)
no €
If we impose the following constraints on the initial conditions:
AH;, =0,
AHp, =0,
then these constraints are preserved by the leading order flow. These constraints are equivalent to the following:
T Any

——— — qo7 n1+qing) = 0.
M g QOTLO((JOnl qmo)

However, even if we neglect higher order terms (¢? in the Hamiltonian and €” in the Poisson bracket), these constraints
are not preserved by the Poisson bracket. Therefore, these quantities are approximately conserved on a time scale of
order e. Next, we approximate the dynamics on a time-scale of order 1 by inserting the constraints on D; and n; into
the second order Poisson bracket. By dropping all dependence on Dy and ni, the dynamics is thus equivalently given

by the Hamiltonian
2 N ~ ~ -1 . - T n
H = [d T —(gof1 + q170) A™ " (goT1 + qi7i0) + M 2

where N is a function of ¢; given by

and the Poisson bracket

{F.G}h = —/d%ql F‘“ : (2“] : (10)

Nog  No

which satisfies the properties of a Poisson bracket - in particular, the Jacobi identity. Using this condition on ny, the

Hamiltonian H; can be rewritten as

T ) T - T -
Hy = d 1———A 2A(1- ——A 11
1 2Mq(2) / X |f]1 ( M2 > Q1+ A ( M2 ) qi| ( )

C C




where A contains the spatial variations of the equilibrium density as follows:

Using the symmetry of the operator (1 — (T/Mw?)A)~!, the Hamiltonian ([L1]) can be rewritten as

Tio [ o, T
H, = d A)1-

Up to some constants, the Poisson bracket ([l]) and the Hamiltonian ([[2)) are indeed the same as those presented in

-1
A) (@142, (12)

Ref. [@] Thus we have provided a derivation process that leads to dynamics, on time-scales of order 1, that is still

generated by a Hamiltonian and a Poisson bracket.

IV. CONCLUSION

An important issue in the derivation of reduced models for plasma physics is avoiding the introduction of fake
dissipative terms, which may result from uncontrolled approximations and truncations in the derivation process. In
particular, if the parent model has Hamiltonian structure, we argue that the final reduced model should also have
Hamiltonian structure.

In this paper we examined, in this spirit, the case of the Hasegawa-Mima equation. In particular we showed how
the fundamental elements, i.e., the Hamiltonian functional and the Poisson bracket, of the Hamiltonian formulation
of the Hasegawa-Mima equation, emerge from the Hamiltonian structure of a parent model, which is the starting
point of the derivation commonly adopted in the plasma physics literature. The appearance of the Hamiltonian and
the bracket of the Hasegawa-Mima equation in the derivation process was seen to be facilitated by adopting the new
set of variables (¢, 7, D). In terms of these variables, the part of the bracket of the parent model that becomes the
Hasegawa-Mima bracket can be easily identified. Indeed, what our paper shows is how the ordering adopted in the
derivation is able to reduce the bracket of the parent model to the Hasegawa-Mima bracket, without compromising
the fundamental properties of a Poisson bracket, such as for instance the Jacobi identity. A further new element
of our analysis is the way the plasma compressibility is treated. Without invoking the drift approximation and the
polarization drift, the divergence-free condition on the plasma velocity appears as a solution for the variable D; on
a time scale of order e. Such a solution is used in order to approximate the dynamics of order 1, assuming for such
dynamics that an equilibrium solution exists. A similar argument is used for the dynamics of 71, which at the lowest

order is constrained to be a function of ¢; or, more precisely, to be proportional to the plasma stream function.



We believe that the method adopted in this paper is a framework for deriving the Hamiltonian structure in other
reduced models of plasma physics, and for deriving new models while avoiding the risk of introducing fake dissipative

terms.
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