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Abstract
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1 Introduction.

Let us consider the following family of deterministic systems indexed by the
parameters a ∈ R and δ > 0.

δẋt = −yt + f(xt), X0 = x (1.1)

ẏt = xt − a, Y0 = y (1.2)

and their stochastic perturbation by a one dimensional Wiener process (Wt)
as follows

δdXt = (−Yt + f(Xt))dt +
√

ǫdWt, X0 = x (1.3)

dYt = (Xt − a)dt, Y0 = y (1.4)

The function f is a cubic polynomial: f(x) = −x(x − α)(x − β) with
α < 0 < β. The parameter δ is small. The deterministic system (1.1)-(1.2)
is an example of a slow-fast system: the two variables x, y have different
time scales, xt evolves rapidly while yt evolves slowly. This system is one
version of the so called FitzHugh-Nagumo system and plays an important
role in neuronal modelling. In this context xt denotes the voltage or ac-
tion potential of the membrane of a single neuron. It was first proposed by
FitzHugh and Nagumo (cf. [3], [13]). One interest of this model is that it
reproduces periodic oscillations observed experimentally. Indeed FitzHugh-
Nagumo system finds its origin in the nonlinear oscillator model proposed by
van der Pol. It is also a simplification of the Hodgkin-Huxley model which
describes the coupled evolution of the membrane potential and the different
ionic currents: existence of different time scales enable to pass from a four
dimensional model to a two dimensional one. Oscillations can take place be-
cause the deterministic system (1.1)-(1.2) exhibits bifurcations; more details
will be given in section 3. Let us mention that oscillations in this system
(1.1)-(1.2) can only occur when a ∈]a0, a1[ where a0 < a1 are two particular
values of parameter a namely the bifurcation parameters.
Our main interest in the present paper is to generate oscillations even for
a < a0 (symmetrically a > a1) )by adding a stochastic perturbation to the
deterministic system. What may be interpreted as some resonance type
effect (cf. [9], [8]). We will therefore investigate possible oscillations for
system (1.3)-(1.4). The presence of parameter ǫ introduces a third scale in

the system and the relative strength of δ and ǫ measured by the ratio ǫ| log δ|
δ

will determine its evolution. Our study was inspired by reference [6] where
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M. Freidlin considers a random perturbation of the second order equation
δ d2yt

dt2
= g(dyt

dt
, yt) and performs the study of its solution using the theory of

large deviations (cf. [5]). See also [7] for the study of a more general situa-
tion. In our case g(ẏ, y) = y − f(ẏ + a). Although our argument is close to
M. Freidlin’s, the presence of parameter a leads to a richer behaviour.
We prove the existence of equilibrium point and limit cycles different from the
deterministic ones; as in [6], as well as a new bifurcation point which did not
exist for the deterministic system. Our study relies on transitions between
basins of attraction of stable equilibrium points due to noise. Relying on
some estimation of a family of exit times(propositions 3.3 and 3.4) we study
conditions on the parameters under which a convenient stochastic dynamic
system approach its main state(proposition 3.5 ),(which corresponds to the
equilibrium point exhibited in main theorem 2.2), or approach a metastable
state (which corresponds to the limit cycle and to the new bifurcation pa-
rameters exhibited in main theorem 2.1).
A general study of slow-fast systems perturbed by noise can be found in
[1]. Bursting oscillations in which a system alternates periodically between
phases of quiescence and phases of repetitive spiking has been studied for
stochastically perturbed systems in [10] and may be studied later in our
stochastic setting. We recall that in the deterministic one a bursting-type
behaviour has been generated in [2].

The paper is organized as follows. In section 2 we recall basic facts about
(1.1)-(1.2) and we state the two main theorems (2.1) and (2.2). Section 3 is
devoted to the application of large deviation theory to (1.3)-(1.4) and section
4 to the proof of the main theorems.

2 Some Basic Results.

2.1 Deterministic FitzHugh-Nagumo System.

In (1.1)-(1.2) let us consider α < 0 < β and f(x) = −x(x − α)(x − β). In
order to investigate the asymptotic behaviour of (xt, yt) one first looks for
equilibrium points of the system and their stability. The equilibrium points
are defined as the points (x, y) where the right-hand sides of both equations of
the system vanish. For any value of a there is therefore a unique equilibrium
point for (1.1)-(1.2) which is (a, f(a)). Moreover let a0, a1, a0 < a1 be the
two points where f ′ vanishes. The stability of the equilibrium point (a, f(a))
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changes when a passes through the value a0 (resp. a1); a0 and a1 are called
the bifurcation parameters of the system. Let us focus on a0; an analogous
argument holds for a1. By linearizing system (1.1) at (a0 + η, f(a0 + η)) for
η small, we obtain system Ż = AZ with

A =

(

f ′(a0+η)
δ

−1
δ

1 0

)

A admits the two eigenvalues λ± = 1
2δ

(f ′(a0 + η) ± i
√

4δ − f ′2(a0 + η)).
The sign of f ′(a0 + η) is the same as that of η since f ′ is increasing in the
neighbourhood of a0. The point (a0 + η, f(a0 + η)) is therefore an attracting
(resp. repulsive) focus when η < 0 (resp. η > 0). In particular, (a, f(a))
is stable when a < a0, unstable when a > a0. For a ∈]a0, a1[ the system
admits a limit cycle. The bifurcation is of Hopf type [4] It can be verified
numerically that if δ < 0.01 the limit cycle is very close to the loop made
up with the two attracting branches of the curve y = f(x) where x 7→ f(x)
is decreasing and y ∈ [f(a0), f(a1)], and the portions of the two horizontal
segments y = f(a0), y = f(a1) connecting them. When δ → 0 the period of
this limit cycle is 0(1); by example for f(x) = x(4 − x2) it is equal to 2 (cf.
[14]).

2.2 Main Theorems

Consider (Xt, Yt) the solution of (1.3)-(1.4) and S > 0 given in definition 3.3.
Let us assume that ǫ > 0 and δ > 0 go to zero in such a way that for some
constant c > 0.

ǫ| log δ|
δ

→ c (2.1)

Let us denote by lim ∗ any limit on ǫ and δ going to 0 under condition (2.1).

Theorem 2.1 Let c ∈]0, S[; then:
1.If a ∈]x−(c), x+(c)[ where x−(c) and x+(c) are introduced in definition 3.4;
then there exist two periodic functions Φa

c and Ψa
c given in definition 4.2, s.t

for all A, h > 0, y ∈]f(a0), f(a1)[,

lim ∗ P(x,y) (
∫ A

0
|Xt − Φa

c (t)|2dt > h) = 0 (2.2)

lim ∗ P(x,y) (sup
[0,A]

|Yt − Ψa
c (t)| > h) = 0 (2.3)
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2. If a < x−(c) or a > x+(c) then for all y ∈]f(a0), f(a1)[, for all h > 0
there exists t̂(y, h) such that for all A > t̂(y, h),

lim ∗P(x,y)( sup
[t̂(y),A]

|Xt − a| + |Yt − f(a)| > h) = 0 (2.4)

Figure 1: Limit cycle when f(x) = x(4 − x2) and ǫ| log δ|
δ

→ c

Remark

In the first case the solution stabilizes when δ → 0 and ǫ| log δ|
δ

→ c around
a limit cycle defined by c and different from the one obtained in the deter-
ministic case when δ → 0 and ǫ = 0 (see figure 1). Moreover x−(c) and by
symmetry x+(c) play the role of bifurcation parameters for the stochastic
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FitzHugh-Nagumo system (1.3)-(1.4). Indeed for a in the neighborhood of
x−(c) but smaller the limit of (Xt, Yt) is a unique equilibrium point, whereas
for a in the neighborhood of x−(c) but greater it is the graph of a periodic
function. These bifurcation parameters are different from those of the de-
terministic system (1.1). This theorem is a new result w.r.t. [6]. It is made
possible by the freedom on parameter a. The new limit cycle (Φa

c (t), Ψ
a
c (t))

is defined in the same way as in [6] Theorem 1 Part 3., provided we take into
account the presence of a in our system.
Other regimes are considered in the work of Berglund and Gentz (cf. [1] and
references therein).

Theorem 2.2 Let c > S. Consider x∗
−(y∗) and x∗

+(y∗) defined in proposi-
tion 3.2 and definition 3.3; then for all y ∈]f(a0), f(a1)[ and for all h > 0
there exists t̂(y, h) such that for all A > t̂(y, h),

1. If a ∈]x∗
−(y∗), x∗

+(y∗)[

lim ∗P(x,y)( sup
[t̂(y),A]

|Yt − y∗| > h) = 0 (2.5)

2. If a < x∗
−(y∗) or a > x∗

+(y∗),

lim ∗P(x,y)( sup
[t̂(y),A]

(|Xt − a| + |Yt − f(a)|) > h) = 0 (2.6)

Remark:
Case 1 may be considered as a degenerate version of the limit cycle of case 1
theorem 2.1. In fact y∗ is a fixed point but Xt oscillates between x∗

−(y∗) and
x∗

+(y∗).

3 Exit Time, Main State and Metastable State

3.1 Basic results on Large Deviations Theory

Because of the slow-fast property of FitzHugh-Nagumo systems, the slow
variable Yt of system (1.3)-(1.4) may be in a first approximation frozen at
the value y which leads us to the study of the family of one dimensional
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dynamical systems indexed by parameter y,which plays a basic role in the
study of FitzHugh-Nagumo systems (1.1)-(1.2) and (1.3)-(1.4):

dxy
t = (−y + f(xy

t ))dt, xy
0 = x (3.1)

So we are led to consider the real valued deterministic system

dxt = b(xt)dt, x0 = x (3.2)

and its perturbation by a brownian motion

dx̃t = b(x̃t)dt +
√

ǫ̃dWt, x̃0 = x (3.3)

Let us briefly recall some results from [5]. The process (x̃t) describes the
movement of a particle on the real line submitted to the force field b(x) and
to a stationnary Gaussian noise of amplitude

√
ǫ̃. When ǫ̃ → 0, (x̃t) converges

to the solution (xt) of (3.2):

∀η > 0 ∀T > 0 lim
ǫ̃→0

P(sup
[0,T ]

|x̃t − xt| > η) = 0 (3.4)

However because of diffusion due to the presence of noise, some trajectories of
the process (x̃t) may present large deviations from those of the deterministic
system (xt). Such deviations are measured by means of the action functional
ST2

T1
(ϕ) independant of ǫ̃ and defined by

ST2
T1

(ϕ) =
1

2

∫ T2

T1

|ϕ̇u − b(ϕu)|2du (3.5)

when ϕ is absolutely continuous, by ST2
T1

(ϕ) = +∞ otherwise

Theorem 3.1 ( [5], Lemma 2.1, Chap. 4)
Let η > 0. Then

Px(sup
[0,T ]

|x̃t − xt| ≥ η) ≤ exp(−1

ǫ̃
[inf

∆
ST

0 (ϕ) + o(1)]) (3.6)

when ǫ̃ → 0 and where ∆ := {ϕ; ϕ0 = x, sup[0,T ] |ϕt − xt| ≥ η}.

Large deviations theory also provides estimates on the first exit time of (x̃t)
from a domain (cf. [5], Theorem 4.2, Chap. 4). Domains of interest are
basins of attraction of stable equilibrium points of (3.2). The key tools are
quasipotentials.
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Definition 3.1 The quasi potential of the deterministic system (3.2) w.r.t.
a point x (also called transition rate) is defined as the function

u 7→ V (u) := inf{ST2
T1

(ϕ); 0 ≤ T1 < T2, ϕ(T1) = x, ϕ(T2) = u} (3.7)

Proposition 3.1 The quasi potential of (3.2) w.r.t. x coincides with the
function

u 7→ V (u) = −2
∫ u

x
b(r)dr (3.8)

Remark:
The above statement holds since (3.2) is one dimensional. It also holds in
the multidimensional case when the drift b of (3.2) is a gradient.

Theorem 3.2 Let x∗ be a stable equilibrium point of (3.2) such that b(r) < 0
for all r > x∗, and b(r) > 0 for all r < x∗. Let D be the basin of attraction
of x∗ and τ̃ denote the first exit time of x̃ from D. Let us assume that
D =]α1, α2[ with V (α1) < V (α2). Then for all x ∈ D and h > 0,

lim
ǫ̃→0

Px(x̃τ̃ = α1) = 1 (3.9)

lim
ǫ̃→0

Px(e
V (α1)−h

ǫ̃ < τ̃ < e
V (α1)+h

ǫ̃ ) = 1 (3.10)

Remark:
With the notations of Theorem 3.2, with great probability when ǫ̃ → 0, the
behaviour of the process (x̃t) on an interval [0, T (ǫ̃)], in particular whether
the process has jumped out of the basin of attraction D or not, depends on
the value of ǫ̃ log T (ǫ̃) compared to V (α1).

3.2 Two Families of Quasipotentials.

Let us now apply these results to the following family of one dimensional
dynamical systems indexed by parameter y introduced in the preceeding
subsection.

dxy
t = (−y + f(xy

t ))dt, xy
0 = x (3.11)

Proposition 3.2 Let y ∈]f(a0), f(a1)[ with a0 and a1 the two points where
f ′ vanishes.
(i) The set {x ∈ R; f(x) = y} consists of three points x∗

−(y) < x∗
0(y) < x∗

+(y)
(the equilibrium points of (3.11)) each being a continuous function of y with
bounded first and second derivatives.
(ii) The two points x∗

±(y) are stable. x∗
0(y) is unstable.
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Proof of Proposition 3.2:
Left to the reader; we refer to figure 1-section 2

Definition 3.2 Let us define the two functions V± on ]f(a0), f(a1)[ as fol-
lows:

V±(y) = −2
∫ x∗

0(y)

x∗
±

(y)
(−y + f(u))du. (3.12)

From Proposition 3.1 we see that V±(y) is the value at x∗
0(y) of the quasipo-

tential of (3.2) w.r.t. x∗
±(y). Both functions V±(y) are strictly monotone:

V− is strictly increasing, V+ is strictly decreasing. Therefore their graphs
restricted to ]f(a0), f(a1)[ intersect at a unique point.

Definition 3.3 We denote by (y∗, S) the intersection point of the graphs of
V− and V+. Let E1 := {y > y∗} and E2 := {y < y∗}.

Definition 3.4 For c ∈]0, S[ we denote by y±(c) the points of ]f(a0), f(a1)[
which satisfy y−(c) < y∗ < y+(c) and V−(y−(c)) = c = V+(y+(c)). Let us
also define x−(c) := x∗

−(y−(c)) and x+(c) := x∗
+(y+(c)) (cf. figure 1).

Remark:
By definition V−(y∗) = V+(y∗) = S. For f(x) = 4x − x3, y∗ = 0 and S = 4.

For any function U satisfying y − f(u) ≡ −∂xU/2 the following identities
hold:

V−(y) = U(x∗
0(y)) − U(x∗

−(y)), V+(y) = U(x∗
0(y)) − U(x∗

+(y)) (3.13)

In our case such a function U is a polynomial of degree 4 which admits
x∗

0(y) as relative maximum and x∗
±(y) as relative minima. The graph of the

function U has two wells with respective bottoms at x∗
±(y) and one top at

x∗
0(y). Identities (3.13) express that V±(y) are the respective depths of these

wells. Therefore, on E1 the well with bottom x∗
−(y) is the deepest one while

it is the contrary on E2.
Second, the portion of the curve z = f(x) connecting (x∗

−(y), y) to (x∗
0(y), y)

is situated below the horizontal line Ly := {(x, z); z = y}; thus the positive
quantity 1

2
V−(y) measures the surface of the area limited by the curve z =

f(x) and the segment of Ly on which x ∈ [x∗
−(y), x∗

0(y)]. In the same way
1
2
V+(y) measures the surface of the area limited by the curve z = f(x) and
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the segment of Ly on which x ∈ [x∗
0(y), x∗

+(y)] but in this case the portion of
the curve is above the line segment.
Moreover as we will see in the following section V± is connected to exit times
of diffusions

dZ̃y
t = (−y + f(Z̃y

t ))dt +
√

ǫ̃dWt, Z̃y
0 = x (3.14)

from the basins of attraction of x∗
±(y) (cf.Theorem 3.2).

3.3 Exit Times, Main state and Metastable States

We refer the reader to [7] for the present section. Let us recall the fundamen-
tal difference between the two parameters ǫ and δ. Parameter δ is already
present in the deterministic system (1.1)-(1.2) where it measures the differ-
ence between the time scale of the slow variable yt and the time scale of the
fast variable xt. In particular after the time change s := δt, the trajectory
(x̃s, ỹs) := (xδt, yδt) satisfies

˙̃xs = −ỹs + f(x̃s) (3.15)
˙̃ys = δ(x̃s − a) (3.16)

Since δ is small the component ỹs may be considered as constant equal to ỹ0.
Let us define Zy

t to be the family of solutions of

δdZy
t = (−y + f(Zy

t ))dt +
√

ǫdWt, Zy
0 = x. (3.17)

We will also consider the time change (Z̃y
t ) of (Zy

t ) under s := δt

dZ̃y
s = (−y + f(Z̃y

s ))ds +
√

ǫ̃dW̃s, Z̃y
0 = x (3.18)

with ǫ̃ = ǫ
δ
. (Z̃y

t ) is the stochastic perturbation of (3.11).
In the two following propositions we give crucial estimates on exit time of
the respective solutions of (3.17) and (3.18).

Proposition 3.3 Let τ̃ y
1 (resp. τ̃ y

2 ) denote the exit time of Z̃y from Dy
1 (resp.

Dy
2) which is the basin of attraction of x∗

−(y) (resp. x∗
+(y)). Let us recall that

Dy
1 =] − ∞, x∗

0(y)[ (resp. Dy
2 =]x∗

0(y), +∞[). From Theorem 3.2 identity
(3.10), for x ∈ Dy

1 and h > 0 we obtain
∀x ∈] −∞, x∗

0(y)[, ∀h > 0

lim
ǫ̃→0

Px(exp(
V−(y) − h

ǫ̃
) < τ̃ y

1 < exp(
V−(y)) + h

ǫ̃
)) = 1 (3.19)
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An analogous result holds for x ∈ Dy
2 by replacing τ̃ y

1 by τ̃ y
2 and V−(y) by

V+(y):
∀x ∈]x∗

0(y), +∞[, ∀h > 0:

lim
ǫ̃→0

Px(exp(
V+(y) − h

ǫ̃
) < τ̃ y

2 < exp(
V+(y)) + h

ǫ̃
)) = 1 (3.20)

Proposition 3.4 Let τ y
1 (resp. τ y

2 ) denote the first exit time of Zy from Dy
1

(resp. Dy
2). The law of τ y

i is the same as the law of δτ̃ y
i for i = 1, 2. Let us

assume that ǫ and δ go to 0 in such a way that

ǫ

δ
| log δ| → c ∈]0, +∞[. (3.21)

In this case we obtain:
∀x ∈] −∞, x∗

0(y)[, ∀h > 0

lim Px(δ
c−1(c−V−(y)+h) < τ y

1 < δc−1(c−V−(y)−h)) = 1 (3.22)

An analogous result holds for x ∈ Dy
2 by replacing τ y

1 by τ y
2 and V−(y) by

V+(y):
∀x ∈]x∗

0(y), +∞[, ∀h > 0

limPx(δ
c−1(c−V+(y)+h) < τ y

2 < δc−1(c−V+(y)−h)) = 1 (3.23)

These two properties enable us to introduce some remarks about the
main theorems stated in the previous section. These remarks are linked to
the notions of mainstate and metastable state introduced in [5].
In a general framework ( cf. [7]) the main state is the point towards which
the cost of moving, or the transition rate, is minimum. It is not always
unique: for instance in our bistable case there are two main states when
y = y∗. Before reaching the main state, the process may reach metastable
ones accessible for shorter time lenghts.
Main states may be considered as stable states, whereas metastable states
are only stable in some time scale.

To study transitions of (3.18) between the two basins of attraction dur-
ing [0, T (ǫ̃)], the relevant quantity to consider is ǫ̃ log T (ǫ̃) which we must
compare to the transition rates V±(y) given by (3.12). For the time scale
T (ǫ̃) = e

c

ǫ̃ ; ǫ̃ log T (ǫ̃) = c. So we must compare c to the transition rates
V±(y). Actually this amounts to compare first c to S defined in definition
3.3. We refer again to figure 1.

More precisely we can state using definition 3.3 and 3.4:

11



Proposition 3.5 ; 1. When c > S the main state of Z̃y is equal to x∗
+(y)

(resp. x∗
−(y)) if y < y∗ (resp. y > y∗).

When y = y∗ the two points x∗
±(y∗) are both main state.

2. When c < S for y ∈]y−(c), y+(c)[ and x ∈ Dy
1 (resp. x ∈ Dy

2) the
metastable state of Z̃y is equal to x∗

−(y) (resp. x∗
+(y)).

Proof of Proposition 3.5:
Direct consequence of the estimation of the time of exit given in proposition
3.4.
Remark:
1. When c > S the time interval [0, T (ǫ̃)] is long enough so that the process
Zy reaches with great probability a small neighborhood of its main states.
And as we can find an open interval I containing y∗ such that:

∀y ∈ I c > max(V−(y), V+(y)). (3.24)

following proposition both exit time τ y
1 and τ y

2 tends to 0 in probability so
we can only expect results on the slow component and the result depends on
whether the boundary between the two main states is attracting or notas is
shown in theorem(2.2).
2. On the countrary when c < S the time interval [0, T (ǫ̃)] is too short and the
process only reaches with great probability a neighborhood of a metastable
state. In this case we have y−(c) < y+(c) and if we consider the interval
]y−(c), y+(c)[ when c < V−(y) < V+(y) and x ∈ Dy

1 (resp. c < V−(y) <
V +−(y) and x ∈ Dy

2), for all y ∈]y−(c), y+(c)[ exit time τ y
1 (resp. τ y

2 )tends
to infinity. So the process Zy remain in a neighborhood of one metastable
state and switch to the other one as soon as Yt gets out of ]y−(c), y+(c)[; this
give rise to a limit cycle as is shown in theorem (2.1).

4 Proof of the Main Theorems

Definition 4.1 For a ∈]x−(c), x+(c)[ and y ∈]y−(c), y+(c)[ as we can check
on figure 1 we have:

x∗
−(z) < x−(c) < a < x+(c) < x∗

+(z) (4.1)

Then for c ∈]0, S[, a ∈]x−(c), x+(c)[ and y ∈]y−(c), y+(c)[, the following
definitions of time duration makes sense

T a
1 (c) =

∫ y+(c)

y−(c)

dy

x∗
+(y) − a

and T a
2 (c) =

∫ y+(c)

y−(c)

dy

|x∗
−(y) − a| (4.2)
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where y±(c) and x±(c) have been introduced in Proposition 3.2 and Definition
3.4.

On the interval [0, T a
1 + T a

2 ]we can introduce the solution of the following
ordinary differential equations used to define the limit cycle in Theorem

Definition 4.2 For c ∈]0, S[, a ∈]x−(c), x+(c)[ and y ∈]y−(c), y+(c)[ we
define Ψa

c as the continuous periodic function with period T a(c) = T a
1 (c) +

T a
2 (c) satisfying Ψa

c (0) = y−(c) and the ode

Ψ̇a
c(t) = x∗

+(Ψa
c(t)) − a, t ∈ [0, T a

1 (c)[ (4.3)

Ψ̇a
c(t) = x∗

−(Ψa
c(t)) − a, t ∈ [T a

1 (c), T a
1 (c) + T a

2 (c)[ (4.4)

For t /∈ {kT a(c), kT a(c) + T a
1 (c), k ∈ Z}, we denote by Φa

c (t) the derivative
of Ψa

c at t.

Existence and regularity of solutions to odes (4.3)-(4.4) follow from the C2

regularity of the functions x±.. Under the assumptions we recall that we
have (see figure 1)

x∗
−(z) < x−(c) < a < x+(c) < x∗

+(z) (4.5)

so Ψa
c (t) increases from y−(c) to y+(c) in a duration of time equal to T a

1 (c)
and decreases from y+(c) to y−(c) in a duration of time equal to T a

2 (c). The
periodic function Ψa

c is obtained by continuously sticking together at y±(c)
the solutions ya

± of the following odes

ẏ
a

±(t) = x∗
±(ya

±(t)) − a, ya
±(0) = y (4.6)

Remark:
The function Ψa

c is continuous on R differentiable with continuous derivatives
except at points in the set {kT a(c), kT a(c) + T a

1 (c), k ∈ Z}.
For t ∈ [0, T a

1 (c)[ the point (x∗
+(Ψa

c (t)), Ψ
a
c(t)) belongs to the right stable

branch; for t ∈ [T a
1 (c), T a

1 (c) + T a
2 (c)[ the point (x∗

−(Ψa
c(t)), Ψ

a
c (t)) belongs to

the left stable branch.

Proof of Theorem 4.

1. Case a ∈]x−(c), x+(c)[:
a) Let y < y−(c) and x ∈ Dy

1 . Then lim ∗Px(τ
y
1 = 0) = 1 since V−(y) <

V−(y−(c)) = c (remember that V− is strictly increasing). Therefore the
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process (Xt) leaves Dy
1 instantaneously and is attracted to a neighborhood

of x∗
+(y) > x+(c). The point (Xt, Yt) remains in a neighbourhood of the

branch v = f(u) containing (x∗
+(y), y) and Yt increases as long as Xt > x+(c)

since dYt = (Xt − a)dt. However identity (3.23) implies that lim ∗Px(τ
z
2 =

+∞) = 1 for z < y+(c) (resp. lim ∗Px(τ
z
2 = 0) = 1 for z > y+(c) ).

Therefore the point (Xt, Yt) is instantaneously attracted to a neighborhood
of (x∗

−(y+(c)), y+(c)) after Yt has crossed y+(c) since the speed of Yt is strictly
positive in a neighbourhood of (x+(c), y+(c)). The argument is then the same
as before. We detail it for completeness. Since x∗

−(y+(c)) < x−(c) < a, the
second coordinate Yt decreases as long as Xt−a < 0. However identity (3.22)
implies that lim ∗Px(τ

z
1 = +∞) = 1 for z > y−(c) (resp. lim ∗Px(τ

z
1 = 0) = 1

for z < y−(c)). Therefore the point (Xt, Yt) is instantaneously captured by
(x∗

+(y−(c)), y−(c)) after Yt has crossed y−(c). Hence (X, Y ) converges in
probability to a limit cycle of period T a(c) = T a

1 (c) + T a
2 (c).

b) Let y > y−(c) and x ∈ Dy
1 . By identity 3.22 lim ∗Px(τ

y
1 = +∞) = 1, the

fast process (Xt) is attracted to x∗
−(y). After this first phase, one can apply

the same argument as in a).

2.Case a < x−(c). As already mentioned in section 3, when c < S, the
relevant states are the metastable ones. The assumption a < x−(c) implies
f(a) > y−(c). Let V be a small neighborhood V of (a, f(a)). Let us first
assume that V is so small that all (u, v) ∈ V satisfies v > y−(c) and ac-
cordingly u < x−(c). Let (Xt, Yt) start from (u, v). In particular u ∈ Dv

1

and τ v
1 = +∞ since V−(v) > c. Then (Yt) will evolve like the solution of

v̇t = x∗
−(vt) − a, v0 = v for which f(a) is a stable equilibrium point. Let us

now assume that there are points (u, v) ∈ V such that v < y−(c). Then (Xt)
instantaneously jumps to the right stable branch; (Yt) becomes close to the
solution of v̇t = x∗

+(vt) − a and therefore increases until it reaches y+(c). At
that time it jumps to the left stable branch and we are back to the previous
argument since then (Yt) becomes close to the solution of v̇t = x∗

−(vt) − a.
Let us notice that for the slow variable Yt we get a result using the uniform
norm by large deviation estimates but for the quick variable Xt the result is
formulated in L1 norm thanks to equation (1.4).

Proof of Theorem 2.2. When c > S, as pointed out in subsection (3) Zy

has time to reach its main state so the evolution of Yt is close to the solution
of

v̇t = x∗
+(vt) − a provided vt < y∗

14



v̇t = x∗
−(vt) − a provided vt > y∗

and it depends on whether the boundary {y∗} between E1 := {y > y∗}
and E2 := {y < y∗} is attractive for this system or not(cf. [7]). If a ∈
]x∗

−(y∗), x∗
+(y∗)[ the boundary is attractive. This is not the case when a <

x∗
+(y∗ nor when a > x∗

+(y∗).

1. Let x∗
−(y) < a < x∗

+(y∗). The point y∗ is an attracting boundary since
x∗
−(y∗) − a < 0 < x∗

+(y∗) − a.
Assume for example that Y0 = y < y∗ that is y ∈ E2. The evolution of (Yt) is

close to the solution of Ẏ t = x∗
+(Y t)− a. Therefore since x∗

+(y) > a, process
(Yt) starts increasing until it reaches y∗. After it has reached y∗, the evolution

of (Yt) is close to the solution of Y 0 = y∗, Ẏ t = B(Y t) where B is a vector
field tangent to boundary (cf. [7] Theorem 1) which is the 0-dimensional
manifold {y∗}; therefore B is zero and Y t ≡ y∗. The time t̂(y, h) is the time
necessary to reach a small ball B(y∗, h).

If y ∈ E1 the evolution of (Yt) is close to the solution of Ẏt = x∗
−(Y t)− a. In

this case process (Yt) starts decreasing since x∗
−(y) < a until it reaches y∗.

The argument and the conclusion are then identical to the preceeding case.

2. Let a > x∗
+(y). The point y∗ is not an attracting boundary since x∗

−(y∗)−
a =< 0 and x∗

+(y∗) − a < 0.
Let us assume for example that Y0 = y ∈ E2. The evolution of (Yt) is close

to the solution of Ẏ t = x∗
+(Y t) − a. The value f(a) is a stable equilibrium

for (Y t). If x∗
+(y) > a, process (Yt) starts increasing until it reaches f(a) to

which it is attracted. If now x∗
+(y) < a the argument and the conclusion are

the same except that (Yt) starts decreasing. If y ∈ E1 the evolution of (Yt) is

close to the solution of Ẏ t = x∗
−(Y t) − a. Since x∗

−(y∗) − a < 0 process(Yt)
starts decreasing until it crosses y∗ (which is not attractive) towards E2. Then
we are back to the previous case.

3. The case a < x∗
−(y) is treated analogously.
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